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approach to frequency effects 
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1.​ Introduction 
 
The goal of this squib is to demonstrate how Emergent Phonology (henceforth EP; Archangeli 
and Pulleyblank 2015, 2017, 2022) can be augmented to model phonological frequency effects. 
We will demonstrate the efficacy of this method with an analysis of experimental data looking at 
the phonology of compound formation in Japanese. We will close by outlining some connections 
between this perspective and the Embodied Speech (ES) approach described in Gick and Mayer 
(in prep), and how EP can serve as a bridge between embodied approaches to speech and 
theoretical phonology. 
 
2.​ Background on Emergent Phonology 
 
While traditional generative phonology treats phonological knowledge as a distinct cognitive 
subsystem, EP starts from the assumption that it is not: rather, the kinds of phenomena we see in 
phonological systems can be explained on the basis of domain-general cognitive mechanisms 
such as memory, attention, sequence processing, sensitivity to frequency, the ability to 
generalize, and so on. EP is an attempt to formalize some of the consequences and predictions 
that arise from this perspective. It’s beyond the scope of this humble squib to describe EP in all 
its glory and to justify its formal properties, but we will quickly summarize the parts necessary to 
understand the analysis to come. 
 
In EP, the fundamental unit of organization is the morpheme. The role of the phonological 
grammar is to select from a set of surface morphs corresponding to that morpheme, called a 
morph set. In this respect, EP is a surface-oriented model of phonology: it does not posit abstract 
underlying forms, but rather maps directly from morphosyntactic representations to surface 
morphs. The choice between different morphs is governed by Well-Formedness Conditions 
(WFCs), which are analogous to constraints in Optimality Theory (OT; Prince & Smolensky 
1993/2004). WFCs can encode both paradigmatic (e.g. no round front vowels) and syntagmatic 
constraints (e.g. no sequences of a round vowel follow by a non-round vowel), and can make 
reference to both phonological and morphosyntactic properties. Archangeli and Pulleyblank 
suggest that WFCs are ultimately derived from the frequencies with which a language permits 
certain structures to occur (for a similar perspective, see Hayes & Wilson 2008). To the extent 
that both are evident in the phonological patterns of a language, WFCs could be the result of 
general articulatory or perceptual difficulty (in which case similar WFCs might emerge across 
languages), or the result of language-specific, idiosyncratic patterns. 
 

 



 

Let’s look at a quick example using the English regular plural, which has the morph set {z, s, 
ɨz}PL. The distribution of these morphs is as follows: [-ɨz] occurs following a strident, as in 
[kɪs-ɨz] “kisses”, [-s] occurs following a voiceless non-strident, as in [kæts] “cats”, and [-z] 
occurs elsewhere, as in [dɑgz] “dogs”. We’ll use the following WFCs to account for this 
distribution: 
 

●​ AɢʀᴇᴇVᴏɪᴄᴇ: obstruent clusters must agree in voicing. 
●​ *[strident][strident]: Don’t have adjacent strident sounds. 
●​ *[nonstrident]{ɨz}PL: Don’t use the {ɨz} morph of the plural after a non-strident sound. 

 
The first two WFCs are fairly typical for an analysis of this pattern, and represent general 
restrictions on surface structures in English (corresponding to markedness constraints in OT). 
These two WFCs get us most of the way to an analysis of this pattern, but do not impose a 
preference between [kæts] and *[kætɨz] nor [dɑgz] and *[dɑgɨz], since none of these forms 
violate either WFC. In OT, we rely on the notion of an underlying form to rule out forms like 
*[kætɨz] and *[dɑgɨz]: the underlying form of the plural morpheme is analyzed as /z/, and the 
realization of /z/ as [ɨz] violates the Dᴇᴘ constraint, which penalizes inserting material (in this 
case a vowel) that wasn’t present in the underlying form. Because inserting the vowel doesn’t 
eliminate any other constraint violations, we take the path of least resistance and use either the 
[s] or [z] morphs. However, because EP does not have underlying forms, we cannot make use of 
faithfulness constraints to rule out these candidates, and so we need a different strategy. 
 
The fact that *[kætɨz] and *[dɑgɨz] are ill-formed does not seem related to their phonological 
properties (e.g., there are similarly formed words like “lattice” or “togas”). Instead, we might 
treat the distribution of [ɨz] as derived from a morphophonological restriction: the [ɨz] form of 
the plural morpheme is only used following roots that end in a strident fricative. This restriction 
derives from the distribution of this plural morph, and is without exception in English. We can 
encode this as *[nonstrident]{ɨz}PL, which reads “don’t use the [ɨz] morph of the plural suffix 
following a non-strident sound.” 
 
We demonstrate that these three WFCs produce the correct results using an “assessment table”, 
which is the EP equivalent of OT’s tableaux. EP uses the same strict ranking evaluation process 
as OT to select the winning candidate (though in this particular case the ranking of the WFCs is 
unimportant). Below we show the assessments for the three forms of the plural suffix. 
 
 
 
 
 
 



 

Assessment for [dɑgz]DOG-PL 
Morph sets: {dɑg}DOG; {z, s, ɨz}PL 

 

{dɑg}DOG - {z, s, ɨz}PL *[strident][strident] AɢʀᴇᴇVᴏɪᴄᴇ  *[nonstrident]{ɨz}PL 

a. ☞ [dɑgz]    

b.     [dɑgs]  *!  

c.     [dɑgɨz]   *! 

 
Assessment for [kæts]CAT-PL 
Morph sets: {kæt}CAT; {z, s, ɨz}PL 

 

{kæt}CAT - {z, s, ɨz}PL *[strident][strident] AɢʀᴇᴇVᴏɪᴄᴇ  *[nonstrident]{ɨz}PL 

a.     [kætz]  *!  

b. ☞ [kæts]    

c.     [kætɨz]   *! 

 
Assessment for [kɪsɨz]KISS-PL 
Morph sets: {kɪs}KISS; {z, s, ɨz}PL 

 

{kɪs}KISS - {z, s, ɨz}PL *[strident][strident] AɢʀᴇᴇVᴏɪᴄᴇ  *[nonstrident]{ɨz}PL 

a.     [kɪsz] *! *  

b.     [kɪss] *!   

c. ☞ [kɪsɨz]    

 
 
3.​ Frequency effects in Japanese compound formation 
 
Frequency effects refer to cases where usage frequency influences phonological behavior (see 
Coetzee and Pater 2016 for an overview of some of these). Archangeli and Pulleyblank (2022, p. 
42-43) touch on frequency effects only briefly, making use of a WFC to enforce a limited 
frequency effect: 
 



 

*{morphβ}: Assign a violation to each morphβ which is not the most frequently occurring 
morph in its morph set.  

 
This WFC imposes a preference for only the most frequent form, but they note that a more 
realistic definition would be “given a choice between two morphs from the same morph set, 
choose the one that is most frequent” (p. 43). In other words, in the absence of other WFCs that 
guide morph selection, we should prefer to use morphs that are more frequent. In the remainder 
of the squib, we will present a preliminary attempt to integrate frequency effects into an EP 
analysis. The analysis will show that similar morphs associated with different morphemes might 
behave in dramatically different ways depending on frequency of use. 
 
The specific phenomenon we will look at is Voiced Velar Nasalization (VVN) in certain 
phonologically conservative dialects of Japanese. This feature is often associated with the (now 
largely extinct) Yamanote dialect in central Tokyo, but the data we will look at here, from Breiss 
et al. (in press), comes from the Tōhoku dialect, spoken in northern parts of Honshū, the main 
Japanese island. See references in Breiss et al. (2021a, 2021b, in press) for more detail. 
 
The broad pattern in VVN is that the surface sounds [g] and [ŋ] occur in complementary 
distribution. Word-initially, we get [g], as in [gama] ‘toad’, while word-medially, we get [ŋ], as 
in [kaŋami] ‘mirror’ (cf. [kagami] in dialects of Japanese without VVN). In these 
monomorphemic words, the sounds of interest are always realized as [g] and [ŋ] in these 
positions respectively. It is also possible to observe alternations between [g] and [ŋ] within the 
same morpheme by looking at compounds. For example, consider a pair of words like [doku] 
‘poison’ and [ga] ‘moth’, which can both serve as independent words. Combining them into the 
compound [doku-ga] ‘poison moth’ generates a word-internal [g], which is in principle subject to 
VVN. What is interesting about such compounds is that they display variability in whether VVN 
applies: ‘poison moth’ can be realized as either [doku-ga] or [doku-ŋa].  
 
This variability is conditioned by a number of different factors, including the frequencies of the 
individual morphemes in isolation as well as the frequency of the compounds as a whole (Breiss 
et al. 2021a, 2021b, in press). We will focus on one specific frequency effect here: the more 
frequently that N2 (the second morpheme in the compound) is used in isolation, the lower the 
rate of VVN. An example of this is the morpheme [ga] ‘fang’, which is segmentally identical to 
the morpheme [ga] ‘moth’, but cannot be used as an independent word *[ga]. Accordingly, 
though ‘fang’ is realized with a [g] when it is the first element in a compound, as in [ga-ʒo:] 
‘main castle (literally ‘fang castle’), it is always realized with [ŋ] when it occurs as the second 
element in a compound, as in [doku-ŋa] ‘poison fang’ (*[doku-ga]). This is an extreme example 
because the N2 in this compound has a standalone frequency of 0, and accordingly the 
compound has a VVN rate of 1. This effect also manifests more gradiently: as N2 standalone 
frequency goes up, the overall rate of VVN in its compound forms decreases. This has been 



 

shown to hold in both corpus data on existing forms (Breiss et al. 2021a, 2021b) as well as 
experimental data on novel compounds (Breiss et al. in press). 
 
4.​ Modeling VVN 
 
The question we’ll attempt to address here is why this relationship between frequency and VVN 
rates should exist: specifically, what exactly links the two? We will show that an EP model 
augmented with frequency information predicts this relationship straightforwardly. In the 
discussion, we will suggest that the properties of this model align with proposals in the 
movement literature on how frequency of execution influences movement selection. 
 
Our model will be set up as follows: we will assume that each N2 morpheme has two morphs in 
its associated morph set: one with an initial [g] and one with an initial [ŋ]. The outcome our 
model will try to predict is which morph gets selected in each case. We will use only two WFCs 
here: 
 

*[son]g[son]: Don’t have a [g] between two sonorants (Ito and Mester 2003). 
 
UsᴇFʀᴇǫᴜᴇɴᴛ: Penalize the selection of low-frequency morphs. 

 
The first WFC penalizes [g] in the contexts where we typically see [ŋ]. The second WFC 
imposes a pressure to use more frequent morphs (this is essentially the *{morphβ} WFC 
discussed above, but we have generalized it to be sensitive to relative differences in frequency 
and applied a more transparent name). We will assume that the number of violations of 
UsᴇFʀᴇǫᴜᴇɴᴛ is proportional to the frequency with which each morph is produced. Specifically, 
we define the violations of UsᴇFʀᴇǫᴜᴇɴᴛ to be the sum of the cost of each selected morph. We 
define cost as 
 

cost(x) = 1 / asinh(count(x)) 
 
where asinh is the inverse hyperbolic sine function and count(x) is the number of times the 
morph x occurs. We use asinh as opposed to the similar log function to avoid numerical issues 
when a morph has a count of 1, since asinh produces a small positive value for these values, 
while log produces 0. This function states that the cost of using a morph decreases as its 
frequency increases, with differences at lower frequencies producing larger changes than 
differences at higher frequencies. We will make the simplifying assumption that all ŋ-initial 
morphs have a frequency of 1, so that only the frequency of g-initial morphs affects model 
behavior. 
 



 

The data we will apply this model to come from Experiment 1 in Breiss et al. (in press). In this 
study, eight speakers of Tohoku Japanese were asked to read 261 compound forms with a 
g-initial N2, 81 of which were existing forms and 180 of which were novel compounds. We will 
ignore the attested forms for the moment, which display rather more complex frequency 
dependencies, and focus only on the novel forms. Participants’ responses were coded based on 
whether they produced the [g] or [ŋ] form of the N2 in each compound. The frequency for each 
N2 in isolation was estimated from the Balanced Corpus of Contemporary Written Japanese 
(Maekawa et al. 2014). 
 
Because we are dealing with data that displays gradience (variability in the rate of VVN across 
different compounds), we will employ a Maximum Entropy model (henceforth MaxEnt; also 
known as a log-linear model). It’s beyond the scope of this squib to provide a full definition of 
MaxEnt models, but they are commonly applied in phonological research as Maximum Entropy 
Optimality Theory models, which allow OT models to generate probability distributions over 
candidates rather than simply choosing the best candidate (see, e.g., Goldwater and Johnson 
2003, Hayes and Wilson 2008, Mayer et al. 2024). We present here the world’s first Maximum 
Entropy Emergent Phonology model, which has the delightful acronym MEEP. 
 
In a MEEP model, WFC rankings are replaced with numeric WFC weights, with larger weights 
corresponding to higher rankings (stronger WFCs). The WFC weights and the violations of each 
individual candidate are used to compute a probability distribution over candidates, rather than 
simply choosing a single winner. Each candidate output y is assigned a harmony score based on 
its WFC violations: 

, 𝐻(𝑦) =  
𝑖=1

𝐾

∑ 𝑤
𝑖
𝑊𝐹𝐶

𝑖
(𝑦)

where K is the number of WFCs, wi is the weight of the ith WFC, and WFCi(y) is the number of 
times candidate [y] violates the ith WFC. A candidate that violates no WFCs receives a harmony 
score of 0, and a more positive score indicates a less preferred candidate. 
 
The probability distribution over all possible candidates given a set of WFC weights is 
 

. 𝑃(𝑦|𝑤) = 𝑒−𝐻(𝑦)

𝑧 ∈ Ω
∑ 𝑒−𝐻(𝑧)

 

where Ω is the set of all candidates. In other words, the probability of a candidate is determined 
by its harmony (how many WFCs it violates) in proportion to the harmonies of other candidates. 
 



 

Crucially, the weights assigned to each WFC can be learned from a dataset of observed outcomes 
by algorithmically choosing weights that assign the dataset the highest probability, allowing us to 
link our model directly to the quantitative patterns in the data. The weights in the model below 
were fit to the responses in the experiment using the maxent.ot R library (Mayer et al. 2024).  
 
The weights of the two WFCs *[son]g[son] and UsᴇFʀᴇǫᴜᴇɴᴛ in the fitted model were 0 and 
1.14, respectively. The positive weight of UsᴇFʀᴇǫᴜᴇɴᴛ indicates that, as the cost of the g-initial 
morph goes up (i.e., as its stand-alone frequency goes down), the likelihood of VVN occurring 
goes up. Surprisingly, the weight of zero on *[+son]g[+son] indicates that knowing whether the 
resulting compound violates the WFC against word-medial [g] does not add any additional 
predictive power after N2 frequency is taken into account. This is consistent with the results 
from Breiss et al. (in press). 
 
Figure 1 shows the relationship between predicted VVN rates by the model and the VVN rates in 
the experimental data. While it is clear from this plot that there is much variability in the data 
that N2 frequency does not account for, the predictions of the model align fairly well in general 
with the observed VVN rates (r=0.76). 
 

 
Figure 1. Observed rates of VVN in novel compounds from the experimental study in Breiss et 
al. (in press) plotted against rates of VVN predicted by our simple model (r=0.76). 
 
The assessment tables below show the probability distributions over realizations of two 
compounds with the same N1: one with a high N2 frequency and one with a low N2 frequency. 
 



 

{te:}LOW - {ge:, ŋe:}ART Predicted 
Frequency 

Observed 
Frequency H *[son]g[son] 

w=0 
UseListed 

w=1.14 
a. te:ge: 0.76 0.79 0.1596 1 0.14 
b. te:ŋe: 0.24 0.21 1.29 0 1.13 
 
{te:}LOW - {gai, 
ŋai}APPEARANCE 

Predicted 
Frequency 

Observed 
Frequency H *[son]g[son] 

w=0 
UseListed 

w=1.14 
a. te:gai 0.5 0.43 1.29 1 1.13 
b. te:ŋai 0.5 0.57 1.29 0 1.13 
 
In the former case, the pressure to use the high frequency g-initial N2 morph decreases the 
probability of VVN. In the latter, the low frequency of the g-initial morph N2 means that the 
form with VVN is chosen more frequently. 
 
5.​ Discussion 
 
The simple study above has demonstrated, consistent with Breiss et al. (2021a, 2021b, in press) 
that frequency effects can go at least part of the way towards explaining variability in rates of 
VVN. This is true even with a relatively impoverished picture of morph frequency that does not 
include information about ŋ-initial morph frequencies (because ŋ-initial morphs occur only in 
compounds and the [g]~[ŋ] distinction is not represented orthographically, it is difficult to 
estimate their frequency). The model predicts that the frequency of the ŋ-initial morphs should 
also influence VVN rates, and integrating this information could improve its predictions. 
   
We noted earlier that the original analysis of VVN in Breiss et al. (2021a, 2021b, in press) found 
an additional effect of overall compound frequency: as whole compounds become more frequent, 
they are more likely to display VVN. This effect is not evident in novel compounds (since they 
have a frequency of 0), but appears in existing ones, both in corpus and experimental contexts. 
This indicates that usage frequencies at multiple levels of representation are relevant for 
understanding variability in VVN, and, accordingly, a phonological model must be able to refer 
to frequencies at multiple levels of structure. Archangeli & Pulleyblank (2022) anticipate this, 
proposing that “highly polymorphic forms may even be represented as part of a stem’s morph 
set” (p. 148). They use the example of the inflected verbal form “looked”, which could be 
generated by concatenating one morph each from the morph sets corresponding to LOOK and 
PAST, or by selecting the inflected form as a single stored, complex morph. The formal 
mechanisms of how stored structures at multiple levels interact in an EP model have not been 
fleshed out yet, but we suspect this approach holds much promise for modeling phenomena such 
as VVN. 
 
We want to close by highlighting some connections between EP and our ongoing work in an 
Embodied Speech framework (ES; Gick 2019, Gick and Mayer in prep), which approaches 



 

speech from the perspective of a physical movement system and attempts to understand how the 
properties of movement systems are reflected in the higher level properties of speech. Our 
general approach aligns quite directly with the broad goals of EP, which similarly attempts to 
understand language as the product of domain-general mechanisms. The correspondences 
between EP and ES go deeper than this, however.  
 
First, many researchers who study movement systems take a modular approach, suggesting that 
we develop a repertoire of stored movement routines of varying sizes (“chunks” or “motor 
programs”) that we draw on when we move, with selection between different chunks determined 
by task and environmental demands (e.g. Verwey 1996, Wolpert & Kawato 1998, d’Avella 2016, 
Schmidt et al. 2018). This corresponds with EP’s characterization of the phonological grammar 
as a mechanism for morph (chunk) selection. Second, the movement literature has also identified 
pressures to reuse more frequently executed chunks (e.g., Criscimagna-Hemminger and 
Shadmehr 2008, Loeb 2012, d’Avella 2016), which directly relates to the mechanism proposed 
here for encoding frequency effects.  
 
These correspondences highlight the usefulness of an embodied approach in understanding why 
phonological systems should behave as they do. They also demonstrate how EP provides a 
bridge between embodied approaches to speech on the one hand, and traditional phonological 
approaches on the other. We look forward to continuing to explore these connections. 
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