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Abstract—The paper considers two-candidate spatial voting games without 2 core where candidates have
only impezfect knowledge of voters® preferences. We prove that a candidate maximizes his chances of
victory by choosing a position es close as possibie to that of the candidate who committed to his position
first. We also determine the optimal position for this first candidate.

i. INTRODUCTION

The spatial model of politics considers voters who have preferences over positions that candidates
may adopt, and candidates who choose positions that they think will attract majority support.
Tnitial work with- this model [see especially Downs (1957)] provided important insight into
two-party politics. Further study revealed, however, a critical difficulty—equilibria are certain to
exist only if voters’ ideal points fall along a single continuum {such as a left-right dimensiony(Black
1958)] or if very strong symmetry assumptions are met (Plott 1967; Riker and Ordesh: 1973;
Kramer 1973; McKelvey 1976, 1979; Schofield 1978). That is, the candidate who chooses a’position
first can always be defeated by a challenger, and the positions taken by the winning candidates
may range over the whole policy space. Indeed, the policies could change dramatically from election
to election. Political behavior, however, exhibits a degree of stability far greater than that predicted
by theory—incumbents easily win reelection (particularly in Congressional and other legislative
elections)-and policy only rarely shows drastic changes when one set of officials replaces anather.

One modification of the standard model to account for this difficulty is to assume that candidates
alm to maximize something other than probability of victory. Kramer (1977) looks at a sequence
of elections in which each candidate’s objective is to win the election with as large a plurality as
possible. Under these conditions the trajectory of winning positions is well-behaved and settles in
a weli-defined region, known as the minmax set..

Another approach, related to ours, is to introduce probabilistic voting. Coughlin and Nitzan
(1981), Coughlin (1982), Enelow and Hinich (1984), Samuelson (1984) and Coughlin and Palfrey
(1985) suppose that candidates wish to maximize their expected plurality, and that a voter is more
likely, though not certain, to vote for that candidate whose position is closest to his ideal point.
A natural interpretation is that voters are uncertain about the positions adopted by the candidates.
Our assumption is that the candidates are uncertain about the preferences of the voters.

The main distinction between probabilistic voting and our assumptions is that in probabilistic
voting the likelihood a voter will vote for a candidate has some elasticity with respect to how close
the candidate locates to him. In contrast, if candidates are uncertain about preferences of voters,
but a voter is cerfain to vote for the candidate nearest him, each voter’s behavior shows a
discontinuity, i.e. a small change in position can cause a large change in result. These differing
assumptions lead to different conclusions. In particular, Coughlin and Palfrey (1985) prove that
if candidate B views the position chosen by candidate A as fixed, then candidate B will choose a
Pareto-optimal position. One implication of this is that, if candidate A happens to choose a position
that is not Parcto optimal, then candidate B will choose a position that is distant from that of
candidate A.

We shall prove, in distinction, that regardless of what position candidate A chooses, candidate
B will choose a position that is very close to A’s. This means that candidate B need not always
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Fig. 1. Possible indifference curves for a voter. Fig. 2. Preference for intermediate points.

1

choose a Pareto-optimal position, and that in a long sequence of elections all candidates may
choose positions that are not Paréto optimal w

.. Of-course, this result is well-known for deterministic voting if candidates cannot cross over each
rother’s position (cf. McKeivey 1986). However, no general proof is known to us for the case of
uncertainty. : . .

Our analysis further complements previous approaches in two ways. In contrast to many {(though
not all) models of candidate competition, our results about the challenger’s decision applies both
when candidates aim to maximize their plurality; and when they aim to maximize their probability
of ivictory. In general, the two are different objectives and it is not always true that maximizing
one entails maximizing the other (see Hinich and Ordeshook 1971).

Unlike most authors [including Calvert (1985), to whom our work is closest in spirit, although
independently derived], we show that our results hold not only in the neighborhood of the
equilibrium solution, but everywhere: the challenger will wish to locate next to the incumbent even
if the incumbent’s position is not optimal. Similarly we show that the incumbent will prefer to move
from any point that is not a Pareto optimal one to a point in its neighborhood that is Pareto
superiot.

2. THE OPTIMALITY OF A TWEEDLE.-DUM RESPONSE TO TWEEDLE-DEE

Let a voter support that candidate whose announced positions would, if enacted, bring the voter
the greatest utility. Fach voter’s preferences can be represented by a set of closed, convex,
indifference curves, such that a point along any ray is less desirable the further away it is from
the voter’s ideal point.f This implies that all points preferred to a specified point lie in a convex
set that includes the voter’s ideal point. The standard spatial model with circular indifference curves
is a special example of the preferences we consider.

We assume that two candidates run in each election. Except where otherwise noted, we shall
speak of a first-mover, the incumbent who chooses some position, 1, first, and cannot alter it after
discovering the position of the challenger. The second-mover, the challenger, chooses a position,
C, after having learned of the incumbent’s position. Neither candidate has perfect information
about the preferences of all the voters, This uncertainty can relate not only to the position of each
voter’s ideal point, but also to the form of the voter’s utility functions, or to the exact configuration

tEven though choice may be deterministic in nature, it may be that not all of the elements that enter the voter's decision
are known to the investigator. Tt may therefore be desirable to modsl voter choice as probabilistic in. nature (as
is commonly done).
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of their indifference curves about their ideal points. For example, in Fig. 1 a candidate may not
" know if the voter’s indifference curve through some point, say I, has the shape of curve Ivv, or
instead the shape of curve Iv'v’ ‘

We shall prove that, in this context of uncertainty, the challenger maximizes his chances of
victory by adopting a position that is only infinitesimally distant from the incumbent’s This holds
for any position, Pareto optimal or not, chosen by the incumbent.

Let the incambent choose a position at point I, and suppose that the challenger chooses a.
position at point C, which is a finite distance away. Let point C’ lie on the segment IC, as 111ustrated».
for two dimensions in Fig. .

Suppose that an arbitrary voter prefers point C over point I. Then by the convexity of the voter’s
preferences, it follows that he also prefers point €’ to point 1. That is, if a voter prefers the
challenger over the incumbent when the challenger is at point C, then the voter will also prefer
the challenger when the challenger is at a position C’ that lies between points C and I. This result
holds for gny set of convex indifference curves a voter may have: since the candidate does not know
for certain a voter’s preferences, the challenger will not decrease his chances of gaining that voter’s
support by moving from point C to point C” on the segment CL

The converse, however, does not hold. This is illustrated in Fig. 2 for a voter with an ideal point
at A, and whose indifference curve containing point I is curve Ivy’: since point € lies inside Ivv’
while point C lies outside curve Ivv’, the voter prefers C’ to I, but prefers I to C.

Look at some point C chosen by the challenger. Would the challenger be better off picking C',
on the segment CI, closer to I? For any voter there are two cases; either the voter prefers C to
I or he does not. If the voter does prefer C to I, then any point C’ on the segment CI will also
be preferred to I, so by shifting to C' the challenger does not lose this vote. If the voter does not
prefer C to I, then point C' may or may not be preferred to I, but the challenger can lose no votes
in moving to C (and may, in fact, gain votes if some voters prefer C’ t0.I but not C to I). We
can repeat this argument with the challenger now located at point C’. Since this argument holds
for any voter, and thus for all voters, it follows that for any position C that the challenger may
choose, he can increase his chances of victory by shifting from that position along the segment CI
in a direction closer to I. He therefore maximizes his chances of victory by choosing a position
that lies within an infinitesimal distance of the position of the incumbent.t Q.ED,

The result obtained above also applies if the challenger’s objective is to maximize his expected
plurality rather than his probability of victory. A challenger who chooses a position at some point
on the line segment CI instead of at point C may attract the support of an additional voter, but
can never lose the support of any voter by doing so. Thus, by moving from point C to a point
on the segment CI the challenger would increase his expected plurality.

Note that the argument about proximity applies not only for two dimensions, but for any
number of dimensions, as long as voters” indifference surfaces are convex. The implication of the
above discussion is that if the incumbent’s position is fixed and known, and the challenger is not
certain about the location of voters’ indifference curves, the challenger maximizes his probability
of winning by choosing a position as close as possible to that of the incumbent.}

A challenger may be unable to adopt a position close to the incumbent’s; the challenger, for
example, may have already committed himself otherwise in a primary race. In the absence of such

1The reader may be wondering whether this result proves too much. It seems to imply that the challenger can ahways
defeat the incumbent. But we have said neothing of the kind. Under uncertainty, given our convexity assumption,
the challenger’s probability of defeating the incumbent will zot be more than 0.5. This is because, in general, if motion
from the incumbent’s position in one direction gives the challenger victory, motion in the opposite direction would
tead to his defeat and vice versa. (This statement is true so long as the voters’ utility functions are differentiable,
unless the incumbent’s position happens to coincide with some voter's ideal point; and for other points, except for
a set of directions with Lebesgue measure zero.) Thus, very close to the imcumbent’s position, only about half of
the positions lead to victory for the challenger.

There iz a further point, moreover, namely that the incumbent, gua incumbent, seems to have an addxtzonai
advantage. It is not clear how this should be modelled, but what seems to happen is that a substantial number of
voters (the diehards) will support the incumbent no matter what position the chalienger takes. What this would mean
is that the challenger needs comsiderably more than 50% of the non-diehards to win the election.

1Of course, “as close as possible™ is not meaningful giver a continuum of possible points. We posit that, if the challenger
comes too close to the incumbent’s position, he will be accused of “me-too-ism.”™ Thas, he will ook for a position
just far enough to avoid this accusation, and no farther.
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Fig. 3. Choice of optimal direction for the challenger.

constraints, however, our results imply that the political system will not see dramatic changes in
policy. Though it is true that a challenger with perfect information could defeat the incumbent by
choosing a position somewhat distant from the incumbent’s the challenger will find it best to choose
a nearby position.t And this will hold true even if the preferences of voters are almost exactly
known; the slightest degree of uncertainty leads to Tweedle-dum—Tweedle-dee politics.

3. THE CHALLENGER’'S OPTIMAL DIRECTION
AND THE INCUMBENT’S OPTIMAL POSITION

A full solution of the model would determine the optimal positions for both candidates. Clearly,
the-optimal position for the candidate who must choose his position fitst is determined in part by
the position that the challenger will take in response. We are unable to find general solutions, but
an example can prove instructive. We shall consider the problem in two stages. First, we solve for
the position the challenger should adopt for any given position by the first candidate. Second, given
the response function of the challenger we determine the vote-maximizing position for the first
candidate.

Where exactly should the challenger place himself? Granted that he should be close to the
incumbent, we would like to find an optimal direction for him, that is the optimal slope for the
line IC. (The challenger would then place himself an infinitesimal distance away from point [ in
this direction.) A precise answer requires specifying the challenper’s uncertainty about the voter’s
preferences. For simplicity, consider circular indifference curves in two dimensions. The only
uncertainty concerns the location of the voters’ ideal points. If the expected location of a voter's
ideal point is at ¥, with coordinates (¥, ¥,), then we suppose that with some positive probability
the actual ideal point will have coordinates (¥, + R cos(f), ¥, + R sin(8)). The value of 8 can range
from 0 to 2= with a uniform density; Ris a posnwe random variable with a density function, f(R),
such that f(R) < 0. These assumptions imply that the variation in a voter’s ideal point is symmetric
about his expected ideal point, and that large changes are less likely than small changes.

Suppose the challenger chooses a position in the direction 6 from 1, that is, his position is given
by the coordinates (C,, C;) = (I, + 6 cos 8, I, + 3 sin 8) (see Fig. 3). Now a voter will prefer I over
C if the voter’s ideal point les on the same side (as 1) of the perpendicular bisector of IC, line I,
Define G{z) as

G(z)=%+sgn(z>rﬁ(|z|sec¢)d¢, | )
! G

TIf the challenger locates himself too far from point 1 he will be certain to lose—at least if T is a reasonably central
point in the space of voter ideal points.

>
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where
F(z) = j F)ds
and
1 ifz >0
sgnfz) =<0 ifz=0
WI ifz <0,

Thus, G(z) is the probability that ¥ actually lies to the left of a vertical line whose distance from
¥ is {z| units. Because of the circular symmetry of the distribution, it is also the probability that
v Hies on one side of a line whose perpendicular distance from ¥ is |z | units.

Suppose now that the vector ¥1 has magnitude p and direction {cos «, sin «), and that the vector
fC has direction (cos 8, sin 0). Then the perpendicular distance from 1 to /I’ is p cos(ax — 0), where
a positive value means that ¢ lies on the same side of /I’ as I, and a negative value that it lies on
the same side as C. The probability that the voter’s ideal point, v, will be on the same side of Il
as I is, as shown in Fig. 3, G(p cos(a — 8)).

We may label this as P,, the probability that the voter’s ideal point is at a location which makes
him prefer I to C. Consider, for illustration, the case of three voters. We wish to find the probability
that at least two of the three voters X, Y and Z will prefer I to C, or the probability that 1
defeats C. Assuming that the expected ideal points X, ¥ and Z are independently distributed,
we obtain

P(I wins) = P, Py + Py P, -+ Py Py — 2Py Py Py, )
where '
Py = Gy (pxcos(a — 8)), (3a)
Py = Gy(pycos(B — ) (3b)
and
Py = Gz(p c08(y ~ 0)). . (3¢c)

The variables o, § and y are the directions of the three vectors XI, YT and Z1, and py, py and p;
are the magnitudes of the vectors. The functions in equations (3a—) simply give the probability
that a voter prefers I to C,

Equations (2) and (3a-¢) can be used to find the optimal position of the challenger, and thus
also the probability that the first candidate will win for any position he may choose. We can solve
the first candidate’s maximization problem numerically; Fig. 4 presents some of the results.

Let the expected ideal points of the three voters be at (0, 0), (0, 1) and (1, 0). Let f (R) be normally
distributed with a mean of 0 and a standard deviation (SD) of 1 for each of the three voters. We
find that the incumbent maximizes his chances of victory by locating at the point (0.294, 0.294);
his. probability of victory then is 45% (note that in the absence of uncertainty about the voters’
preferences, a challenger could defeat him with probability 1). The arrows in the figure show the
optimal direction for the challenger’s position. For example, if the incumbent is at point A, then
the challenger maximizes his chances of victory by locating at a point near A, in the direction of
the vector AB.

Figure 5 shows solutions when the candidates are less uncertain about the preferences of one
of the voters. In particular, for the voter with an expected ideal point at (1, 0), let f(R) be the
normal distribution with a mean of 0 and an SD of 0.5 (in Fig. 4 we assumed the SD is 1) The
incumbent now maximizes his probability of victory by choosing the position at (0.5, 0.25), which
lies closer to the expected ideal point of the voter about whom there is least uncertainty. As we

would expect, the incumbent’s chances of winning, compared to the previous case, decline {to 33%
from 45%).
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Fig. 4. Optimal directions for the challenger.
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Fig. 5. Optimal directions, witk a slight change of variance.

4. THE PARETO OPTIMALITY OF THE INCUMBENT’'S LOCATION

The previous sections dealt with the chalienger’s decision. We now turn to the choice made by
the first-mover, to ask whether he will choose a Pareto-optimal position. In this model the concept
of Pareto optimality is not straightforward. A candidate does not know for certain the preferences
of voters, and therefore we cannot speak of a candidate who believes that all voters prefer one
position over another. We can, however, modify the definition of Pareto optimality to ask the
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following question. Wil the incumbent, who must announce his position before the challenger does,
choose point I’ over point T if he expects that with probability >0.5 each voter would prefer point
I' over point 1?7 Note that the conventional definition of Pareto optimality is identical to ours if
candidates have perfect information about voter’s preferences. Similarly, if we suppose that voters
have circular indifférence curves, and that the only uncertainty concerns the location of their ideal
points, our question is whether the incumbent will choose a Pareto-optimal pomt relatwe to the
candidates’ beliefs about the voters’ expécted ideal points. :

Consider an incumbent who is initially at point I. Let the challenger max1m1ze hzs own chances
of winning by choosing point C, at an infinitesimal distance from 1. Now suppose instead that the
incumbent chooses a Pareto-superior point, I, at an infinitesimal distance from point I and, in
response, the challenger now chooses point C’. Let the incumbent’s probability of winning when
he has position I, and the challenger has position C, be w(l, C). By assumption w(I’, C) > w(l, C),
but we have yet to prove that w(l’, C) > w(i, C).

If the probability distributions of the parameters describing the voters’ preferences are
differentiable, then so is the function w(l, C). We posit that the challenger chooses his position
optimally, which implies that

ow(i, ¢)
dc

= () (4)

and, therefore

di @i ac
aw(z c)
5
TR (5}

dw(i,c) 8w(,c) + dw(i, ) (Ei_c_)
di

Recall that, in general, I and C are vectors in multidimensional space. The expressions dw /¢ and
dw /81 should therefore be interpreted as gradient partial derivatives; dw/di is a gradient total
derivative and de/di is a Jacobian matrix. Because the r.hus. side of equation (§) is a positive for
movements toward Pareto-superior points w(l’, C’) > w(l, C), and the incumbent-improves his
chances of victory by moving to a Pareto-supérior point.

We note several implications of this solution:

I. The incumbent maximizes his chances of victory by choosing a position that is
Pareto optimal. The proof is by contradiction—if the incumbent chooses a
position that is not Pareto optimal, then we have just seen that he can improve
his chances of victory by moving away from that position. Moreover, since
associated with each position is a probability that the incumbent wins, there must
exist one or more points which maximize this probability. Any such point,
however, cannot be a point that is not Pareto optimal, and therefore must be a
point that is Pareto optimal. The resuit thus obtained is identical to that which
holds with probabilistic voting.

2. The result is stronger than that found in much of the literature. We do not merely
claim that the incumbent maximizes his chance of victory by choosing a
Pareto-optimal point. We state that for any position whatsoever, a movement
towards a Pareto-superior point in the neighborhood of the initial point will
increase the incumbent’s probability of viciory.

3. Note however, that we cannot make the statement that, regardless of what the
incumbent does, the challenger should choose a Pareto-optimal position. If the
incumbent happens to choose a position that is not Pareto optimal, then the
chalienger does best by adopting a position that is near the incumbent’s and which
therefore need not be Pareto optimal either. In contrast, under probabilistic voting
where voters are uncertain about the positions of the candidates the challenger
should choose a Pareto-optimal position regardless of what the incumbent does
{(see Coughlin and Palfrey 1985; Ordeshook 1971).
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Our conclusions held under the assumption that voters have perfect information about the
candidates, but that candidates do not have perfect information about the voters. Undoubtedly,
real elections see both types of uncertainty. We suspect, though cannot prove, that the
characteristics of an equilibrium will ie somewhere between those obtained in our model and those
obtained elsewhere.
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