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Collaborators

This work is part of a larger NSF-funded project 
(#2214017) with Megha Sundara (UCLA)
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Why computational modeling?

Computational modeling and experimental work constitute a ‘virtuous cycle’
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● Computational models provide hypotheses to test
● Experimental work generates data to test hypotheses
● Models/hypotheses are refined based on how well they predict data Bruce 

Hayes



Why are computational models good at this?

Two reasons:

1. They require us to be completely explicit in the details of the model and 
therefore the details of the hypothesis

2. They allow us to link abstract theories to quantitative data
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What’s in store

I’ll present two studies that have the same general workflow

1. Deploy models that instantiate different hypotheses on experimental data

2. Evaluate which models best predict the data

3. Reflect on the properties of each model and (hopefully) learn something
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Infinite use of finite means
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Infinite use of finite sounds
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Phonotactics

Restrictions on how sounds can be sequenced into words

This is (mostly) learned and language-specific:

● /stik/ would be a fine English word, but not a good Spanish word
● /kwakwəkəʔwakw/ is a fine Kwak’wala word, but not a likely English word

Speakers have implicit knowledge of the phonotactic properties of their language
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Probing phonotactic knowledge

A typical source of data is acceptability judgments

● “On a scale of 1-7, how likely is ‘steek’ to be an English word?”
● “Would ‘steek’ be a better English word than ‘kwakwakuhwakw’?”
● “Could ‘steek’ be an English word?”

These judgments consistently display gradience (Chomsky and Halle 1965, 1968, Coleman and 
Pierrehumbert 1997, Scholes 1966, Bailey and Hahn 2001, Hayes and Wilson 2008, Daland et al. 2011, a.o.)
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What do we mean by gradience?

poik
lvag
kip
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What do we mean by gradience?

lvag ⪡ poik ⪡ kip
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Where does phonotactic knowledge come from?

Lexicon

*#sk
*#st
*wu
*ji
*ɲ#
…

Phonotactic knowledge

Generalization
based on 
frequency

E.g. Chomsky and Halle (1965, 1968), Bybee (1995, 2003), Pierrehumbert (2001), Bailey & Hahn (2001), Daland et al. (2011), a.o. 15
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A puzzle

We’ve long known infants are sensitive to phonotactics at 8 months               
(Jusczyk et al., 1994; Thiessen & Erickson, 2013; Sundara et al., 2022)

● Also at 5 months (Sundara & Breiss resubmitted)

Problem: 5-month-olds don’t “know” many words (~20; Bergelson & Swingley 2011)

Where does infants phonotactic knowledge come from?

● What’s in the lexicon?
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Hypotheses
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Prelexical hypothesis

Infants learn phonotactics 
from unparsed utterances
(e.g., Adriaans & Kager, 2010; Brent & Cartwright, 
1996; Daland & Pierrehumbert, 2011)

Strong lexical hypothesis

Infants learn phonotactics 
from words they have 
associated with referents
(Sundara & Breiss, resubmitted)

Protolexical hypothesis

Infants learn phonotactics 
from word forms that need not 
be associated with referents
(Jusczyk, Houston & Newsome, 1999; Ngon et al., 
2011; Kim & Sundara 2021)



Support for each perspective

Prelexical hypothesis

● Computationally feasible
● Infants attend to prosodic cues to utterance boundaries                         

(Christophe, Guasti, Nespor, Dupoux & van Ooyen, 1997; Johnson & Seidl, 2008)

Protolexical hypothesis

● Infants can segment speech by 5 months (Thiessen & Erickson, 2013; Johnson & Tyler, 2010)
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How do we test this?

Sundara & Breiss (resubmitted) tested 5-mo-olds’ ability to discriminate between word 
forms with different phonotactic probabilities

Stimuli were chosen based on adult norming data

● Total of 396 CVC word forms that adults were most sensitive to
● Varied in their unigram and bigram probabilities 

19



Phonotactic probabilities

We use the Phonotactic Probability Calculator to quantify phonotactic probability 
(Vitevitch & Luce 2004)

● Higher probability → more ‘typical’ word

Two types of probabilities:

● Unigram: reflects individual segment frequency, not considering order
● Bigram: reflects biphone frequency, sensitive to (local) ordering

Frequency is calculated from a training corpus of word types
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Infant experiments (Sundara & Breiss, resubmitted)

Monolingual English learning 5-month-olds

● > 90% exposure to English

Three experiments

● 2a: High vs. low unigram probability, low bigram probability (n=30)
● 2b: (Less) high vs. low unigram probability, low bigram probability (n=30)
● 2c: High vs. low unigram and bigram probability (n=38)
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Method

Experiments used Headturn Preference 
Procedure, following Juscyk et al. (1994)

Completely infant-controlled preference 
experiment

● 2 familiarization trials with music
● 12 test trials, low vs. high probability items
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Results

English learning 5-mo-olds are sensitive to 
segmental dependencies

Have both cues makes it easier for infants!

● And results in novelty preference            
(Hunter & Ames 1988)

We now have three stimulus sets that 5-mo-olds 
can distinguish
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Study 1: Phonotactics and word learning

Sundara, Breiss, Dickson & Mayer (submitted). Developmental Science.
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Modeling phonotactic learning

We want to test the three hypotheses about phonotactic learning

Approach:

1. Create a corpus embodying each hypothesis
2. Calculate unigram and bigram frequencies from corpus
3. Use frequencies to score experimental stimuli for unigram/bigram probability
4. Test if assigned probabilities distinguish high vs. low probability words
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1: Prelexical hypothesis

Infants learn phonotactics from unparsed utterances                                            
(e.g., Adriaans & Kager, 2010; Brent & Cartwright, 1996; Daland & Pierrehumbert, 2011)
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Corpus: 15,527 utterances (types) with no word boundaries from Pearl-Brent 
corpus of infant-directed speech (phonetically transcribed)

#noeatingdogfood#
#theresmorgansbook#

#ohnoonewantstogetdressed#



2: Strong lexical hypothesis

Infants learn phonotactics from words with associated referents                                            

At 5-months, infants associate some word forms with referents                      
(Bergelson & Swingley, 2012; Bortfeld et al., 2005)

● ear, eyes, face, foot, feet, hair, hand(s), leg(s), mouth, nose, apple, banana, 
bottle, cookie, juice, milk, spoon, yogurt (Bergelson & Swingley 2011), mommy, daddy 
(Bortfeld et al. 2005)
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Corpus: 18 stems; 22 words



The premise: The output of any unsupervised model of word segmentation, 
regardless of its accuracy, is one hypothesis about the infant proto-lexicon

3: Protolexical hypothesis
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Transitional 
probability

Adaptor 
Grammars

Bayesian 
PUDDLE

MaxEnt



Word segmentation

noitɪŋdɔgfud

29

Word 
Segmentation 

Model
no itɪŋ dɔg fud

(Brent & Siskind, 2001)



Comparing model properties
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Model Joint inference? Uses stored 
words for 
segmentation?

Phonotactics-driven 
segmentation

MaxEnt Words and phonotactics Yes Yes

Adaptor Grammars Words and sub/supra-word chunks Yes Yes?

PUDDLE Words and phonotactics Yes Yes

Bayesian Unigrams No Yes No

Bayesian Bigrams Words and preceding word context Yes No

Transitional probability No No Yes



3: Protolexical hypothesis

Infants learn phonotactics from word forms in the lexicon                               
(Thiessen, Kronstein & Huffnagle, 2013)
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Corpus: Output of 24 unsupervised models of word segmentation on Pearl-
Brent corpus of infant-directed speech
● 24 distinct hypotheses about word segmentation strategies

Mostly run using wordseg (Bernard et al. 2019)



Logistic regression model with k-fold cross-validation

High vs. low probability word ~ unigram_probability * bigram_probability
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Sanity Check

Adult lexicons & fully-segmented infant-directed speech provide sufficient 
information to distinguish lists distinguished by 5-month-olds. 33



Baselines

Both baselines provide sufficient information to distinguish list 2c!
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Prelexical and Strong Lexical Hypotheses

Prelexical hypothesis = Baseline
35



Transitional Probability-based models (Saksida et al. 2017)

Best TP-based model = Baseline
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MaxEnt models (Johnson, Pater, Staubs & Dupoux, 2015)

Two of three models 
distinguish all lists
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Adaptor grammar models (Johnson et al. 2006)

Four of six models distinguish 
all three lists
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Bayesian models

One of eight models 
distinguishes all three lists
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Phillips & Pearl (2015)

Goldwater et al. (2009)



PUDDLE (Monaghan and Christiansen 2010)

PUDDLE 
distinguishes all 
three lists
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Summary: Protolexical Hypothesis

11 of 24 models do no better than baselines

● All TP-based models (Saksida et al. 2017)

● Cognitively plausible Bayesian models (Phillips & Pearl 2015)

● One adaptor grammar model (Johnson, Griffiths & Goldwater 2006)

Only 8 of 24 distinguished items in all three lists

● Adaptor grammar models (4 of 6; Johnson, Griffiths & Goldwater 2006)
● MaxEnt models (2 of 3; Johnson, Pater, Staubs & Dupoux 2015)
● Bigram Bayesian learning model (Goldwater, Griffiths & Johnson 2009)

● PUDDLE (Monaghan & Christiansen 2010)
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Are successful models the best segmenters?
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Not always!



Comparing model properties

43

Model Joint inference? Uses stored 
words for 
segmentation?

Phonotactics-driven 
segmentation

MaxEnt Words and phonotactics Yes Yes

Adaptor Grammars Words and sub/supra-word chunks Yes Yes?

PUDDLE Words and phonotactics Yes Yes

Bayesian Unigrams No Yes No

Bayesian Bigrams Words and preceding word context Yes No

Transitional probability No No Yes



Evaluating mechanisms

5-month-olds’ sensitivity to phonotactic patterns is predicted by

● Prelexical hypothesis ✘
● Strong lexical hypothesis ✘
● Protolexical hypothesis (some proposals)

Successful protolexical models use joint learning, rely on stored words to bootstrap 
segmentation, and apply phonotactic restrictions to segmentation.

Caveat: All protolexical hypotheses are better at segmenting words than 5-month-olds!
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Future directions

The role of prosody:

● Infants are sensitive to large prosodic boundaries
● Is prosodic information within the utterance sufficient for phonotactic 

learning at 5-mo?

Work in progress with Will Chang and undergraduate RAs Alison Howland and 
Lauren Hsu
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Future directions

Comparison across languages

● Are the same segmentation strategies applicable in languages with 
different morphophonology?

● We’ve collected norming data on Spanish adults (Mayer et al. 2024)

● Spanish infant study to come

46



Roadmap
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Study 2: Comparing models of phonotactics

Mayer, Kondur & Sundara (resubmitted). The UCI Phonotactic Calculator: An 
online tool for computing phonotactic metrics. Behavior Research Methods.

Mayer & Sundara (in prep). Comparing segmental phonotactic models.
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Where does phonotactic knowledge come from?

Lexicon

*#sk
*#st
*wu
*ji
*ɲ#
…

Phonotactic knowledge

Generalization
based on 
frequency

E.g. Chomsky and Halle (1965, 1968), Bybee (1995, 2003), Pierrehumbert (2001), Bailey & Hahn (2001), Daland et al. (2011), a.o. 49
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Modeling phonotactic knowledge

Goal: we want a computational model that reflects human phonotactic knowledge

● Model should score words in a way that tracks with human behavior

All the models we consider treat phonotactics as probabilistic
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Output: How probable is a word w composed of the segments x1…xn?



What are we doing here?

We’ll compare two simple and popular models of phonotactic probability based on 
how well they predict results from acceptability judgment studies.

The models we’ll look at will include

● A venerable model (Markov 1913, Shannon 1948)

● A more recent proposal (Vitevitch and Luce 2004)
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A note on historical precedence
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Hayes, B. (2012). The role of computational 
modeling in the study of sound structure. Talk given 
at the 2012 Conference on Laboratory Phonology.



Quantifying phonotactic probability

Different models have been applied to quantify phonotactic probability

● N-gram models (Markov 1913, Shannon 1948, Vitevitch and Luce 2004, Albright 2009)

● Maximum Entropy models (Hayes & Wilson 2008, Dai, Mayer and Futrell 2024)

● Neural networks (Mirea and Bicknell 2019, Mayer and Nelson 2020)

And different representational assumptions

● Segmental (Shannon 1948, Vitevitch and Luce 2004)

● Subsegmental (everything else above)
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Why segmental n-grams?

They’re still widely used in research contexts

● Vitevitch and Luce (2004) has ~670 citations, ~160 from the last 4 years

They’re simple to implement and reason about

They get us reasonably far in phonotactics

● Bigram model on English onset acceptability judgment data  r = 0.877                                
(Daland et al. 2011, Dai, Mayer and Futrell 2023)
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Two prominent n-gram models

Researchers often use one of two n-gram models

1. Standard n-grams (Markov 1913, Shannon 1948)
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2. Phonotactic Probability Calculator        
(Vitevitch and Luce 2004)



The standard n-gram model

57

Unigram model:

Bigram model:



Estimating probabilities from data

We can estimate probabilities by counting occurrences in a corpus

58

Bigrams: Of the times I see y, in what 
proportion is the following segment x

Unigrams: Of the times I see a 
segment, in what proportion is it x



Padding

In standard n-gram models, boundary symbols are inserted at word edges

/skif/ → /#skif#/

Allows bigrams to refer to word boundaries

● P(s|#) – the probability that a word begins with s
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The Phonotactic Probability Calculator

where wi is the segment in the ith position in word w

Major difference 1: The PPC considers absolute position within the word

Major difference 2: The PPC combines probabilities using addition
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Estimating probabilities from data in the PPC

Major difference 3: The PPC uses joint probabilities
62

Bigrams: Of the times I see a pair of 
segments in positions i-1 and i, in 
what proportion is that pair yx

Unigrams: Of the times I see a segment in 
position i, in what proportion is it x



Other details about the  PPC

Major difference 4: The PPC does not use word boundary symbols

Position 1 always corresponds to word-initial position

Word-final position cannot be represented in the model

● Position 3 is word-final in [dɔg] but not in [itɪŋ]
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Summary of model differences
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Model Sensitive to 
absolute 
position?

Probability 
type

Word 
boundaries

Aggregation

n-gram No Conditional Yes Product

PPC Yes Joint No Sum



A comment on phonological theory

V&L describe their calculator as “relatively neutral with regard to linguistic theory”

Hayes (2012) notes that phonologists would it “extremely controversial”

Phonologies don’t count large numbers (McCarthy & Prince 1986)

● Ideas like “the 7th segment in the word” don’t seem to be helpful
● When counting happens, it’s usually related to prosodic structures, not segments

Many phonotactic restrictions are related to word-final position!
66
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PHONOTACTIC



Model Bake-Off: Round 1 (Mayer, Kondur and Sundara, resubmitted)

Let’s compare the standard n-gram and PPC models against eight publicly 
available phonotactic acceptability judgment datasets

Question: Which model predicts human responses the best?
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Datasets used in model comparison
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Paper Lang Subjects Stimuli Input Presentation

Albright & 
Hayes (2003)

English 20 58 3-5 segment, 
monosyllabic nonce verbs

Likert scale Auditory

Daland et al. 
(2011)

English 48 96 disyllabic nonce words 
differing in the initial onset 

Likert scale Orthographic

Needle et al. 
(2022)

English 1440 8400 nonce words, 
between 4-7 segments

Likert scale Orthographic

Scholes 
(1966)

English 33 62 monosyllabic nonce 
words differing in initial 
onset

Forced choice Orthographic

Hayes & 
White (2013)

English 29 160 nonce words, between 
2 and 7 segments

Magnitude 
estimation

Orthographic 
and auditory



Datasets
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Paper Lang Subjects Stimuli Input Presentation

Jarosz & 
Rysling 
(2017)

Polish 81 159 nonce words varying 
in onset properties

Likert scale Orthographic

Mayer & 
Sundara     
(in prep)

Spanish 168 575 CVC nonce words Magnitude 
estimation

Orthographic 
and auditory

Mayer         
(in press)

Turkish 90 596 CVCVC nonce words Magnitude 
estimation

Orthographic 
and auditory



Procedure for each dataset 

1. Train each of the models on a representative training dataset

2. Score each of the test stimuli using the trained models

3. Predict participant responses with a (linear/logistic) regression model

response ~ uni_prob * bi_prob

4. Compare models using AIC (Akaike 1974)
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AIC Rules of Thumb

AIC is an estimate of prediction accuracy on held-out data

● We interpret AIC in terms of differences between models
● Lower AIC indicates better fit to data

We’ll use a rule of thumb from Burnham and Anderson (2004)

● ΔAIC ≤ 2: no difference between models
● ΔAIC > 10: strong support for model with lower AIC
● Increasing ΔAIC indicates increasing certainty in better model
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Standard n-grams are better in every case

Δ2.69
*

Δ3742
***

Δ1939
***

Δ82.8
***

Δ6.45
**

Δ16.4
***

Δ659
***

Δ227
***



Model Bake-off 2: but why? (Mayer & Sundara in prep)

The two models differ on four dimensions
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Model Sensitive to 
absolute 
position?

Probability 
type

Word 
boundaries

Aggregation

n-gram No Conditional Yes Product

PPC Yes Joint No Sum

Which of these are most important for the performance of the model?



Bake-off 2 procedure

We implemented 16 different models for each combination of these parameters

● One model per possible combination of the four parameters

We fit each model to each dataset
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Result 1: Adding probabilities is almost always worse
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We’ll only consider the ‘product’ models going forward
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∏



Result 2: Word boundaries help
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Result 3: A weak preference for conditional probabilities
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Result 4: Relative vs. absolute varies across dataset
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Paper Aggregation Word 
Boundaries

Probability Type Position Type

Albright & Hayes (2003) Prod > Sum – – –

Daland et al. (2011) Prod > Sum No WB > WB – Absolute > Relative

Jarosz & Rysling (2017) Prod > Sum WB > No WB Conditional > Joint Relative > Absolute

Mayer (in press) Prod > Sum WB > No WB Conditional > Joint Relative > Absolute

Mayer & Sundara (in prep) Prod > Sum WB > No WB Conditional > Joint Relative > Absolute

Needle et al. (2022) Prod > Sum WB > No WB Conditional > Joint Relative > Absolute

Scholes (1966) Prod > Sum WB > No WB – –

Hayes & White (2013) Prod > Sum WB > No WB Conditional > Joint Absolute > Relative

Bake-off 2 Results



What makes a good phonotactic model?

Immediate practical consequence

PPC is less predictive of acceptability judgments than standard n-gram models 
across all the data sets we examined

Theoretical perspective

We can say something about desiderata for a phonotactic models
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Zooming in on model properties

1. Combining probabilities with addition is a bad idea
○ Probably reflects a bias towards shorter words                      

(e.g. Goldwater et al. 2009, Pearl et al. 2010, Daland 2015, Johnson et al. 2018)

2. Encoding word boundaries is important
○ Humans are sensitive to structure at word edges                  

(e.g. Monaghan and Christiansen 2010, Johnson et al. 2015, Sundara, Breiss, 
Dickson and Mayer under review)
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Zooming in on model properties

3. Conditional probabilities > joint probabilities
○ The two are highly correlated (Gaygen 1997, Vitevitch and Luce 1999)

○ Only conditional probabilities get us a valid probability distribution

4. Absolute vs. relative position varied across datasets
○ General preference for relative
○ Likely related to specific data sets used

i. bigrams can’t ‘see’ full #CC onsets in Daland et al. (2011)
ii. Positional model can track (some of) this information
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More support for relative position

The mean length of an English word is about 6 segments (Marian et al. 2012)

● Lots of data for positions 1, 2, 3, …
● Less data for positions 10, 11, 12..

We run into data scarcity issues as words get longer

● Words in these 8 studies are mostly short, often the same length/template
● Needle et al. (2022) has the greatest variability in word length
● It is also one of the datasets that most strongly favors relative position models
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A plot from Hayes (2012)
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Limitations and next steps

Phonotactics is relevant to other downstream tasks:

● Speech perception (e.g. Norris & McQueen 2008, Steffman & Sundara 2023)

● Speech production (e.g. Edwards et al. 2004)

● Word segmentation and learning (e.g. Mattys et al. 1999, Vitevitch and Luce 1999)

● Speech errors (e.g. Taylor & Houghton 2005, Goldrick & Larson 2008)

Are the best metrics for acceptability judgments the best in these domains?         
(cf. Castro and Vitevitch 2023)
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What have we learned?

These two studies focused on separate aspects of phonotactic learning

● But both take the same broad approach

Comparing the predictions of computational models against experimental data 
allows us to make some claims about how phonotactic learning must progress.
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Study 1: Infant learning of phonotactics

Modeling work supports the protolexical hypothesis: infants learn phonotactic 
generalizations from hypothesized word forms

Word segmentation models best support infant phonotactic generalizations when:

1. They employ joint learning (words + something else)
2. They use previously identified words to bootstrap segmentation
3. They evaluate possible new words based on identified phonotactic restrictions
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Study 2: Comparing phonotactic models

The standard n-gram model most consistently predicts experimental responses

Caveat: n-grams are an insufficient (but useful!) model of phonotactics

● More complex models will likely need to preserve these useful properties
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Closing the loop

Broader goal: “Close the loop” between computational and experimental work
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Sharing is caring

“No data ever lose their usefulness” 

- Hayes (2012)

We were able to undertake both of these studies because researchers made their 
code and datasets publicly available.

Our code and data are available for reference and reuse (see papers)

● I encourage you all to do the same!
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The UCI Phonotactic Calculator (Mayer, Kondur and Sundara, resubmitted)

https://phonotactics.socsci.uci.edu/

https://phonotactics.socsci.uci.edu/


Thank you!
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The UCI Phonotactic Calculator (Mayer, Kondur and Sundara, resubmitted)

The UCIPC is a website for computing a suite of phonotactic metrics

● Can be run using 10 built-in training sets across 7 languages
● Users can specify their own training data
● Trained models are used to score user-provided test data

The UCIPC computes

● Standard unigram and bigram probabilities
● PPC unigram and bigram probabilities
● Token-weighted and smoothed variants of each
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