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Research note 
The half-win set and the geometry of  spatial voting games* 
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Abstract. In the spatial context, when preferences can be characterized by circular indifference 
curves, we show that we can derive all the information about the majority preference relationship 
in a space from the win-set of any single point. Furthermore, the size of win sets increases for 
points along any ray outward from a central point in the space, the point that is the center of the 
yolk. To prove these results we employ a useful new geometric construction, the half-win set. The 
implication of these results is that embedding choice in a continuous n-dimensional space imposes 
great constraints on the nature of the majority-preference relationship. 

In finite vot ing games knowledge of the major i ty-preference relat ion between 

some given alternative,  ai, and each of  the remain ing  alternatives aj e A tells 

us no th ing  whatsoever abou t  the direct ionali ty of  major i ty  preference between 

pairs in which a i is not  included,  for example,  between a e and a k. It might 

seem that  imposing a spatial s tructure on alternatives would impose some con- 

straints on the overall  s t ructure of major i ty  preferences. But a remarkably  

strong result holds. If  we know the geometry of the win set of  any poin t  x, then,  

when preferences are characterized by circular indifference curves, we can 

reconstruct  the win-set of  any other  point  in the space; that  is, in the spatial 

context,  if we know a single win-set,  we can specify the complete structure of  

major i ty  preference for the space; we need not  know either the n u m b e r  of 

voters or the locat ion of  voters '  ideal points.  

D e f i n i t i o n  1: The win set  o f  y ,  denoted Win(y),  is the set of  al ternatives xeX 

such that  xPy. 

* The listing of authors is alphabetical. We are indebted to the staff of the Word Processing 
Center, School of Social Sciences, UCI, for typing earlier drafts of this manuscript, to Cheryl Lars- 
son for preparing the figures, and to Dorothy Gormick for bibliographic assistance. This research 
was partially supported by NSF Grant #SES 85-06397, Program in Management Sciences, awarded 
to the second-named author. 
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Figure 1. The petals of the win set and half-win set around y. 

Definition 2: The inverse win set of  y, denoted Win-l(y) ,  is the set of  alter- 

natives, zeZ, such that yPz. 
Definition 3: The half-win set of a point, y, is the set of  points which are ob- 

tained by uniformly reducing each ray in the win set by a factor of  1/2. 

Definition 3 ': The half-win set of  a point, y, is the locus of  intersections of  
rays f rom y perpendicular to the median lines in the space. 

We provide an illustration in two dimensions (see Figure 1). 
As far as we know, we are the first to identify the half-win set. It is a geome- 

tric construction with several nice properties. 

Theorem 1: When voters '  preferences are characterized by circular indiffe- 
rence curves, all the information about the majority-preference relationship in 
a space is contained within the (half-) win set of  any point; that is, given a win 

set of  any point, z, we can discover the win set of  all other points. 
Proof: Given Win(z), we may use the construction in Figure 2 to find whe- 

ther xPy or yPx. Take the half-win set of  any point, z, and the point which is 
the projection onto the xy line f rom a line parallel to the xy line through z at 
the point furthest out on z's half-win set on this parallel line. Since r is the pro- 
jection of the median voter onto the xy line; if  x is closer to r than is y, xPy; 

otherwise yPx. 
A similar construction enables us to identify, for every line through a point, 
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Figure 2. A construction to find whether xPy or yPx given knowledge of the half win set of z 
(shown shaded). 

the furthest point on that line that is preferred to our starting point, and thus 
to trace out the complete win set of  any point.l 

We can also relate the half-win set to another important geometric construc- 
tion, the yolk. 

Definition 4: The yolk is the smallest sphere that intersects all median hyper- 
planes (McKelvey, 1986; Ferejohn, McKelvey, and Packel, 1984). In two di- 
mensions the yolk is the smallest circle that intersects at median lines. 

The yolk provides an upper bound on the uncovered set (Miller, 1977). If  r 
is the radius of  the yolk, then no point further than 4r from the center of the 
yolk can be uncovered (McKelvey, 1986; Feld, Grofman,  and Miller, 1989; 
Feld et al., 1987). The size of  the yolk also sets constraints on the limits of  agen- 
da manipulation (Feld, Grofman,  and Miller, 1989; Miller, Grofman and Feld, 
1989). 

Theorem 2: The yolk is the minimum circle that encloses all the points in its 
center's half-win set. 

Proof: Follows straightforwardly from the half-win set definition, because 
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any circle that  cuts all median lines also encloses the half-win set of  the point 
at its center. 

Theorem 2 shows the center of  the yolk to be the point whose win set has 
the smallest radius. A natural question is how win sets vary in radius as a func- 

tion of distance f rom o, the center of  the yolk. 

Definition 5: The radius o f  a win set (or half-win set) of a point is the radius 
of  the smallest circle centered at the point that encloses the win set (half-win 
set) of  the point. 

Lemma 1: I f  x is directly between o (the center of  the yolk) and some point, 

y, then the radius of  the win set of  x is less than the radius of  the win set of  y. 
Proof'. There must be a median line, 1, that is furthest away from x; the dis- 

tance f rom x to 1 is the radius of  the half-win set of  x. The point o is closer 

to 1 than is x (else its half-win set would be larger than that  of  x); consequently, 
y is further f rom 1 than is x. The radius of the half-win set of  y must be at least 

its distance to 1; therefore, its half-win set is larger than that of  x. Therefore, 
of  course, its win set also will be larger than the win set o f  x. Q.E.D.  

Lemma 2: I f  y is directly between x and z, and if the radius of  the win set 

of  x is less than the radius of  the win set of  y, then the radius of  the win set 
of  z is greater than the radius of  the win set of  y. 

Proof: Essentially identical to that of  Lemma 1. 

Lemma 3: For any line in the space, there is a point on that line with mini- 

mum win set radius, and the win set radius of  all other points on that line mo- 
notonically increases in both directions f rom that minimum point. 

Proof'. Follows directly f rom the Lemma 2. 

Definition 6: The locus of  points that have win sets with an identical radius 
we shall call an iso-radius locus (or iso-rad, for short). 

Theorem 3: All iso-radius loci (iso-rads) are convex surfaces surrounding the 
center of  the yolk. 2 

Proof'. Suppose an iso-rad was not convex; then, there would be a straight 
line that included three separate points of  equal win set radius. This is contrary 
to Lemma 2. Q.E.D.  

Figure 3 shows a three-voter illustration of iso-rads. 
We believe that it is possible to prove an analogue to Theorem 3 for the "a rea  

of  a win set ."  Our conjecture is that " i so-a rea"  loci are convex surfaces sur- 
rounding the strong point (the Copeland winner). Grofman,  Owen, Noviello, 
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Figure 3. lso-rads around the center of  the yolk for a 3-voter example. 

and Glazer (1987) demonstrate a result close to this, but not quite as strong. 
The results we give here introduce a useful new geometric constraint, the 

half-win set, and show its relationship to one of  the most  important ideas in 
recent spatial social choice theory - the concept o f  the yolk (McKelvey, 1986; 
Feld et al., 1987). Our results demonstrate that the geometry of  spatial voting 
games imposes powerful constraints on the nature o f  majority preference. If 
we know the win set o f  any point, we can specify the win set o f  all points. If 
we know that two points,  x and y, lie along a line from the center o f  the yolk, 
if x is closer to the center of  the yolk,  then x must be majority preferred to more 
alternatives than is y. These results neatly complement the McKelvey result 
(McKelvey, 1986; Feld, Grofman,  and Miller, 1989; Feld et al., 1987) that for 
any alternatives t and u, if r is the radius of  the yolk, if  the distance of  u from 
the center of  the yolk is more than 2r greater than the distance o f  t from the 
center of  the yolk, then t P u. 

Our results hold for the special case of  Euclidean preferences (circular indif- 
ference curves), but a generalization of  the concept of  the yolk to the non- 
Euclidean case appears in Feld and Grofman (1987). Cox (1987) provides rela- 
ted results. Along the lines that these papers suggest, we believe that our results 
can be extended in a reasonably straightforward way to the non-Euclidean 
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case. But, in the non-Euclidean case, rather than being able completely to spe- 
cify win sets, knowledge of a single win set will impose outer and inner bounds 
on the location of the remaining win sets in the space. 

Notes 

1. In the special case where there is a Condorcet winner, that is, a point whose win set is of radius 
zero, Theorem 1 implies that, for any two points x and y, if y is further from the Condorcet 
winner than is x, xPy. Davis, DeGroot, and Hinich (1972) first proved this result. For a simple 
proof for Euclidean preferences, see Feld and Grofman (1987). 

2. Notice that some portion of iso-rads are always straight lines. 
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