
Public Choice 43:329-343 (1984). 
© 1984 Martinus Ni jho f f  Publishers, Dordrecht. Printed in the Netherlands. 

Optimizing group judgmental accuracy in the presence 
of interdependencies* 

LLOYD S H A P L E Y  
Depar tment  of  Economics ,  University of  California at Los Angeles, CA 90024 

BER NAR D G R O F M A N  
School of  Social Sciences, University of  California at Irvine, Irvine, CA 92717 

Abstract 

Consider a group of people confronted with a dichotomous choice (for example, a yes or no 
decision). Assume that we can characterize each person by a probability, pi, of making the 
'better' of the two choices open to the group, such that we define 'better' in terms of some 
linear ordering of the alternatives. If individual choices are independent, and if the a priori 
likelihood that either of the two choices is correct is one half, we show that the group decision 
procedure that maximizes the likelihood that the group will make the better of the two choices 
open to it is a weighted voting rule that assigns weights, wi, such that 

Pi 
wi ~ log 1-ffi  " 

We then examine the implications for optimal group choice of interdependencies among in- 
dividual choices. 

1. Introduction 

The literature on social choice rooted in welfare economics, whose seminal 
work is Kenneth Arrow's Social Choice and Individual Values (1962), has 
focused on the problems of preference aggregation. The central question 
of this literature can be stated loosely as 'Is there a way of combining in- 
dividual preferences so as to result in a social ordering that satisfies certain 
"reasonable" properties, for example, nondictatorship, positive-respon- 
siveness, and so forth?' Clearly, this and similar questions addressed in the 
social choice literature (see Plott, 1976, for an excellent and comprehensive 
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review) are of  considerable importance to democratic theory. In the post 
WWII focus on questions of preference aggregation, however, other issues 
of at least equal importance to democratic theory have been lost sight of. 1 
In this essay we examine one such issue, the accuracy of  group decision 
making. 2 

The Condorcet-Poisson approach is based on a notion of probabilistic 
choice. Consider a grou p of N voters (for simplicity assume N odd) con- 
fronting a dichotomous choice (for example, a YES or NO decision) in 
which the ith voter can be characterized by a probability, pi, of  making the 
'better '  of  the two choices available to the group, such that 'better'  is de- 
fined in terms of  some linear ordering of the alternatives. This probability 
represents the 'competence' of  the ith voter on choices of this kind. A 
natural question to ask is 'How likely is the group to make the correct deci- 
sion (that is, to pick the better of  the two alternatives)?' 

A potential objection even to considering such a question is that the no- 
tion of 'competence' is not well defined and may be impossible to opera- 
tionalize. We have three responses. 

First, even in situations in which there may not be a 'correct '  choice, the 
notion of  the expected choice that would be made by an infinitely large 
voting population under a majority voting procedure can be made precise, 
and this can be taken to be the 'correct '  choice. Here, correctness is defined 
in terms of an accurate representation of what would be the majority 
sentiment. 3 

Second, in many situations (for example, in the taking of standardized 
multiple-choice exams, or in predicting whether gold will go up or down 
in the next day's trading), in principle, we can precisely define competence 
and assess a person's over-time 'track record' for predictive accuracy. 

Third, even if a record of predictive success is unavailable, other voter 
experts can subjectively evaluate the relative competence of  each voter (ex- 
pert), and we can combine these evaluations in a convergent iterative pro- 
cedure (described in Berge, 1975, and Mirkin, 1979: Ch. 4), which 
generates an aggregated estimate of the perceived relative competence of 
each participant in the decision process, which we can use to assign pi 
values .4 

The classic theorem about group competence is due to Condorcet and 
has come to be known as the Condorcet Jury Theorem. 

Theorem I: Condorcet Jury Theory (1785) 

If voters are homogenous (that is, pi = p = p for all i), and N voters make 
independent decisions and the group decision rule is simple majority, and 

N + I  
if we let m = ~ ,  and if we assume that the a priori odds are even as 
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to which of  the two alternatives being chosen is the better; if we denote the 
probability that the group will make the correct choice a s  PN, then if 

1 
1 > p > ~ then PN is monotonically increasing in N and lim PN ~ 1; if 

N ~  o o  

1 
0 < p < ~ then PN is monotonically decreasing in N and lim PN ~ 0; 

N---~ o o  

1 1 
while if p = ~ then PN = ~ for all N. Also, 

PN : ~ ph(1 _p )N-h .  (1) 
h=m 

In other words, if p > ~ (p < ), then the larger the number of voters 

the more (less) likely is the group to make the correct decision, and that 
probability approaches one zero as the number of voters expands. 5 

The Condorcet Jury Theorem in this original form incorporates the 
highly unrealistic assumption of  voter homogeneity. But, that assumption 
is not crucial. It is trivial to show that if competence (pi) is normally 
distributed (or for any distribution that is symmetric around its mean), we 
need merely replace p with fi in Equation (1) and in the expressions 
previous to it. 6 

2. The Bayesian optimal group decision rule 

Virtually all of  the research in the Condorcet-Poisson tradition reviewed in 
Section I concerns decisions in a 'one-person, one-vote' context in which 
each person's views receive equal weight in the final group decision (Grof- 
man and Owen, 1984 forthcoming). A natural question, and one that this 
essay examines is: 'Given a group of  persons of unequal judgmental com- 
petence, what is the best mechanism for pooling their judgments into a collec- 
tive choice; that is, how can we maximize the likely judgmental accuracy of 
the group decision?' In general, we would not expect that the desired mecha- 
nism would be a decision procedure that weights all voters equally regardless 
of  their competence. Consider a group with competences (.9, .9, .6, .6, 
.6), whose choices are independently made. If we let a member of  maximum 
competence decide, PN = . 9 0 0 ;  if we let the group decide by majority rule, 
PN = .877; but, if we let the group decide under a 'weighted' majority 
voting 7 rule with weights (1/3, 1/3, 1/9, 1/9, 1/9), then PN = .927. (We con- 
tinue to use PN to denote the probability that the group reaches the correct 
majority judgment. It will be clear from the context whether we are refer- 
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ring to a simple majority or a weighted majority.) This result may at first 
appear to be a rather counterintuitive finding, since the best of  the three 
rules is one in which the addition of  voters with only .6 competence can 
be used to increase the group competence above that of its most competent 
(.9) members and above that of  the simple equal weights case. This result 
is easier to accept if we note that these weights are equivalent to letting the 
two 'wisest' members of  the group rule if they agree with each other, but 
if they disagree, we let the others 'break the tie' by a majority vote among 
the three of  them. 

If, for another example, we examine a three-member group with com- 
petences (.55, .60, .70), whose choices are independently made, then we 
may show (by enumerating all possible options, which are few in number) 
that an optimal voting rule is to assign weights (0, 0, 1), that is, to give the 
most competent voter dictatorial powers. On the other hand, if the com- 
petence of the first member (.55) is adjusted upward so that we have pi 
values of  (.65, .60, .70), then we may show that the optimal voting rule is 
simple majority, that is, weights (1, 1, 1). Thus, improving the competence 
of  one voter appears dramatically to affect the optimal allocation of  
weights to all the voters in the group. We shall see that this appearance is 
somewhat misleading. 

We may motivate the logic underlying these two examples with the fol- 
lowing theorem: 

Theorem II: (The Bayesian Optimal Decision Rule) 

In a heterogeneous group, in which individual choices are mutually in- 
dependent, and the a priori likelihood that either of the two choices open 
to the group is correct is one half, the decision rule that maximizes PN is 
a majority weighted voting rule, obtained by assigning weights, wj: 

Pi (2) 
wi oc log 1--Pi" 

Proof: Shapley (1979): see Nitzan and Paroush (1982) s 
In this theorem we assume that the options to the group are a priori 

equally likely. If one alternative were more likely to be correct than another 
or if we were to regard one alternative as somehow a priori more desirable 
than another (if we were disinclined, say, toward frequent constitutional 
amendments), then we would wish to require a special (weighted) majority 
for passage. 9 Individual weights, however, would still be based on the 
voter 's log-likelihood ratio. 

It is important to note that once we pick a logarithmic base, the weight 
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assignment we give to a person to optimize group judgmental accuracy is 
purely a function of  that person's competence and is independent of the 
competence of  the other members of the group or of  group size. This result 
is quite counterintuitive. Of  course, while a person's weight may stay con- 
stant, his power l° to influence decision outcomes will vary as a function 
of  the weights of  the other members of  the group. In some groups a person 
may be dictatorial. In others he may be, in the language of  game theory, 
a dummy, that is, he may have no ability to influence outcomes. A strong 
feature of  the theorem is that the optimality of the group decision process 
is guaranteed once we make the proper individual weight assignments. 

To return to our earlier examples (using logs to the base e), we have 

.55 
i n - -  = .0872 

.45 

In --'60 = .1761 
.40 
.65 

In - .2689 
.35 
.70 

In - .3680 
.30 

In --'90 = .9542 
.I0 

In the case of  the five-member group with competences (.9, .9, .6, .6) the 
optimum weight assignment by Theorem II, is (.9542, .9542, . 1761,. 1761, 
.1761), which we can normalize to (.392, .392, .072, .072, .072). 

However, optimal weight assignments, even when normalized, are 
almost never unique, and this example is no exception. Indeed, any set of  
positive numbers that satisfies the constraints 

W1 + W2 ~ W3 + W4 + W5 

Wl + W3 + W4 > W2 + W5 

W1 "t- W3 + W5 > W2 -'b W4 

Wl + W4 -t- W5 > W2 + W3 

W2 + W3 + W4 > W1 + W5 

W2 + W2 + W5 > W1 + W4 

W2 + W4 + W5 > W1 + W3 

(3) 

will also serve as a system of  weights and maximize PN for this particular ex- 
ample. The assignment (1/3, 1/3, 1/9, 1/9, 1/9), previously given, satisfies 
the expressions given in (7), as do such disparate other assignments as (.26, 
.26,. 16,. 16,. 16) and (.47, .47, .02, .02,.02) and (.32, .20,. 18,. 16,. 15). The 
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point is that all of  these systems of  weights define exactly the same 'winn- 
ing coalitions' (Shapley, 1962). The same sets of voters have a majority of 
the weighted vote, no matter which of  these weight assignments we use. 

In the case of the three-member group with competences (.55, .60, .70), 
the optimum weight by Theorem II is (.0872, .1761, .3680), which we can 
normalize to obtain weight assignments of  (. 138, .279, .583). It is clear that 
under this assignment w3 > wl + wz, and indeed, any assignment that 
satisfies this inequality (that is, which,makes member 3 a dictator) will also 
maximize PN just as well. If we upgrade the first member's competence to 
.65, the optimum weight assignment becomes (.2689,. 1761, .3680), which, 
when normalized, becomes (.329, .217, .453). Again, this assignment is not 
unique. Any weight assignment that satisfies the constraints that 

0 ~--- W1 < WI "t- W2 -}- W3, i = 1, 2, 3 (4) 
2 

will serve to optimize PN. It is not even necessary to insist that w3 be the 
largest weight, despite the superior competence of  member 3. It is apparent 
that the conditions given in Equation (8) will be satisfied, for example, by 
simple majority rule, as we assert previously. 

While for any particular example, the optimal weight assignments may 
vary considerably within some set of  constraints such as that given in (8), 
however, the only weighting scheme that is optimal in all cases is the one 
given in equation (2). 11 In particular we can assign the logarithmic weights 
in Equation (2) to each person separately and once and for all, inde- 

pendently o f  the number o f  other persons with whom that person may be 
grouped, or their competences. Up to a constant scaling factor, moreover, 
the weights in Equation (2) are unique in respect of this property. 

3. In terdependent  c o m p e t e n c e s  

Thus far we have assumed that each voter 's choices are statistically in- 
dependent of  those of  his or her fellows. This assumption implies, for ex- 
ample, that the probability that i is correct given t ha t j  is correct is the same 
as the probability that i is correct given t h a t j  is incorrect. We now consider 
some examples of what can happen if we relax this assumption. Our prin- 
cipal finding is that under certain circumstances nonmonotonic rules may 
be superior to monotonic ones. 12 

Example 1: Let us assume that we have a set of  three voters, { 1, 2, 3}, 
whose judgments with respect to some particular situation are such that 
one of  them will surely be wrong while each of  the others, independently, 
will be right with some fairly high probability, r, say, r > x /2 /2  = .7071. 
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We do not know, however which voter is which. Each voter has probability 
1/3 of  being the 'surely wrong' one. 13 

For this interdependent case, the unconditional probability of  any given 
voter being correct is fi  = 2r/3. The conditional probability that, say, 1 
is right given that 2 is right, however, is only r/2,  which is less than ~, 
whereas l 's  probability of  being right if 2 is wrong is greater than ft. Thus 
Pr(xi right ] xj right) < Pr(xi right I Xj wrong): their competences are 
negatively dependent (correlated). It is easy to calculate that the probability 
p(k)  that exactly k voters are right is thus (see Table 1): 

Table 1. 

k p(k) 

0 (1-0 2 
1 2r(1 -r)  
2 r z 
3 0 

The unusual thing about these probabilities is that it is not true that the 
greater the size of  the plurality in favor of  an alternative, the more likely 
it is to be correct. Indeed, if the group is unanimous, it must be wrong! 
Of course, nothing like this could happen if the individual judgments were 
independent (assuming pi > 1/2, for all i). 

Any statistical distribution that is fully symmetric in the voters, whether 
the probabilities are independent or not, comes down in the end to the con- 
sideration of  a table of  values of  p(k) ,  like the previous one. 

Theorem III: For such a symmetric distribution, weighted voting is optimal 
if and only if 

p(k)  > p ( N - k ) ,  for all k > N / 2 .  (5) 

Proof:  In general, the probability that a choice is correct if there is a 
plurality of  g votes in its favor is given by 

p(k) 
c~e p(k)  + p ( N - k ) '  such that l = 2 k - N  > O. (6) 

The desired result follows straightforwardly, given the monotonicity of  any 
weighted voting rule (see Shapley, 1962). 

In the preceding example N is 3 and e is 1 or 3, so we have 
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~1 = r/(2-r)  and oL3 = O. (7) 

These values, although extreme, serve to illustrate that in cases exhibiting 
some negative correlation among individual judgments, a nonmonotonic 
decision rule may yield better results than simple majority voting or, in- 
deed, than any weighted-majority rule. 14 Using Table 1, we find that the 
probability that majority voting will give the correct answer is 

p(2) + p(3) = r 2. (8) 

But, the nonmonotonic rule that obeys the majority in a (2, 1) split decision 
but opposes the majority on a (3, 0) vote will give the correct answer with 
probability 

p(2) + p(O) = r 2 + ( l - r )  2, (9) 

which is distinctly larger than r 2. 

Example 2 
Now let there be 9 voters divided into 3 'districts' o f  3 each, with the 
members of each district intercorrelated exactly as in example 1 (all with 
the same parameter r). But, the voting in each district is independent of  the 
voting in each other district. As in example 1, the unconditioned individual 
probability of  being correct is ~ = 2r/3. We shall show in this example 
that, for certain values of  r, the best monotonic rule is of a compound 
form, yielding a higher likelihood of a correct choice than any decision rule 

representable by weighted voting. 
Generalizing our previous approach, let p(k, e, m) denote the probability 

that exactly k of the first district, e of  the second, and m of  the third are 
correct in their judgment. Note that the probability that any of  k, e, m is 
3 is zero. The relevant nonzero values of  p(k, e, m) are thus: 

Table 2. 

k l m p(k, l, m) 

2 2 2 r 6 

2 2 1 2 r S ( l - r )  

2 1 2 " 

1 2 2 " 
2 2 0 r 4 ( 1 - r )  2 

2 0 2 " 

0 2 2 " 

Consider first simple majority voting. If we add the preceding entries for 

w h i c h k  + e + m >_ 5, we find 
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PM = rS(6-5r )  (10) 

(or, numerically: for f i=  .6 P~t = .886, for f i=  .5 PAt = .534). Surprisingly, 
unequal weights can sometimes do better than this, despite the symmetry 
of the situation. Take the weight vector W = (1, 1, 1, 0, 0, 0, 0, 0, 0), for 
example. From example 1, we obtain 

P w  = r z (11) 

(or, numerically: for p = .6 PM = .810, for f i=  .5 P =  .562), which is better 
than simple majority rule in the narrow range .5 < fi < .5216. Strange! 
Three heads are better than nine! 

But, a uniformly better rule is to vote by districts. Use majority rule in 
each district, then follow the advice of  the majority of  districts. We find 
the probability of a correct result by adding al l  the entries in the preceding 
table. The result is: 

P c  = r 4 ( 3 - 2 r  2) (12) 

(or, numerically: for ,g= .6 P =  .905 for ~ = . 5  P =  .594). This is greater 
than P w  for all values of r less than 1. 

If we do not restrict ourselves to monotonic decision rules, then we can 
do still better by this rule: 'In each district choose the majority-preferred 
alternative if e- = 1, but choose the unpreferred alternative if e- = 3, then 
use a majority vote among the three districts.' The resulting probability of 
a correct decision is .718 if ff = .5 and .914 if ~ = .6.15 

4. Discussion 

The theorems discussed in this essay concern dichotomous choice, but this 
restriction may not be as serious as it might at first seem. If  a group must 
choose from a set of  alternatives (k >__ 2), then it may do so by using any 
one of  a number of  different binary choice procedures that decompose into 
sequences of  pairwise (right fork or left fork) choices. The most common 
legislative procedure, the standard amendment procedure (see Farquhar- 
son, 1969; Roberts, 1973; and Miller, 1977), is a sequential binary choice 
process that pairs alternatives against one another, with the winner ad- 
vancing into the next round. Other important  voting procedures, for exam- 
ple, the Borda rule (Borda, 1781; Black, 1958; and Young, 1974), may also 
be represented in terms of  the aggregation of  information based entirely on 
pairwise choices. We can expect the choice of  procedure to influence the 
likelihood of  a correct choice, however. 16 
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In te rdependenc ies  a m o n g  voter  choices m a y  also be analyzed .  In con- 

s ider ing in t e rdependen t  choices,  it m a y  be poss ib le  to  pa r t i t i on  the set o f  

voters  into discrete  blocs ,  such that  within each b loc  choices m a y  be cor-  

re la ted  but  there  will be independence  across  blocs.  Fo r  this pa r t i t i oned  set, 

for  each b loc  we can then f ind the op t ima l  vot ing  rule and  assess the 

j u d g m e n t a l  compe tence  o f  the bloc,  t rea t ing  it as an ent i ty  tha t  will be  

using the ( internal ly)  op t ima l  rule for  its decis ion mak ing .  Then ,  we s imply  

app ly  T h e o r e m  I1 to  the blocs to f ind the op t ima l  bloc  weights.  Even if  in- 

te rb loc  cor re la t ions  exist,  as long as they  are small ,  pa r t i t ion ing  the voters  

in to  discrete  c lus ter-blocs  and  then  p roceed ing  as ou t l ined  will yield a very 

good  a p p r o x i m a t i o n  to op t ima l i ty .  (cf. Owen,  1983) 

Whi le  the  results  o f  this essay seem par t i cu la r ly  a p p r o p r i a t e  to analysis  

o f  the p r o b l e m  of  ' i n f o r m a t i o n  poo l ing , '  in which the task  is to weigh the 

advice  o f  ' exper t s '  o r  t o  reconci le  ' expe r t '  and  ' n o n e x p e r t '  confl ic t ing 

op in ion ;  we believe Theo rem II to  be o f  cons ide rab le  general  i m p o r t a n c e  

for  democra t i c  theory .  Toge the r  with T h e o r e m  I (and re la ted  results),  

Theo rem II sheds new light on  a very old  ques t ion:  the  meri ts  o f  d e m o c r a c y  

as c o m p a r e d  to tha t  o f  rule by the elite. 18 The o re m II shows us how to op-  

t imize the j u d g m e n t a l  accuracy  o f  g roup  decis ion mak ing .  In  this opt i -  

mizing p rocedure  the  more  compe ten t  will a lways be ass igned at  least  as 

much  weight  as those  less compe ten t  t han  themselves.  But,  especial ly  for  

large N ,  s imple  m a j o r i t y  rule m a y  tu rn  out  to be ' n e a r '  op t ima l ,  and  in 

most  cases (as long as p i  > .5) even the less compe ten t  will receive some 

weight in the  f inal  decis ion.  

NOTES 

1. In the recent words of one scholar: 
The exaggerated importance ascribed to Arrow's impossibility theorem suggests the 
fantasy that if only the theorem had some logical flaw, if only this cosmic joke were 
not planted in the process of aggregating preferences, then perhaps we could all have 
our way, and find and save our democratic soul. Then we could achieve economic and 
social justice without explicitly concerning ourselves with justice . . . .  It is as though 
•.. if only we could find the proper set of instrumental institutions and decision-rules, 
then we might never have to ask ourselves what kind of society we want (Thom, 1979: 
194-195). 

2. Our work is in the spirit of that done by pioneering scholars such as Condorcet (1785) and 
Poisson (1837), whose research on the accuracy of group decision-making has only recently 
been rediscovered. (See Gelfand and Solomon, 1973; Gillispie, 1972; Black, 1958; 
Grainger, 1956; Barry, 1969; Baker, 1967, 1975; Grofman, 1975. See also recent extensions 
by Gelfand and Solomon, 1974, 1975, 1977; Grofman, 1978, 1979, 1980a; Klevorick and 
Rothschild, 1978; Nagel and Neef, 1975; Grofman, Owen and Feld, 1982; Grofman, Feld 
and Owen, 1984 forthcoming; Grofman and Owen, 1984 forthcoming; Nitzan and 
Paroush, 1982; Miller, 1980; and Pinkham and Urken, 1981). 

3. This approach has been suggested by Gelfand and Solomon (1977) and Grofman (1975, 
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1980b). It harkens back to the Keynes (1936) 'beauty contest problem,' in which the task 
is to pick the winner of a beauty contest based on expectations of how other people will 
judge beauty (See Grofman, 1981). 

4. We emphasize, however, that the models that we propose are not meant to apply in cases 
in which divergent preferences make agreement impossible, even in principle, on the 
criteria of choice. Nonetheless, many seeming disagreements about ends are actually dis- 
agreements about the probable consequences of particular courses of action. In par- 
ticular, there may well exist a shared criterion on which to make evaluations, but disagree- 
ment as to how to apply that criterion to particular cases. 

5. Convergence to asymptote is rapid, especially initially (for details, see Grofman, Feld and 
Owen, 1984 forthcoming). Hence, groups operating under simple majority rule are often 
considerably better (or considerably worse) in their judgmental accuracy compared to the 
decisions of their 'average' member. For example, if p = .6, then p3 = .648, p7 = .710, 
and p13 = .753; while if p = .8, then P3 = .896, p7 = .967 and p13 = .993. For large 
N, i f p  > 1/2, then 'vox populi, vox dei'; that is, the group decision approaches infal- 
libility. 

6. See Grofman, 1978, 1979; Owen, Grofman and Feld, 1981; and Grofman, Owen and 
Feld, 1983. The Condorcet Jury Theorem can be extended in other ways, for example, 
by looking at the judgmental accuracy of supramajoritarian decision procedures (for ex- 
ample, 2/3 unanimity), as a function of group size, and/or by introducing a discussion 
between Type I and Type II errors (for example, between 'convicting the innocent' and 
'freeing the guilty'). These directions have been pursued by several authors. (See, for ex- 
ample, Feinberg, 1971; Walbert, 1971; Gelfand and Solomon, 1973, 1974, 1975, 1977; 
Nagel and Neef, 1975; Klevorick and Rothschild, 1978; and Grofman, 1979; 1980a. For 
detailed reviews of much of this work, see Penrod and Hastie, 1979; Grofman, 1980b. 
Related work includes Badger, 1972; Curtis, 1972; Schofield, 1971, 1972; and Niemi and 
Weisberg, 1972.) 

7. In a weighted voting rule, players are assigned weights wi. Without loss of generality we 
may normalize these weights so that Zwi = 1. For passage of a motion, some specified 
proportion of the total weighted vote is required. In a majority weighted voting rule, a 
majority of the weighted votes is required for passage. See Riker and Shapley (1968) or 
Lucas (1974) for more detailed discussions of weighted voting and its properties. 
Weighted voting is used in the U.S. Electoral College, in the United Nations Security 
Council, in the International Monetary Fund, in certain bodies of the E.E.C., in some 
of the New York county legislatures, and in the conventions of many trade unions and 
other chapter or affiliate-based voluntary organizations. (See, for example, Brams, 1975; 
Owen, 1975; Dreyer and Schotter, 1978; Fischer and Schotter, forthcoming; Grofman and 
Scarrow, 1979; and Schotter, 1979.) 

8. After this theorem was proved by the senior author, we learned that the mathematical 
content of the result was known, but in contexts completely removed from problems in 
group decision making, for example, as a theorem in pattern recognition and as a theorem 
in automata theory. (See Pierce, 1961; Minsky and Papert, 1969: Ch. 12.4; and Duda and 
Hart, 1973.) The result was also independently discovered by two economists (Nitzan and 
Paroush, 1980a, 1982). Since our proof of the theorem is similar to those already publish- 
ed, we have omitted it. 

9. Implicitly we are weighting Type I and Type II error equally. See Nitzan and Paroush, 
1984; references in Note 6 above; and Buchanan and Tullock, 1962. 

10. By power, we refer to game-theoretic measures of voter decisiveness, for example, the 
Shapley-Shubik index or the Banzhaf index (see Shapley and Shubik, 1954; Banzhaf, 
1966; Lucas, 1974; Brams, 1975; Straffin, 1978; Schotter, 1979; Dubey and Shapley, 
1979; and Nevison, 1979). 
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11. We might note that the seemingly abrupt change in optimal weight assignments as the first 
member's competence is raised from .55 to .65 loses some of its significance when we 
realize that the weights in Equation (2) derived from the likelihood that ratios act in a 
continuous fashion if the competences are varied. There is, indeed, an abrupt change in 
the nature of the optimum voting rule, because there are only a small finite number of 
possible 'winning coalitions,' but this abruptness does not have to be reflected in the way 
that the optimal weights act. 

12. A decision rule is called 'monotonic' if the decision would not be changed when an op- 
posing vote is switched to a vote favoring the decision. 

13. How could this peculiar situation come about? Perhaps there is a malicious opponent, 
desirous of promoting the 'wrong' decision, who has just enough resources to deceive one 
voter or to buy him off, or whatever. The story here does not really matter, however, as 
we are using the example principally to illustrate certain mathematical properties. 

14. If smaller values of r are considered, a curious anomaly can appear. Thus, if r is less than 
2/3, then r 2 is less than the unconditioned probability p = 2r/3, which means that ma- 
jority rule is now inferior to making one of the voters a dictator. So, if we are restricted 
to weighted-voting rules, the asymmetrical weights (3, 1, 1) will work better than the sym- 
metric weights (1, 1, 1). Of course, since p i n  this case is less than 1/2, one would be still 
better off making the decision by chance! 

15. This is an example of a 'compound simple game,' denoted in game theory by the symbol 
M3[ M3, M3, M3I ; we cannot represent it by a single system of weighted votes. The 
game theory symbols for the other two rules mentioned in this example are M9 (simple 
majority rule) and M3 + 06 (majority rule by three members, plus six 'dummies'). See 
Shapley (1962). 

16. Extending the result to the continuous case to compute point prediction or internal 
estimation, we believe, is also straightforward. The foundations for such an extension 
already exist in the literature on Bayesian decision theory. (See, for example, Bordley, 
1980; and Mirkin, 1979: Chapter 4.) 

Pi 
17. Grofman, Owen, and Feld (1982a) show that the log -~-_p~ values, given not unreason- 

able assumptions, can be very well approximated by looking at the proportion of times 
in which voter i agrees with the (unweighted) group majority. (See also Mirkin, 1979: 
173.) Nicholas Miller (unpublished research) has used this technique to construct a 
hypothetical 'test-taker' for multiple choice exams based on the plurality choice among 
a set of actual exam-takers. The performance of this hypothetical test-taker is well above 
the mean score of those actually taking the exam. 
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