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HOW TO MAKE COOPERATION THE OPTIMIZING STRATEGY
IN A TWO-PERSON GAME

Bernard Grofman

University of California, Irvine
and

Jonathan Pool

University of Washington

This paper demonstrates the existence of a partial tit-
for-tat (matching) strategy which, when used by one
player in an iterated "Prisoner's Dilemma" game, will
induice a response of pure cooperation in the other player
if that player behaves optimally. The minimum matching
frequency of such a strategy is shown to be monotonic-
ally related to the Rapoport-Chammah "Cooperation Index."

A two-person game, shown in Figure 1, is a simple situ-
ation in which to study the conditions of cooperative and com-
petitive behavior. One of the most interesting such games,
and the one that has been by far most extensively examined
(Oskamp, 1971), is the symmetric Prisoner's Dilemma game, de-
fined by three restrictions on the values of the payoffs:!

a=a',b=Db,c=c¢',d=4d (L)
c>a>d>h (2)
2a >b + ¢ > 2d ‘ (3)

Research has focused both on the theoretical properties of the
game (Anatol Rapoport, 1960, 1966: Anatol Rapoport and Chammah,
1965; Amnon Rapoport, 1967; Axelrod, 1967; Howard, 1966a,
1966b, 1970; Shubik, 1970; Grofman, 1975; Grofman and Pool,
1975) and on how people actually play it (see Anatol Rapoport
and Chammah, 1965, and review essays and bibliography in
Wrightsman, O'Connor and Baker, 1972).
Experimental studies have examined how both personality.
differences and structural characteristics, particularly vari-
ations in the payoff matrix, affect "cooperation," i.e., the -
choice of alternative 1 by one or both players (see literature ;grvuj

Your defining characteristics for the P.D. game are those given in
Rapoport and Orwant (1962) plus the usual stipulation of symmetry. A&s
Oskamp (1971) has pointed out, many games labeled as P.D. in the experi-
mental gaming litexature do not in fact satisfy conditions (2) and (3).
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Figure 1. General two-person game, (Note: This figure
employs standard notation, i.e., "Row" and "Column" are
the two players, E;; is the outcome when Row chooses al-
ternative i and Column chooses alternative j, and (4, 3)
shown over an outcome indicates the payoffs to Row and
Column, respectively, associated with that outcome.

review in Wrightsman, O'Connor and Baker, 1972, pp. 57~65).
In general, however, there has bheen little theoretical under-
pinning to these studies; rather they have manipulated fairly
arbitrarily selected payoff matrix characteristics. An im-
portant exception is those studies which have used as an in-
dependent variable the Rapoport and Chammah (1965) "coopera-
tion index." This index, given by

Cooperation Index = 2 - g ' (4)

has been asserted by Rapoport and Chammah (1965) to be one of
the two basic ratios which (a) can be used to characterize a
P.D. game, (b) are invariant with respect to the addition of
a constant to all matrix entries, and (c) make use of all the
-available information about the payoff matrix. The utility
of this index as a predictor of cooperation in iterated P,D,
games has been reasonably well demonstrated (Rapoport and
Chammah, 1965; Terhune, 1968; but also see Axelrod, 1967).
There have also been numerous studies dealing with the
effect on "cooperation" of variations in the strategy used
by the experimenter,. who (unbeknownst to the subject) assumes
the role of the other player (see the comprehensive review
in Oskamp, 1971). While little or no theoretical rationale
18 customarily given as to why we might expect one strategy
to be more successful in eliciting cooperative behavior than
another, many data have been collected. Unfortunately, very
few of these studies have dealt with the effect of response-
contingent strategies. Instead they have usually used pre-
programmed strategies according to which the simulated oppon-
ent's moves are independent of the subject's. :
As far as we are aware, no theoretical model has ever
bgen developed capable of predicting the effects on coopera-
tive behavior of the interaction between the reward structure
of the matrix and the nature of the strategy used by the other
player, nor has there been other than incidental experimental
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investigation of this interaction. It is this interaction
with which this paper will be concerned. We shall show that
the Rapoport and Chammah (1965) Cooperation Index can be de-
rived as a special case of a more general model which deals
with the interaction between payoff entries and the (response-
contingent) strategy of the other player.

In this analysis we shall confine ourselves to iterated
prisoner's Dilemma games in which both players are following
what we have called "class 1" decision rules (Grofman and
pool, 1975), i.e., rules which define a player's probability
of choosing alternative 1l on trial n of the game as a function
only of the (n~1) th trial outcome. A class 1 decision rule
is thus the simplest kind of strategy that responds to the
other player's prior behavior,

Within this class of rules, we shall focus on a yet sim-~
pler subclass that defines the probabilities of choosing 1 and
2 as a function only of the pther player's move on trial n-1,
and does so symmetrically with respect to the other player's
two options. Such rules are called partial tit-for-tat (TFT)
strategies and are defined cach by a probability, p, that the
player's nth move will be the same as the other player's
{n-1)th move. Although some experiments have investigated
the effects on cooperation of a TFT strategy employed by a
simulated opponent, they have not generated the information
needed to compare rates of cooperation for varying levels of
p (Grofman and Pool, 1975). In one study, however, a closely
related relationship was discovered (Pool and Grofman, 1975),
suggesting that cooperation would vary monotonically and posi-
tively with the p of the other player's TFT strategy. We
shall now show why this should be the case if the subject is
acting so as to maximize his or her own payoff in the long run.

Consider a player facing another player who is using a
partial TFT strategy as defined above. It is easy to show
under what conditions the former will prefer a pure strategy
of 1 on every move to a pure strategy of 2 on every move.

The expected long-run {average) payoffs yielded to the user
of these two strategies are ap + (1-p)b and (L-p)e + pd, re-
spectively (Grofman and Pool, 1975). So if

ap + b{(l-p) » c(l-p) + pd, (5)

then in an iterated P.D., game a strategy of pure cooperation
will be preferable to a strategy of pure defection (iterated
minimax) against a player known to be using a partial TFT
strategy. We may readily show that there always exlsts a p
such that incquality (5) is satisfied, and that any such p
must be » I,

Lemma 1: For a,b,c,d satisfying the constraints in (2}
and (3), there always exists a p, P > ' such that (5) is
satisfied,.

Proof: We may rewrite (5) as

. c - b 6
P T Trw+c~-a ' (6)
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because (2) requires a - b + ¢ - d to be positive. The max
mum value for p is clearly 1. If

c~-b (
a-b+c-4d"’

1>

we are done with the first half of our proof. But (7) must
be true, since (3) requires that a > d. The denominator is
thus greater than the numerator, which is also positive by

(2).

that

To show that p > % is equally simple. We must verify

c - b 1
a-bfc-da’7- (1

Since, by (2), ¢ >aand d > b, it follows that ¢ + d > a +
hence ¢ -~ b » a -~ d. Thus

c -b C 1
(c-b) + (a-a) ~ To=b) =7 Q-E.D.

Lemma 1 tells us that there always exists a partial tii
for-tat strategy which can induce a rational opponent to pre
fer pure cooperation over pure defection (i.e., the choice
of alternative 2, as required by an iterated minimax decisic
rule) and that it must involve more than a 50% level of reir
forcement. (Obviously, a 50% TPFT strategy is the same as r:
dom choice, and a less than 50% TFT strategy is one involvir
more "uncopying" than copying of the opponent's last move.)
Note that in our proof we have not used the third of the de-
fining characteristics of the symmetric P.D. game.

The above results may be related to the Rapoport and
Chammah (1965) Cooperation Index. Expression (5) may be re-
written as

a ~d 1l -p
c - Db > P * “

The left side of this inequality is the Rapoport-Chammah Co-
operation Index given in expression (4). The greater the le
side of expression (9), the smaller is the value of p (p >}
that is needed to produce a situation in which pure coopera-
tion is preferred to pure defection. Similarly, against any
given level of p, the greater the value of (a-d}/(c-b), the
greater the attractiveness of the strategy of pure cooperati
vis-a-vis that of pure defection. If a player sees the othe
player's responses as contingent on his or her own behavior,
then the long-run consequences of defecting may outweigh the
shor?—run gain. The expression (a=d)/(ec-b) -~ (1l-p)/p gives
and index of the (marginal expected asymptotic) gain to be

had from cooperation (as opposed to defection) against anoth
player who is using a partial tit-for-tat strategy. Thus, w
would expect that for given P, Or perceived p, the higher tt

value of (a-d)/(c-b), the greater the extent of cooperative
behavior.
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In order to strengthen the above conclusions it would be
useful to show not just that pure cooperation
pure defection when inequality (5) holds, but
pure cooperation strategy is overall optimal,
highest (long run expected average) payoff of
strategy, for p sufficiently large.
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The general expression for a row class 1

given in Figure 2, where xj4 represents row's
choosing alternative 1 given outcome E;4 on the last trial.

B

1 X111

2 1 - %13

Figure 2.

The combination of the general row strategy in Figure 2 and
the column TFT strategy of Figure 3 gives rise to the transi-

Ei2

X112

L - x12

Row's class 1 decision-rule.

tion matrix below (see Figure 4).

Figure 3.
En
En o> S
Ey2 PX12
E2) (1-p) %21
Eaz (l-p) %22
L

Figure 4.

tit-for-tat.

for this transition matrix is found by solvin

set of equations:

1
B i P
Eia P
Ea 1-p
Ezp 1-p

E|

2

(1-p)x))
(l-p)x12
pPX21

pPX22

Ean

X211

1 - x9

The steady state vector

2

—ry

lL-p
l-p
p

p

Ea

p(l-x,.1)
p{l-%x12)
(1-p) (1-x21)

(L-p) (L-x22)

is preferred to
also that the
i.e., has the
any class 1

strategy is
probability of

g the following
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Eaz

X22

1l - %22

Partial tit-for-tat decision rule.

Eaz

(l“P)(l_Xll)T
(1=-p) (1-%) 2)
p(l-%x31)

p(l=%22)

Transition matrix when column plays partial
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o1 = PXp101 + pxiz202 + (1-p)x2105 + (1-p)Xasoy

e = {(I-p)xi110; + (1-P)X1202 + PXz10;3 + PXpa0y

o3 = pll-®11) 01 + p(l=X1p)ay + (l—p)(l“le)da'F(1“P)(l—k22)a4

ay = (1=p) (1-x;1) o1 + (1-p) (1=x12) a2 + P(l-Xz1)os + p(l-x,,)aq,
1= o0 + a2 + az + Oy (10)

After some manipulation we obtain as solution vector

(EX, sV tw EE) (11)
q g g d
where r = (l-p) - (1-2p)x1,

8 =p+ (1-2p)xi1:

t = (1-p) - (1-2p)x;»

u=p+ (1-2p)xs;

v = (l=p)xy; + PXos

w=1+ (p~1)X12 — pP%*11

g =xv + 8v + tw + uw

We wish thus to find the values of (x,,, K12, Xg1y Xaa)
for which

arv + bsv + ctw + duw
q

(12)

is maximized. First let us show that (12) attains its maxi-
mum on one or more vertices of the four-dimensional unit hyper-
cube, i.e., when each Xi4 = 0 or 1.

Lemma 2: For any p, % < (c-b)/(a-b+c-d) < p < 1, there
is a deterministic class 1 strateqy (xi4 € (0,1) for all i,3)
that yields at least as high an (asymptotic average) payoff
as any probabilistic class 1l strategy (0 < Xij < 1 for all i,j)
in an iterated P.D. game against a player using a partial TFT
strategy.

Proof: We need to show that for any X, . , X, . , X, .
1] i232 i3]

expression (12) is maximized when X, 54 = 0 or 1. This is the
n
case if (12) is a monotonically non-increasing or non-decreas-
ing function of Xiuj for 0 < X, 5 L 1. To prove this for
4 4k

X11, We can rewrite (1l2) as

E = 8XV_* bsv + ctw + duw _ ki + koxp,
q ' k3 + kyx

where k; = v(ar+bp) + (cttdu) [ 1+ (p=1)x; 2]
= bv(l-2p) - p(ct+du)

=
~
|
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ky = v(rt+p) + [1+(p=1)x; 5] (t+u)
ky = v(1-2p) - p(t+u)
Then
d(kitkaxi) 3 (katkyxy1)
dtkitkaX11) ok - ZARaTREXa1)
22 _ %11 (kstkuxiy) %71 (kitkaxy1) _ kaky-kiky
%11 (kstkyxy1) 2 (katkyxiy) 2

For E to be monotonic, it is sufficient that 3E/3x,, be de~
terminate, finite, and of constant sign over the entire range
0 <%, £ 1. Since 3E/3x,;, is a constant divided by a func-
tion of x,, that always is positive or 0, one or more of
these conditions can be violated only if, for some X1, 0=
kstkyxX11 = g. d, however, is the sum of products of quanti-
ties (r,s,t,u,v,w) which can all be shown, by rewriting their
formulas in (11), to be > 0. Hence q = 0 implies that one

or more of the following is true:

r=s=t=u=0, which implies x;,=x,,=0, p=x,,=x,;=1

r=g=w=0, which implies x;,=0, p=x,:=1
v=t=u=0, which implies x,.=0, p=x;:=1
v=w=0, which implies x,2=0, p=x,:=1

Or Xo1=X22=0, x;1=x1,=1

Removal of the constraints on x,; and application of the re-
maining sets of constraints, one at a time, makes E in each
case either indeterminate for all x,; or a constant with re-
spect to x,;. Thus the assumption that E has a higher value
for some x;, between 0 and 1 than the greater of its values
for x11=0, x1:=1, contradicts itself. Parallel results are
easily obtained for xX,,, %21, and X,,. Q.E.D.

Since we now know some deterministic strategy is always
optimal against a player using partial TFT, we can examine
the deterministic strategies individually to prove our first
theorem, which states that pure cooperation will be optimal
against some partial TET strategy.

Theorem 1: There always exists p, % < (c~b)/(a-b+tc-d) <
p £ 1, such that the strategy of pure cooperation yields at
least as high an (asymptotic average) payoff as any other
class 1 decision-rule in an iterated P.D. game against a
player using a partial tit-for-tat strategy.

Proof: We need only establish that such a p must exist.
We know from Lemma 1 that if it exists it must satisfy the
middle inequality of the theorem, and from Lemma 2 that (12)
attains its maximum on one or more of the vertices of the unit
hypercube. The values of (12) at all 16 vertices are given
in Figure 5. We wish to prove that there exists p, p < 1,
such that the following inequalities will hold (these inequal-
ities are derived from the expressions in Figure 5):

(l-p)a + pb + ¢ + 4
3

< pa + (1-p}b (13)
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(X11,%12/%21/,%22) Asymptotic Payoffsa
(0, 0, 0, 0) (1-p)c + rd
(0, 0, 0, 1) {l-pla L;EP_ + % L a
r 4 14 3 3
1- b c
(6, 0, 1, 0) '-(—%)—%'i'g—--’r—j +%
(1-p)a b . pc (1-p)d
(0, 0, 1, 1) B2 4 g— v £2 + . g
(0, 1, 0, 0) (l-p)e + pd
(0, 1, 0, 1) = + 28 + 4
b d
(0, 1,1, 0) = v o+ % + &
a b BS (1~p)d
(0, 1, 1, 1) 3 +-§ +3 + 3
(L, 0o, 0, 0) (l1=-p)e + pd-
(1, 0, 0, 1) g +]'Z‘+% +%
(1, 0, 1, 0) 3 +12.+£;. +4
(L, 0, 1, 1) % + % + %g + (l~%)<i
(1, 1, 0, 0P pa + (1-p)b or (1-p)c + pd
(ll 1, 0, 1) pa + (l-p)b
{t, 1, 1, 0) pa + (1-p)b
(L, 1, 1, 1) pa + (l-—p)b

8Calculated from the expressions in (11).

brhe transition matrix consists of two absorbing chains. In
which chain the process will be absorbed depends upon the initial
moves of the two players. If the first move by row is cooperative,
the asymptotic payoff will be pa + (l-p)b. If the first move by
row is noncooperative, then the asymptotic payoff will be
(1-p)c + pd.

Figure 5., Asymptotic payoffs in a P.D. game where strat-

egies are defined by parameter choices in the transition
matrix of Figure 4.

+ b +
ath 74 ¢ ba+ (1-p)b (14)

+ b+ + (1-
& pg (l=p)d < pa+ (l-p)b {15}
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1-p)a + pb + pc + (1-p)d
(1-p) L 3 E 1-pld . pa + (l-p)b (16)

(1-p)c + pd < pa + (1-p)b (17)

We have already established in Lemma 1 the existence of p for
which (17) holds. To establish the other four inequalities
we simply let p = 1. All four inequalities then follow from !
the fact that bt+c < 2a is a defining characteristic of the
P.D. game. Q.E.D. i

In proving Theorem 1 we have established that there al- '
ways exists a class of partial tit-for-tat strategies which
can induce cooperation in "rational" opponents, and that such
strategies must involve at least a 50% level of reinforcement.
If a+d = bt+c, a condition which many of the P.D. games used
in the experimental literature have satisfied, then we may
prove a gsomewhat stronger result.

theorem 2: I1f atd = b+c, then for any p, % <
{(c-b)/(a-btc-d) < p < 1, the strategy of pure cooperation
yields at least as high an (asymptotic average) payoff as any
other class 1 strategy in an iterated P.D. game against a
player using a partial tit~for-tat strategy.

Proof: We wish to show that, if (6) halds, then a+d =
b+c is a sufficient condition for inequalities (13) through
(L7) to hold for all p: % < (c¢~b)/(a=btc-d) < p < 1. To es-
tablish this result for (13) it is sufficient to let p =
(c-b)/(a-b+c-d) and a+d = b+c. When we do so, we find that
the right side of (13) simplifies to (btc)/2, as does the left
side. This equality establishes the desired result, since
the left side of (13) is monotonically decreasing in p and
the right side is monotonically increasing. Analogous re-
sults are readily established for expressions (14) through
(17). Q.E.D. Note that where atd = b+c the expression for
(5) becomes p » (c=b)/2(a-b).

We have established the pure cooperation strategy as an
(asymptotically) optimal response to a partial tit-for-tat
strategy in the iterated P.D. game in general, for p suffi-
ciently large, and in particular for p > (c-b) /(a=b+c-d) when
a+d = b+c. Other strategies may, however, have identical
(asymptotic expected average) payoffs. For example, inspec-
tion of (10) reveals that if x;1 = X12 = 1, then as = oy = 0.
Hence the strategy given in Figure 6 has the same (asymptqtic
expected average) payoff as the strategy of pure cooperation.
Nevertheless, if the inequality of (5) holds {and Lemma 1
establishes the existence of p for which it must hold), the
strategy given by Figure 6 will yield a lower (average ex-—
pected) payoff than pure cooperation against the partial tit-
for-tat strategy because, the smaller are Xai and X2z, the
longer it will be (on the average) before the process 18 ab-
sorbed into states o, and o if the row player chooses 2 on
the first iteration, and payoffs in the transient states Wlll
[because of (5)] be sub-optimal, except possibly on the first
nove, (See the discussion of absorbing chains in Kemeny,
Snell, and Thompson, 1957.)

We wish next to present some results analoqqus to those
established above, as to the conditions under which pure

[o
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B Ep, Ez) Esp
1 1 1 X2 X322
2 0 0 1-x51 1-X32

Figure 6. Sub-optimal although asymptotically optimal
strategy.

defection will be optimal against an opponent in a P.D, game
using a (partial) tit-for-tat strategy. '

Lemma 3: For a,b,c,d satisfying the constraintg given
in (2) and (3), there always exists a p, P 2 %, such that the
reverse inequality of (5), i.e.,

ap + b(l-p) < c(l-p) + pd, (18)

is satisfied.
Proof: Our proof is analogous to that for Lemma 1. We
may rewrite (18) as

c-b
P < ap¥ea - (19)
Let p = %, Condition (2) specifies a < ¢ and b < d. Frcom
these inequalities it follows that % < (c-b) /(a=b+c=d). Hence
a p satisfying (18) must exist. Q.E.D.

Theorem 3: There always exists a p, (c-b)/(a~-b+c~d) >
P > %, such that the strategy of pure defection yields at
least as high an (asymptotic average) payoff as any other
class 1 decision rule in an iterated P.D. game against a player
using a partial tit-for-tat strategy.

Proof: We wish to prove that there exists a p such that
the following inequalities (derived from the expressions in
Figure 5) will hold:

- +
(1-p)a gb t o+ d (1-p)c + pa (20)

+
é___é_%“g;iii < (l-p)c + pa (21)

+ b+ pc + (1-
2 BE2 Pl ¢ (1pye 4 pa (22)

1- -
( p)a+pb-2kpc+ (1 P)d< (l_p)c+pd (23)

pa + (l-p)b < (l-p)c + pd (24)

We hgvg already shown in Lemma 3 the existence, within the

specified range, of a p for which (24) holds. To establish
: _lnequalities we again simply let p = %. All

four ilnequalities then follow from the P.D. defining condi-
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Theorem 4: If a+d = b+c, then for any p, (c-b)/(a-b+c-d)
sp > 0y the stra?egy of pure defection yields at least as
high an (asymptqtlc average) payoff as any other class 1
strategy in an iterated P.D. game against a player using a
partial tit-for-tat strategy.

Proof: We wish to show that if (18) holds, then a+d =
btc is a sufficient condition for the inequalities (20)
through (24) to hold for all p: (c~b) /(a=b+c-d) > p > 0.

To establish this result for (20) it is sufficient to let p =
(c-b)/(a-b+c-d) and a+d = b+c. When we do so, we £ind that
the right side simplifies to (b+c)/2, as does the left side.
Thig establishes the result, since the right side decreases
more rapidly in p than does the left side. Analogous results
are readily established for expressions (21) through (24).

Theorems 2 and 4 establish that when a+d = b+c, a strat-—
egy of pure cooperation is optimal for p > (c~b) /(a=b+c-d)
and a strategy of pure defection is optimal for p <
(c-b)/(a~b+c~d) against a player in an iterated P.D. game
known to be using a partial tit-for-tat strategy. Hence a
row player in an iterated P.D. game who knows that column is
using a strategy of the form given in Figure 3 need only con-
sider two strategies: pure cooperation and pure defection.

As we have noted elsewhere (Grofman and Pool, 1975),
however, much empirical research remains to be done on behav-
ior against TFT strategies, In particular, it might be ex-

i pected that sufficient utility attached to the maximization
of relative, as opposed to absolute, gain would rule out a
strategy of pure cooperation, since only through defection
can one ever gain more than the other player (see Grofman,
1975). It is possible, however, to show that as long as any
value at all is attached to absolute gain there will still
exist a TFT strategy compelling a "rational" player to prefer
pure cooperation over pure defection.

Theorem &: Let K and 1 - K be the relative weights at-
tached by a player in an iterated P.D. game to absolute gain
maximization and relative gain maximization, respectively.

If K > 0, then there exists some p such that pure cooperation
is preferred to pure defection against a player using a p%
partial tit-for-tat strategy, and

p > (2-K) (c—b)
RK{a=d) ¥ (2-K) (c-b)

5 % (25)

Proof: The right-hand inequality of (25) follows from
condition (2), since K < 2-K and a-d < c-b. We wish to show
that there exists p:

pKa+ (1-p) [Kb+ (1-K) (b=c)] > (1-p) [Ke+(1-X) (c-b) ]+pKd. (26)

After some rearranging, we find that expression (26) is
equivalent to the left-hand inequality of expression (25).

Let p = 1. Since K(a-d) > 0 for all K: K # 0, this establishes
the left side of the inequality. Q.E.D.?

21n general, however, for middle-range K values, neither pure co-
operation nor pure defection would be the optimal row strategy in response
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It is instructive to see how K influences the necessary
p value for an actual P.D. matrix. For the P.D. game matrix
given in Figure 7, if (as usual) K = 1, then the minimum P
specified by (25) is 11/16 (.69). If K = 4, ap > 33/38
(.87) is required. If K = %, then a p > 77/8? (.94} is needeqd
Thus, as expected, as concern for gbsolu;e galp max1mlzatlon
is replaced with concern for relative galn maximization, a
reinforcement level (p) nearer to 1 is needed to induce co-
operation rather than defection in a "rational" player.

1 2
1 (5, 5) (-3,8)
2 (81-3) (Or 0)

Figure 7. Representative P.D. game.
CONCLUSION

If we look at average expected payoff over some finite
number of trials (and discount the payoff of the first move}
or if we look at asymptotic average expected payoff, then we
have established the existence of partial (p%) tit-for-tat
strategies capable of inducing pure cooperation in a "rational"
player cognizant of the strategy the opponent is using and
unable to change it. Indeed, even when a player's utility
function weights both absolute and relative payoff, we have
shown that pure cooperation will be preferred to pure defec-
tion for sufficiently large p. We have also shown that the
lower bound for p (the reinforcement index in such partial
tit-for-tat strategies) is a monotonic function of the
Rapoport and Chammah "Cooperation Index," and thus is, as ex-

trices may be expected to induce cooperation behavior.

In particular, we hope to have shown that even in P.D,
games, where the dominant strategy has powerful attractions,
iterated minimasx need not be the optimal response against cer- .
tain other strategies (see Fox, 1972; Grofman, 1972). How-
ever, whether and to what extent partial tit-for-tat strat-
e€gies will in fact induce cooperation is a matter for experi-
mental investigation--an investigation which the present au-
thors have recently started.

;n geperal,.we believe that many of the most interesting

are subjgct—response contingent. Despite the voluminous 1it-
erature in experimental gaming, we also believe that the in~
vestlgatiop of the complex interaction between communicating
one's own intentions, influencing others, and maximizing

to a column p% tit~for-tat Strategy. An expression to be maximized anal-
©gous to that given in (12) can, of course, be derived for this mixed rela-!
tive and absolute gain maximization case, but as yet we have found no quick
way to dexive the maximum of this expression.
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expected gain has only just begun.
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