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Abstract: In this article we describe the results of an inves-
tigation into the extent to which the reflectance spectra of
1269 matt Munsell color chips are well represented in low
dimensional Euclidean space. We find that a three dimen-
sional Euclidean representation accounts for most of the
variation in the Euclidean distances among the 1269 Mun-
sell color spectra. We interpret the three dimensional Eu-
clidean representation of the spectral data in terms of the
Munsell color space. In addition, we analyzed a data set
with a large number of natural objects and found that the
spectral profiles required four basis factors for adequate
representation in Euclidean space. We conclude that four
basis factors are required in general but that in special
cases, like the Munsell system, three basis factors are ade-
quate for precise characterization. © 2003 Wiley Periodicals, Inc.
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INTRODUCTION

The primary aim of this article is to determine how well
1269 Munsell standard color samples are represented in a
three-dimensional space on the basis of their spectral reflec-
tance curves. No human assessment is involved in this
representation. Two methods of analysis are used. In one
method, the dissimilarities between spectral patterns are
captured as Euclidean distances and hence the space in
which we embed colors is an Euclidean space E3. The other
method is a more direct approach to patterns of spectra in
which no such constraint is imposed and the assumed space

is a vector space R3. Both analyses yielded essentially the
same results. It will be shown that the set of Munsell colors
form a configuration of 1269 points in E3 according to
patterns of their spectral reflectance curves.

Several researchers (reviewed later in the article) have in-
vestigated the question of how many basis factors are required
to represent spectral reflectance curves adequately. In contrast,
we are only aware of two published examples of the scaled
relationships among a complete set of Munsell color samples
based on their spectral reflectance curves. Such a description
based on purely physically derived spectral data would be of
potential interest by itself, as well as to determine the relation-
ship between a physical description and a perceptual descrip-
tion. Such a description also has implications for a variety of
questions including the number of basis factors necessary to
describe the spectral reflectance curves.

Previous researchers have discussed scaling the spectra of
colors but usually do not present actual empirical results.
For example, Koenderink and van Doorn1 present an ideal-
ized spherical configuration of color space obtained by
singular value decomposition (SVD) but do not show the
empirical evidence for the structure. Lenz and Meer2 have
carried out one of the two empirically based studies of the
structure of color spectra that we have located. They ana-
lyzed “a database consisting of reflectance spectra of 2782
color chips, 1269 from the Munsell system and the rest from
the NCS system.”2 The Munsell spectra are the same ones
we analyze below. They find that the spectral data are
described by coordinate vectors which lie in a cone and they
therefore define a hyperbolic coordinate system to represent
the data. They present a three-dimensional figure of the
distribution of the chips (Fig. 1(b) in Ref. 2) that is some-
what like the upper left panel of our Fig. 2. The structure we
describe in this article could be characterized as a set of
nested cone-like structures, each made up of a single Mun-
sell Chroma with lower Chroma values being inside higher
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values. The narrow tips of each cone-like structure are
found at the lowest Value levels.

The second empirically derived structure of color based
on measured reflectance spectra was reported by Burnes,
Cohen, and Kurznetsov.3 From a data set of 427 Munsell
color chips under C illuminant measured from 380–770 nm
in 10 nm steps, they plotted a configuration of color chips
and a curve for wavelengths in “Fundamental Color Space.”
The space was spanned by three orthoganal axes, Luminos-
ity, Red, and Violet. Points of the same Munsell Value level
form a plane and each plane is tilted with regard to vectors
representing a power level of both equal energy illumination
and illuminant C.

Representation of Color Samples with Metric
Multidimensional Scaling

The present study is based on the 1269 color chips of the
Munsell color book (1976 matte edition). The data were
downloaded from the web site: http://www.it.lut.fi/research/
color/database/database.html. The data set is: Munsell col-
ors matt (spectrophotometer measured). The spectra were
obtained from a Perkin-Elmer lambda 9 UV/VIS/NIR spec-
trophotometer from 380 nm to 800 nm at 1 nm resolution
using a measurement geometry of 0/d (integrative sphere).
Because in subsequent research we will want to compare the
physically measured spectra with human perceptually de-
rived structures, we limited the data to the approximate
limits of human vision, namely, the 430 nm to 660 nm
segment. This results in a data matrix SN�M � (si�) with
N � 1269 rows of Munsell chips and M � 231 columns of
1 nm spectral intervals.

It has been known for some time that classical metric
multidimensional scaling (MMDS) recovers exact distances
when applied to data known to be Euclidean.4–7 In order to
obtain a Euclidean representation of the Munsell color space
as described by reflectance spectra, we applied metric scal-
ing to the matrix of Euclidean distances. The dissimilarity
between two spectral patterns, si� and sj�, � � 1 2, . . . ,
231, is converted to a Euclidean distance dij for all combi-
nations of colors. Matrix D1269 � 1269 � (dij) was analyzed
by MMDS to obtain a matrix A � (ai�) on orthogonal
coordinate axes f� embedded in three dimensional Euclid-
ean space E3. Our notational conventions as well as the
mathematical and statistical details of all computations are
presented in Appendix I. Appendix II summarizes in a
single table the descriptive statistics relevant to all compu-
tational procedures carried out on the Munsell data.

To measure how well the data are fit with just three
dimensions, we examined the scatter diagram (or Shepard
diagram) between the original 804,546 distances dij and the
computed estimates of these distances d̂ij. The results are
shown in Fig. 1. Since the contributions of higher dimen-
sions are excluded, d̂ij � dij. The variance accounted for was
estimated by r2 � .9994. We also plotted the distribution
(not shown) of the distances among the color samples and
found that the square root of these distances is very nearly
normally distributed.

In order to obtain more detailed insight into the overall
structure, we oriented it by trial and error visual rotation.
We used two criteria. The first criterion was that when
viewed from “above,” the achromatic point was centered on
the zero point of the second and third dimensions. The
second criterion was to minimize the width of the Munsell
value levels when viewed from the side perpendicular to the
first axis. We used software that allowed us to manipulate a
visual image of the rigid figure on the computer screen and
iterated by eye until a satisfactory orientation was obtained.
The rotation and translation was rigid, insuring that the
Euclidean distances among the points were invariant. The
axes are labeled A1, A2, and A3 for convenience. These
coordinates constitute the matrix A � (ai�) as specified in
Appendix I. A plot of the results is shown in Fig. 2.

The units on the axes represent the actual Euclidean
distances as calculated from the original spectra from 430
nm to 660 nm using Equation (3) in Appendix I. The left
panel in Fig. 2 shows the resulting representation. The
colors in the plots show the five Munsell primary hues in
their natural color (red, yellow, green, blue, and purple) for
the four variations (2.5, 5, 7.5, and 10) for each Hue, with
all the intermediate hues labeled as gray. The color coding
is for identification purposes only and is not meant to
portray actual Munsell colors.

In the lower left panel of Fig. 2, one is looking down
through the color space with the achromatic point centered
at zero. In the middle left panel, the separate value levels of
the Munsell system are viewed from the side. Points for
colors of the same value form a plane and all planes are
parallel and sloped at an angle of about 37.8 degrees with
regard to A1. In the left top panel the perspective of the

FIG. 1. A scatter plot showing the relationship between the
original 804,546 Euclidean distances dij among the spectral
curves of 1269 Munsell color chips and the d̂ij estimated
from the three dimensional Euclidean representation.
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FIG. 2. Scatter plots representing the 1269 Munsell spectra scaled in Euclidean space (left panel) and altered to best
represent the Munsell axes (right panel). See text for explanation of color coding and other details.
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middle panel is rotated 90° around the vertical axis resulting
in an overlap of the slanted planes.

The three orthogonal Euclidean axes may be interpreted
in the following way. A1 is the achromatic axis and should
relate to the mean energy level of the spectra. Let us denote
the mean of the 231 spectral points si� by MEi for each of
the 1269 spectra i. The plot of the relation between MEi and
A1 is shown in Fig. 3. There is a close correspondence
between the two variables (r2 � .99998) which gives us
confidence that the orientation of the figure arrived at by
successive visual rotations is satisfactory. The higher the
value of MEi, the larger the Munsell Value of that color i.
However, MEi is not constant for colors i of the same value,
because Munsell Value is the luminous intensity (Y). Axis
A1 represents difference of MEi between Value as well as
the variation of (MEi) within each plane of Value. The
luminous intensity Y (Munsell V) is captured as a tilted axis
in the left panel in Fig 2.

Axis A2 is oriented along the 10R and 2.5B of the
Munsell hue color space. It may be noted that in this
physical representation the color chips along this axis would
all have roughly the same mean spectra at any given Mun-
sell Value. Axis A3 is oriented along 7.5GY and 5P of the
Munsell hue color space. Note that in this case the mean
spectral value (MEi) of the color chips on this axis, at a
given Munsell Value level, would increase considerably as
one moves from the GY end to the P end of the axis. It is
interesting that such a result should emerge from an objec-
tive description of the physically measured spectra of the
Munsell chips.

In the left panel in Fig. 2, A1 does not correspond to
Munsell Value and the bottom plot is a slanted plane of
Munsell Hue and Chroma. Hence we have reoriented and

modified the perspective to one that corresponds to the
Munsell notation. The modified perspective is seen in Fig. 2
in the right panel, and the axes have been labeled AA1,
AA2, and AA3. The axis AA1 has been tilted about 37.8
degrees from A1 so that all planes of constant Munsell
Value are horizontal as seen in the top and middle plots. The
rotation displaced the alignment among planes of constant
value and we have horizontally shifted each V-plane on the
AA3 axis until its achromatic point is centered at AA3 � 0.
The magnitude of the shift is given in Table I. The new vertical
axis AA1 passes through these achromatic points and is per-
pendicular with all planes of constant Value. The bottom plot
is the projection of all V-planes along AA1 to a plane spanned
by AA2 and AA3. These new coordinates in the right panel are
directly related to Munsell value, hue, and chroma. To relate
distance d̂ij in the solid to dissimilarity between si� and sj�,
however, we have to use the solid in the left panel. In the
remainder of the paper we refer to the representation in the
right panel of Fig. 2 as the Munsell Model.

Representation of Color Samples and Spectra into a
Common Space

In the preceding analysis, we cannot visualize the rela-
tionship of the spectral points si� to the configuration {Pi}.
In order to plot color samples and spectra in a common
space, the matrix S1269�231 was reanalyzed by SVD using
procedure (2) of Appendix I to obtain an estimated matrix
Ŝ1269�231 � P1269�m �m�mQ�m�231 reconstructed from m
basis factors. The matrices P and Q respectively define
colors j and spectral values � in an m-dimensional space,
and � is a diagonal matrix of ���, � � 1, 2, . . . , m, where
�� are eigen values of the matrix S�S. The first three column
vectors in P� were found to correspond fairly closely to A1
to A3. Elements of the first column, pj�

��1, are correlated
with the corresponding elements in A1 with r2 � 0.9988.
The configuration of colors j in Fig. 4 is the plot of pj2

��2

and pj3
��3 that corresponds to the {Pj} in the plot of A2

and A3 in Fig. 2. The space spanned by the first three basis
factors is a vector space, but the configuration defined in this
space and the configuration {Pi} defined in a three-dimen-
sional Euclidean space are found to be essentially the same.
The curve in Fig. 4 is the plot of the second and third
columns of W � Q�, q�2

��2 and q�3
��3, where � � 1

FIG. 3. Scatter plot of the first axis, A1, of the Euclidean
representation and the mean Value ME of the 231 spectral
points characterizing the corresponding Munsell color sam-
ple.

TABLE I. Amount of shift at each Value level neces-
sary to bring the achromatic point to zero on axis AA3
of the Munsell color space representation.

Munsell Value level Amount of shift

2.5 �2.1
3 �1.9
4 �1.5
5 �1.0
6 �0.3
7 0.8
8 2.1
8.5 2.9
9 3.6
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(430 nm) to 231 (660 nm). The black dots on the spectral
plot are placed at 10 nm intervals with the numbers being at
30 nm intervals beginning with the number “1” at 460 nm.

There are strong potential theoretical implications im-
plicit in the dual plot of color chips and spectral wavelength.
One immediate observation is that the projection of a vector
from the achromatic point out to the spectral curve provides
a prediction about the perceived color of a monochromatic
light with a given wavelength. Studies of unique hues pro-
vide positive empirical evidence of this correspondence.8

The fact that the spectral curve does not encircle all the hues is
clearly consistent with the well known fact that there is no
unique wavelength that produces a perceived color of purple.

We can check on the accuracy of the three dimensional
reconstruction of the spectra by reconstructing an estimated Ŝ
matrix of m � 3. The correlation between the 293,139 (1269 �
231) pairs of values sj� in S and ŝj� in Ŝ is r2 � .988.

Figure 5 shows a sample of 40 spectra of the Munsell
samples all at value level 7 and chroma level 8 in which the
original data sj� are plotted in blue and the reconstructed
values ŝj� are plotted in red. Figure 5 begins with the spectra
of 2.5R and proceeds through the Munsell color circle
ending with 10RP. Note that the progression from one
spectrum to another is rather smooth and that the similarity
between the first and last spectra appear about the same as
between other adjacent pairs throughout the spectra. This
illustrates why the colors at the two ends of the spectra
merge seamlessly so that there is no physical or perceptual
“gap” between so-called low and high wave length colors.

What is shown in Fig. 5 is the similarity between two
spectral patterns si� and ŝi� for the 40 Munsell colors of 7/8.
In order to obtain a visual notion of how close the positions

of colors produced by si� and ŝi� are, a further analysis was
carried out. To a stacked matrix S80�231 consisting of si�

and ŝi�, we applied procedure (1) to obtain an embedding of
the 80 points in a 3-dimensional space E3. For an extended
treatment of scaling stacked matrices, see Romney, Moore,
and Brazill.9 A comparison between points (ai�) for si� and
points (ai�) for ŝi�, a � 2, 3 is shown in Fig. 6. In this plot
the symbols for the original spectra are plotted in blue and
the symbols for the reconstructed spectra are plotted in red.
It may be seen that the pair of points representing the
original and the reconstructed are so close that it is difficult
to see the relatively small differences.

In theory the figure should be in the form of a smooth
closed curve. The deviations from an ideal curve illustrate
the presence of error variance from a variety of sources.
This variance would include such factors as errors in pro-
duction of the Munsell color samples, deterioration and
soiling of the color samples, possible confusions in labeling,
transcription and transmission errors in copying and trans-
ferring the original data, and the physical measurement
errors in obtaining the spectra, etc.

Relating the Spectral Representation to Psychological
Representations

We turn now to the question of how the representation of
the color samples shown in the right panel of Fig. 2 relate to
previous psychophysical studies of the relations among the
colors. In Fig. 7 we display some additional detail of the
overall structure by plotting the Munsell Value levels from
3 through 8 separately by level. Each panel is perpendicular
to the achromatic point and thus the AA1 axis. The color
coding is the same as in Fig. 2. For purposes of comparison,
the sample of spectra displayed in Fig. 5 and Fig. 6 is
highlighted in black in the lower left panel. The range of
views presented in Fig. 7 facilitate the examination of
various characteristics of the color space altered to fit the
Munsell Model. It is possible to see how the outer limits of
chromaticity varies with value. For example, reds have
relatively higher Chroma at low Value levels and yellows
relatively higher Chroma at higher Value levels.

We ask whether there are changes in hues at different
value levels by plotting several possible Chroma levels for
the principal hues (5R, 5Y, 5G, 5B, and 5P) at selected
Value levels. Figure 8 shows the chromaticity vectors for
Munsell Value levels 4, 5, 6, 7, and 8 for the principal hues
plotted in blue. The red vectors show the directions of these
Munsell principal Hues in the corresponding configuration
constructed by multidimensional scaling from human as-
sessment of color differences.10, 11 The two configurations
embedded in E3, one derived from Euclidean definition of
dissimilarities between spectral patterns and one con-
structed by MDS from color differences assessed by human
observers, are close in their structure.

The present results, as shown in Fig. 7, cover a much
wider range of the Munsell solid than was possible in the
earlier studies. In the MDS studies, the matrix D � (dij) was
incomplete in the sense that only color differences of mod-

FIG. 4. Plot of 1269 Munsell color chips showing both the
color chips and each spectral position from 430 nm to 660 nm
obtained from a SVD of original spectra data. The numbers on
the spectral line represent interval of 30 nm beginning in the
lower left where “1” indicates 460 nm. The black filled circles
indicate 10nm intervals. Color coding same as Fig. 2.
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FIG. 5. A sample of 40 spectra (from 430 nm to 660 nm) of Munsell color chips spanning the hue circle at Value 7 and
Chroma 8. The blue lines show the actual spectra si� and the red lines show the reconstructed spectra ŝi� from three SVD
factors. These same color chips are also represented in Figs. 6 and 7.
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erate size were assessed because it is not easy to make
psychological judgments of color differences beyond a cer-
tain range.12 That is the reason the space embedding the
Munsell solid was called a 3-D manifold with locally Eu-
clidean metric.10 In the present study, D is complete in the
sense that it includes differences among all Munsell colors.
The Munsell color solid as a whole is embedded in E3. In
the MDS experiments, Indow could not show Hue and
Chroma configuration in each level of Value as in Fig. 7.
We tried to define equi-chroma contours in each plot in Fig.
7. It was found rather complicated and in this article we do
not go beyond Fig. 8 in exploring this relationship.

As stated before, the axis AA1 corresponds to Munsell
value in the sense that colors of the same Value have almost
the same values of AA1. However, this does not imply that
AA1 and Value are linearly related. The box plot in Fig. 9
shows the mean (red dots) and scatter of AA1 values in each
level of Munsell V. In analogy to the frequently used
functional form between value and Y, Value is taken as the
dependent variable in the curvea

V � 5.282(AA1 � 3.203) 0.335 � 1.6

that is plotted in red in Fig. 9.

The scatter of AA1 values at each level of Value is more
clearly shown in Fig. 10. Here all color chips at each of the
10 Munsell Hues designated 5 are shown on the x-axis
while the AA1 axis is plotted on the y-axis. The horizontal
lines of points each represent a Munsell Value level,
namely, 2.5, 3, 4, 5, 6, 7, 8, 8.5, and 9. If the relationship
between Munsell value and AA1 were perfect, the measures
perfect, and the calculations perfect, then each row and
column would form a straight line and each cluster of points
in the figure would be a single dot. Note that at the lowest
value levels there is more variability on the hue axis than the
AA1 axis that correlates with Munsell Value, i.e., there is
more spreading on the horizontal axis than on the vertical
axis at the lower part of the figure. Figure 10 illustrates both
the degree of accuracy of the overall picture as well as the
correspondence between the structures derived from the
Munsell Model and human perceptions. Taken together,
these examples are sufficient to show that there is a remark-
able fit between the structure of the spectral data and the
perceptual structure. We are preparing a detailed analysis of
the relationship between the physical and perceptual struc-
tures for future publication.

Implications for the Number of Basis Factors
Required for Color Description

In this section, we briefly review some previous findings
on basis factors after which we present our results and
compare them to the prior research. Cohen was the first to
reduce spectral reflectance curves s(�) to a small number of
basis factors.14 His data was drawn from s(�) of 433 Mun-
sell chips published by Nickerson15 in which reflectances
are given at 10 nm intervals from 380 nm to 770 nm (40
values). Due to computer limitations, he randomly selected
data from 150 Munsell chips and analyzed S � (si�), 150 �
40 with singular value decomposition (SVD) “almost iden-
tical” to that discussed by Simons.16 The only difference
seems to be that Simons recommended a ”correction by
column means s��” in advance and showed the analysis of
(si� � s��), whereas Cohen analyzed S directly. He extracted
four eigenvectors from the minor product moment matrix
S�S, 40 � 40, and showed that 99.18% of the data was
accounted for by the first three. He gave two examples of
how well data values si�, i � 5R 6/6 and N 4/, were
reproduced by loadings of spectra of these colors on the
three eigenvectors (as in Fig. 5 of this article).

Maloney17 repeated Cohen’s analysis on s(�) of 462
Munsell master standard chips obtained from the Macbeth
Corporation (400 nm to 700 nm with 10 nm intervals, 31
values) and on s(�) of 337 natural objects collected by
Krinov18 (400 nm to 650 nm with 10 nm intervals, 26
values). His criteria were not only the percentage of data
accounted for but also the closeness between the data spec-
tra s(�) and the reconstructed spectra ŝ(�). We showed the
closeness graphically in Fig. 5 whereas he used R2 as a
measure of fit. He also tried discrete Fourier transformations
(DFT) of s(�). On the basis of these two analyses, he

aIn accordance with the 1976 CIE lightness function13 V � (L*/10)�
11.6 �Y/Yn)

0.333 � 1.6 where Yn is the value of Y of the nominally white
object, the expression for Value was obtained by fitting the expression V �
a(AA1 � c)b � 1.6. The parameter c is necessary because AA1 is defined
from an arbitrary origin. It is of interest that the exponent b has turned out
close to 0.333 in spite of the fact that AA1 corresponds to the mean spectral
energy ME, not to the luminous intensity Y. The parameter a depends upon
the unit of scale of the abscissa, V � 10 and 0 when Y/Yn is 1.0 and 0.003
whereas V � 10 and 0 when AA1 � 8.357 and �3.175.

FIG. 6. Plot of 40 pairs of spectra from Fig. 5 representing
Munsell color chips at Value 7 and Chroma 8 where the blue
circles represent the original spectra and the red crosses
represent the reconstructed spectra. The locations of the
same chips are highlighted in the lower left panel of Fig. 7.
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FIG. 7. Plot of the Munsell Model axes AA2 and AA3 at each of 6 Value levels. The sample of 40 spectra at Value 7 and
Chroma 8 are highlighted in black in the lower left panel.



concluded that five to seven, not three, basis factors were
necessary to account for the data. The conclusion is retained
in his more recent article.19

Parkkinens, Hallikainen, and Jaaskelainen20 measured
s(�) of 1257 Munsell matte color samples. Jaaskelainen,
Parkkinenn, and Toyooka21 used these data and a newly
added set of data, s(�) of 218 plants. In both sets of data,
spectra covered 400 nm to 700 nm with 5 nm intervals (61
values). The analysis of S � (si�) was carried out with SVD
without mean correction. They introduced a new criterion,
the agreement between s(�) and ŝ(�) in terms of CIE(x,y).
According to these studies, the number of vectors needed for
accurate reconstruction of spectra ranges from three to eight.

Vrhel, Gershon, and Iwan22 measured 354 spectra s(�)
(64 Munsell chips, 120 Dupont paint chips, and 170 natural
and man-made objects), where � covers from 390 nm to 730
nm with 2 nm intervals. Then they reduced these data to 31
values of 10 nm intervals. By the use of the SVD analysis
procedure of Trussell23 with mean correction, they extracted
7 basis factors. They compared data s(�) and ŝm(�) recon-
structed from m basis factors and mean values in two ways.
One method is the differences between the two by the CIE
L*a*b* (Table II of their article) and the other is plots of
s(�) and ŝm(�) in the Chromaticity diagram, m � 3 to 7.

Following the line advanced by Stiles, Wyszecki, and
Ohta,24 Barlow,25 and Buchsbaum and Gottschalk26 pointed
out that s(�) can be represented by a finite number n of
significant samples where n is related to the range T of �
and the limiting frequency B of Fourier transforms of s(�)
and that if T is 300 nm and B is 0.005 cycle/nm, then n �
3. They showed that the gamut spanned by three samples
can cover the range of maximum chroma Munsell colors in
the CIE chromaticity diagram. However, if B for Fourier
transforms of CIE color matching functions is 0.02 to 0.01
cycle/nm, then n becomes 6 to 12. This paradoxical situa-
tion was discussed by Maloney.17,19 In contrast to the stud-
ies referred to above, the three-dimensional representation

FIG. 8. Plot showing the loci of constant hue in blue at
value levels 4, 5, 6, 7, and 8 for the Munsell hues 5R, 5Y, 5G,
5B, and 5P obtained from the plots of Fig. 7. The corre-
sponding vectors of the psychophysical perceptual space
obtained by Indow and Aoki11 and Indow10 are shown in red.

FIG. 9. A standard box plot showing the relationship be-
tween Munsell Value levels (the y-axis) and the axis AA1 as
in the right panel of Fig. 2 (the x-axis). Values of AA1 of
colors of constant Value are not exactly constant. Red dots
represent means, boxes contain 50% of cases and median
line, whiskers contain the range of values that falls within 1.5
H spread of the hinges, and asterisks show outliers. The
fitted red curved line is described in the text.

FIG. 10. A plot showing the first axis AA1 of the Munsell
Model on the y-axis and the 10 categories of H � 5 of the
Munsell color system on the x-axis.
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gave satisfactory results in the present study, which may be
due to some differences in data and procedures between the
studies. One difference is that our spectral values s(�) are
more fine-grained. Spectra were defined with 1-nm interval
and the number of si�, M, is 231 in each color i. Another
difference is that we limited range of � to between 430 nm
to 660 nm. Large discrepancies between s(�) and ŝ(�) tend
to occur outside this region (e.g., Fig. 4 in Ref. 20). A final
difference in procedure that might have an effect is embed-
ding the structure in Euclidean space.

We turn now to the results of the analysis of the spectral
information in our original data matrix S1269�231. The curve
from 430 to 660 nm in Fig. 4 shows W� � (w��), each
representing the overall weights of 231 wavelength values �
in the respective basis factors � (� � 2 and 3). The con-
figuration of 1269 colors in this plot is based on P2 and P3

of SVD analysis obtained by procedure (2) in Appendix I.
For comparison we also calculated the Euclidean distances
among all wavelengths � and �, D231�231 � (d��), and used
metric scaling to embed them in E3 by the procedure (3) in
Appendix I. The results are given in Appendix II. Fig. 11
shows that histogram of d�� is U-shaped. The data are well
accounted for by the first three factors (97.82%), and d̂��

based on m � 3 are correlated with d�� with r2 � 0.9999.
Cohen14 extracted four basis factors by SVD directly ap-
plied to (si�). His first variable I consisting of all positive
components represents the general contributions of vari-
ables. He reports that the variables II to IV “plots as a
near-perfect helix.” In our embedding points in E3 by the
procedures (1) and (3), the first three variables exhibit helix
patterns. In other words, the curve from 430 to 660 nm in
Fig. 4 is a spiral in E3. The U-shaped histogram of d�� in
Fig. 11 may be understood from the curve in Fig. 4. The
excess number of large d�� represents distances between ��s
in the opponent directions in this plot (e.g., ��s in the
intervals around “1” and “5”) as well as distances between
si� and si� at opposite extremes of dimension 1. The large
number of small d�� represents distances between ��s
within short intervals at both ends in the plot (e.g., �s below
“1” and above “6”).

In order to see whether the method of calculation to
obtain A � (a��) made much difference in the shape of the
basic variables, two more analyses of S � (si�) were added
according to the procedures in (4) of Appendix I. Thus, we
have four sets of curves representing the overall effects of �
on the basic variables: 1) (w�2, w�3, w�4) of W in the SVD
procedure (2). As in the analysis of Cohen,14 the first vector
W1 in this analysis represents the general contributions of
variables and all w�1 	0.2) (a�1, a�2, a�3) in E3 by the
procedure of (3). 3) (a�2 a�3 a�4) by PCA based on C of the
procedure (4). 4) (a�2, a�3 a�4) by PCA based on R of the
procedure (4). In 3 and 4, the first vector a1 is the direct
current component (ME or general intensity) and all a�1 	
0. Since these analyses result in different magnitudes, we
standardized the scores for comparison. Results are illus-
trated in the three panels of Fig. 12. All four curves are

FIG. 11. A histogram showing the distribution of the 26,565
interpoint distances, d�� among the spectral points as rep-
resented in three dimensional Euclidean space.

FIG. 12. A plot showing a comparison of four separate methods for computing basis factors using standardized scores of
the first three basis factors.
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correlated above .99. The figure shows that there is no
practical effect of choosing one method over any other as
they all are virtually identical.

The question of how similar basis factors are when com-
puted on different data sets seems relevant to the question of
how many to retain. To obtain information on this question,
we downloaded from the web http://ftp.cns.nyu.edu/pub/
ltm/SSR/ the data s(�) of Vrhel, Gershon, and Iwan22 from
390 to 730 nm with 2 nm intervals. These data were also
analyzed by Maloney.19 We censored the set limiting it to
the range of 430 nm to 660 nm and analyzed S354�116 � (si�)
by PCA based on the correlation matrix R of the procedure (4)
in Appendix I. We then compared the results with those from
the same procedures on the Munsell data set. The results are
shown in Fig. 13 where the thick line is the Munsell data and
the thin line is the Vrhel, Gershon, and Iwan22 data. The results
show fundamental similarities but more variation between
these samples of data than when computed on the same data by
different methods of analysis as in Fig. 12.

We applied the same test used in Fig. 6 to S354�116 �
(si�) of Vrhel, Gershon and Iwan22 with 2 nm intervals.
Namely, we first obtained Ŝ354�116 � (ŝi�)m by the SVD
procedure (2) in Appendix I, based on m basis factors. We

then stacked S and Ŝm into a single matrix of 708 � 116 and
computed Euclidean distances dij among all 708 rows to
obtain (ai1, ai2, ai3), coordinates of 708 points in E3, by the
procedure (1) of Appendix I. Fig. 14 shows the configura-
tion in the plane of the second and third dimensions where
a vertical slash represents (ai2, ai3) for 354 observed spectra
and a horizontal slash represents (ai2, ai3)m for 354 recon-
structed spectra. Figure 14a is the case that m � 3 and Fig.
14b is the case that m � 4. These are analogs of Fig. 7 and
Fig. 8, respectively, in Vrhel, Gershon and Iwan.22 They
converted row vectors si and ŝi to points in the CIE chro-
maticity diagram while we show the points in the plane of
the second and third dimensions in which Euclidean dis-
tances between corresponding points represent similarity of
si and ŝi. Squared correlations r2 between si and ŝi based on
4 basis factors approach 1 beyond six decimal places. When
ŝi is defined by 3 basis factors (Fig. 14a), some discrepan-
cies are visible. In this view the ŝi, represented by horizontal
slashes, are nearer the center of the plot than their actual
counterparts sI, indicting that more basis factors are neces-
sary to provide a closer fit. When ŝi is defined by 4 basis
factors (Fig. 14 b), points are virtually on top of each other.
This is the situation we observed with 40 Munsell colors in

FIG. 13. A plot showing a comparison of the first three basis factors for two separate data sets. The present data set is
shown in thick lines, while the Vrhel, Gershon, and Iwan data set is shown in thin lines. Both were obtained with a principal
component analysis of the correlations.

FIG. 14. Plots showing the re-
lation between the location of the
actual Euclidean location of the
354 samples from Vrhel, Ger-
shon, and Iwan and the location
based on SVD reconstructions of
spectra (14a is based on three
SVD factors and 14b is based on
four SVD factors), plotted as a
vector from the actual to the re-
constructed position. A vertical
slash represents the actual loca-
tion and the horizontal slash rep-
resents the reconstructed loca-
tion. Sample number 77 is
shown in a circle below and to
the right of the center of the plot.
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Fig. 6 with 3 basis factors. The methods of embedding
spectral data in low-dimensional Euclidean space seem to
provide rather precise representation for spectra in general
(the data includes 170 natural and man-made objects) and is
not limited to just the Munsell system.

It is interesting to note that the entire Munsell sample of
1269 spectra are fit about as well with three SVD factors as
the Vrhel, Gershon, and Iwan sample is with four SVD
factors. For the Munsell sample, the vectors corresponding
to the observed and reconstructed spectra all have r2 ap-
proaching 1 beyond five decimal places and the points plot
virtually on top of each other (plot not shown). Apparently
the variability within a heterogeneous sample that includes
a variety of natural objects requires an additional dimension
for full characterization.

For the set of 1269 Munsell samples, three basis factors
are sufficient. For the set of Vrhel, Gershon and Iwan,22 one
more basis factor seems to be necessary if we want to have
agreement as shown in Fig. 14b. This difference may be due
to the following fact. As can be seen in Fig. 5, spectral
patterns s(�) of the Munsell chips have only one hump,
upward or downward, in the spectral range of 430 nm to 660
nm. The set of Vrhel, Gershon and Iwan consists of 64
Munsell chips, 120 Dupont paint chips, and 170 natural and
man-made objects and there may be spectral patterns s(�) of
more complex form. Thus, it is an open question whether
three basis factors are sufficient for Munsell colors having
s(�) of more complex form (e.g., displays on a monitor)
when analyzed in the same way.

Maloney19 shows patterns of W��, � � 1 to 8, that he
obtained in his analysis of S170�171 � (si�) of Vrhel, Ger-
shon and Iwan22 in order to have perfect fit between s(�) and
reconstructed ŝ (�) in the range from 390 nm to 730 nm. For
� 	 4, W�� have many humps in the range from 430 nm to
660 nm. If D � (dij) of Equation (3) in Appendix I for the
Munsell colors is analyzed directly, we could have extra-
factors having similar form of W��. However, we could
have almost perfect reproduction of 1269 Munsell samples
in E3 disregarding these extra basis factors. The most im-
portant criterion to see how many basis factors are neces-

sary is to see coincidence between the locations of colors
and reconstructed colors. Maloney19 presents comparisons
of reconstructing spectra with three and eight basis factors
(see Figs. 20.2 and 20.3 of Ref. 19) by plotting observed
spectra and reconstructed spectra for each comparison. Our
Fig. 15 shows our reconstruction based on four basis factors
for three of his examples. The fit in sample 77 (purple
EZ-rig) appears to be rather poor. The position of this
sample in Fig. 14 is shown by a circle (below and to the
right of the center). The discrepancy between s(�) and ŝ(�)
is not reflected in the plots in Fig. 14. No discrepancy is
visible in either Fig. 14a or Fig. 14b. The implication of this
is that, even though the spectral profiles may differ in detail,
they may code similar locations of the colors represented.

DISCUSSION

Cohen concluded his well cited (over 100) two-page classic
with the sentence, “It is odd that the Munsell reflection data
should collapse to rank three, and perhaps odder still that the
vectors plot in a structure so elegant.”14 We find an equally
elegant representation of the Munsell color chips in 3-di-
mensional Euclidean space. In the Euclidean space, the first
dimension is virtually identical to the mean of the spectra
characterizing the chip. When the first axis of the Euclidean
representation is rotated (37.8 degrees) and shifted to rep-
resent the Munsell Model, the structure corresponds almost
perfectly to the Munsell color solid. The first axis corre-
sponds to Munsell value and the second and third axes map
the Munsell hue circle with high accuracy while Munsell
chroma is represented as distance from the achromatic point.
Preliminary investigations show a high degree of similarity
between this spectrally derived structure and previous studies
of perceptual similarities among the colors.10–12,27

The overall structures that we have described may be
analyzed with linear methods that are simple and well
known. The findings would appear to have implications for
further research relating physical and perceptual structures.
The findings also place constraints on a variety of practices
and theories. For example, our demonstration that color

FIG. 15. A plot showing a comparison between the actual spectra (thick lines) and the four dimensional reconstructed
spectra (thin lines) of three samples analyzed by Maloney. Sample 77 is highlighted with a circle in Fig. 14.
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space can be adequately represented in low dimensional
Euclidean space sugests that it is unnecessary to use more
complicated spatial models in higher dimensions. Our dem-
onstration that four basis factors are sufficient in general,
and that three are sufficient for the Munsell colors, has
implications for practices in this regard.
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APPENDIX I. CALCULATION PROCEDURES FOR
SINGULAR VALUE DECOMPOSITION AND

EMBEDDING COLORS IN EUCLIDEAN SPACE

Define a data matrix S � (si�) with N colors, i � 1, 2, . . . ,
N and M values on the spectrum, � � 1, 2, . . . , M. A matrix
of this form can be reproduced by the triple product of a
singular value decomposition (SVD).

ŜN�M � PN�m�m�mQ�m�M (1)

where � is diagonal matrix with ��� on the diagonal, 0
elsewhere, � � 1 to m, m � N or M at most, and P�P � I
and Q�Q � I with I equal to an identity matrix and the
prime indicates the transpose of a matrix. The data matrix S
was analyzed in two ways, both based on SVD.

(1) Embedding of Colors in an m-Dimensional
Euclidean Space Em (Metric Multidimensional Scaling)

Logic. Configuration of N points {Pi} in Em is given by the
N by m coordinates A � (ai�) on orthogonal coordinate axes
f�. Suppose N vectors from the origin of f� to Pi, i � 1,
2, . . . , N, then scalar products of vectors, bij, form a matrix
B that may be written as

BN�N � �bij
 � AA� (2)

Define eigenvalues of B as ��, � � 1, 2, . . . , m, in the order
of magnitude. Then, m columns of A are given by m
eigenvectors of B if the unit of N elements in each column
is defined to satisfy �

i
ai�

2 � ��, � � 1, 2, . . . , N. If we take

m � N and A is N � N and Eq. (1) holds strictly, and if �1,
�2, . . . , �m 	 0 and �m � 1 on, are close to 0, then ai� � 0
for � 	 m. Now B can be reproduced by B̂ defined by A �
(ai�), � � 1, 2, . . . , m, m � N, which means that {Pi} is in
a m-dimensional subspace of Em. The total sum of squared
coordinates equals the trace of B � �

�

�� and the coefficient

�
��1

m

��/trace (B) corresponds to the portion of {Pi} embed-

ded in Em. The axes f� are defined one by one to include the
largest portion of {Pi}, and hence f� thus obtained are

defined only for this purpose. Once A is obtained and the
structure of {Pi} becomes apparent, {Pi} can be represented
by any coordinate axes that are defined by an orthogonal
rotation of f� and translation. The new set of axes and
coordinates can be denoted as f� and A again because
Equation (2) still holds with these.

Steps of Analysis. 1. Compute matrix of Euclidean dis-
tances using the formula:

dij � ��
��1

M

�si� � sj�
2 (3)

2. BN �N � (bij) may be obtained from DN�N by

bij �
1

2� 1

N�
i

dij
2 �

1

N�
j

dij
2 �

1

N2�
i

�
j

dij
2�dij

2�,

where the origin of f� is at the centroid of {Pj}. In this
analysis B corresponds to SS� of Eq. (1).

3. Calculate A � (ai�), m eigenvectors of BN�N, � � 1
to m, where

�
i

ai�
2 � ��, �

i

ai�ai	 � 0 and �
i

ai� � 0.

In this analysis A corresponds to P� of Eq. (1).

4. D̂N�N � (d̂ij) reproduces D where d̂ij � ��
�

��i� � �j�
2

(2) SVD Analysis of S

Logic. N points are directly represented by coordinates P �
(pi�) and spectral values W � (w��) in m-dimensional
vector space Rm with

ŜN�M � P N�m W�m�M.

The analysis starts with minor product moment matrix
S�SM�M and take its eigenvalues ��. If we take m � M then
ŜM � S. If �1, . . . ,�m 	 0 and �m�1 on, are close to 0, then

S�SM�M, and the coefficient �
��1

m

��/trace of S�S gives the

degree of reproducibility of S by Ŝm.
Steps of Analysis. 1. Obtain (S�S)M�M and its eigenval-

ues of significantly positive values, �a, and corresponding
eigenvectors, q��. Then Q in Eq. (1) is given as QM�m �
(q��) with � � 1 to m and Q�Q � I.
2. Compute WM�m � Q�, the spectral forms of m basic
variables, where � is a diagonal matrix with ��� on
diagonal, 0 elsewhere,

�
�

w��
2 � �� and �

�

w��w�	 � 0

In this analysis W corresponds to Q� of Eq. (1)
3. Compute PN�m in Eq. (1), PN�m � SQ��1 and

P�P � I.
4. Compute Ŝm � P�Q� or PW� where pi� defines the

positions of colors i in this m-dimensional vector space.
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(3) Embedding of Wavelength Values in Space E3

Define a matrix of Euclidean distances DM�M using the
formula

d�v � � �
i � 1

N

�si� � siv

2 (4)

and analyze DM�M in the same way as in (1) to obtain A �
(a��), � � 1, 2, . . . , m. Then, the reconstructed distances
are given by d̂�� � ��

�

(a�� � av�)2.

(4) Principal Component Analyses (PCA) of S

Define by C and R the covariance matrix and correlation
matrix of S over N colors. Both are M � M, and each can
be analyzed by the standard procedure of principal compo-
nent analysis to yield A � (a��), � � 1, 2, . . . , m (1’s on
the principal diagonal in R). In both results, m � 4 and the
first vector a1 represents the general contribution of � (di-
rect current component) and all a�l are positive.

APPENDIX II. SUMMARY STATISTICS FROM
REPORTED CALCULATION PROCEDURES

Euclidean Scaling and Singular Value
Decomposition Analyses

1269 Munsell
Chips (1)*

231 Spectral
Points (3)

1269 by 231
Matrix (2)

Singular
Value

Cum.
%

Singular
Value

Cum.
%

Singular
Value

Cum.
%

1. 8913.29 77.75 1905.71 70.02 177.08 64.05
2. 1730.24 92.84 667.08 94.53 41.65 79.15
3. 637.66 98.40 89.67 97.82 25.52 88.35
4. 82.22 99.12 39.04 99.25 9.16 91.66

Correlations Between Input Matrix and
Reconstructed Matrix by Dimension

1269 Munsell
Chips (1)

231 Spectral
Points (3)

1269 by 231
Matrix (2)

1. Dimension 0.93945 0.93322 0.88374
2. Dimensions 0.99121 0.99829 0.96506
3. Dimensions 0.99971 0.99956 0.99389
4. Dimensions 0.99994 0.99992 0.99754

*Note: Parentheses indicate procedure from Appendix I used in
calculations.

Cumulative Percent of Singular Values Accounted
for by Dimension for Basis Factors

Study or Method 1. Dim. 2. Dim. 3. Dim. 4. Dim.

PCA Correlations (4) 0.776 0.930 0.988 0.995
PCA Covariance (4) 0.832 0.995 0.999 1.000
Cohen (1964) SVD 0.927 0.972 0.992 0.997
Maloney (1986) SVD n.a. 0.958 0.992 0.996

Note: None of the SVD calculations applied mean corrections to
data matrix.

Descriptive Statistics for Computed dij and
d�v, and 3-D Differences between d and d̂

Observed Distances Number Mean S.D. Min Max

Munsell Chip dij s (1) 804,546 3.690 2.096 0.000 10.337
Munsell (dij � d̂ij) 804,546 0.035 0.052 �0.000 0.985
231 Spectra d�� s (3) 26,565 4.293 2.287 0.048 7.409
231 Spectra (d�� � d̂��) 26,565 0.085 0.082 0.003 0.461
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