
Social Networks 4 (I 982) 2 13-224 
North-Holland Publishing Company 

213 

A GAME THEORETIC APPROACH TO MEASURING DEGREE 
OF CENTRALITY IN SOCIAL NETWORKS * 

Bernard GROFMAN 
unroersit_v of Calrfornra, IroVle ** 

Guillermo OWEN 

We present a new measure of degree of centrahty in a social network which is based on a natural 
extension of the Banzhaf (1965) index of power in an N-person game. 

1. Introduction 

Beginning with the pioneering experiments of Alex Bavelas (1948, 
1950), there has been considerable research interest in the issue of how 
group structure, in particular the pattern of (feasible) communication 
flows, affects various elements of group process. The usual method of 
research has been to impose various communication networks on 
groups and then to examine the consequences for group process. One 
area which has been the focus of a considerable amount of research is 
the study of how communication structures affect group members’ 
perceptions of the existence of individuals who are seen to be engaged 
in a leadership role and/or facilitate or hind& the emergence of those 
patterns of behavior which are commonly labeled leadership. 

We show in Fig. 1 (taken from Shaw 1954) some of the patterns 
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Figure 1. Some communication networks used in experimental investigations of group structure. 
Adapted from Shaw (1964). 

which have most frequently been investigated. While most investigators 
have looked at communication networks, the graphs in Fig. 1 can be 
more generally interpreted in terms of any specified binary relationship. 
For the moment, however, we shall stick with graphs which will be 
interpreted in terms of communication structure. 

In seeking to predict which individual or individuals would be seen 
to be acting as (or would emerge as) leaders and in studying the effect 
of communication networks on information flows, a number of authors 
(e.g. Leavitt 1951; Shaw 1954; Goldberg 1955; Shaw and Rothschild 
1956; Cohen 1962) have made use of the idea of “centrality” in a 
graph-theoretic network. The hypothesis has been that the more central 
a position in a network. the more likely is the occupant of that position 



to emerge as (or be seen as) a leader. As Freeman (1977) has shown, the 
notion of “centrality” has a number of distinct meanings, although 
many of these give rise to convergent orderings of points for the case of 
the simpler network structures. Freeman (1979) reviews a number of 
different definitions of degree of centrality that have been offered in the 
literature. Freeman, Roeder and Mulholland (1979) provide some criti- 
cal experiments in which different definitions give rise to different 
predictions, so as to test which of the various proposed notions of 
network centrality are most congruent with the leadership role. 

In this paper we shall offer a new definition of degree of centrality, 
one based on a natural extension of a notion of power offered in the 
game theory literature: the Banzhaf (1965) power index. The measure 
we shall propose has some conceptual links to the notion of centrality 
as betweenness offered in Freeman (1977). Like the measures in Free- 
man ( 1977) and Freeman, Roeder and Mulholland ( 1979) the measure 
we propose will be applicable to both connected and unconnected 
graphs. 

2. The Banzhaf index of power 

For illustrative purposes, we shall show how the Banzhaf (1965) 
index ’ is defined for a weighted voting game. Consider a set of N 
actors {(1,2,3 ,..., n)}, where the i th actor has weight w,, 0 < w, G 1 and 
Zw, = 1. Define the quota q, 0 < q < 1 as the number of weighted votes 
needed for a motion to carry. Define a coalition as winning if the sum 
of the weights of its members is equal to or greater than q. Define a 

’ Readers may be more familiar with another game-theoretic power measure. the Shapley-Shubik 
value (Shapley and Shubik 1954). Recent axiomatic approaches to the measurement of power m 
N-person games (see e.g. Shapley and Dubey. 1977) have shown the Banzhaf index and the 

Shapley-Shubik value to be mathematically very closely related. Each can be taken to be a special 
(extreme) case of more general class of power measures (Straffin 1977; see also Owen 1975). We 

have found the Banzhaf notion of the swing actor to be easier to work with in the network context 
than the Shapley-Shubik notion of the pivotal actor, although the Shapley-Shubik value can also 
be defined in terms of swmgs (see Straffin 1976). Other approaches are also possible (see e.g. 

Deegan and Packel 197X), but dealing with more than one power measure would only add 
unnecessary comphcations without affecting the basic points we make in the discussion below. For 
useful general dIscussIon of power indices see Lucas (1974). Brams (1975) and Straffin (1976). 

EmpirIcal applications are found in Lucas (1974). Brams (l975), Straffin (l977), Owen (1977). 

Grofman (1981), and Grofman and Scarrow (1979, 1981). 



swing (decisive vote) for actor i to be a winning coalition containing i, 
from which i’s defection would be crucial, i.e. would change the 
coalition from winning to losing. ’ We define actor i’s relative Banzhaf 
power index, Bj as 

B, = 
number of swings for actor i 

total number of swings for all actors . 

If we wish to compare the power of actors in different networks the 
network-specific normalization imposed in equation (1) may not be 
appropriate. An alternative is a total power score. In any network with 
N actors there are potentially (2”- 1) winning coalitions. We define 
the total Banzhaf power index, B,‘, as 

B,’ = 
number of swings for actor i 

2N- 1 
(2) 

A simple illustration is helpful. Let us consider a three-person game 
with w, = 0.4, wz = 0.4, y = 0.2; q = 0.51. There are eight possible 
coalitions (see Table 1). 

Despite the fact that Actors 1 and 2 have weights twice that of Actor 
3, in Banzhaf power terms they are all equal. Consider the same game, 
but with q = 2/3. Now, Actors 1 and 2 have Banzhaf relative power 
scores of 0.5, while Actor 3 has a power index of zero.’ However, for 
Actors 1 and 3 absolute power scores are unchanged. 

3. Applications of the Banzhaf index to communication networks 

Now let us see how these ideas can be applied to communication 
networks. For communication networks, let us define a winning coali- 
tion as a path from actorj to actor k, for any actorsj, k,j # k. Define a 
swing (decisive vote) for actor i, to be a winning coalition containing i, 
from which i’s defection would be crucial, i.e. such that without actor i, 
the remaining member of the coalition cannot construct from among 
their own members a path from j to k. Define the relative centrality of 

’ We could also have defined the Banzhaf index in terms of votes which turn coalitions from 
losing into winning. Because of symmetry. in general the LWO definitions will be equivalent. 

’ In the language of game theory. Player 3 is said to be a dummv. 
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Table 1 
Banzhaf power index values for three actor weighted voting games * 

Actor 
Weight 

1 
0.4 
Y 

8 
votes Y 

N 
N 
N 
N 

Number of decisive votes (swings) 2 

B, l/3 
B: 217 

2 
0.4 

& 
N 

“0 
Y 

N 
N 
2 

l/3 

217 

3 
0.2 
Y 

k 

53 
N 
Y 

N 
2 

‘/3 
2v7 

Weighted 
Votes in favor 

0.8 

0.6 
0.4 
0.6 
0.4 
0.2 
0 

Outcome 
(q=O.Sl) 
P 
P 
P 
F 
P 
F 
F 
F 

* Decisive votes (swings) are circled 

an actor with respect to a given network as 

C, = B; = 
number of swings for actor i 

number of swings for all actors ’ (3) 

Define the total centrality of an actor as 

cy = number of swings for actor 

2NP4(N+2)(N- 1) . 
(4) 

The reason for the denominator in expression (4) is that this is the 
maximum possible number of swings. In fact, for each k (= 1,. . . ,n), 

player i can belong to (r_: ) different sets with k players. Each such 

set can provide a path between any of (i) pairs of players. All told this 

gives us 

possible swings. Some algebra can then be used to show that this last 
sum is indeed equal to the denominator in expression (4). 

Some illustrations will again be helpful. Consider first the three-per- 
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son wheel pattern of Fig. 1. There are six winning coalitions (I, 2), (2, 1). 
(2,3), (3,2), (3,2, 1) and (1,2,3). Note that (1,2) is distinct from (2, 1) 
since the former is a coalition involving a path from 2 to 1, while the 
latter is a coalition involving a path from 1 to 2. If all connections are 
bidirectional, then by symmetry we need consider only half the possible 
cases. Since we wish to consider graphs both with bidirectional and 
unidirectional elements, we shall present all feasible coalitions even if 
symmetry would make it possible for us to reduce the set. In the first 
four of these coalitions both members are crucial; in the last two all 
three are critical. Hence the total number of swings for player 1 is four 
and the same is true for player 3, while for player 2 the total number of 
swings is six. Hence, B, = 2/7, B, = 3/7, B, = 2/7. While in this exam- 
ple values of C,’ are almost identical to those for B,, in general C,C,’ G 1, 
while Z,C, = 1. 4 

We can show that the relative power of the central actor in a wheel 
pattern is a monotonically decreasing function of N but with an 
asymptote of l/3, while the relative power of any hub actor is roughly 
inverse to N. For N = 4 (with B, in the hub), we have twelve winning 

coalitions: (1,2), (1,2,3), (1,2,4), (2, l), (2,3), (2,4), (3,2, l), (3,2), 
(3,2,4). (4,2, l), (4,2), (4,2,3); and B, = B, = B, = l/5; B, = 2/5. For 
N = 5 we have 20 winning coalitions, and B, = B, = B, = B, = 2/13; 
B, = 5/13. In general, for a wheel pattern there will be (N - l)N 
winning coalitions, and a total of 4( N - 1) + 3( N - l)( N - 2) swings 
(= 3N2 - 5N + 2). Hence, treating Actor 2 as the hub, we will have 

N(N- 1) N(N- 1) N 

B2=3N2-5N+2=(3N-2)(N-1)=P’ 3N-2’ 

and thus for i # 2, B, = 2/(3N ~ 2). It is obvious that lim._, B, + l/3, 
while limN_m,,Z2 B, = 0. In absolute power terms we have 

c; = N(N- 1) N 

2N-4(N+2)(N- 1) = 2N-4(N+2) 
(6) 

4 Alternatively, we might wish to exclude from swmgs the initiating and terminating pomts of 
any commumcation and measure only “middleman” power. If we did this, then B, = B, =O. and 
E, - I. This idea of “middleman power” is closer in spirit to what is proposed in Freeman (1977). 

Which of these two measures is more appropriate will depend upon the group process being 
investigated. If Actor 2 wishes to communicate with Actor I or Actor 3, these actors have the 
power to deny Actor 2 his wish, and our basic approach to defining relative power (which credits 

both players with a swing in any pairwise linkage) would appear the best. 
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and for i # 2, the total centrality of all non-hub actors is 

N 

(N+2)(N-1)=2”5(N+2)’ 

Also, the ratio of B, to CB, (or of C; to CC,‘) is simply 2( N - 1)/N. 
The distinction between totul power share and relative power ratio is 

important. It may be that actors are seen as central when their power is 
large relative to that of any other actor, even if it may not be especially 
large relative to the combined total of all other actors or to the 
maximum possible number of swings (cf. Freeman 1977: 39). However, 
for simplicity of exposition we shall focus on B, (i.e. C,) rather than on 
C’,’ in the discussion that follows. 

For purposes of comparison, let us calculate the power index values 
for various other patterns in Fig. 1. Let us look next at the chain. For 
N = 3, the chain is identical to the wheel and hence B, = 2/7, B, = 3/7, 
B, = 2/7. For N = 4, we have B, = 3/16, B, = B, = 5/16, B4 = 3/16. 
For N = 5 we have B, = B, = 4/30, B, = B, = 7/30, B, = 8/30. For 
N = 6 we have B, = B6 = l/10, B, = B, = 9/50, and B, = B, = 1 l/50. 

Some tedious but straighforward analysis reveals that, for a chain, 
the general formula is given by 

B ,=2[(N-l)+(N-1-i)i]=6[(N-l)(i+l)-i2] 
N-1 

N’+ 3N2 - 4N/3 N’+3N2-4N 
(8) 

for i=O ,..., (N- 1)/2 for N odd; and for i=O ,..., (N/2)- 1 for N 
even. The remaining values can, of course, be filled in by symmetry. 

Now let us turn to graphs in which there are some one-way com- 
munication flows. Consider the three-person network labeled alpha in 
Fig. 1. There are nine winning coalitions: (1,2), (1,2,3), (1,3), (2, l), 
(2,3, l), (2,3), (2, 1,3), (3, 1) and (3, 1,2). However, not all actors are 
decisive in each. Consider, for example, the winning coalition (1,2,3): 
Actor 2 is not essential, since the (1,3) coalition exists. Analogous 
results obtain for the (2,3, 1) and (2, 1,3) coalition. On the other hand, 
for the (3, 1,2) coalition all actors are decisive, since no alternative path 
between 3 and 2 exists. When we count swings we obtain seven for 
Actor 1, six for Actor 2, and six for Actor 3. Hence Actor 1, who has 
bidirectional communication with both other actors, has the most 
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power (centrality) in this communication network: B, r 7/19, B, = B, 
= 6/19. 

Analogous results obtain for the three-peorson communication net- 
work labeled beta in Fig. 1. For this structure there are seven winning 
coalitions: (1,2), (1.2, 3), (2, l), (2,3), (2,3, l), (3, l), and (3, 1,2). All 
actors are decisive in each winning coalition, except for Actor 3 who is 
not decisive in the coalition (2,3, 1); hence B, = B, = 3/8 (0.375) and 
B, = 2/8 (0.25). If we look at the five-actor network labeled alpha in 
Fig. 1, the relative centrality of the actor with the most bidirectional 
links is reduced and we find that there are 101 winning coalition for 
this five-actor network with B, = 0.20, B, = 0.23, B, = 0.17, B, = 0.19 
and B, = 0.21. 

This is a good point in our discussion to emphasize two features of 
the model we have been using. We have implicitly been assuming, first, 
that all winning coalitions are equally likely and, second, that all 
winning coalitions are equally important. There is nothing in the nature 
of the mathematics we have been using that constrains us to restrict 
ourselves to these assumptions. If, for example, we are dealing with, 
say, battlefield communications, then we might wish to look at only a 
restricted set of what we’ve been calling “winning coalitions,” or to 
weight certain important communication linkages more heavily than 
others. Also, we might wish to drop the assumption of all coalitions 
being equally likely, if other features of the group or its members 
permit us to infer that some communication interactions will be more 
frequent than others. (For treatments of directly analogous issues in 
voting games, see Owen 1971; Straffin 1977; Merrill 1978, and Frank 
and Shapley 1981.) 5 For example we might wish to deal only with the 

‘Another alternative to the approach suggested above is also worth mentionmg. In this 
modification we would calculate Banzhaf power scores for the winning coalitions separote!v for 
each (r,j) linkage and then average these index values for the entire set of (I.,) pairs - takmg a 
weighted average if not all (l.j) pairs were to be regarded as being of equal Importance - rather 
than looking at power share based on all winning coalitions as we did above. This modiflcatlon 
would affect all the calculations we presented, although the differences wll m general be minor. 
For example, for the three-person wheel (if we assign equal weight to the SLX possible two-way 
links), we would have B, = E, = 17/60 and 8, =28/60, rather than B, = E, = 217 and B, = 3/7. 
For the three-actor alpha network we would have B, = B, =0.36 and B, =0.28 rather than 
f3, = B, =U.375 and B, x0.25. For the five-actor beta network we would have values of B, =0.23. 
B, =0.23, B, =0.17, E, =0.20, and L?, =0.1X as compared to the values of B, x0.20, B, =0.23. 
B, = 0.17, B4 = 0.19 and 8, = 0.2 1 obtained earlier. Our initial approach makes most sense in those 
cases where the likelihood that i will commumcate withj can be taken to rise linearly with the 
number of paths through which such a communication is possible. The alternative approach we 
have Just outlined may be preferred in those cases where the likelihood that i wdl wish to 
communicate wth j is independent of the number/variety of communication channels between 
them. 
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subsets of minimal winning coalitions. The Freeman (1977) approach 
looks at betweenness in terms of the set of geodesics. Geodesics in 
graphs can be thought of as the natural analogue to minimal winning 
coalitions in game theory. The Banzhaf measure is based on decisive- 
ness in all winning coalitions rather than being restricted to the set of 
minimal winning coalitions. The DeeganPackel (1978) index of power 
is based on only minimal winning coalitions, but we shall not pursue 
here the development of an alternative game theoretic measure of 
centrality analogous to the Deegan-Packel power index rather than the 
Banzhaf index. 

4. Other graph-theoretic applications of the Banzhaf index 

Banzhaf scores can be derived for any binary relation once we 
specify what is to count as a “winning coalition.” One natural applica- 
tion of Banzhaf scores is as measures of relative status in a hierarchic 
(or partly hierarchic) structure. Let P be a binary relation such as 
“exercises direct supervisory responsibility over” or “can issue direct 
orders to.” For each ordered pair (i,j) of members of the organization 
(i #j), let us d e me a winning coalition for (i,j) as a path from i to j, f’ 
i.e. a chain by which i can indirectly (or directly) exercise supervisory 
responsibility over (give orders to) j. The group members who comprise 
this path will be said to be the members of this winning coalition. As 
before, we define a swing (decisive vote) for an individual in a winning 
coalition as a situation in which the individual’s removal turns the 
winning coalition into a losing one, i.e. breaks the chain of command 
connecting i and j. 

To the extent that organizational status comes from supervisory 
responsibilities, we can measure relative degree of supervisory scope at 
various hierarchy levels in organizations with different spans of control 
and flatness. Consider, for example, a 13-person organization struc- 
tured as in Fig. 2 (left-hand diagram). There are 21 winning coalitions. 
The top-level boss is decisive in 12, each of the second-level managers is 
decisive in 7, and the third-level workers are each decisive in only 2. 
Hence, B,=0.24, B,=0.14 (X3=0.42), and B,=0.04 (X9x0.36). 
Now consider another 13-person organization, structured as in Fig. 2 
(right-hand diagram). For this organization there are 22 winning coali- 
tions. The top-level boss is decisive in 12, each of the second-level 
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Figure 2. Two 13.person organizations. 

managers is decisive in 11, and the 10 workers are each decisive in 2 
winning coalitions each. The middle-level managers each have power 
scores of 0.20 compared to the top-level boss’s power score of 0.22 and 
the workers’ power scores of roughly 0.04 each. This may seem like a 
somewhat strange result, but it merely reflects the fact that, as we have 
drawn the organizational chart in Fig. 2 (right-hand), the top-level boss 
cannot transmit orders directly to the workers, while the middle-level 
managers can. Thus, the model reflects, perhaps quite realistically, the 
“power” of those supervisors (e.g. shop foremen) in direct supervision 
over large numbers of workers. Of course, if we modify our model so as 
to differently weight the importance of commands, treating commands 
issued to higher levels of management as more important than com- 
mands issued merely to workers, or if we change the organization chart 
to allow top management to bypass middle-management in setting 
policies which control the workers, then the Banzhaf measure will show 
an increase in the power of top management relative to that of middle 
management. 

With appropriate “realistic” modifications (e.g. as to weightings as 
to the importance of different types of communication linkages), we 
believe the Banzhaf scores can provide a more theoretically useful 
measure of supervisory status than simply counting the number of 
workers whom an individual directly (or indirectly) supervises or look- 
ing at the distance matrix (Harary. Norman and Cartwright 1965: 
189-191) or looking at status levels (Kemeny and Snell 1962: 104-105). 
We also believe the above examples demonstrate why top-level bosses 
who want to exercise power (1) prefer command structures in which 
there are multiple routes by which orders from the top can be funneled 
down to lower levels of the organizational hierarchy, and (2) want the 
ability to issue orders directly to subordinates, bypassing intermediate 
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hierarchy levels (cf. Harary, Norman and Cartwright 1965: 273). In tree 
structures such as those of Fig. 2, middle-level managers serve as 
“bottlenecks” who block communication and control lines, and gain 
power in so doing! (cf. Freeman 1977: 36.) 

6. Conclusions 

We hope to have demonstrated how an approach borrowed from 
N-person game theory can provide a conceptually elegant key to 
understanding structural properties of social networks. We hope that 
others will be stimulated to investigate potential empirical applications 
of the approach we have proposed and to refine and modify our 
measurement techniques as necessary. 
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