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Abstract. The standard approach to two-party political competition in a multi-dimensional
issue space models voters as voting for the alternative that is located closest to their own
most preferred location. Another approach to understanding voter choice is based on preferred
direction of change with respect to some specified neutral point (e.g., an origin or status quo
point).

For the two-dimensional Matthews directional model (Matthews, 1979), we provide geo-
metric conditions in terms of the number of medians through the neutral point for there to be
a Condorcet (undominated) direction. In this two-dimensional setting, the set of residual loca-
tions for which no Condorcet directions exist is identical to the null dual set (Schofield, 1978)
and to the heart (Schofield, 1993). In two dimensions, for most locations of the origin/status
quo point, a Condorcet direction exists and points toward the yolk, a geometric construct first
identified by McKelvey (1986). We also provide some simulation results on the size of the null
dual set in two dimensions when the underlying distribution of points is non-symmetric.

1. Introduction

There is a vast literature on spatial models of social choice. We may divide
substantive applications into three subareas: (1) models of committee voting,
(2) models of candidate competition, and (3) models of coalition formation.
A number of the mathematical results in these literatures are equivalent or
very similar, e.g., the search for the core of a spatial voting game is essentially
equivalent to the search for an equilibrium location of candidates in a two-
party competition and is closely related to the search for a stable coalition
structure.

� We are indebted to Norman Schofield for helpful comments and to Dorothy Gormick and
Chau Tran for library assistance. The paper was written while the first author was a Visiting
Scholar in the Department of Biostatistics at the University of Washington. An earlier version
of this paper was presented at the meeting of the Public Choice Society, 12–14 April 1996, in
Houston, TX.
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An important distinction in the recent political science literature on candi-
date competition has been between the standard (Downsian) models of voter
choice and models that are based on a preferreddirection of change. The for-
mer are expressed inproximity terms, where voters are posited to vote for the
candidate who is closest to them in terms of issues – with issue preference rep-
resented as a location (voter ideal point) in n-dimensional issue space (Downs,
1957; Davis, Hinich, and Ordeshook, 1970; Enelow and Hinich, 1990). The
latter are described in directional terms, with the work of Rabinowitz and Mac-
donald (1989) being best known. These ideas have been further developed
by, e.g., Macdonald, Listhaug, and Rabinowitz, 1991; Iversen, 1994; Merrill,
1993; Merrill and Grofman, 1997a, 1997c; Westholm, 1997. Schofield (1978,
1983, 1985) has shown, however, that a sharp distinction between directional
and proximity voting is misguided.

In this paper we will deal exclusively with the application of our model
to two-party/two-candidate competition. We focus on a directional analogue
to the Condorcet winner1 we call theCondorcet directional vector. The set
of Condorcet directional vectors at a pointN is called thedirectional core
in Cohen and Matthews (1980). Using results of Schofield (1977, 1978),
Cohen and Matthews observe that the directional core is non-empty if and
only if Schofield’s (1978)null dual conditiondoes not hold forN. We offer
constructive, geometric conditions in terms of the number of medians through
a point that are both necessary and sufficient for the existence of a directional
equilibrium, i.e., the existence of a Condorcet directional vector.2

Whereas equilibrium conditions for proximity voting constitute a knife-
edge result very unlikely to hold, the corresponding conditions for directional
voting will be expressed in terms of an inequality which, in two dimensions, is
relatively easy to satisfy. We also show in two dimensions, that all Condorcet
directional vectors must pass through the “yolk”, which is generally a small
and centrally located disk (McKelvey, 1986; Tovey, 1992; Feld, Grofman,
and Miller, 1988).3

2. Nash equilibria for the case of a finite number of voters

2.1. Nash equilibria under the Downsian proximity model: The complete
median

TheDownsian proximity modelspecifies that utility is a declining function of
distance from voter to candidate in a finite-dimensional Euclidean space. It is
well known that, in two (or more) dimensions, equilibrium under the standard
proximity model requires existence of acomplete median, i.e., all median
lines pass through a single (voter ideal) point (Davis, DeGroot, and Hinich,
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1972; Kramer, 1978).4 In particular, Plott (1967) shows that an equilibrium
(complete median),N, occurs in a two dimensional electorate consisting of a
(odd) finite number of voters if and only if one voter is located atN and all
other voters come in pairs with each pair on opposite sides of a line through
N. For a continuous distribution representing a large electorate, McKelvey,
Ordeshook, and Ungar (1980) show that a condition slightly weaker than
radial symmetry of the probability density is necessary and sufficient for an
equilibrium.5

2.2. Nash equilibria under the Matthews directional model and the RM
model with circle of acceptability: Condorcet directional vectors

2.2.1. Directional models
In directional models, a neutral (or status quo) point,N, is assumed. Voters
and candidates are represented by positions in m-dimensional space with
V = (V1; : : : ;Vm) andC = (C1; : : : ;Cm) denoting the vectors of spatial
locations of a voter and a candidate, respectively, relative toN. TheMatthews
directional modelis defined (Matthews, 1979) by the utility function6

U(V;C) =
V �C

jVjjCj
(1)

whereV �C =
Pm

i=1 ViCi is the scalar product ofV andC, and |V| and |C|
are the lengths of the vectorsV andC, respectively. If eitherV or C is 0, the
utility is defined to be 0. Voter utility reflects only the direction and not the
intensity of voter and candidate positions.

TheRM directional modelis defined (Rabinowitz and Macdonald, 1989)
via the utility function

U(V;C) = V �C (2)

whereV andC are defined as above.7 Voter utility reflects both direction and
intensity of voter and candidate positions.

2.2.2. The Condorcet directional vector
Our analysis for the Matthews model also applies to the RM model with
circle of acceptability.8 We use the term directional model for either. For the
moment, we assume thatN is fixed and that no voter is located atN.

For a proximity or directional model and a two-candidate contest we may
define any half-space whose boundary passes throughN byS(AjN) = fV :
V � A � N � Ag whereA is a vector perpendicular to the boundary. We
will refer to A as thecharacteristic vectorof the half-space and assume that
A is normalized to be of length 1. Conversely, any vector,A, of length one
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defines a half-space of which it is the characteristic vector. Denote by n the
total number of voter points by nA the number of points inS(A|N). We define
thesupport function, g, as a function of the characteristic vector,A, specified
by g(A) =nA.

In this notation, a hyperplane is called amedian, if for a normal,A, to
the hyperplane, g(A) � n=2 and g(�A) � n=2. A point,N, is a complete
median if and only if all hyperplanes throughN are medians, i.e., if

g(A) � n=2 for all A:9 (3)

Under the directional models, the boundary of the support set for a candidate,
C�, with opponent,C, passes through the origin, is perpendicular to the line
segment joining the unit-vector normalizations ofC� andC relative toN and
represents the indifference plane between the candidates.

Definition. A vector (candidate)C� relative to the neutral pointN is aCon-
dorcet directional vectorif for any other vector,C, relative toN, the proportion
of the voters favoringC� is greater than or equal to the proportion favoring
C.

The following theorem is proved in Matthews (1979).

Theorem 1. A vector,C�, is a Condorcet directional vector if and only if

g(A) � g(�A) for allA with A �C� � 0: (4)

Note thatA � C� � 0 if and only if A lies in the half-space of whichC�

is the characteristic vector. Thus, the theorem states thatC� is a Condorcet
directional vector if and only if the proportion of voters in any half-space
whose characteristic vector lies within 90 degrees ofC� is a majority.

The condition that a given vector be a Condorcet directional vector is
considerably weaker than the condition thatN be a complete median, as the
inequality in Eq. (4) is far easier to satisfy than the much more demanding
equality in Eq. (3). In fact, the set of values,N, from which no such directional
vector exists will be shown to be, in a certain sense, small.

3. Characterization of Condorcet directional vectors in two dimensions

3.1. The yolk

In two dimensions, Theorem 1 has the following interpretation. The charac-
teristic vector,A, of any half-space of support uniquely specifies an angle,
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. For each
;�� < 
 � �, the value of the support function, g(
), is the
number of voters in the associated half-plane. The necessary and sufficient
condition of Theorem 1 forC� to be a Condorcet directional vector becomes

g(
) � g(
 + �) for 
0 � �=2 � 
 � 
0 + �=2 (40)

where
0 is the directional angle ofC�.

Corollary 1. Let N be the neutral point and fix a direction from it,
0, which
defines a median throughN and suppose that for each interval, I, such that

0 2 I � (
0 � �=2; 
0 + �=2), the number of voter points in I is at least as
great as the number in the antipodal interval,I. Then the direction,
0, defines
a Condorcet directional vector.

Henceforth we allow the location of the neutral point to vary.

Definition. The yolk is the smaller hypersphere that is tangent to or inter-
sects all median hyperplanes (McKelvey, 1986). In two dimensions, the yolk
is the smallest disc that is tangent to or intersects all median lines.

Definition. A line is called aCondorcet lineif it contains a Condorcet direc-
tional vector for some neutral point,N. Thedirectional yolkis the smallest
hypersphere that is tangent to or intersects all Condorcet lines.

In fact, in two dimensions, the two definitions of yolk are the same.

Lemma 1. In two dimensions, a line is a median if and only if it is a Condorcet
line. Thus, the yolk and the directional yolk are the same.

Proof. Suppose a line l contains a Condorcet directional vector in the direction

0 from someN. Then g(
0+�=2) � n=2 and g(
0��=2� n=2. Thus, l is a
median. Conversely, suppose l is a median. Choose a point,N, on l outside the
convex hull,H, of the voter set and let
0 be the direction fromN along l into
H. Then, for
0 � �=2 � 
 � 
0 + �=2, either g(
) � g(
0 � �=2) � n=2
or g(
) � g(
0 + �=2) � n=2 sinceN is outsideH. Thus
0 specifies a
Condorcet directional vector.

Corollary 2. In two dimensions, the line containing any Condorcet direc-
tional vector must pass through the yolk.

Corollary 3. In two dimensions, ifM is a complete median, then unless
M = N, there exists a Condorcet directional vector from any neutral point,N,
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and it lies in the direction fromN to M .

Proof. If M is a complete median then this means that the yolk has radius
zero and is centered atM . But then the only point from which there is no
Condorcet direction isM itself and all Condorcet directional vectors point
towardM .

Under the proximity model, a voter point is preferred to another if the latter
is at least 2r further from the center of the yolk where r is the radius of the
yolk (McKelvey, 1986; Feld, Grofman, Hartley, Kilgour, and Miller, 1987).
An analogous result holds in the directional setting.

Lemma 2. Given a neutral point,N, in two dimensions, if voters choose
between alternatives,B andC, according to their directional preference then
B defeatsC if the yolk lies entirely on theB side of the line that contains
the bisector of the angleBNC andB loses toC if the yolk lies on theC side
of this line. If the line passes through the yolk, no conclusion can be drawn
without further information.

Proof. If the yolk lies on theB side of the bisector line, l, then a median
line, m, parallel to but distinct from l passes through the yolk and hence lies
on theB side of l. Since m is a median, but l is not,B beatsC.

3.2. Condorcet directional vectors in two dimensions for an odd number of
voter points

Schofield (1978) defined thenull dual condition for a point N, showing
that it holds if and only if there is a local cycle atN, or equivalently if
there is no Condorcet directional vector atN. In subsequent work, Schofield
further showed that in two dimensions, the null dual set (i.e., the set of points
satisfying the null dual condition) forms a star-shaped region of the plane,
and provided a number of illustrations (Schofield, 1985).

Consider a two dimensional configuration of n voter points, P1; : : : ;Pn.
Direct derivations – based on the number of medians throughN – of these
geometrical conditions for there to be a Condorcet directional vector and the
direction in which that vector will point are presented in Theorems 2 and 3
and its corollaries below. The necessary and sufficient conditions depend on
the location of the neutral point and the parity of the number of voter points.
First we assume n is odd.

Definition. Thestar angle(see Grofman, Owen, Noviello, and Glazer, 1987;
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Figure 1. Star angles for small electorates.

Shapley and Owen, 1989) with respect to a neutral point,N, with vertex at a
voter point, Pi, is the angle of the form PjPiPk (or the union of such angles)
such that all lines through Pi and within the angle are medians (see Figure 1).
If none of the Pi are interior to the convex hull of P1,: : : ,Pn, then the line
segments of the formPjPi andPkPi defining the star angles form a star with
points at the Pi. The star angle for an interior point may, however, be com-
posed of disjoint angles (see, e.g., the star angle at point, P1, in Figure 1B,
which is composed of the two angles P4P1P5 and XP1P6 where the segment,
XP1, is an extension of the segment,P2P1).

We define aresidual medianthroughN as a median throughN that remains
a median after all possible pairs of voter points which are collinear withN
and on opposite sides ofN have been deleted. Note that if no two points are
collinear withN (the “usual” situation), then a residual median is the same as
the median. Furthermore, define

h(
) = g(
)� g(
 + �);10

where g(
) is the support function with respect toN. Note first that ifN is one
of the voter points, then either the line throughN and some voter point is the
only median throughN or there are infinitely many. These line(s) pointing
into the star angle ofN are all Condorcet directional vectors.

Lemma 3. If the number, n, of voters is odd, then, for any neutral pointN, other
than one of the voter points, the number of residual medians throughN is odd.

Proof. Let N not be a voter point. If there are more than one voter point
on some line throughN, delete pairs of voter points – one from each side of
N – until all remaining voter points (if any) lie on one side ofN. As the indif-
ference line throughN rotates, h(
) changes sign every time the indifference
line coincides with a residual median, changing from negative to positive
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when the leading edge crosses a voter and reversing each time an antipode of
a voter is passed. If for some
0;h(
0) < 0, then h(
0+ �) > 0. The number
of sign changes in this interval from
0 to 
0+� must be odd so that the sign
changes overall. Each sign change occurs exactly when the indifference line
crosses a residual median and the number of sign changes must be odd.

Corollary 4. If the number, n, of voters is odd and no line through N contains
more than one voter point, then the number of median lines throughN is odd.

A Condorcet directional vector forN exists if and only if as
 increases,
h(
) changes from negative to positive (which only occurs when the indif-
ference line crosses a voter point which lies on a residual median line) only
once. The following theorem is immediate.

Theorem 2. Given any configuration of n voters, where n is odd, and a neutral
pointN other than one of the voter points, the following are equivalent.

(i) There exists no Condorcet directional vector forN.
(ii) N lies on more than one residual median line.
(iii) N lies in more than one open star angle.
(iv) N lies inside the interior of the star.

If these conditions fail, a Condorcet directional vector does exist and lies
in the direction of the vertex of the star angle containingN (or whose vertical
angle containsN), i.e., the Condorcet directional vector must point toward
some particular voter. Since Condorcet directional vectors must pass through
the yolk, if all neutral points have a Condorcet directional vector, the latter
must all pass through the (non-empty) core.11

The illustrative configuration of five voter points depicted in Figure 1A
shows the star angles and labels the number of median lines passing through
a point in each open region.N has no Condorcet directional vector if and only
if N lies inside the open star.

For sufficiently large electorates sampled from an underlying symmetric
distribution, as Schofield and Tovey (1992) have shown, the measure of
the null dual set shrinks to zero. However, even if the distribution is not
symmetric about each neutral point, our simulation results suggest that, in
two dimensions, Condorcet directional vectors will exist forN located at
most points inside the Pareto set.12 Moreover, for even moderately large odd
n, the star angles will be narrow (see Figure 2 which presents a star for 201
voters generated uniformly on the unit disc). If we reject the very thin lines
radiating from the central portion of the star as being implausible locations
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Figure 2. Star for 201 voters uniformly distributed on the unit disc.

for candidates, there exists a rather small and quite centrally located zone of
the space in which we expect candidates to locate themselves when voters
use a directional rule. We conjecture that this zone will correspond closely to
the yolk.

3.3. Condorcet directional vectors in two dimensions for an even number of
voter points

If n is even and no two voter points are collinear withN, N may lie on two
median lines even when a Condorcet directional vector exists. For example,
suppose that four voters are located at� 30 degrees and� 120 degrees.
The coordinate axes are both medians but
 = 0 degrees defines a Condorcet
directional vector pointing due east. With n even, the support function can
dip to exactly n/2, then rise again.

In fact, for n even, the condition for existence of a Condorcet directional
vector is quite different from that for odd n. Let n = 2k. If no three voter points
are collinear, through each voter point there passes one (or more) median,
called anopposing median, which partitions the voter points into two exactly
equal sets (see Figure 3). Suppose thatN does not lie on any opposing medi-
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Figure 3. Neutral point with no Condorcet directional vector for electorate of size eight.

an. The details of the proof of the following theorem are available from the
authors upon request.

Theorem 3. Given any configuration of n voters, where n is even, then a
sufficient condition that a point,N, not on an opposing median, not have
a Condorcet directional vector is thatN lie in some triangle formed by the
intersection of three opposing medians, say m1, m2, and m3. If all voter points
lie on a circle centered onN, this condition is also necessary thatN not be a
Condorcet directional vector.

A plot of opposing medians for 200 voters generated uniformly on the
unit disc shows a patterns (Figure 4) remarkably similar to the star for a
comparable odd number of voters.

For two dimensions, the regions specified by Theorems 2 and 3 within
which no Condorcet directional vectors exist is the same as theelectoral heart
defined by Schofield (1993a, 1993b) as the union of the core and the cycle
set.13 Schofield observes that around any point within the triangle formed by
three intersecting medians there will exist a cycle. In the directional context,
from such a point no direction is undominated.

The situation changes abruptly when we move to three or more dimensions.
In three dimensions, a three-voter example14 is sufficient to show that the set
of neutral points without Condorcet directional vectors may be dense in the
space. In fact, this set is dense under rather general conditions (Schofield,
1978), although the heart is not. Similar examples for larger voter sets and/or
more than three dimensions indicate that Condorcet directional vectors are
not common in more than two dimensions.
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Figure 4. Opposing medians for 200 voters uniformly distributed on the unit disc.

Schofield (1993a) proffers the heart as a solution set for a class of voting
games including the directional ones considered here. For two dimensions,
from any point outside the heart the Condorcet directional vector exists and
points toward the yolk. Once inside instability occurs.

4. Discussion

For the important class of directional models of voting that has recently been
applied to model voting processes in majority-rule polities, we have specified
in terms of median lines the geometry that defines the region of the space in
which Condorcet directional vectors will exist for the two-dimensional case.
Hypothetical data sets (Figures 2 and 4) suggest that, for large electorates,15

for two dimensions, the regions for which no Condorcet directional vector
exist is small relative to the Pareto set when the number of voter points is on
the order of tens or hundreds, even where there is considerable asymmetry in
the underlying distribution. By contrast, no Condorcet location exists at all
when we look for an equilibrium in terms of proximity based voting.
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Any realistic model of candidate strategy involves both centripetal and
centrifugal components. We have attempted to model one type of centripetal
force which has its origin in directional movement from the status quo toward
the center of the voters. In a more fully realistic model of politics, e.g., one
with further institutional details, such a centripetal pull will be counteracted
by a host of centrifugal effects including the influence of activists, intraparty
primaries, and the desire of candidates to implement policy as opposed to
winning per se.

The basic result of this paper is that, for two dimensions, from most pos-
sible locations of the status quo, there is a clear directional consensus which
necessarily points toward a centrally located portion of the space, the yolk.
Thus, in two-candidate contests, it would appear to be relatively easy to move
outcomes in a “centrist” direction when voters vote directionally.16

Notes

1. For majority rule voting games an equilibrium (core) location is also known as a Condorcet
winner, i.e., a position that defeats (or at least is not defeated by) any other alternative in
a paired contest.

2. There has been work on the conditions for equilibrium for various specific directional
models. Coughlin and Nitzan (1983) show, under probabilistic assumptions, that at every
status quo point there is a directional equilibrium. Rabinowitz and Macdonald (1989)
show that – given a circle of acceptability – a dominant position exists if the electorate
is symmetrically distributed about a voter point other than the neutral point. Macdonald
and Rabinowitz (1993) – under the assumption that voters are restricted to a square (or
hypercube) – prove that a dominant strategy exists if there is a quadrant such that every
half-space containing that quadrant has more voters than the complementary half-space.
Matthews (1979) obtains a necessary and sufficient condition (see Theorem 1 above) which
is an important step in deriving our conditions.

3. The ideas we draw on, in addition to being identical to Schofield’s game-theoretically
inspired concept of the “heart” (Schofield, 1993a, 1993b) in the two-dimensional case
to which we confine ourselves, also can be linked to mathematical ideas in Kramer’s
(1977) work on the “minmax set”, and to the Feld and Grofman (1988) concept of the
“Schattschneider set”.

4. See Riker (1982) for a nontechnical view.
5. For a large continuous electorate Merrill and Grofman (1997v) present a way to specify

this equilibrium condition in terms of odd and even terms of a Fourier series.
6. Matthews (1979) assumed directly that all voters and candidates are restricted to the unit

sphere (with the exception of totally indifferent voters at the origin).
7. For i = 1, : : : n, the absolute values of the coordinates, Vi and Ci, are interpreted as

intensities with which a voter and a candidate hold positions on dichotomous issues. The
signs (+ or –) of these coordinates reflect the positions taken. The neutral point,N, is
interpreted as the point for which the voter (or candidate) is indifferent between the two
positions on each issue.

8. Since under the Matthews model for a fixed neutral point, utility depends only on direction,
each voter or candidate location can be replaced by a vector of unit length in the same
direction fromN. For the RM model with circle of acceptability, undominated positions
lie on the circle of acceptability (which can be taken to be of radius one). In the RM model
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(with circle of acceptability), any candidate,A, lying in the interior (or the exterior) of the
circle but not at the neutral point can be dominated by a second candidate,B, in the same
(or opposite) direction but on the circle. Thus, all candidates can be expected to move to
the circle of acceptability. Under this interpretation, voters should behave as they would
under the Matthews model.

9. The value, g(A), can exceed n/2 only if voter points lie on the boundary of the halfspace
of whichA is the characteristic vector.

10. This function is called the “gap function” by Schofield and Tovey (1992).
11. We thank N. Schofield for pointing out this conclusion when the null dual set is empty.
12. For a uniform distribution on a disc, this probability was found to vary from 8% (for n = 3)

to 11% (for n near a dozen) and back to 9% (for n = 101 and n = 201). Standard errors
in these simulations drop from about 0.7% to 0.3% over this range of n. For a normal
distribution, probabilities are about 2 percentage points higher uniformly over n. For a
tripolar distribution on the disc, they are about 4 percentage points higher, for virtually all
n, than for a uniform distribution. Thus, for n up to at least 201, if the neutral points are
drawn from the same distribution as that from which the voter points are drawn, simulation
suggests that the probability that a neutral point lie in the portion of the space from which
no Condorcet vectors exist is about 10%.

13. We thank N. Schofield for pointing out the mathematical identity of these two concepts.
14. Suppose, for example, there are three dimensions and three voter points all in the X-Y

plane. IfN is not in the X-Y plane, then no vector C� is a Condorcet directional vector,
because there will always be (indifference) planes throughN which separate C� from two
(or more) of the voter points. If, on the other hand,N lies in the X-Y plane, there is a
Condorcet directional vector throughN if and only if N lies outside the interior of the
triangle (Pareto set) formed by the voter points.

15. For large electorates, as noted earlier, the yolk can be expected to be very small (Tovey,
1992).

16. We would emphasize that there is a considerable body of empirical work on the dimen-
sionality of voting in the U.S. Congress and the U.S. Supreme Court that suggests that
most political conflict takes place in only one or two dimensions. There is a considerable
literature as to why this might be the case (see e.g., Hinich and Munger, 1994; Poole and
Rosenthal, 1996; Glazer and Grofman, 1989).
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