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STABILITY AND
CENTRALITY OF
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Irvine

Majority-rule spatial voting games lacking a core still always
present a “near-core” outcome, more commonly known as the Copeland winner. This is
the alternative that defeats or ties the greatest number of alternatives in the space.
Previous research has not tested the Copeland winner as a solution concept for spatial
voting games without a core, lacking a way to calculate where the Copeland winner was
with an infinite number of alternatives. We provide a straightforward algorithm to find
the Copeland winner and show that it corresponds well to experimental outcomes in an
important set of experimental legislative voting games. We also provide an intuitive
motivation for why legislative outcomes in the spatial context may be expected to lie
close to the Copeland winner. Finally, we show a connection between the Copeland
winner and the Shapley value and provide a simple but powerful algorithm to calculate
the Copeland scores of all points in the space in terms of the (modified) power values of

each of the voters and their locations in the space.

It is well known
that, under majority rule in a world with
more than one issue dimension, a major-
ity winner does not, in general, exist.
That is, there is no one alternative that
can defeat each and every other alterna-
tive in paired contest (McKelvey 1976,
1979; Schofield 1978). Furthermore, we
can expect that all or virtually all the
alternatives will cycle with one another.
One common interpretation of those
results is that institutions that use major-
ity rule ought not to work: since choices
are cyclical, losers should always be able
to find some alternative they like better
that could defeat the present status quos,

and so on ad infinitum. Thus, all legisla-
tures should be in constant turmoil as
losers try to reverse decisions they do not
like. Another implication of the results of
what are often called “chaos” theorems is
that expected outcomes of legislative
majority-rule decision processes could
range over the entire issue space, depend-
ing upon exactly how the agenda is speci-
fied; hence, political decision making
should lack any clear central tendency.
These instability results have led to con-
siderable skepticism about the usefulness
of the standard populist view of demo-
cratic decision making as a clear choice
from among a set of alternatives in accord
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with the will of the majority (see review in
Riker 1980, 1982).

When we look at the world, whether it
be the real world of legislative decision
making or the parallels to that real world
that have been generated by carefully
constructed experimental voting games
such as those of Fiorina and Plott (1978),
we find that outcomes are actually quite
stable and that voters in a committee or
legislative setting are able to pick an alter-
native and stick to it. Indeed, in legisla-
tures, once a bill is enacted, changes from
a given status quo are apt to be only incre-
mental, even over a period of years. Also,
outcomes are far from randomly dis-
tributed over the issue space. Rather,
votes seem to track some central tendency
in the group. In particular, in experimen-
tal legislative spatial voting games where,
in principle, any outcome would be feasi-
ble, we observe that different committees
rapidly make choices that are remarkably
alike (see, e.g., Fiorina and Plott 1978).

Investigating why the world does not
behave as the theoretical models of major-
ity rule in more than one dimension say it
should has been a booming industry in the
past several years (Tullock 1981). Various
approaches have been offered to account
for an observed stability in legislative
majority-rule processes beyond what
could be expected by the various “chaos”
theorems and impossibility results.
Among these is the view that various
institutional features simplify or delimit
the domain of choice so as to make a
majority winner if not certain, at least
much more likely (Grofman and Feld
1986; Shepsle 1979; Shepsle and Weingast
1982). Also, even though there may not
be a unique majority winner and even
though the top cycle set (i.e., the minimal
set of alternatives that cycle with one
another) may be very large, there may
still be a probability distribution over
expected outcomes that is well behaved,
for example, with probability mass con-
centrated in some central area of the

Pareto set (Ferejohn, Fiorina, and Packel
1980; Ferejohn, McKelvey, and Packel
1984). Moreover, even if prior to the
actual decision there were alternatives
that could have defeated it in pairwise
contest, a number of postdecisional mech-
anisms (both cognitive and institutional)
act to reinforce the legitimacy and stabil-
ity of whatever choice the society may
have made (Grofman and Uhlaner 1985).

A variety of other ideas have been pro-
posed to account for stability. For exam-
ple, it has been suggested that the de facto
decision process may be supramajori-
tarian and this may lead to stability even
in situations where the majority rule is
unstable (Schofield, Grofman, and Feld
1985). Kramer (1977) argues that repeated
two-party competition will drive out-
comes into the minimax set in the interior
of the Pareto set. Wuffle, Feld, Owen,
and Grofman (n.d.) argue the attractive-
ness of what they label the “finagle point”
in spatial games of two-candidate com-
petition. A number of authors claim that
coalition-formation processes will induce
stability, proposing a plethora of compet-
ing solution concepts as to where out-
comes will lie (see, e.g., McKelvey,
Ordeshook, and Winer 1978; Owen 1982;
Straffin and Grofman 1984). It has also
been argued that stability is more likely if
actual choices more nearly resemble a yes-
no referendum on whether existing
policies will be maintained than if choices
are made among a numerous and almost
certainly cyclic set of alternatives (Riker
1982). Finally, Miller (1980) and others
(Banks 1985; Feld, Grofman, and Miller
1985; McKelvey 1986; Miller, Grofman,
and Feld 1985; Moulin 1984; Shepsle and
Weingast 1984) have suggested that, even
when all alternatives cycle with one
another, there may be sufficient internal
structure to the majority-preference rela-
tion for a legislative or polity that the
only likely outcomes either will be few or
will lie in a small area central in the issue
space, within the set of outcomes that has
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been called the “uncovered set.”

In exploring the reasons for stability of
legislative choice, we focus on the proper-
ties in the spatial context of an old solu-
tion concept, the Copeland winner. The
Copeland winner (which we shall also
refer to as the strong point) is simply that
alternative which is majority-preferred to
the highest proportion of other alterna-
tives in the space. The Copeland winner is
identical to the core if a majority winner
exists. The core is the most theoretically
powerful and empirically predictive of
known solution concepts. The Copeland
winner has never before been applied to
try to make sense of multidimensional
legislative voting because it was not
known to calculate where the Copeland
winner was in a multidimensional issue
space with an infinite number of alter-
natives.

The aim of this paper is threefold. First
and foremost, we show that the Copeland
winner, known in the finite case to have a
number of desirable axiomatic charac-
teristics (Copeland 1951; Straffin 1980),
has a number of additional properties that
make it a particularly attractive solution
concept in the spatial context. In the
spatial context, the Copeland winner (1)
always exists, will in general be unique,
and can be located relatively easily; (2)
once found, turns out to predict outcomes
in the Fiorina and Plott (1978) experimen-
tal voting games better than do more than
one dozen previously proposed models;
and (3) can be given an intuitive motiva-
tion that seems to explain why voters in a
legislative situation would end up with
outcomes at or near the Copeland winner.

Second, we show that, in the spatial
context, the Copeland winner can be ex-
pressed in terms of the (modified) Shapley
value, a key game-theoretic measure of
power. This connection is a surprising one
and important in that it shows a deep
mathematical link between two hitherto
largely unrelated areas of research.

Finally, we show that the Copeland

values (defined as the proportion of all
other points to which a given point is
majority-preferred) fall off monotonically
with distance from the Copeland winner
along any ray. Moreover, the strong
point is always in the uncovered set' and
(roughly speaking) a central point in the
Pareto set. Hence, the most “popular”
alternatives in the space are all spatially
clustered near a central area of the Pareto
set.

We believe that most legislative agenda
processes can be expected to lead voters to
outcomes near the strong point,? especial-
ly in legislative voting games played non-
cooperatively (i.e., without coalitional
alliances) and without party organiza-
tions to structure voting.

Locating the Strong Point

Finding the strong point requires find-
ing a point x such that the area (measure)
of the set of points that are majority-
preferred to it is minimal. We shall pre-
sent the basic results for two dimensions:
for Euclidean preferences; and for n, the
number of voters, odd.

THEOREM 1. For voter ideal points located
on a convex polygon, the strong point,
x, is given by

n

z Ci P"

j=1

x="" @

where the P; are the voter ideal points,
and the c; correspond to the “star”
angles of the polygon (measured in
radians).

A complete proof of this result is given
in Shapley and Owen 1985. We illustrate
the calculations for n = 5 (see Figure 1). -
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Figure 1. The Star Angles c, through ¢,
of a Convex Pentagon
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The star angles of the pentagon shown
in Figure 1 are

¢ = %413 = 4636
c; = % 524 = .8663
c; = % 135 = .8330
€ = % 241 = .2408
cs = % 352 = .7378

n
The sum of the star angles, I ¢;, equals
. i=1
The P, values (locations of voter ideal
points) in Figure 1 are given by

P, = (80, 40)
P, = (100, 40)
P, = (140, 80)
P, = (120, 110)
Ps = (60, 100)

Substituting these values in Equation 1,
we obtain x = (99.79, 70.06).

When not all voter ideal points are on a
convex polygon, the minimization for-
mula is identical, but the specification of
the angles changes. For example, for the
five-voter game with one voter, E, inside
the convex hull (see Figure 2), the strong
point is given by the same formula as in
Equation 1, but now A = (30, 52), B =

Figure 2. Five-Voter Game with
One Ideal Point, E,
inside the Convex Hull
(E Also Being the Strong Point)

(25, 72), C = (62, 109), D = (165, 32), E
= (51, 59). Then

¢, =cy = % CAE = .7375
¢, =cg = % EBD = .1853
s =cc =% ACE= .2950
¢y = cp = % BDE = .0457
cs=c =% BEC+ 7

— % AED = 1.878

Thus, x = (47.23, 62.43).

Thus, in two dimensions, locating the
strong point is quite straightforward.

If there is a core, it is well known that
with an odd number of voters the core
must be one of the voter ideal points

Figure 3. Five-Voter Game with a Core
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(McKelvey and Wendell 1976). Plott
(1967) provides a condition sufficient for
a core: the existence of an (interior) point,
E, such that every line through that ideal
point passes through the same number of
voter ideal points on each side of E. We
show in Figure 3 a five-voter situation in
which the ideal points satisfy the Plott
conditions. Here, ¢, through c, would be
zero and % BEC = % AED; thatis, ¢s =
¢g = I1, and thus x = Ps = Pg. Hence, x
is a core point.

The formula given in Equation 1 was
derived for the case where all points in the
space are feasible alternatives. However,
this strong assumption is not required.
Moreover, an adaptation of the method-
ology that gave rise to Equation 1 can be
used to find the strong point for choice
over any feasible set of alternatives,
although the algebra may become more
complex and numerical approximation
techniques may be necessary. As long as
the feasible set includes the points in a cir-
cle containing the central portion of the
Pareto set, the formula given in Equation
1 will hold.* We subsequently show how
to calculate the point with highest Cope-
land value for an important special case,
that in which the feasible set of outcomes
is restricted to the set of points that can
defeat the status quo.

The Spatial Distribution
of Copeland Values:
Simulation and Results and
Implications for Agenda Processes

Simulation Results

We use a simulation to determine the
Copeland values for each of the points in
the space for some simple five-voter
games in two-dimensional space (games
investigated by Ferejohn, Fiorina, and
Packel 1980; and Fiorina and Plott 1978),
one with a core and one without. Inspec-
tion of the resulting graphs shows the rate

at which Copeland values drop off as we
move away from the strong point.*
Shapley and Owen (1985) have demon-
strated that Copeland values will fall off
monotonically with distance from the
strong point along any ray. In particular,
the isovalue curves form a family of con-
centric circles with the equation

x—xP+(y—-yP=k (2)

where (x*, y*) is the strong point.

Our first example is one of the three
five-voter games used in Fiorina and Plott
1978, game 1, with voter ideal points at
(39, 68), (30, 52), (25, 72), (62, 109), and
(165, 32). The core is at (39, 68) (see
Figure 4). As we see, Copeland scores are
very high near the core point. The experi-
mental outcomes found by Fiorina and
Plott in their high-payoff-with-communi-
cation condition had a mean of (37, 68);
in their high-payoff-no-communication
condition, the mean was (38, 69). In both
conditions, but especially the former,
agreed-upon outcomes were very tightly
clustered near the mean. The core (and
thus the strong point, since in this situa-
tion the two are identical) predicted quite
well in this game.

Our second example is the third of the
three five-voter games used in Fiorina and
Plott 1978; this one has voter ideal points
at (51, 59), (30, 52), (25, 72), (62, 109),
and (165, 32). This game is without a
core. We show Copeland values for the
points in this game in Figure 5.

Fiorina and Plott (1978) consider six-
teen different solution concepts generat-
ing eight distinct predictions for game 3.
For this game, which lacks a core, none of
the solution concepts was of much value.
The observed outcomes were rather far
from any of the points predicted by any of
the solution concepts.

Nonetheless, in this game, observed
outcomes were still tightly clustered
highly around a mean observed outcome
of (45, 62), albeit not quite as tightly as in
the games with a core (a standard devia-
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Figure 4. Approximate Distribution of Copeland Values in a Five-Voter Game
with a Core, with Voter Ideal Points at (39, 68), (30, 52), (25, 72), (62, 109)
and (165,32)
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Figure 5. Approximate Distribution of Copeland Values in a Five-Voter Game
without a Core, with Voter Ideal Points at (51, 59), (30, 52), (25, 72),
(62, 109), and (165, 32)
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tion of 10.3 in this game versus standard
deviations of 5.2, 7.3, and 8.3 in various
high-payoff experimental conditions in
the two games with a core). Fiorina and
Plott (1978, 590) contrast this finding of
tightly clustered outcomes with the
“chaos” suggested by McKelvey's (1976)
result that “from any point in the space
one can construct a sequence of alterna-
tive policies which under sincere voting
lead to any arbitrarily selected point.”
They also note that they “did not notice
any behavioral differences” and that “sub-
jects in experiments on Game 3 appeared
to have no greater difficulty in reaching a
decision than did those in Game 1.” Com-
menting about games without a core but
whose outcomes were tightly clustered in
a fashion inexplicable by any of the
numerous theories they looked at, Fiorina
and Plott (1978, 590) state “[We] wonder
whether some unidentified theory is wait-
ing to be discovered and used,” and they
go on to suggest that “if some as yet
undeveloped theory is driving the . . .
experiments (with game 3) it had better
specialize to the . . . core when the latter
exists.”

We claim that the hypothesis that out-
comes will be clustered at or near the
strong point is just such a theory—reduc-
ing to the core when one exists and
capable of accounting for observed out-
comes in majority voting games without a
core such as those in game 3 in Fiorina
and Plott (1978). The strong point of
game 3 is (47, 62), a value obtained from
use of Equation 1, as solved earlier and
confirmed by our simulation. It predicts
the mean outcome in that game (45, 62)
almost perfectly. The fit of the strong
point in game 3 is as good as the fit of the
core to the Fiorina and Plott (1978) experi-
mental outcomes in the two games they
used that had cores.

Of course, we are not claiming that the
strong point can account for voting out-
comes in all majority-rule games.
Although the core is far and away the best

single predictor of outcomes in games
where a core exists (and the strong point
reduces to the core when a core exists), it
may not be chosen if the group focuses on
ethical judgments related to equity norms
(Eavey and Miller 1982). Also, it is well
known that institutional features of
choice (e.g., veto power, see Wilson and
Herzberg 1984) or restrictions on feasible
amendments such as a germaneness rule
(Shepsle 1979) can significantly affect out-
comes. In such cases we would need to
modify our model.>

Often such modifications can be done
simply. For example, one common rule
for legislative decision making is to
require a final vote against the status quo
(Black 1958; Farquharson 1969).¢ For this
rule, the modifications to Equation 1
needed to find the point with the highest
Copeland value among the feasible out-
comes (those in the win set of the status
quo) are quite straightforward. We mere-
ly find the closest tangency of the family
of circles defined in Equation 2 (itself,
in turn, derived from the strong point
defined by Equation 1) to the win set of
the status quo; that is, we find the point
in the win set of the status quo that is clos-
est to the overall strong point in the space.
The fact that Copeland values decline
monotonically from the overall strong
point provides the justification for this
point of tangency’s being the point in the
win set of the status quo with the highest
Copeland value. However, this point is
not necessarily the one that beats the max-
imum number of points in the win set
itself. :

Implication for Agenda Processes

Consider an open-agenda process in
which alternatives are proposed with
equal likelihood and that has some deter-
ministic stop rule (e.g., stop if an alter-
native defeats k successive challengers).
Then the likelihood that an outcome will
be chosen is a function of its Copeland
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value; the probability density for the
open-agenda process with such a stop rule
will be even more thickly massed around
the strong point than will the distribution
of Copeland values because points that
defeat few other points will be eliminated
quickly. The open-agenda process with a
k-defeats stop rule is a relatively uncon-
strained one. In more constrained (and
more realistic) agenda models (e.g., one in
which the likelihood that a point will be
proposed is a function of the number of
majority coalitions that prefer it to the
status quo [Ferejohn, Fiorina and Packel
1980]), outcome probabilities will be even
more sharply massed around the strong
point than is true in the open-agenda
process. The same is true, we believe, if
we were to compare the open-agenda
process to one in which proposed policies
must be elements of the uncovered set
(Shepsle and Weingast 1984, 65 n. 17), at
least as long as there is some sort of
stochastic stop rule. Thus, to establish
that Copeland values fall off mono-
tonically with distance from the strong
point guarantees us that most reasonable
agenda processes will, with very high
probability, result in outcomes at or near
the strong point.

If a known status quo will be in the
final pairing, then, as noted above, the
strong point can be defined relative to the
set of alternatives that defeats the status
quo. If the final vote always involves the
previously defined status quo, then legis-
lators have an incentive to propose alter-
natives with a high probability of beating
those against which they might subse-
quently be paired. Again, -the probabili-
ties of choice will be highest for alterna-
tives near the strong point because these
are the ones whose “viability” is greatest.’

Even if legislators try to manipulate the
agenda by introducing alternatives so as
to eliminate other alternatives (a situation
not true for the Fiorina and Plott games),
under standard amendment procedure, as
long as legislators cannot be certain that

any given vote will be the final vote (or
the next-to-final vote), then alternatives
that defeat others are likely to be pro-
posed and chosen.®! Moreover, when
voters are sophisticated, the outcomes of
the usual legislative procedures will lie
within the uncovered set (Shepsle and
Weingast 1984), in which the strong point
is a central point.

The Strong Point and the
Center of the Yolk

Our results are closely related to an im-
portant recent body of work whose full
implications have not yet been absorbed
into the established wisdom of social
choice. A group of scholars (Ferejohn,
Fiorina, and Packel 1980; Ferejohn, Mc-
Kelvey, and Packel 1984; Hoffman and
Packel 1981; Packel 1981) have shown
that even in the absence of a core, certain
plausible sincere majority-rule processes
are well behaved in the sense that there
exist stochastic limiting distributions that
will characterize the set of expected out-
comes and that these distributions can be
expected (almost always) to confine out-
comes to a relatively small section of the
space. The area in which outcomes will
cluster is centered around what they call
the yolk of the voting game.?

It would be nice if the strong point cor-
responded to the center of the yolk. Un-
fortunately it does not, except when there
is a core—although it does appear that the
center of the yolk and the strong point are
not very far away from each other in'the
examples we have looked at. In particu-
lar, in the Fiorina and Plott game without
a core shown in Figure 5, the center of the
yolk is approximately (46, 64). For that
game we have previously found the
strong point to be (47, 62). To aid the
reader in understanding the connection
between the center of the yolk and the
strong point, we present a simple exam-
ple. Consider the right triangle with ver-
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Figure 6. Comparison of the Location
of the Center of the Yolk, y, with the
Location of the Strong Point, x,
in a Simple Three-Voter Game
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tices (0, 0), (0, 1), and (1, 0) shown in
Figure 6.

Using Equation 1, the strong point of
that triangle can be shown to be
(1/4,1/4). The yolk (Ferejohn, McKelvey,
and Packel 1984) is the minimum sphere
that intersects all median hyperplanes. In
two-dimensional space with three voters,
the median hyperplanes are simply the
lines through the vertices of the triangle
that pass within or through the edges of
the triangle. Hence, in Figure 6, the center
of the yolk is simply the center of the larg-
est circle that can be inscribed within the
triangle. Some simple geometry shows
that this point is (1 — 4/2/2, 1 — 4/2/2) =
(.293, .293).

It seems apparent that with a more
symmetric distribution of ideal points, the
center of the yolk would be even closer to
the strong point. If there is a core, of
course, the two concepts are identical
because the yolk collapses to a point, that
is, collapses to the core (which is the
strong point). Moreover, very prelim-
inary work suggests that the strong point

will also usually lie close to other recently
proposed solution concepts.

The Strong Point and the
Modified Shapley Value

Owen (1971) introduced a generaliza-
tion of the Shapley value based on coali-
tional probabilities that were a function of
ideological proximity. Shapley (1977)
modified the Owen (1971) model to pro-
vide a further nonsymmetric generaliza-
tion of the Shapley value. These papers
developed a new type of Shapley value
applicable to voting games where plays
are located in some Euclidean “ideo-
logical” space (see also Owen 1972; Straf-
fin 1977).

THEOREM 2. The strong point, x, can be
expressed as

x= X ¢iPi (3)

where the P; are, as before, the loca-
tions of voter ideal points, and the ¢;
are the modified Shapley values as
defined in Shapley 1977.

While the formula of Equation 3, like
that of Equation 1, is quite simple, the
proof of Theorem 2 (Shapley and Owen
1985) is very complex.

The usual Shapley value can best be
explained by saying that voter i’s power is
the probability that, in a randomly
chosen ordering of the n-players (with all
orderings having equal probability), voter
i will be in pivot position, that is, the
coalition of all members preceding i in the
order loses, but it wins with i’s coopera-
tion (Straffin 1980; Owen 1982). The
modified Shapley values of both Owen
and Shapley treat players as points in
Euclidean space of some dimension; the
power value is then defined as the prob-
ability that a given player will be pivotal
in a randomly chosen ordering, the dif-
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ference lying in the probability distribu-
tions that underlie this ordering. In
Owen's scheme, a point in the space is
chosen via a uniform distribution; order-
ings are taken in terms of the players’
increasing distances from this randomly
chosen point; while in Shapley’s scheme,
a direction in space (all points in the dual
space) is chosen via a uniform distribu-
tion; orderings are then taken in terms
of the players’ locations along each
direction.

To prove Theorem 2, Shapley and
Owen (1985) make use of the fact that
both the modified Shapley values and the
Copeland values can be expressed in
terms of P;(©), where P;(©) is the ideal
point of the voter, j, who is pivotal when
the ordering is in the © direction, that is, j
is the median voter for voter projections
onto all lines that make an angle of © with
the origin (which may be arbitrarily
chosen). In particular, if we let A(q) be
the Copeland value of voter g, then

Aq) =2 s:{ U®) « [P,(0) — ql'}de @)

where U (©) = the unit vector in the
direction of © = (cos O, sin O). Equation
4 gives us the area of the set of points that
beats q.

On the other hand,

¢, = 1n s;'pq (©)d(®),

that is, the power of a player (as defined
by his or her modified Shapley value) is
simply the measure of the set of angles for
which he or she is pivotal.

Conclusions

We believe that the strong point is a
powerful solution concept that provides a

plausible explanation for the stability and
centrality of committee and legislative
choices. The strong point is well defined
and well behaved, easy to calculate,
reduces to the core when there is a core,
lies within the uncovered set, is respon-
sive to individual differences in prefer-
ences, is centrally located in the Pareto set
(thus guaranteeing that outcomes will not
be too far from what most voters want),
and explains hitherto inexplicable regu-
larities observed in experimental settings.
By specifying the Copeland winner in the
spatial context and by showing its deep
mathematical connection to the (modi-
fied) Shapley value, we also provide theo-
retically useful linkages between several
distinct areas of positive political theory:
social choice theory (in which the Cope-
land winner has long been known to have
various desirable axiomatic properties),
game theory, and spatial modelling.

As previously noted, it is our view that
the search for a single ultimate solution
concept for all political games is a futile
one. There simply is no reason to believe
that, say, coalitional models of situations
involving politics among voting blocs will
give the same answers as models based
on, say, the institutional structure of two-
candidate party-based competition.?® The
solution concept we have proposed, the
Copeland winner in the spatial context,
was reviewed in the context of legislative
voting games in a pure majority-rule set-
ting under standard amendment pro-
cedure. Its usefulness in other settings is a
matter for further research, but we believe
the strong point has already been shown
to be a powerful solution concept in one
important institutional setting, that of the
legislature.’* However, we would note
that other recently proposed solution con-
cepts such as the center of the yolk (Feld,
Grofman, and Miller 1985; McKelvey
1986) are likely to lie near the strong point
and thus that it may be quite difficult to
determine which model offers the best fit
to experimental results.

549




American Political Science Review Vol. 81

Notes

We are indebted to the staff of the word process-
ing center at the School of Social Sciences, Univer-
sity of California, Irvine, for manuscript typing, to
Cheryl Larsson and Kathy Alberti for figure prep-
aration, and to Dorothy Gormick for bibliographic
assistance. This research was supported by NSF
Grant No. SES 85-06376 (program in decision and
management sciences) to the first two authors and
by NSF Grant No. BNS 80-11494 to the Center for
Advanced Study in the Behavioral Sciences, Stan-
ford, where the first-named author was a fellow in
1985-86. We are indebted to Scott L. Feld for helpful
comments.

1. McKelvey (1986) and Moulin (1984) have
shown that the Copeland winner must lie within the
uncovered set. The uncovered set is the set of points
that can defeat all other points on the space either
directly or at one remove (Miller 1980). A wide
variety of plausible sincere processes for agenda for-
mation considered in Ferejohn, McKelvey, and
Packel 1984, have been shown to lead voters to
points in or near the uncovered set; while Miller
(1980), McKelvey (1986) and Shepsle and Weingast
(1984) have shown that sophisticated voting under
standard amendment procedure leads to outcomes
within the uncovered set. Our simulations have
shown the strong point to be near the center of the
uncovered set, at least for three-voter and five-voter
games. ;

2. Seen. 1.

3. We can state this result more precisely. Let the
yolk be the minimum circle (sphere) that touches all
median lines (hyperplanes), and let r be the radius of
the yolk. Then it is known that the uncovered set lies
within 4r of the center of the yolk (McKelvey 1986)
and may be even closer than that; and it is also
known that the strong point is in the uncovered set
(McKelvey 1986; Moulin 1984). Furthermore, it is
known that no point x that defeats some point y can
be more than 2r further from the center of the yolk
than is y itself (Feld, Grofman, and Miller 1985).
Thus, even in the most extreme case, the only points
that could defeat the strong point would lie within 6
radii of the center of the yolk. When the number of
voters is large, a circle of radius 6r will be well
within the Pareto set. We do not need to worry
about points outside this central circle because they
will not defeat the strong point and thus are irrele-
vant in defining the area of the strong point’s win
set. The 6r bound is, moreover, a very extreme one;
for example, if the strong point were at the center of
the yolk, then the only relevant points would be in a
circle of radius 2r. Because the strong point is likely
to be close to the center of the yolk (see discussion
later in the text), points within just slightly more
than 2r of the yolk are the only ones with which we
will need to concern ourselves in calculating the

location of the strong point—the feasibility or
infeasibility of other points is irrelevant. Thus, in
absence of peculiar conditions that rule out the cen-
tral region of the space as feasible, we may use Equa-
tion 1 to calculate the location of the strong point.

In experimental games (see, e.g., Fiorina and
Plott 1978) and in the real world (where the only
proposals to be taken seriously will be in some
limited domain of the policy space), it is quite com-
mon for players to be restricted to alternatives from
some specified domain of the space. It is also com-
mon for imposed utility schedules to be nonmono-
tonic with distance, for example, ellipsoidal or even
kinked indifference curves.

In the Fiorina and Plott games, the imposed util-
ity functions were not monotonic with distance and
there were some important zones of discontinuity
(payoff breaks). Margolis (1982, 114-98) argues that
these discontinuities made the core points or points
near them “prominent” outcomes because they fell in
the set of “fair” alternatives defined by the domain in
which all voters got some “reasonable” amount of
utility. Thus, Margolis attributes corelike outcomes
to processes quite far removed from purely self-
interested calculations. He further argues that the
protocols support such a “group-payoff” inter-
pretation.

4. In our simulation, a delimited set of feasible
points was used to calculate Copeland values. In
finding the strong point analytically, we have
measured area relative to a surface that—by the
nature of the geometric construction—is confined
either near to or within the convex hull (see Figure 1
in Shapley and Owen 1985). In our simulations, we
permitted comparisons with points in a much larger
area of the space. Clearly, as we enlarge the space of
points with which comparisons are to be made, the
absolute Copeland values will change. As we move
away from the hull, the points exterior to the hull
are largely Pareto-inferior to those at or in the hull;
any point in the Pareto set will beat almost all the
points in the space. Thus, how far out we go for our
comparisons will affect the Copeland scores in
absolute terms. If the convex hull is asymmetrically
located with respect to the boundaries of the space
whose points we are using for our comparison,
extending the boundaries of the space may even
marginally affect relative Copeland values and thus
the location of the strong point, but, for reasons dis-
cussed in n. 3, adding points distant from the center
of the yolk will not affect the win set of the strong
point. Thus, if we are either “close in” enough or go
far enough “out,” such asymmetries will be irrele-
vant. In any case, the effects appear to be minor at
worst.

If the yolk is small relative to the Pareto set, we
conjecture that the exact shapes of voter indifference
curves (e.g., circular vs. elliptical) is of minor impor-
tance in determining the strong point (Copeland
winner). Even though the induced indifference
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curves in the experimental games studied by Fiorina
and Plott (1978) are not circular, the values we have
determined for the strong point in those games fit the
observed outcomes in these games quite well.

5. More generally, we believe that processes of
choice that involve committees or legislatures voting
over sets of alternatives (see, e.g., Miller 1980;
Miller, Grofman, and Feld 1985) may lead to dif-
ferent outcomes than those that involve choosing
among competing coalitions or protocoalitions (see,
e.g., Grofman 1982; McKelvey, Ordeshook, and
Winer 1978) or between two competing political
parties/candidates.

6. In standard amendment procedure (SAP, see
Farquharson 1969; Grofman 1969), in order to win,
an alternative (e.g., a main motion as amended)
must also defeat the status quo.

7. Then, under SAP, the strong point will only
be chosen if it is among those points that can defeat
the status quo. Of course, if we treat the status quo
as a random variable, then the strong point, since it
defeats most points in the space, will also probably
defeat the status quo.

8. We use the term agenda in the technical sense
of a set of alternatives to a given motion to be voted
on in a given sequence by a group such as a legis-
lature (see, e.g., Farquharson 1969; Grofman 1969;
Miller 1977), rather than in the broad sense of Cobb
and Elder (1972) as the set of issue domains that are
considered appropriate for legislative action.

9. See n. 3.

10. Cf. Ferejohn, Fiorina, and Weisberg (1978,
160-61). See also n. 5.

11. Glazer, Grofman, and Owen (1985) show that
the strong point is a natural choice for an incumbent
in two-candidate electoral competition if we assume
that, due to electoral uncertainties, the challenger
position can be thought of as a uniformly distributed
random variable. Even if we do not make such an
assumption, Glazer, Grofman, and Owen (1985)
note that the strong point is a desirable point for
candidates if there is a stochastic stop rule in an
iterated sequence of candidate locational choices
because the strong point beats most points in the
space.
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Erratum

Bruce Bueno de Mesquita and David

“Lalman, “Reason and War” (December

1986, 1113-29): On page 1116, column 1,
the first equation should read

Pi (ESC,') = (E'(U,,)+3)/6
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