Soc Choice Welfare (1997) 14: 545-562

Social Choice
amdWelfare

© Springer-Verlag1997

Modeling large electorates with Fourier series,
with applications to Nash equilibria in proximity
and directional models of spatial competition

Samuel Merrill, 111!, Bernard Grofman?

! Department of Mathematics and Computer Science, Wilkes University,
Wilkes-Barre, PA 18766, USA
2 School of Social Sciences, University of California, Irvine, CA 92697, USA

Received: 7 July 1995/Accepted: 14 May 1996

Abstract. In this paper we introduce harmonic analysis (Fourier series) as
a tool for characterizing the existence of Nash equilibria in two-dimensional
spatial majority rule voting games with large electorates. We apply our
methods both to traditional proximity models and to directional models. In
the latter voters exhibit preferences over directions rather than over alterna-
tives, per se. A directional equilibrium can be characterized as a Condorcet
direction, in analogy to the Condorcet (majority) winner in the usual voting
models, i.e., a direction which is preferred by a majority to (or at least is not
beaten by) any other direction. We provide a parallel treatment of the total
median condition for equilibrium under proximity voting and equilibrium
conditions for directional voting that shows that the former result is in terms
of a strict equality (a knife-edge result very unlikely to hold) while the latter is
in terms of an inequality which is relatively easy to satisfy. For the Matthews
[3] directional model and a variant of the Rabinowitz and Macdonald [7]
directional model, we present a sufficiency condition for the existence of a
Condorcet directional vector in terms of the odd-numbered components of
the Fourier series representing the density distribution of the voter points. We
interpret our theoretical results by looking at real-world voter distributions
and direction fields among voter points derived from U.S. and Norwegian
survey data.

The authors are indebted to Dorothy Green and Chau Tran for library assistance. The
paper was written while the first author was a Visiting Scholar in the Department of
Biostatistics at The University of Washington. The data sets used in the study were
made available by the Inter-university Consortium for Political and Social Research
(ICPSR) and by the Norwegian Social Science Data Services (NSD). Bernt Aardal and
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NSD, the Norwegian Bureau of Statistics, nor the principal investigators of either
study are responsible for the analysis or interpretation presented here.
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1. Introduction

It is well known that, in two (or more) dimensions, equilibrium under the
standard proximity model occurs only if all median lines (hyperplanes) pass
through a single point (Davis et al. [2]). Such as point, called a total median,
occurs only under very restrictive symmetry conditions on the set of voter
ideal points. In particular, Plott [6] shows that an equilibrium (total median),
N, occurs in an electorate consisting of a (odd) finite number of voters if and
only if one voter is located at N and all other voters come in pairs diametri-
cally opposed to N. For a continuous distribution representing a large
electorate, McKelvey et al. [4] show that a condition weaker than radial
symmetry of the probability density is necessary and sufficient for an equilib-
rium, namely that the measure of the voters in every cone originating from
N is equal to the measure of the negative cone. We show that in two di-
mensions the existence of a total median can be specified by a simple condition
on the Fourier coefficients of a function associated with the electorate.

Directional models have been developed by Matthews [3] and Rabinowitz
and Macdonald [7]. Voters and candidates are associated with directions in
which they wish policy to move from a neutral or status quo point. Distance
from this point represents intensity in the Rabinowitz and Macdonald formu-
lation but has no meaning in the Matthews model. Competition between
candidates focuses on the choice of directions. Nash equilibria are defined
by undominated directions, which we call Condorcet directional vectors. We
describe such equilibria in terms of Fourier series and show that their
existence is much more likely than under the proximity model.

In Sect. 2, we specify the conditions for a total median in terms of Fourier
series, carrying forward the analysis as far as possible without introducing
directional models. Equilibria under the latter are described in Sect. 3 and
related to Fourier series in two-dimensional models. In Sect. 4 we determine
and interpret Condorcet directional vectors and direction fields of vectors
emanating from potential neutral points throughout the plane for both
hypothetical and empirical distributions of voter points.

2. Using Fourier series to represent continuous distributions of voter
ideal points in proximity models

2.1. The characteristic vector and support function

In this section we look at continuous distributions of voter ideal points —
intended to model large electorates —in order to characterize the distributions
which give rise to a total median in a proximity spatial model. We fix a point
N in multidimensional space. N may be a neutral or status quo point but need
not be interpreted as such. Each voter or candidate ideal point can be
represented by a vector emanating from N to that ideal point. By change of
coordinates, if necessary, we can take N to be the origin. We project each
voter, V, onto the unit sphere about N by replacing V by V/|V]|. Let Pr be the
probability measure of voters on this sphere; we assume throughout that this
probability distribution is continuous and represented by a density function, f.
Any voters located at N have probability zero.
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Each half-space, whose boundary passes through N, is of the form
Sy={V:V.-A >0} (1)

where A is a vector perpendicular to the boundary and lying in the half-space.
We will refer to A as the characteristic vector of the half-space and assume that
A is normalized to be of length 1. Conversely, any vector, A, of length one
defines a half-space of which it is the characteristic vector. We define the
support function, g, as a function of the characteristic vector, A, specified by

g(A)=Pr[V:V-A > 0]
=[V:VeS,] (2)

Thus, g(A) represents the proportion of the electorate in the half-space
determined by the characteristic vector, A. If A is normal to the indifference
hyperplane between two candidates, then g(A) and 1 — g(A) represent the
proportions of the electorate supporting each of the two candidates. In this
notation, a hyperplane is called a median, if for a normal, A, to the hyperplane,
g(A) =1/2 and g( — A) = 1/2. A point, N, is a total median if all hyperplanes
through N are medians. The following lemma is obvious.

Lemma 1. For a continuous electorate, a point, N, is a total median if and only if
g(A) =1/2 for all A? (3)

For a two dimensional spatial model, the characteristic vector, A, of any
half-space of support uniquely specifies an angle, y, in the direction of A. For
eachy, — n <y <, the value of the support function, ¢(y), is the proportion
of voters in the associated half-plane. With each two-dimensional electorate
and center point, N, we associate a density function, f = f(y), on the unit circle
which represents the density of projections of the electorate on the circle.

Definition. An electorate is said to be directionally symmetric with respect to
a point, N, if the associated density function, f, satisfies the condition

JO+m) =10

for all y. Note that a directionally symmetric electorate need not be symmetric
in the ordinary sense, because diametrically opposed voters need not be at the
same distance from N.

2.2. Necessary and sufficient conditions for the existence of a complete
median expressed in terms of a Fourier series

2.2.1. Harmonic analysis

In this section we decompose a two-dimensional electorate into “harmonic”
components, allowing us to simultancously address questions of the
existence of equilibria in proximity and, later, directional models. In the

! For a finite electorate, the condition is g(A) > 1/2 for all A. If N is a total median in
a finite electorate, the value, g(A), can exceed 1/2 only if voter points lie on the
boundary of the halfspace of which A is the characteristic vector.
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two-dimensional case, we will investigate those probability densities on the
unit circle for which such equilibria exist in terms of characteristics of the
harmonic components. Each harmonic represents a regular pattern of concen-
tration of voters into a single hump, two diametrically opposed humps, three
equally spaced humps, etc. The density function, f, associated with the elector-
ate and the center point, N, is expressed as a Fourier series, each term of which
represents a harmonic of frequency n of the form sin ny and cos ny>.
By definition of the support function, g,

y+mn/2
g = [ f(0)do,
y—m/2
so that
gM=f+n2)—f(y—m/2), —-n<y<m “4)

(except possibly for a set of measure zero) where arguments are interpreted
modulo 2x. If f'is of the form f'(y) = by + by sin(y), then by = 1/2m, since the
integral of fis 1 and b; < 1/2m since f is non-negative. Calculation from (4)
shows that g(y) = 1/2 + 2b, sin(y), so that g is also a sine function, and a
similar formula holds for cos(y). More generally, if f(y) = 1/2x + b, sin ny,
g becomes

2(— 1
gly)=1/2 +¥bn sin ny
n

where n is odd of the form n = 2k + 1, but
g(y) =12

when n is even and similarly for cos ny. In particular, even sine and cosine
terms are not reflected in the support function at all, but odd sine and cosine
terms are reflected by like terms with modified coefficients.

2.2.2. Characterization of a total median for proximity models

We show below that the existence of a total median can be specified either
by a simple condition of the Fourier coefficients of the density function, f,
associated with the electorate, or in terms of directional symmetry.

Theorem 1. The following properties for a point N and bounded density func-
tion, f, in two-dimensional space are equivalent.

(i) N is a total median.

(i) The Fourier series of the associated density function, f, on the unit circle
about N as neutral point has only even terms.

(1)) The electorate is directionally symmetric with respect to N.

2 For large electorates, Fourier series simplifies a complicated situation; for small
electorates, it makes a simple situation complicated. For an analysis of Condorcet
directional vectors for a small, finite electorate, see Merrill and Grofman [5]. The
reader is referred to Zygmund [8] for basic results on Fourier series.
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Proof. If N is considered as the neutral point, with g as support function for f,
then by Lemma 1, N is a total median if and only if g(y) = 1/2 for all y. If the
probability density, f, of the electorate is bounded and has Fourier series

fly) ~(1)2m) + i a, cos ny + i b, sin ny (5)

n=1 n=1

then the support function, g, has Fourier series

o0 2 _ 1 k o0 2 _ 1 k )
g ~ 12+ Y 2= a,cosny + Y, 2=V b, sin ny, (6)
k=0 n k=0 n
where n =2k + 1,k =0,1,2, ..., ie., the support function, g, can have only

odd Fourier coefficients. Clearly (6) holds for finite series by calculations
similar to those above. Since f is bounded, the Fourier series for g converges
uniformly to g, and is thus the Fourier series of its sum. By the uniqueness of
Fourier series, g(y) = 1/2 for all y (except for a set of measure zero) precisely
when all Fourier coefficients of g, except the constant term, vanish. But this
occurs exactly when the coefficients a, and b, of the density function, f, vanish,
where n =2k + 1, k=0,1,2, ... ,ie, f has only even Fourier coefficients.
This establishes the equivalence of (i) and (ii). To see that (iii) is equivalent to (i)
and (i), one may either check by direct computation that a function on the
unit circle is symmetric if and only if it has only even Fourier coefficients, or
one may use the definition of the support function, g.>

Under reasonable regularity conditions (e.g., piece-wise smoothness), the
density function, f, is in fact the sum of its Fourier series. Even harmonics,
those terms of the form cos ny and sin ny for even n, each have n/2 pairs of
diametrically opposed humps (modes), i.e., concentrations of voters are paired
on either side of the neutral point. Thus the condition in Theorem 1 about
f having only even components of its Fourier series if there is to be a total
median is directly analogous to Plott’s [6] result concerning diametrically
opposed individual voters and the result of McKelvey et al. [4] about diamet-
rically opposed cones of voters.

The following corollaries characterize total medians in a proximity model
and are not tied to particular points as neutral points.

Corollary 1. In a two-dimensional spatial model, there exists a total median for
the electorate if and only if the Fourier series for f has only even coefficients
where [ is the density associated with the point defined by the coordinate
medians.

3 The equivalence of (i) and (iii) extends to greater than two dimensions, if fis defined to
be symmetric if f ( — A) = f(A) for any non-zero vector, A, where f(A) is interpreted as
the density on the hypersphere centered at the origin in the direction of A (without loss
of generality, N can be taken to be the origin). Then, for any A,

g(A) = Pr[V: V-A > 0] = Pr[V: V-(— A) > 0] = g( — A).

Thus, g(A) = 1/2 since g(A) + g( — A) = 1, so that N is a total median. This argument
can be reversed to show that (i) implies (iii). This is a special case of the result of
McKelvey et al. [4].
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Proof. If a total median exists, it must be the point, N, defined by the
coordinate medians. By Theorem 1, the density associated with N has only
even Fourier coefficients. Conversely, if the density associated with a point, N,
has only even Fourier coefficients, N must be a total median. []

Corollary 2. In a two-dimensional spatial model, there exists a total median for
the electorate if and only if it is directionally symmetric with respect to the point
defined by the coordinate medians.

Proof. The proof follows directly from Theorem 1, as in Corollary 1. []

3. Use of Fourier series in directional models
3.1. Directional models

We consider directional models in which we again assume a center or neutral
point, N, but with all voters and candidates projected onto the (hyper)sphere
of unit radius centered at N. Unit vectors with endpoints on the unit sphere
about N represent directions in which a candidate may propose to move
policy or a voter may desire change. Thus, each voter or candidate can be
represented by a vector of unit length emanating from N. By change of
coordinates, if necessary, we may take N to be the origin.

In the Matthews directional model,* either all candidates can be assumed
to lie on the sphere of radius one, or can be normalized to do so, since only
the normalized candidate vector enters the definition of unity. For the
Rabinowitz—Macdonald (RM) directional model with circle of acceptability®

4 The Matthews directional model is defined (Matthews [3]) by the utility function
_v.C
IVIIC]

where V and C are the vectors of spatial locations of voter and candidate, respectively
andV.C = Y_, V;C;is the scalar product of Vand C,and |V |and | C | are the lengths
of the vectors V and C, respectively. If either V or C is 0, the utility is defined to be 0.
Voter utility reflects only the direction and not the intensity of voter and candidate
positions. See also Cohen and Matthews [1].

5 The Rabinowitz—M acdonald directional model is defined (Rabinowitz and Macdonald
[7]) via the utility function

U(V, C)

UKv,0)=Vv-C= ) V.
i=1

The utility function is further modified so that for a candidate outside of a fixed “circle
of acceptability,” the utility of any voter for that candidate declines. Thus, any
candidate, A, lying in the interior (or the exterior) of the circle but not at the neutral
point can be dominated by a second candidate, B, in the same or opposite direction but
on the circle. (In the “unusual” case that N is a total median, all positions within or on
the circle are equally strong.) Thus, all candidates can be expected to move to the circle
of acceptability. Under this interpretation, voters should behave as they would under
the Matthews model.
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undominated positions lie on the circle of acceptability (which can be taken to
be of radius one) or are tied with ones that do. In each of these cases, a voter’s
choice depends on direction alone, so for equilibrium analysis, each voter’s
directional vector, too, can be assumed to have length one. Under these
interpretations, both these models are subsumed under the assumptions
indicated above.

3.2. Condorcet directional vectors

Definition. A vector (candidate) C* on the unit circle centered at N is a
Condorcet directional vector if for any other vector, C, on the unit circle,
the proportion of the voters favoring C* over C is greater than or equal to the
proportion favoring C over C*.

The condition that a given vector be a Condorcet directional vector is
considerably weaker than the condition that N be a total median, as the
following theorem indicates. Theorem 2 is adapted from Matthews [3]; a
proof is given in Merrill and Grofman [5].

Theorem 2. A vector, C*, is a Condorcet directional vector if and only if
g(A)>1/2 for all A with A.C* > 0. (7)

Note that A-C* > 0 if and only if A lies in the half-space of which C* is the
characteristic vector. Thus, the theorem states that C* is a Condorcet direc-
tional vector if and only if the proportion of voters in any half-space whose
characteristic vector lies within 90 degrees of C* is a majority.

In two dimensions, Theorem 2 takes the following form.

Theorem 2'. In two dimensions, for a continuous distribution, a necessary and
sufficient condition for C* to be a Condorcet directional vector is

g(y) =172 fory, —m/2 <y <yo+ m/2 (8)
where 7y, is the directional angle of C*.

Corollary 3. In a two-dimensional directional model, a Condorcet directional
vector exists if and only if there exists an interval of length m for which

g(y) = 1/2.°

Proof. If such an interval exists, let y, be its midpoint. The corresponding
vector, C*, is a Condorcet directional vector by Theorem 2'. []

Generally speaking, the conditions of Theorems 2 and 2’ intuitively mean
that the electorate is more concentrated in the general direction of the
Condorcet directional vector than in the opposite direction. This idea is made
precise in the following theorem.

% Note that a Condorcet directional vector, if one exists, need not be unique. For
a non-trivial example, if f(y) = 1/t on (¢, t/2), 0 on (n/2, ® —¢), 1/2n on (0, ¢) and
(m — e myandf(—y) =f(y), thenall ye[ — ¢, ¢] are Condorcet directional vectors. The
set of Condorcet directions must, however, form an interval; any two candidates
choosing directions in this interval will receive an equal proportion of the voters.
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Theorem 3. Let N be a fixed neutral point and f the associated probability
density of the electorate. If there exists yo on a median through N such that for
any arc I with yoel < [yg — /2, o + w/2],

[foydy = [f(y)dy )

holds, when I denotes the arc antipodal to I, then
g = 1/2 for yo —m/2 <y <7y + /2

so that yo is a Condorcet directional vector. Conversely, if yo is a Condorcet
directional vector, then y, is on a median by Theorem 2 and (9) holds.

Proof. For any 7, yo <7y < 7o + /2,

y+m/2 Yotm Yotm Yo
g = | fdt= | fodt— | fdi+ | f(r)de
y—mn/2 Yo y+mn/2 y—mn/2

> [ f@dr=1/2
Yo
where the inequality follows from the hypothesis. A dual argument holds
for yo — m/2 <y < y,. This shows that y, is a Condorcet directional vector.
Similar arguments in reverse prove the converse.

3.3. Relation of Fourier series to Condorcet directional vectors

In the two-dimensional case, we investigate the nature of the probability
densities on the unit circle for which a Condorcet directional vector exists in
terms of Fourier series in order to provide results that parallel those given
earlier for the total median. We have seen that the conditions for there to
be a Condorcet direction are much easier to satisfy than the requirement for
a total median given in Theorem 1 that the Fourier series of f have only even
terms.

However, before we can link Fourier series to directional equilibria, we
need to introduce the amplitude/phase shift form of Fourier series. We write
the nth harmonic term of the Fourier series for fin the form ¢, cosn(y — ¢,)
where

en=/ar + by (10)
is the amplitude and

¢n = (1/n) arctan(b, /a,) (11)
is the phase shift. This harmonic corresponds to the term

2021 cos nr — )

of the support function, g, for odd n, where n =2k + 1, k=0,1,2, ....

If the associated density is composed entirely of even terms, the support
function, g, is identically equal to 1/2 and a total median exists, as demon-
strated in Theorem 1. Insofar as the density includes odd harmonics, ¢
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diverges from the value, 1/2, and certain lines through the center will partition
the electorate into unequal parts and the total median is thus destroyed.
However, even though the distribution may lack a total median, there may
be many possible status quo points from which there will exist Condorcet
directional vectors.

The first harmonic, ¢, cos(y — ¢4), represents a hump or concentration of
voters in the direction ¢ of size proportional to ¢;. For example, if ¢; = 0,
then the first harmonic peaks at 0, and the Condorcet directional vector is in
the direction of the positive X-axis (see Fig. 1a).

The third harmonic, c¢3 cos 3(y — ¢3), represents a three-hump concentra-
tion of voters, at regular intervals 120° apart. If ¢p3 = 0, this harmonic peaks at
0° but also at + 120° (see Fig. 1¢). The sign of the corresponding harmonic for
the support function, g, is, however, flipped reflecting the fact that two-thirds
of the voters represented by the third harmonic lic on the other side of the
circle than the positive X-axis. As indicated by Fig. 1c, the support function, g,
oscillates above and below the value 1/2, without remaining above it for an
interval of length, w, so that no Condorcet directional vector exists.

The fifth harmonic represents a five-hump concentration of voters at
regular intervals, the seventh harmonic represents a seven-hump concentra-
tion, etc., each reflected as a similar or reversed alternation of humps in the
support function. As with the third harmonic, g does not remain above 1/2 on
an interval of length, m, and again no Condorcet directional vector exists.
Thus the first harmonic is the only odd pure harmonic for which a Condorcet
directional vector exists.

Typically, of course, a function is a combination of many harmonics. Note
that the smoothing process implicit in the integral definition of g which leads
to the factor n in the denominator of its Fourier coefficients, causes the
harmonics of g to attenuate rapidly, suggesting that in practice only the first
few (odd) harmonics of f may be significant in determining majority winners
and hence Condorcet directional vectors (see the empirical analysis below).
Because of this attenuation and especially if the coefficient of the first har-
monic is relatively large, the support function, g, is likely to remain greater
than or equal to 1/2 on an interval (of length 7t) in a direction related to that on
which the first harmonic peaks. In particular we can show:

Theorem 4. A sufficient condition on the probability density, f, that there exist
a Condorcet directional vector is that f be of the form

S) =[1+cycosy+c,cosn(y — ¢,)]/2n

when n is odd and c, < c¢y. (We assume that ¢, is chosen so that c, is non-
negative and that ¢y and c, are sufficiently restricted so that f is non-negative.)

Proof. See Appendix. []

We conjecture that the conclusion of the theorem remains true for any
density, f, for which

ciL=¢C3+¢Cs+cCcq+ -

where, again, the ¢, are chosen so that the ¢, are non-negative. Intuitively,
the theorem suggests that if the amplitude of a single hump dominates the
amplitudes of the tripolar component, the quintapolar component, etc, then
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a Condorcet directional vector exists. Thus, dominance of the unimodal
harmonic appears a sufficient condition for existence of a Condorcet direc-
tional vector, but not a necessary one, as can be seen from the support
function in Fig. 1d.

In summary, we have decomposed the electorate into (1) a symmetric
portion (represented by even harmonics) which has no bearing whatever
on the existence of either a total median or a Condorcet directional vector and
(2) a non-symmetric portion. The latter is further decomposed into odd
harmonics each of which is reflected by the support function in similar (or
reversed) patterns of humps at equally-space directions and of attenuated
amplitude, as n increases.

In our later discussion of empirical results, we will see that the one-hump,
three-hump, and five-hump patterns appear generally sufficient to represent
real electorates. Moreover, even a preponderantly trimodal component to the
distribution may be compatible with an equilibrium in the directional sense.

4. Locating Condorcet directional vectors: evidence from the
United States and Norway

4.1. The 1992 American National Election Study

Figs. 2a and 3a give scatter plots of respondent self-placements for the U.S.
electorate based on data from the 1992 American National Election Study
(NES). Respondents were asked to place themselves on a scale for each of
a number of issues. The vertical coordinate for a respondent in two-dimen-
sional space was determined in Fig. 2a from the seven-point scale for the
government services question and in Fig. 3a from the four-point scale for
the abortion question. The horizontal coordinate for each plot was based on
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Fig. 3. United States, 1992. Abortion versus liberal/conservative

the seven-point liberal/conservative scale.” For each issue, to the left and
down represents a liberal position; to the right and up represents a conser-
vative position. On each plot the neutral point, N, was determined by the
coordinate medians, and is marked by a small square.

Figs. 2b and 3b present plots of the support function, g, for these two spatial
models, respectively. Amplitudes and phase angles for the harmonics of these
and other distributions are provided in Table 1, along with coordinate me-
dians and Condorcet directional vectors, when they exist.

As indicated by the large value of ¢,, the distribution for the government
services versus liberal/conservative plot is heavily dominated by the symmet-
ric component with a phase angle of 46°, giving an oblong scatter with axis
from the lower left to upper right (see Fig. 2a). In fact, this component of the
scatter plot obscures the effects of odd harmonics and the fact that ¢5 is much
larger than ¢y, resulting in no Condorcet directional vector as Fig. 2b shows.
The support function is, however, nearly constant, so that the conditions for
either a Condorcet directional vector or a total median are only slightly
violated.

In the abortion versus liberal/conservative scatter plot the coordinate
median for abortion is substantially negative, so that the neutral point is
shifted down (see Fig. 3a). The unimodal harmonic has a phase angle of 105°,
representing the direction up toward the more distant anti-abortion position.
As expected from Theorem 3, this harmonic dominates the tripolar harmonic
in its influence on ¢, despite the latter’s larger amplitude, because it is
directionally more focused.

7To smooth the graininess of these scales, respondent positions were subjected to
random scatter, e.g., individuals giving a response of 2 were scattered uniformly
between 1.5 and 2.5. Scales where centered at 0 by subtracting 4. The abortion scale
was first expanded to one to seven.
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Table 1. Amplitudes, phase angles, and Condorcet directional vectors for the Fourier series of
electorate densities®

United States 1992 Norway 1989

L/C-GovSer L/C-Abortion  L/R-Alcohol L/R-Agriculture

Sample size 1659 1776 2018 1864
Coordinate medians
X-coordinate® 0.21 0.20 —0.04 0.01
Y-coordinate 0.03 —193 —0.04 —1.34
Amplitude
¢y 0.005 0.034 0.025 0.007
Cy 0.066 0.098 0.034 0.058
c3 0.016 0.086 0.058 0.006
Cy 0.017 0.013 0.022 0.012
Cs 0.004 0.026 0.008 0.024
Phase angle (degrees)®
¢4 — 124 105 — 69 58
103 46 73 60 77
b3 56 —35 26 —50
N —44 —13 8 38
s —17 —6 24 —17
Condorcet directional
vector (degrees) none 90 — 88 56

*For each electorate, the neutral point, N, is placed at the coordinate medians.

®In each case, the X-coordinate is L/C or L/R. The observed coordinate median for the variable
may vary slightly because of pairwise deletion of cases.

¢The phase angles in the table are the smallest of the n equally spaced possible phase angles.

The support function, g, for the abortion issue remains above 0.5
throughout the interval from 0° to 180°, indicating that the midpoint (y = 90°)
of this interval represents a Condorcet directional vector emanating from
N (and is shown in Fig. 3a). This example illustrates that the Condorcet
directional vector need not be the point at which the support function
assumes its maximum, which for this data is approximately 135°.

For each issue-pair in the U.S. survey (and for the Norwegian survey
described below), a truncated support function

c C
g5(7) = 1/2 + 2¢1 08(y — 1) — 25 €Os(y — b3) + 2 c0s(y — s)

determined by the first three odd Fourier coefficients of the density, f, is
plotted (using a dashed line) on the same axes with g. The agreement of these
curves suggests that three harmonics may be sufficient to describe the size of
majorities in real electorates.®

8 Note that gs is constructed directly from the Fourier coefficients of f, and makes no
direct use of the values of g, itself.
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Fig. 4. Norway, 1989. Alcohol versus left/right

4.2. The 1989 Norwegian Electron Study

Data from the 1989 Norwegian Election Study show us what appears to be
best characterized as a tripolar electorate, although we deliberately stacked
the cards in choosing items from this data set in favor of what we expected
would be a tripolar pattern to see whether the Fourier series approach would
give us the results that correspond to the intuitions of knowledgeable obser-
vers. We chose an issue (alcohol policy) on which there is a constituency which
takes an extreme view while maintaining a centrist view on other issues.
Traditional (economic) liberals and conservatives (measured on the left/right
scale) who take centrist views on alcohol constitute the other two poles of the
tripolar distribution (see Fig. 4a).° Again, a Condorcet directional vector does
exist, in the direction of — 88°, i.e., directly down toward the extreme anti-
alcohol position.

In the alcohol versus left/right scatter plot for Norway (Fig. 4a), the
tripolar nature of the distribution is reflected in the high amplitude, c3, for
the third harmonic, with modes centering in directions 26° (¢3), 146°
(¢3 + 120°), and — 94° (¢35 — 120°). The concentrated peak at the bottom of
the plot (near the mode at — 94°) is further reflected in the first harmonic
(with plase angle somewhat offset at — 69°) via a vis the more diffuse scatter
just above the center line.

Ceteris paribus, a concentration in the distribution tends to offset a more
diffuse scatter in the opposite direction. Because a distant (more extreme) pole

°In Figs. 4a and 5a, the horizontal and vertical axes represent self-placement — on
a scale of 1 to 10 — on the left/right scale and on the alcohol policy or agricultural
policy scale, respectively. Placements are subjected to random scatter, as described
above.
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Fig. 5. Norway, 1989. Agriculture versus left/right

is likely to be concentrated directionally (i.e., subtend a smaller central angle),
it tends to dominate a nearby pole, and may do so even if the nearby pole
involves a larger number of voters, as is the case for the Norwegian alcohol
data. This illustrates the tendency that a Condorcet directional vector points
in the general direction of a concentration of voters, as made specific in
Theorem 3 above.

A different situation arises when alcohol policy is replaced by agricultural
policy (see Fig. 5a); here the symmetric second harmonic dominates (see
Table 1). A Condorcet directional vector exists at 56°, roughly in the direction
of the second harmonic. Plots of the support functions, g, (presented in
Figs. 4b and 5b) for alcohol and agricultural policy satisfy the condition for a
Condorcet directional vector when N lies at the coordinate medians.

4.3. Condorcet direction fields

Plotting the Condorcet directional vectors from each node of a lattice of
possible neutral points provides a direction field with a residual blank region
representing positions from which no Condorcet directional vector exists,
which we call the Condorcet vacuum. Fig. 6 presents blow-ups of the central
region of such direction fields for two hypothetical voter distributions
centered at the coordinate medians, the first in which the probability distribu-
tion of voters is described by a pure first harmonic, cos(y), and the second by
a pure third harmonic cos(3y).1° In both cases all arrows point inward toward
a central area. But the first harmonic satisfies Corollary 3, i.e., the support

10 In determining the number of times that g(y) crossed 0.5, a tolerance of 0.005 was
permitted to avoid counting inconsequential crossings including those due to numer-
ical roundoff.
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Fig. 6. Condorcet direction fields for pure harmonic distributions
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Fig. 7. Condorcet direction fields for Norway, 1989

function g(y) = 1/2 + 2cos(y) exceeds 1/2 on an interval of length n. Thus the
Condorcet vacuum is empty (a small hole appears in the diagram due to
statistical noise in the simulated sample). The third harmonic, however, yields
a larger, pear-shaped region of Condorcet vacuum since the distribution is
tripolar!?,

Direction fields for the 1989 Norwegian Election Study are plotted in Fig. 7
for alcohol and agricultural policy against left/right placement. The alcohol

1 This conforms with the geometric shape of the Condorcet vacuum for a tripolar
distribution obtained for finite electorates by Merrill and Grofman [5].
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policy plot yields the pear-shaped Condorcet vacuum, characteristic of a tri-
polar voter distribution and indicative of the fact that three concentrations of
voters can lead to directional as well as traditional spatial instability. The
agricultural policy plot illustrates directional vectors pointing to a common
center with only a small Condorcet vacuum, reflecting the strength of the
second harmonic. In either case, the Condorcet vacuums depicted in these
zoomed-in plots are small relative to that of the voter distribution.

5. Discussion

As a technique for decomposing the angular variations in a spatially-repre-
sented electorate, harmonic analysis lends itself well to directional modeling.
We have associated a probability density and a support function with a two-
dimensional spatial model and seen that the Fourier series of the latter is
closely related to that of the former and depends only on its odd harmonics.
This allows us to relate the existence and location of undominated (Condor-
cet) directional vectors with the pattern of humps (voter concentrations) in the
electorate. In particular we have seen that candidates may be drawn to move
toward a small, central region within which competition may be indeter-
minant. In approaching this region, small focused concentrations of electorate
may overshadow larger, more diffuse conglomerations.

Appendix

Proof of Theorem 4. 1t will be convenient to use the sine form of the ampli-
tude/phase-angle formulas. To prove Theorem 4, it suffices to show that

(1/2Lg(7) — 1/2] = ¢y siny + (- 1)"% sin n(y — ¢,)

has exactly two zeros in the interval ( — m, ©] where g(y) is the corresponding
support function. Without loss of generality, set ¢; = 1. Write p(y) = sin y and

40) = (= 1 LsinnG — ).

For convenience, if k is odd, we absorb the negative sign by replacing ¢, by
¢, — m. Since |q(y)| < 1/n roots of the function

r(7))=p@) +4q(()

can only occur when |p(y)| < 1/n, i.e., when y is within é = arcsin(1/n) of 0
or m. By symmetry, it suffices to show there is precisely one zero in the
o-neighborhood of 0 and to assume that ¢, > 0. If ¢, = 0, then 0 is the only
zero of r(y) in the neighborhood. Otherwise, if ¢, <y < J, then ¢(y) > 0 and

q(y) = % sinn(y — ¢,) <sin(y — ¢,) <siny = p(y),

hence r(y) has no root in this range. If 0 < y < ¢,, then p(y) > 0 but ¢g(y) <0,
$O Nno root occurs.
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Hence, any roots of r(y) near 0 must not exceed 0. One such root must
occur by the intermediate value theorem. If there were two such roots, say,
71 <72 <0, by Rolle’s theorem, r'(yo) = 0 for some y,, 71 < yo < 7. But

q (yo) = ¢, cos n(yg — o) < ¢, COS ny,
< cosnyy < €os Yo = p'(Yo)

so that r'(y¢) > 0. This contradiction shows that only one root exists near
zero. [
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