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A THEOREM ON THE OPTIMAL

ALLOCATION OF EFFORT"

by

Bernard GROFMAN and Guillermo CWEN

. Abstract. A iimited time budget-is to be allecated to sev-
eral tasks, so as to maximize the probability that a majority
of these tasks will be performed corredtly, It is shown that
in-the symmetric linear case, it is optimal to allocate time
equally among k of the tasks, where k is at least a majority,
but may be more, depending on the actual:time available. In
. particular, time is allecated to all tasks if there is lit-
tle time available, but to only a majority of the tasks if the
available amount of time is reasonably large.

§1. Introduction. We consider here. the following problem::a
student, with a limited time budget, must study for ap ex-
amination will consist -of several questions, one, from each
of several fields: The student will be successful {pass the
exam) if he answers a majority of the questions correctly.

The problem is to decide how much time to spend on each of

(1}

the several fields.

# This research was supported by the National Science Foundation,
Grant 85-03676. ‘

(1) The problem we consider here 'is mathematically analogous to problem
considered by the early French mathematician, Condorcet. For histo-
rical background amd parallels, see Grofman, Owen and Feld, 1982,
1983.




Mathematically, we assume the subject is divided into
n fields. For i=1,...,n we assume a function

Py < fi{xi)

gives the probability that the questién on the izgfield.will
be correctly answered if. the student spends X5 units of time
on that field. For obvious reasons, we shall assume each fi
is monotone non-decreasing and continuous, and bounded below
by 0 and above by 1.

Let N = {1,2,...,n} be the set of all questions. If
the student has probability P of answering question 1 cor-
rectly, and 1f all these probabilities are independet, then,
for gieven 8 = N,

Po(Pih--- b= B p; T (159) (1
ST P jes toigs ?
is the probability that the student answer all the questions
in fields i «'S, and none of the others, correctly.
Let m, now, be the required number of correct answers.
If so, then the student's probability of passing the test

is
F(py,.--,p.) = 1 B p; I (i-p;) 2)
! o § ies T oqgs 2 1
S2m i

where the summation is taken over all sets S with at least
m elements.

The student's problem, is, then, to maximize expres-
sion (2) subject to (1) and the budget constraint

Ix <a (3)

X, 2 0, i=1,...,n (4)

where o« is the student's available time. The first order

conditions for this problem are
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Mé?; H'-‘*xl = X if
3F  dpg .
55; &;;‘g A Lf

In the general case, of
plicated computation. We will

X 0
1 X »

where

N

Pi(x) =

x, > 0 (5}
i . ' - (6)

course, this presents a com-

consider the special case

x £ 1
1

(N

This is not an unreasonable probability function: it

represents the case where the

student requires unit time

(the time can of course be suitable normalized) to read each

section of the textbook.

In less than unit time, he can only

read a proportional fraction of the section, and the prob-

ability of a correct answer is in turn propertional to that.

In this case, the first-order

conditions take the form

- =h if < py < 1
..:-.3“{? .. __ .
5%; 2 M Tf Py = 1
€A 1t p; = 0
Now, it can be seen that
F
8L - 7 nmop. T (1-py) (8)
Pi - § jes 7 j¢gs
i€S j#i '
S=m

where the sum is taken over all sets $, containing i and

exactly m-1 cther elements. We shall use Fi to denote this

partial derivative.

We prove, now, that we need only consider points

(Pyse--
1, and some other p.

LEMMA 1. The maximum of

constraints (3)-14), i3 attained at a point (py,.

,pn) in which each P has one of the three values 0,

the function F, subject to the

9 Ppy)

ooy
Ledo€?




whose components have onfy one value other than 0 on 1,

Proof. lLet us consider the expression (8) for Fi. Let-
ting & # i, we can write this as

F. =) ® p. & (1-p,)+) Hop, I (1-p.)
L' § jes 3 jes 378 jes ] jés 1
LeS it _ L¢S ifi

where the first sum is taken over all § with & e« §, i % s,
5 = m-1, and the second over all S with i,% & 3, s = m-1.
We rewrite as

S jes 3¢S S jes JjefS

Fi=p [l ©m p, * .(1»pj}}+ (1wp£)[{ mopy 1 (1-py)
S | & SIS i#i,0

or equivalently,

Fi = PQ-EHP_HU-PJ-J * (1”?9_)2 ﬁp‘ﬁ(1”Pj) (9

s 7] 5 %]
where the first sum is taken over all S with i,b &8, 5 =
m-2, and the second over all § with i,2 & §, s = m-1. In
each case the first product is over all j = §, the second
over all j = N-§-{i,ze}.
We have, then,

Fi-F, = (pg—pi){é Mpy 1(1-py) é itp; M(1-p5)]

where the two sums are as in {9), or eguivalently,

Fj ~Fp = (pp-pylHy, (10
where
Hip = I opy M (i-py) -} W ps & (I-py) (1)
1L g jes I jes 3 § jes Jjes
s=m-2 JFLL s=m~ | I3

where ‘the sums in (11) are over all subsets S = N-{i,t} with
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m-2 and m-1 elements respectively. We note, inter alia, that
H,, depends on Py» j#1i,2, but does not depend on pilqr_p2¢

Let X be the set of all p = {(p;,...,p,) which maximize
F subject to (3)-(4). By continuity of F, X will be compact
and non-empty. Then C(X), the -convex hull of X, is compact
and convex; moreover, the extreme points of C(X} are all N
points of X (though not all points of X are necessarlly ex—
treme in C({X}). We claim, now, that if p ) {p1,,..,p } is
extreme in C{X}, the components pJ W111 have,at most one
value other than 0 or 1.

In fact, suppese there is some pair of indices i,%,
such that

0 < pz < p;, < 1.
Since p = X, then by (7-ii), we have
* *
M) = (%)
Naw, by (10)

, * ® *
Fi_-Fl = (pﬂ"pi)ﬂii(p )'

&
However, p; < p;, and so we must have H,, 6 = 0.
As was pointed out above, however, Hii is independent
of both P and Py thus, for any t, the point p'(t}, given
by

1
-Pi{t} - pi + ot
1 %
p;(t) = p; for all other i
will also have H, g(p‘) # 0. For sufficiently small t (both

positive andcnegatlve} P {t) will satisfy the constraints
(3y-(4). Moré”ver, thre directional derivative in the direc-
ing t is Fi'Fg’ and this will be 0 for all
for suffi;;ently small t,

. tion of intC

values of" us,




F(p'(t)) = F(p'(-t)) = F(p").

Since p* maximizes F, so do p'(t) and p'(-t). But this meaﬁs
both p'(t) ‘and p'(-t) belong to X, and, since '

Pl = (P (8) + pr(-D))

we conclude that p~ is not extreme in C(X). This contradic-
tion proves the lemma. B C

‘We see, then, that the maximum of F will ‘always be
found at a point of the form

T i= My
Py = {P j e M (12)

whers MT’ Mz, M3 are disjoint sets whose union is N, with

cardinalities My, My, and m while 0 < p < 1. We have then

3’

My + My + Mg = . (13
my * m,p o= oa. . ‘ {14}

It is easy to see that, in this case, we will have
m

F= 7 (39)p°(1-p)
) S=m—m}

{15

In fact, all members of MTIare always correct, and all mem-
bers of M; are always wrong. Thus the student will pass the
exam i1f and only if at least m-m, of the members of M, are
answered correctly.

LEMMA 2. If o > m, then F {8 maximdized by sefling
Mmoo I4 o < m, then F {4 maximized by éeiiing\m1 = 0,
Loe., My o= @.

Proof. 1f o > m, it is easy to see that ¥ can be made
equal to 1 simply by letting my » m. This is clearly a maxi-

MLLm .
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1 S

Suppose, in fact, that a < m, but M, # . Then m
G < m, SO m, 2 0 as otherwise we would have F = 0. Let
ie M1, ! = MZ: then p; = t and 0 < P, < 1, so assuming p
is optimal, we 'must have

F. = F

i L’

. Now, however,

"t
i#

m2 - m © Rq+ms M
1 1T
i (mum1) P {(1-p) .

. m-mq=~7 mq+E M
7, - ( my - 1 ) pt Ty
m-my -1

(since as we saw before, F. is simply the probability that
exactly m-1 answers other than j be correct). Thus we have

lTlZ m‘m} m1+m2’m m2~T m“m—,-1 m1+m2“"m
1- 1-
(m~m])p (1-p) ? mn-my- P (1-p)

which reduces to

or

By (14), however, this gives us o 3 m whichis a contradic-
tion. Thus, if o < m, then at the optimm, M, = @ as claim-
ed. Q.E.D. '

From Lemma Z we see, then, that in the "difficult"

case, o < m, we have m, = 0. Denote M2 by K, then M, =N-K,

1
and so the optium will be obtained at a point

3

if j e K

o we

if e K




where K has k elements. In this case

SRAHEECS

and we look for the value of k, m € k £ n, which maximizes
this expression:

Flax = max % (i)(%}s(gig)k—s | (16)

mgkgn s=m

In general, we can obtain this number from tables of the
cumulative normal distribution. To get an idea of its be-
havior, however, we let

’ 5 k-5
o) - (4)(E) (52) an

be the probability of exactly s correct answer, assuming
that the student divided his time among k sections. Then

a(s) " x .(kwijk"1 ) (k-a)k s

a7 ks (k- 1)<S

(18)

As o »D, this expression approaches the limit

k fk-1>5

Le() = w5 | % (19

Now, it is easy to see that, for k > 0, and s » 1,

3 1\°
1-§<(1M§~)

and so Lk(s) > 1 for s > 1. We conclude that, for small val-
ues of a, qk(s) > Q. 1(s} for all k and 5 > 1, and so k
should be chosen.as large as possible, i.e. k = n. On the
other hand, if @ is large, i.e., sufficiently close tom,
we know 1t is best to choose k = m.

We conclude, then, that for small o the student should
study some of each section; for large o (i.e., near m) he
§hou1d concentrate his studying on m of the sections. What
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is not clear is (a) whether any intermediate values of k
{i.e., m < k < n) are ever optimal, I
To look at this problem in some deétadil, we consider
the case n = 13, m = 7. Figure 1 ‘shows the Fesult of ‘our
calculations: k = 13 is optimal for all o < 6.16, while
k = 7 is optimal for o > 6,30. In between there'séeﬁjtdrbaf
five small subintervals where k = 12, 11, 10, 9, 8 are suc- _ﬁ”
cessively optimal. : SRR

6.00 6.10 6.20 6.30 - 6.40 6.50
Total Competence (np) :

Figure 1. The Impact of Concentrating Competence on Pn, Far n = 13. 1

It is not clear whether this type of behavior alwdys ®
hoids, though in the several cases studied by the authors™ -
this is indeed the cése. If we look at expression (18), we
note that, 4&s a function of o, these ratios are convex, i.e.,

52 ax(s) o
a4 (‘lk-‘;(‘ﬂ) < ’




This suggests (though it does not prove} that this type of
behavior will usualiy hold.

For small values of m, it is not difficult to show
that this is indeed the case. For example, in the case n =3,
m=2, we find k. = 3 is optimal for ¢ < 1.125, with k = 2 op-
timal if o » 1.125. A -

For n = 5, m = 3, we find that k = 5 is optimal if
o € 2.117; k = 4 is optimal for 2.117 < & < 2.173; finally,
k = 3 will be optimal if a » 2.173. B
The number of correct answers--assuming all study was
concentrated on k sections of the course--is a binomial ran-
dom variable with parameters k and %; its mean is therefore
o, and its variance is u(I-—%). For large values of m and n,
this can generally be approximated by using either the nor-
mal or the Poisson distribution.

If o is close to m, say o m-A. Then letting k = mn,

we would have

-
i
o
i
-
1
Hi>

for je X

and so the number of incorrect answers among the m sections
studied is a binomial variable with mean A. If we use the
Poisson approximation, the probability of r incorrect an-
swers will be

~ALT
e X

Q, (1) =

!

In particular, the probability of passing the exam is Q(0),
or p—x. '

As against this, if the student studies m+ 1 sections,
the number of incorrect answers among the sections studied
will also be approximately Poisson with mean A + 1. To pass,
at most one can be incorrect; the probability of passing is

then

~ A+

Queq(0) + Qg (1) = 274 T (1ers)

and this will be greater than p'k only if x » 2-2, i.e.,
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if o € Mt2-%, or about « < M-0.718. Thus k = M is optimal
1€ a » M-0.718. ‘ Li o N

Suppose, on the other hand, o is considerably -smaller .
than M. In this case concentration on k sections gives us
a binomial variable which can best be approximated by. a

normal variable with mean o and variance o{1 ~%}. To pass
the examination, the student requires at least m correct
answers, 1i. e , the variable must have a value at least
equal. to m = ? (the fractional modlflcatlon is standard in
such cases} If o the meah of the varlable lS more than
qllghtly below m - ;; thls probablllty w111 be max1mlzed by
mak1ng the Varlance as large as p0551b1e7 Wlth o fixed, this.
is done by settlng k db 1arge as p0551b1e i.e., k = n. The
probability qf_pass;ng the exam will then be,given by o

o=y 9‘___15‘_*‘5_")

where. & is fhe;cﬁmalativeﬁstanda}& hormalidisfribution func-
tion. J ‘ | ‘ o ‘
"Ohe inte;estihg oEséfvétion rémaihs.té be maéé and
it concerns the _person who makes up the exam. If instead
of asklng one questlon on each section of.the course, he
were to choose n questions at random (independently) from
the entiee subject matter of the course, them the student
who devotes o units of time (where n units would be requi-
red to know the entire subject) would have probabllltycdnon
each question. In effect, this is the same ds- 1f the student
had devot&d &/n'uhits to '&ach of the n sections of the ™
course. But wé have seen that this is preclsely''1’.Imt-:"o'pt1—‘""'i
mal study strategy for the student who spends a relatively
small time preparing for this exam. Thus, such a strategy
on the part of the examiner will penalize only the stidents’
who spend a relatively long time preparing, i.e., the con-
scientious students. In other words, the student who knows,
e.g., 80% of the course material will get a grade of 80% if
there is one question from each section, but might fail if

the guestions are chosen randomly from the entire course




=T

matter. The student who knows only 30% of the course matter
has the same probability of pa551ng under either model ‘of‘
examination, ‘ : s
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