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BERNARD GROFMAN AND GERALD HYMAN

PROBABILITY AND LOGIC IN BELIEF SYSTEMS*

ABsTRACT. This paper seeks to develop a formal (mathematical) model of belief
systems based on the axioms of probability theory and propositional logic. By a belief
system we mean a set of propositions along with an actor’s objective probability assign-
ments to (beliefs in) them, together with the relationships among and between proposi-

tions and beliefs. Belief systems are regarded as being comprised of interrelated ele-
ments.

In the paper are developed measures of the distance between sets of beliefs; of the
congruence, coherence, and consistency of belief systems ; and of the degree of polariza-
tion of belief systems —which are derived from one basic operation, symmetric difference.

We show that these measures possess a number of useful and powerful mathematical
properties. Also, a model is set forth by which, from an actor’s subjective probability
assignment to propositions and pairwise conjunctions of propositions, we may then

impute to the actor subjectively perceived truth functional relationships between propo-
sitions.

The potential uses and practical difficulties with the approach taken in the paper are
also discussed, and the assertion is made that the measures developed enable us to simply
distinguish between certain notions (e.g., congruence, consistency, coherence) too
often and easily confused, provide us with the possibility of interval (or at least, quasi-
interval level) measurement of certain properties of individual belief systems, and also
allows us to make comparisons between the structures of different actors’ belief systems.

Central to the research design of this paper is the notion that belief
systems comprise interrelated elements and that changes in some elements
of the system can be expected to (eventually?l) effect changes in other ele-
ments of the system. Our aim is to present a measurement model which
will make these linkages among beliefs and changes therein subject to
precise empirical measurement.

We shall denote individual propositions by lower case letters, and sets
of propositions by capitals. We shall denote by a,, a,,..., a, the proposi-
tions in a set 4 which may be conjectured to be part of some belief
system A’. We shall use the familiar logical operators —, ‘implies’;
« ‘equivalent to’; — negation’; A ‘and’; v ‘or’ to represent relation-
ships (among propositions) as perceived by some given actor(s). Similarly,
we shall use the set theoretic operators U, union; N intersection; €,
membership in; <, is included in; o, includes; to represent relationships
among sets.

Let us denote by p(a;) the (subjective) probability that an actor assigns to
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180 BERNARD GROFMAN AND GERALD HYMAN

a proposition a;.2 If we confine ourselves to propositions a; containing free
(unquantified) variables, and expressing set theoretic statements such
as “xe Y, “xeZ, etc., then p (a;) may be interpreted in frequency terms as
the percentage of xe X which are perceived by the actor also to belong
to Y. In general, g; will then take the form xeX —x€Y. If g;=xeY, then
the reference class X is taken to be universal, i.e. X=X u X. For example,
the actor might be asked to assess the probability that members of the John
Birch Society support (i.e. are included in the class of those who support)
school busing for the purpose of integration. In this case, p(a;) would be
the percentage of John Birch members whom the actor believes also to be
supporters of schools busing for integration, (i.. p (a;) gives the likelihood
of a randomly chosen Bircher also supporting busing). Similarly, we invite
the reader to interpret p(a; A a;) as the percentage of x’s for which the
relationships a;(‘xe Y’) and a;(‘xeZ’) are believed by the actor to simul-
taneously hold. Thus, our model will be restricted to beliefs about parti-
cular categories of actors or events. A number of difficulties occur in
coping with subjective probabilities of ‘unique’ events (Nagel, 1939, esp.
Chapter IIT). Although we believe the difficulties are not insurmountable,
we shall not attempt to deal with the subjective probability of propositions
such as ‘Richard Nixon will be regarded by history as a good President,’
but shall confine ourselves to propositions which state set theoretic
relationships which can be interpreted in 'percentage terms such as that
previously cited about John Birch Society members.

Consider now some set of propositions which are conjectured to be
elements of a given actor’s belief system. If these propositions are perceiv-
ed by the actor as related, i.e. if some are perceived as implied (or, more
loosely, evoked) by, or are perceived of to imply (evoke) others, then the
actor’s belief in one of these propositions ‘ought’ logically to be con-
strained by his belief in other propositions which he perceives as related.
If the actor’s (subjective) probability assignments satisfy the usual

probability axioms:
ML o0<p@@)<1
IL p(a;va)=1
NI p(a;Aa)=0
IV. p(a;v a)=p(a)+p(a)—pa; A ay)
V. p(a A ap)=p(a;|a)p(a),
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PROBABILITY AND LOGIC IN BELIEF SYSTEMS 181

where p(a; | ;) refers to the conditional probability of a; given a,,* and if
the actor is ‘logical’ in the sense that his (subjective) beliefs about the
logical relationships between propositions obey the rules of propositional
logic,5 then we may readily prove a number of theorems which indicate
the constraints imposed upon an actor’s beliefs when some aspects of his
belief system are assumed fixed.

For example let us assume that a; —a, (i.e. the actor subjectively per-
ceives the first proposition to imply the second), then p(a,) ‘ought’ to be
less than or equal to p(a,)® and p(a, A a,) ‘ought’ to equal p(a,). Simi-
larly, if a, Aa; —a; and a, and a, are perceived as unrelated (i.e. inde-
pendent in the sense that knowledge about one proposition is not per-
ceived by the actor as providing him with knowledge about the other?),
then p(a,) ‘ought’ to be greater than or equal to p(a,)-p(a,). These and
similar results, although independently derived by the senior author, were
subsequently found in Reichenbach (1938, Section 35). Related results
may be also found in Rescher (1969). A related technique for determining
the logical implication of given changes in an actor’s beliefs is given by
McGuire (1960c), but McGuire has never fully developed the implications
of his model and his presentation is marred by some technical errors
which he has acknowledged (McGuire, 1968).

Let us now consider a simple verbal example. Suppose that a man be-
lieves that all Americans who are not members of the John Birch Society
are communist sympathizers and also believes that no member of the
John Birch Society is a communist sympathizer. We can ask him his
assessment of the percentage of Americans who are members of the
John Birch Society and his assessment of the percentage of Americans
who are communist sympathizers. Now, if the man is ‘consistent,’ in one
clear sense of that term8, then these two percentages should sum to
1009 (the subjective probabilities should sum to one.) We are not requir-
ing that the man’s assignment of probabilities reflect any objectively
determined ‘accurate’ probabilities. He may feel, for example, that there
are proportionally twice as many Birch members as in fact there really
are, but as long as his estimate is reflected in a correspondingly reduced
estimate of the proportion of communist sympathizers, he is consistent.
Moreover, we might also choose to call him “rational”. Rationality, so
defined, would have to do with the consistency of relationships between
elements of a belief system, not with the ‘““correct” assignment of probabi-
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182 BERNARD GROFMAN AND GERALD HYMAN

lities to, or the empirical accuracy of perceived logical relationships
among the elements themselves. Rationality so defined is a property of
systems of (three or more) beliefs, not of beliefs themselves. Thus, a man
might be said to be unreasonable (paranoid, euphoric, pessimistic, stupid,
or ahead of his times) if his subjective probability assessments differ
significantly from those held to be correct, but in our terms he may still
be perfectly ‘rational’. Similarly, to believe that all non-Birchers are
Communist sympathizers, and conversely, might from one perspective be
called “irrational’. In our terms, however, this equivalence relationship is
simply subjective rather than objective, and not ‘right’ or ‘wrong’, ‘ration-
al’ or ‘irrational.’

We shall be interested in obtaining precise measures for the subjective
relationships among elements of a belief system. (Throughout we shall
assume that the experimenter possesses whatever experimental data are
required for our measures to be determinate).

Consider the following set theoretic operator @, the symmetric differ-
ence operator. Let a,, a, be sets, then

2 a; @a, ;:; (a; v az)—(a; A ay)

The operator @ gives us the elements in the sets a,, a, which are unique
to them, exclusive of the elements they hold in common; it is the exclusive
sense of the word ‘or’.

For sets a, and a,, a, @ a, may be regarded as a measure of the differ-
ence between them, given by the hatched area in Figure 1.

Fig. 1.
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PROBABILITY AND LOGIC IN BELIEF SYSTEMS 183

Now, let us consider a measure function m, defined on the sets such that:

(3) I m(@0)=0, where 0 isthe empty set
II. 0<m(a;) forany a;.
II. Ifa; Aa;=90, then
m(a; v a;) = m(a;) + m(a;).

This measure function may be interpreted in a number of different ways.
For example, m (a;) may be taken as the ‘size’ of a;. We shall, however, be
concerned with only one interpretation of m(a;), that in which a, is taken

to be a proposition, and m(g;) is interpreted as the actor’s belief in a,’s
being true.

We may readily show that if p (subjective probability) satisfies the usual

probability axioms, as hypothesized above, then p will be a measure
function. Now, consider:

4) p(a, @ a,) i‘-; play v a) — p(a; A ay).
We can readily see that

&) p(a; @ a;) = p(as) + p(az) — 2p(ay A a;).
Let us define, for notational convenience,

©) P®(a; a)) i p@;®ay

We may readily establish that p@® (a;, a;) is a superadditive distance
metric, i.e.

(7 L p®(@,a)=0 and p@(a,a;) =0 ifand only if
a; < a; :
II. p®(ay,ay)=pd(a;a)
III. p®(a,a;))+p®(a;,a)=>p®(a;a).

A proof of this result is given in Restle (1961) and in Majone and
Sanday (1971). See also Restle (1959).

The symmetric difference operator gives us, in effect, the measure of
commonality of ‘subjective meaning’ for two propositions, viz. a measure
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184 BERNARD GROFMAN AND GERALD HYMAN

of the extent to which they are subjectively seen to imply and be implied
by the same things. The greater their commonality, the more they are
seen to have common implications and antecedents; the fewer their
differences, the greater their degree of ‘andness’ and the smaller their
degree of ‘orness,” the less they are seen as incongruent. In those cases
where there is complete commonality between a; and a;, where the sub-
jective implications (evocations) of the two propositions are identical,
P @ (a;, a;) will be zero. Similarly, where there is no commonality between
them and where they are negations of one another in their subjective im-
plications, p @ (a;, ;) will be maximal, in this case equal to one. (See
Table I). Other authors who make use of the symmetric difference opera-
tor in this context are Hays (1959), and Bruner ef al. (1959).

TABLE I

Hypothesis relating a; and ay Value of p®(ai, a;) associated
with &; being true

h ai<>a; ) 0

hs ai—>a; p(as)—p(ar)

hs a;—>ai p(a)—p(ay)

hy aj 1—p(as)

hs a; 1—p(ay)

hs ai—>aj 2—p(a:) —p(a)

hz ai—>aj p(@) +play)

hs aiNaj—>aj \ai p(ar) +pla)—2p(ai, as)

Column 2 of Table I gives the values which p @ (a;, ;) ‘ought’ to take
on iff a; and a; are perceived to be related as specified in column 1.
Table 1 is exhaustive of the eight basic pure truth functional relationships
between two propositions; the remaining eight may be generated as
negations of the hypotheses in the table. Of the values of p @ (a;, a;) for
the sixteen possible cases, four are of particular interest.

® h (geoa)(p®(a,a)=0)
hy (a;—a) < (@ (a,a)=rpa;)— p(a))
hy (a; - a) = (p®(a;, aj) = p(a;)) — p(ay)
hie (a; e 5;) < (p®(a;, aj) =1)
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PROBABILITY AND LOGIC IN BELIEF SYSTEMS 185

We may use these relationships to define subjective equivalence, impli-
cation and negation. Thus, by ascertaining an actor’s subjective probabil-
ity assignments to a;, @; and @;Aq;, we may then impute to him the
logical relationship between q; and ¢; to which his computed value of
p®(a;, a;) most nearly corresponds. Thus in the limiting cases, if
p®(a;, a;)=0, then we shall say a; is subjectively equivalent to a;; if
p®(a; a;)=p(a;)—p(a;)#0, then we shall say a; subjectively implies
a;; if p®(a;, a;)=1, then we shall say that a; and a; are subjec-
tively negations of one another. Analogously, we may use the symmetric
difference operator to define (subjective) logical independence, since if
two propositions are (subjectively) independent, then p @ (a;, a;) ‘ought’
to take on the value p(a;)+ (a;)—2p(a;)p(a;). (See note 7). We shall
refer to the hypothesis that two propositions are (subjectively) independent
as hy.

In effect, then, by knowing only an individual’s direct probability
assignments and simple pairwise probability assignments among proposi-
tions, we can in theory impute to him an entire belief system complete
with perceived relationships among propositional elements. Moreover,
for each truth functional relationship possible between two propositions
we can construct a measure of the extent to which the experimental value
of p@® (a;, a;) approximates any such hypothesized relationship; and,
therefore, the extent to which the imputed relationship may be said
to obtain. For convenience, we wish a measure which varies between
0 and 1; and is O if and only if the hypothesized relationship between
propositions is perfectly exemplified by the experimental value of
p®(a;, a;), and is 1 if and only if the experimental value of p @ (a;, a;)
is as far from its hypothesized value as it can be given the experimental
values of p(a;), p(a;) and p(a; A a;). Let p® (h;, a;, a;) be defined as that
value of p @ (a;, a;) which obtains when the relationship 4; holds between
propositions @; and a;. Note that the values of p @ (h,, a;, a;) for k; thru

hg are given by column 2 of Table I. A measure which satisfies our require-
ments is

Ip @ (ai’ aj) —p ® (hi’ a aj)l
9 d ;) = .
( ) " (a J) df max <P @ (hi’ a aj)3 1- pe® (hia a; aj)>

We may readily verify that d,, (a;, a;) = p ® (a;, a;).
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186 BERNARD GROFMAN AND GERALD HYMAN

By means of d,, (;,, a;) we can measure the fit between an individual’s
views as to the logical relationship between two propositions as he might
state it when asked directly, and the relationship between them that could
be inferred from the data provided by his probability assignments. More
importantly, from probability data alone we can infer (psychological)
connections between propositions. In order to see this link in more fami-
liar terms, let us express experimentally obtained subjective probabilities
in terms of the entries in a 2 x 2 contingency table (Table II).

TABLE II
a a;
aj a b
aj c d

where a+ b+ c+d=100 and where

(10) p®(ay, ap) = p(a;) + p(ay) —2p(a; A ay)
_(@a+c)+(a+b)—2a
- 100

_b+c
~ 100

We may restate the relationships of Table I in contingency table terms
asin Table III.

Similarly, we may show that?

2ad — 2bc
(11) 4, (apap)=

ab + ac + b* + bd + ¢* + c¢d + 2ad
{0 iff ad = be

1 iff btc=o fOF @d>be

2bc — 2ad
a’+ ab + ac + bd + cd + d* + 2bc

{0 iff ad = bc

(12) dh; (a; aj)=

<
1 iff a+d=0 o @d<be
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PROBABILITY AND LOGIC IN BELIEF SYSTEMS 187

TABLE III®
Hypothesis relating dn, (as, ay)
b+c 0iff b+ c=0
hy aiaj 3—11ﬁ'a+d 0
ha ai—>aj S =0iffe=0
a+c+d(—11ﬁ’a+d 0
h3 a;—>a; b 3 =0 iﬁb =0
a+b+b | =1iffa+d=0
hy aj ° 3=0%ﬁ'c=0
atc =1iffa=0
he @ b 3=0§ﬁ‘b=0
a+b =1iffa=0
he Za; d 3=0§ﬁ'd=0
b+c+d {=1ifb+c=0
. - a g=0iﬁ'a=0
at+b+c | =1if b+c=0
hs a \ageras Nas 0

& Formulas shown for p @ (hi, @i, a)) < 1 — p @ (4, a, aj).

So far our use of the symmetric difference operator and of measures
based upon it have been applied only to pairwise conjunctions of proposi-
tions. But cognitive systems in general (and ideologies in particular)
consist not of pairs of propositions, but of systems of propositions, and
hence of sets of propositions. We must therefore seek to expand the domain
of our measures. Let us, therefore, for two sets of propositions, define
the distance between them as the cartesian product of the distances
between their propositional elements, appropriately normalized so as to
remain within the interval [0, 1]. Utilizing the cartesian product main-
tains the distance metric properties of p@®.

Let 4, B be sets of propositions of m and » elements respectively. Let

ZAszp@(ab bj)
(13) p®(A,B)§“‘E 12 d=—fdh,(A,B);

m-n

P®(4, B) can be regarded as a measure of the distance between sets of
beliefs.
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188 BERNARD GROFMAN AND GERALD HYMAN

Equivalently, we shall let

Y 2 dn(a bJ)
(14) d (4,B)=2caner
m-n

Some of these general measures will prove useful when we consider cer-
tain properties of belief systems, such as coherence, below.

Finally, we wish to know, loosely speaking, which pairs of propositions
drawn from two sets of propositions ‘lie closest to each other or have the
most in common.” Such propositional pairs may be regarded as potential
links or bridges between two otherwise incongruent sets of beliefs.

Let us define
(15) L(A, B) = min {p®(a; b)}.
df aqje A
bjeB

L is then the minimum (shortest) distance between two sets of beliefs. It
should be clear that the pair of propositions for which p@® is minimum
need not be unique. All such elements may be regarded as ‘access points’
or ‘links’ between the sets. Since for any two sets there will exist a conti-
nuum of pairs of propositions from both sets of propositions from mini-
mally to maximally distant from one another, there will be a continuum
of more or less ‘accessible’ linkage points between the two sets of beliefs.
If we wish to ‘transmute’ belief systems, common sense suggests that the
points from which to begin the transformation are the beliefs which are
shared — and our model provides a precise way of identifying those beliefs.

Let us now consider the notion of the ‘consistency’ of a belief system.
We may differentiate at least four meanings which can be attached to the
term: (1) the actor’s beliefs are consistent with scientific truth (the facticity
of the real world as somehow °‘objectively’ rather than ‘subjectively’
determined); (2) the actor’s beliefs are logically consistent, i.e. the beliefs
satisfy the axioms of propositional logic and the axioms of subjective
probability (this is the sense in which we were using consistency earlier);
(3) the actor’s beliefs are systematically interrelated, they ‘hang together.’;
(4) the actor’s beliefs are not randomly generated and are stable at least
in the short run (this type of consistency is related to the notion of construct
reliability common in the sociological literature).

We shall label these types of consistency, respectively, ‘objective con-
sistency’, logical consistency’, ‘connectedness’ (‘systemicity’) and ‘reliabi-
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PROBABILITY AND LOGIC IN BELIEF SYSTEMS 189

lity’. These types of consistency are not independent of each other. For
example, if the actor’s beliefs are ‘objectively’ consistent, they are con-
sistent in all of the other senses, at least under most commonly held
epistemological and ontological views. Indeed, each type of consistency
implies consistency of a lower type.

We may readily develop measures of the extent to which a belief system
exemplifies a particular level of consistency. We shall present such
measures for the connectedness and reliability of systems of beliefs; these
measures will vary between 0 and 1.

To measure type 3 consistency, connectedness (systemicity), we make

use of the measure defined on the hypothesis ‘a; and a; are perceived of as
independent’, that is, we let

11— ZZ dy(a;, aj)l
(16) Connectedness (4') = —2 , a;#a;.
df m(m — 1)

We may do so since independence, as we have defined it, may be regarded
as the paradigmatic case of unsystemicity.

To measure type 4 consistency, reliability, we may obtain for a given
actor the values p(a;), p(a; Aq;) and also, say, p(a; Vv a;). With this infor-
mation we may determine p@(a;, @;) in more than one way. For example,
given the values of p(a;), p(a;), p(a; A a;), and p(a; v a;) we could deter-
mine p@(a;, a;) either as p(a;)+p(a;)—2p(a;na;) or as p(a;va;)
—p(a;na;). We could then define the reliability of an actor’s beliefs A as

(17)  Reliability(4) =
df

Z Z [p(a) + P(aj) —2p(a; A aj)]

- oo — [(p(a; v a)) — p(a; A a))] _
a m?
2.2 Ip@@) + p(a) —p(a;na) —p(a; v a))

m2

Still another sense of inconsistency, related to Types 2 and 3 is involved
in the notion that two propositions are inconsistent if they are perceived
by the actor as being contradictory. This kind of inconsistency we shall
call ‘incongruence,’ and its lack ‘congruence.’ It is clear that the paradig-
matic case of congruence is a;«>a; and of incongruence a;«>a;. Hence, we
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190 BERNARD GROFMAN AND GERALD HYMAN

may define
Z Z p®(a; aj)
(18) Congruence(4') = d,, (4, A) = == , a;#a;.
at m(m —1)

It should also be clear that if (sets of) propositions are either highly con-
gruent or highly incongruent, they will be highly systemically related, that
is highly connected.10

We may utilise the notion of congruence to define the polarization of
belief system A’. We may partition the m propositional elements of our
belief systems into k (nonempty) subsets (1 <k < m) in (m—1) ways. Con-
sider the partition into two nonempty subsets, denoted 4,%** and 4,*,
such that

19) XY d, (A¥2, 400 + 3 Y dy, (450, 45)

A; Ay Az Az

is minimal. We shall call the set {4,"", 4,%9} the minimal 2-factoriza-
tion of 4 with respect to #,. We shall let

(20) Polarization (A') dEf dlu (A(lhl)’ A(zhl)) .

A value of zero would represent complete absence of polarization; a value
of one would represent complete polarization. The components 4%
and 4, may, very loosely speaking, be regarded as the positive and
negative components of a belief dimension. Our model thus offers the
possibility of a clear operational test of the cognitive dissonance reduction
hypothesis that a cognitive system will tend toward unidimensionality and
balance. In our terminology, a belief system may be said to be perfectly

balanced if and only if it may be partitioned into principal 2-components
such that!!

(21) dy, (A, 4"y =0
(22) dy, (A, AP =1, i+,

So far, our discussion of the properties of our model has been rather
abstract, and we have not dealt with the likely empirical utility of our
model. It might appear that the level of sophistication required on the part
of the actor to be able to provide the requisite probability data is absurdly
high, and ipso facto restricts our possible universe of empirical applica-
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bility tremendously; since even with an ‘elite’ sample it is unclear whether
inchoateness and instability of beliefs may make meaningful data genera-
tion impossible. (Cf. Converse, 1970). A preliminary test of our model, a
report on which we are preparing (Grofman and Hyman, 1973) suggests
that freshman and sophomore college students, at least, have no difficulty
in providing the requisite data. Moreover, their probability estimates
satisfy the consistency requirements of the model to a remarkable degree,
and when they violate these requirements, they usually do so only by a
few percentage points — a rather commendable result given that our test
required them to be consistent to 0.01 accuracy.!2

We see as the chief advantages of our approach its ability to provide a
simple, unified, operationalizable and mathematically quite powerful way
to measure (and distinguish among) such important aspects of individual
belief systems as their consistency, connectedness, and polarization; its
suitability for graph theoretic mapping of individual belief systems; and
its potential use in the measurement of differences in beliefs. Its applica-
bility to probability assessments on a non-percentage sort, is, however, an
open question.

There are two other important difficulties in applying our model to
empirical data, but both difficulties are shared by most other approaches
to the study of attitudes. On the one hand, we have no clear way to
initially determine the appropriate universe of propositions whose
systematic properties we wish to examine; and on the other hand, we have
no way to weight the elements of our belief system. The first difficulty may
be coped with in large part by extensive pre-test. Also, more use might be
made of free association procedures. The subject could, for example, be
given certain propositions and asked to generate other propositions that
he feels are related to the given one (McGuire, 1968, p. 65). The second
difficulty, too, may not be insuperable and might be ameliorated by com-
bining our technique with some scaling technique for ascertaining belief
salience. Taking this approach would enable us to compare beliefs in
terms of both salience and centrality. We concur however with Shepsle

(1971, p. 792) that ‘this theoretical void, i.e. a measure of (political)
salience, needs desperately to be filled.”’13

Dept. of Political Science, Dept. of Sociology and Anthropology
SUNY Stony Brook Smith College
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NOTES

* An earlier version of this paper was delivered at the 1969 American Political-Science
Association, Chicago.

1 For a discussion of ‘lag time’ phenomena see McGuire (1960b).

2 For an excellent introduction to and bibliographic references on subjective probabili-
ty see Kyberg and Smokler (1964).

3 For a discussion of the distinction between quantified and unquantified variables see
Mendelson (1964), Chapter 11,

4 These axioms are stronger than those sometimes assumed. See Davidson and Suppes
(1957).

5 One axiomatic formalization of these rules may be found in Nidditch (1962), pp. 7-8.
8 p(a1) = p(az)if and only if (a1 —a3) A (@2—ay), i.e. iff ar—a;.

7 We shall say that proposition a; is independent of proposition a; iff p(a: | a)) =
=p(as | &), or equivalently iff p(a: A a5) =p(a:)p(ay), or equivalently iff p(a: | as) =
= p(a:). These equivalences are demonstrated in Feller (1957).

8 QOther senses will be explicated below.

9 We might also note that if we let

df

then many of the az,’s possess the properties usually ascribed to measures of associa-
tion. For example, ar, (@i, a;) is simply Kroeber’s W, and an, (a:, as) has the well known
property of being 1 if and only if ad = be.

The characteristics of the various az ’s and their one-to-one link to a truth functional
relationship such as implication, equivalence or independence seems to us to be relevant
to the controversy in the statistics literature over the properties which measures of
associations ought to possess and argues for the (by now noncontroversial) position
that different properties (and different measures) ought to be sought depending upon
the hypothesis being tested. These points have been elaborated in Bernard Grofman,
‘Measures of Logical Association’, State University of New York at Stony Brook, 1971.
For more on this issue see McGinnis (1958) and Majone and Sanday (1971).

10 Cf. Georg Simmel’s argument that negative relationships are still relationships, and
not to be confused with the absence of relationships.

11 This result follows (with appropriate change of notation) from Theorem 13.2,
page 342 in Harary et al. (1965).

12 Our questionnaire requested students to estimate the percentage of students at
Stony Brook (Smith) who (1) had smoked pot at least once, (2) favored legalized
abortion, (3) favored the legalization of marijuana, (4) thought that progress in securing
jobs and housing for blacks has been too slow, (5) were Jewish. Then they were asked
to estimate the percentage of students at Stony Brook (Smith) who shared two of these
traits, e.g. ‘““What percentage of Stony Brook (Smith) students do you think have
smoked pot at least once and would also favor the legalization of marijuana.”” Note
that three of the properties referenced involve affect; ( favor legalized abortion, favor
legalized marijuana, progress for blacks foo slow); one involves overt behavior (smoke
pot at least once), and one involves an attribute (are Jewish). This mix was deliber-
ately used to demonstrate the potential range of applicability of the model. Students
were instructed to fill out the questionnaire as precisely as they could and to think
before they answered. Because of possible ambiguities in the wording of the questions
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" about conjoint attitudes (attributes), the experimenter(s) explained that these ques-
tions ‘‘asked for the percentage of Stony Brook (Smith) students who were both
and ”

When the relationships among attitudes (attributes) are being examined, the question-

naire requires k +(§) questions; in this case 15 (k = 5). In addition, students were asked

whether they themselves ‘‘had smoked pot at least once,”’ etc. These questions were
added to enable us to test the hypothesis that students with given attitudes (attributes)
would overestimate those attitudes (attributes) in the general student population. The

questionnaire totalled 20 questions; it required, on the average, (including instructions)
about 12 minutes to complete.

13 Sheplse (1971), p. 791.
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