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About me
● Computational [phonologist and phonetician]
● Training in linguistics and computer science 

from the University of British Columbia
● Worked as a software developer on big 

budget video games for about 4 years
● Did my PhD in linguistics at UCLA
● Assistant prof in UCI Language Science
● I study speech!

○ Phonotactic learning
○ Speech biomechanics and motor control
○ Variability in phonological patterns
○ The Uyghur language
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Collaborators

This work is part of a larger NSF-funded project 
(#2214017) with Megha Sundara (UCLA)
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Goals of this talk

1. I want to teach you something about phonotactics!

2. I want to illustrate a general approach to theory comparison that takes 
computational models seriously as formal instantiations of linguistic theory
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Roadmap

1. Background on phonotactics
2. Study 1: Theory comparison using phonotactic models
3. Study 2: Infant acquisition of phonotactics
4. Discussion and take-aways
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Phonology

Phonology studies how sounds pattern within and across languages

Phonologists treat sound systems as formal symbolic systems
● Languages have a finite set of sounds from which words are formed

‘bash’ [bæʃ] ‘cache’ [kæʃ]

We’ll focus on a subdomain of phonology called phonotactics
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Infinite use of finite means
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Hugo

ran
fast

slow

and

Hugo ran

Hugo ran fast

Hugo ran slow

Hugo ran and ran and ran and ran  

Hugo ran fast and Hugo ran slo   

Slow and fast

Hugo ran 

*Fast ran and Hugo

*And and slow Hugo and

*Slow slow and Hugo fast

*Ran ran and slow 

*Fast slow and 



Infinite use of finite sounds
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t
æ

k

[kæt] ‘cat’

[æt] ‘at’ [æk] ‘ack’

[tæk] ‘tack’

[ækt] ‘act’

*[tkæ] ‘tkah’

*[ktæ] ‘ktah’
*[ætk] ‘atck’

*[kæ] ‘kah’

*[tæ] ‘tah’*[kt] ‘kt’

*[tk] ‘tck’



Phonotactics

Restrictions on how sounds can be sequenced into words

This is (mostly) learned and language-specific:

● ‘steek’ would be a fine English word, but not a good Spanish word
● 'kwakwakuhwakw’ is a fine Kwak’wala word, but not a likely English word

Speakers have implicit knowledge of the phonotactic properties of their language
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Probing phonotactic knowledge

A typical source of data is acceptability judgments

● “On a scale of 1-7, how likely is ‘steek’ to be an English word?”
● “Would ‘steek’ be a better English word than ‘kwakwakuhwakw’?”
● “Could ‘steek’ be an English word?”

These judgments consistently display gradience (Chomsky and Halle 1965, 1968, Coleman and 
Pierrehumbert 1997, Scholes 1966, Bailey and Hahn 2001, Hayes and Wilson 2008, Daland et al. 2011, a.o.)
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What do we mean by gradience?

poik
lvag
kip
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What do we mean by gradience?

lvag ⪡ poik ⪡ kip
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Where does phonotactic knowledge come from?

Lexicon

no word-initial s{t, p, k}

don’t end a word with ñ

…

Phonotactic knowledge

Generalization
based on 
frequency

E.g. Chomsky and Halle (1965, 1968), Bybee (1995, 2003), Pierrehumbert (2001), Bailey & Hahn (2001), Daland et al. (2011), a.o. 14
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Study 1: Theory comparison using phonotactic models

Mayer, Kondur & Sundara (accepted). The UCI Phonotactic Calculator: An online 
tool for computing phonotactic metrics. Behavior Research Methods.

Mayer, Wagner & Sundara (in prep). Comparing segmental phonotactic models.
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Austin WagnerArya Kondur
Megha Sundara



Learning phonotactic generalizations

Broad question: How is phonotactic knowledge operationalized?
● What dependencies and frequencies in the lexicon are we sensitive to?

We’ll compare two computational models of phonotactic probability
● Theoretical purpose: what does this tell us about linguistic theory?
● Practical purpose: which tool is the most appropriate?
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Modeling phonotactic knowledge

Goal: we want a computational model that tracks with human behavior

All the models we consider treat phonotactics as probabilistic
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Output: How probable is a word w composed of the segments x1…xn?

Linking hypothesis: Phonotactic probability correlates with acceptability ratings



Other applications of phonotactic models

Phonotactic probability is relevant in many speech domains:

● Speech perception (e.g. Norris & McQueen 2008, Steffman & Sundara 2023)

● Speech production (e.g. Edwards et al. 2004)

● Word segmentation and learning (e.g. Mattys et al. 1999, Vitevitch and Luce 1999)

● Speech errors (e.g. Taylor & Houghton 2005, Goldrick & Larson 2008)

● Sentence formation (e.g. Hayes and Breiss 2020)

We often use phonotactic probabilities to model phenomena in these domains.
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Two prominent n-gram models

We’ll compare two widely used n-gram models of 
phonotactics based on their ability to predict 
acceptability judgments

1. Standard n-grams (Markov 1913, Shannon 1948)
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2. Vitevitch & Luce’s Phonotactic Probability 
Calculator (Vitevitch and Luce 2004)



Models as instantiations of theory

V&L describe their calculator as “relatively neutral with regard to linguistic theory”

Hayes (2012) claims that linguists would find it “extremely controversial”

● The standard n-gram model is less controversial from this perspective

These models are formal instantiations of different theoretical assumptions

● Our main goal is to assess the validity of these assumptions
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Why these models?

n-gram models are inadequate models of phonotactics, but still worth considering

Often ‘good enough’ for a quick and dirty quantification of phonotactics

● Bigram model on English acceptability judgment data  r = 0.877                                
(Daland et al. 2011, Dai, Mayer and Futrell 2023)

n-gram models are still widely used in research contexts

● Vitevitch and Luce (2004) has ~670 citations, ~160 from the last 4 years
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A note on historical precedence
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Hayes, B. (2012). The role of computational 
modeling in the study of sound structure. Talk given 
at the 2012 Conference on Laboratory Phonology.



The standard unigram model
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s t i k

𝑃𝑃1 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 𝑃𝑃(𝑠𝑠) 𝑃𝑃(𝑡𝑡)𝑃𝑃(𝑖𝑖)𝑃𝑃(𝑘𝑘)

𝑃𝑃1 𝑤𝑤 = 𝑥𝑥1 … 𝑥𝑥𝑛𝑛 ≈�
𝑖𝑖=1

𝑛𝑛

𝑃𝑃(𝑥𝑥𝑖𝑖)



The standard bigram model
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s t i k# #

𝑃𝑃2(#𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠#) = 𝑃𝑃(𝑠𝑠|#) 𝑃𝑃(𝑡𝑡|𝑠𝑠) 𝑃𝑃(𝑖𝑖|𝑡𝑡) 𝑃𝑃(𝑘𝑘|𝑖𝑖) 𝑃𝑃(#|𝑘𝑘)

𝑃𝑃2 𝑤𝑤 = 𝑥𝑥1 … 𝑥𝑥𝑛𝑛 ≈�
𝑖𝑖=2

𝑛𝑛

𝑃𝑃(𝑥𝑥𝑖𝑖|𝑥𝑥𝑖𝑖−1)



Estimating probabilities from data

Add-one smoothed conditional probabilities from corpus counts

26

𝑃𝑃 𝑥𝑥 =
𝐶𝐶 𝑥𝑥 + 1
𝑁𝑁 + 𝑆𝑆

𝑃𝑃 𝑦𝑦|𝑥𝑥 =
𝐶𝐶 𝑥𝑥𝑥𝑥 + 1
𝐶𝐶 𝑥𝑥 + 𝑆𝑆

𝑪𝑪: Count function
𝑵𝑵: Number of sound tokens
𝑺𝑺: Number of sound types



The V&L unigram model
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s t i k

𝑃𝑃1 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 𝑃𝑃(𝑤𝑤1 = 𝑠𝑠)+ 𝑃𝑃(𝑤𝑤2 = 𝑡𝑡)+ 𝑃𝑃(𝑤𝑤3 = 𝑡𝑡)+ 𝑃𝑃(𝑤𝑤4 = 𝑘𝑘) + 1

1 2 3 4

𝑃𝑃1 𝑤𝑤 = 𝑥𝑥1 … 𝑥𝑥𝑛𝑛 ≈ 1 + �
𝑖𝑖=1

𝑛𝑛

𝑃𝑃(𝑤𝑤𝑖𝑖 = 𝑥𝑥𝑖𝑖)



The V&L bigram model
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s t i k

𝑃𝑃2(#𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠#) = 𝑃𝑃(𝑤𝑤1 = 𝑠𝑠,𝑤𝑤2 = 𝑡𝑡) + 𝑃𝑃(𝑤𝑤2 = 𝑡𝑡,𝑤𝑤3 = 𝑖𝑖) + 𝑃𝑃(𝑤𝑤3 = 𝑖𝑖,𝑤𝑤4 = 𝑘𝑘) + 1

1 2 3 4

𝑃𝑃1 𝑤𝑤 = 𝑥𝑥1 … 𝑥𝑥𝑛𝑛 ≈ 1 + �
𝑖𝑖=2

𝑛𝑛

𝑃𝑃(𝑤𝑤𝑖𝑖−1 = 𝑥𝑥𝑖𝑖−1,𝑤𝑤𝑖𝑖 = 𝑥𝑥𝑖𝑖)



Estimating probabilities from data in V&L
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Token-weighted, joint probabilities from corpus counts

𝑃𝑃1 𝑤𝑤𝑖𝑖 = 𝑥𝑥 =
𝐶𝐶 𝑤𝑤𝑖𝑖 = 𝑥𝑥
𝐶𝐶(𝑤𝑤𝑖𝑖)

𝑃𝑃2 𝑦𝑦|𝑥𝑥 =
𝐶𝐶 𝑤𝑤𝑖𝑖−1 = 𝑥𝑥,𝑤𝑤𝑖𝑖 = 𝑦𝑦

𝐶𝐶 𝑤𝑤𝑖𝑖−1𝑤𝑤𝑖𝑖

𝑪𝑪 is the token-weighted count



Type-weighting vs. Token-weighting

Standard n-gram model is type-weighted
● Each occurrence of unigram/bigram contributes a count of 1

V&L model is token-weighted
● Unigrams/bigrams that occur in more frequent words count for more
● Count is equal to log frequency of word in corpus
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Type-weighting vs. Token-weighting

Corpus:
kæt: 1000

tæk: 50

Type weighting: 𝐶𝐶 æ = 1 + 1 = 2

Token weighting: 𝐶𝐶(æ) = ln(1000) + ln(50) = 10.82
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Summary of major model differences
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Model Sensitive to 
absolute 
position?

Probability 
type

Word 
boundary 
symbols?

Aggregation Frequency 
Weighting

n-gram No Conditional Yes Product Type

V&L Yes Joint No Sum Token



Mathematical considerations

The V&L metric does not 
define valid probabilities

Tying probabilities to absolute 
position leads to data 
scarcity issues

33
Marian et al. 2012



Linguistic considerations: translation invariance

Phonotactics is translation invariant (McCarthy & Prince 1986, Alderete et al. 2012, Hayes 2012)

● Linguistic models employ ‘constraints’ against certain structures

● Doesn’t matter where in the word a structure is located

● Ideas like “the 7th sound in a word” don’t seem to be necessary

V&L is not translation invariant; standard n-grams are
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Linguistic considerations: word-final restrictions

Phonotactic restrictions related to word-final position are very common!
● Dutch words cannot end in [d], [g], [b], …
● Hawaiian words cannot end in a consonant

V&L can’t refer to word-final position

● The index that corresponds to word-final position depends on length of word

The standard n-gram model can
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Linguistic considerations: word length

Phonological models often include a preference for shorter words
(e.g. Prince & Smolensky 1993, Goldwater et al. 2009, Pearl et al. 2010, Daland 2015, Johnson et al. 2018)

The use of addition in V&L imposes a preference for longer words

● Each additional sound raises the score

Standard n-grams prefer shorter words because they multiply probabilities

36



Linguistic considerations: type vs. token weighting

Phonotactic generalizations are usually modeled based on type frequency                                   
(e.g. Chomsky and Halle 1965, 1968, Pierrehumbert 2001, Bailey & Hahn 2001, Edwards et al. 2004, Mayer 2020)

V&L uses token frequencies

We train the standard n-gram model on type frequencies
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Model Bake-Off: Round 1 (Mayer, Kondur and Sundara, accepted)

Let’s compare the standard n-gram and V&L models against eight publicly 
available phonotactic acceptability judgment datasets

Question: Which model predicts human responses the best?
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Datasets used in model comparison
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Paper Lang Subjects Stimuli Input Presentation

Albright & 
Hayes (2003)

English 20 58 3-5 segment, 
monosyllabic nonce verbs

Likert scale Auditory

Daland et al. 
(2011)

English 48 96 disyllabic nonce words 
differing in the initial onset 

Likert scale Orthographic

Needle et al. 
(2022)

English 1440 8400 nonce words, 
between 4-7 segments

Likert scale Orthographic

Scholes 
(1966)

English 33 62 monosyllabic nonce 
words differing in initial 
onset

Forced choice Orthographic

Hayes & 
White (2013)

English 29 160 nonce words, between 
2 and 7 segments

Magnitude 
estimation

Orthographic 
and auditory



Datasets
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Paper Lang Subjects Stimuli Input Presentation

Jarosz & 
Rysling 
(2017)

Polish 81 159 nonce words varying 
in onset properties

Likert scale Orthographic

Mayer & 
Sundara     
(in prep)

Spanish 168 575 CVCV nonce words Magnitude 
estimation

Orthographic 
and auditory

Mayer         
(in press)

Turkish 90 596 CVCVC nonce words Magnitude 
estimation

Orthographic 
and auditory



Procedure for each dataset 

1. Train each of the models on a representative training dataset

2. Use the trained models to score the stimuli from the study

3. Predict participant responses with a (linear/logistic) regression model

response ~ uni_prob * bi_prob

4. Compare models using the Akaike Information Criterion (AIC, Akaike 1974)

41



AIC Rules of Thumb

AIC is an estimate of prediction accuracy on held-out data

● We interpret AIC in terms of differences between models
● Lower AIC indicates better fit to data

We’ll use a rule of thumb from Burnham and Anderson (2004)

● ΔAIC ≤ 2: no difference between models
● ΔAIC > 10: strong support for model with lower AIC
● Increasing ΔAIC indicates increasing certainty in better model
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Standard n-grams are better in every case

Δ2.69
*

Δ3742
***

Δ1939
***

Δ82.8
***

Δ6.45
**

Δ16.4
***

Δ659
***

Δ227
***

B
etter m

odel fit



Model Bake-Off 2: but why? (Mayer, Wagner & Sundara in prep)

The two models differ on five dimensions
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Which of these are most important for the performance of the model?

Model Sensitive to 
absolute 
position?

Probability 
type

Final word 
boundary?

Aggregation Frequency 
Weighting

n-gram No Conditional Yes Product Type

V&L Yes Joint No Sum Token



Token-weighting

Mayer, Kondur and Sundara (accepted) compared type- and token-weighted 
versions of both models

Token weighting was almost always equal to or worse than type weighting
● One dataset was fit better by token frequencies (Hayes and White 2013)

We’ll only consider type-weighted models here
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Model Bake-Off 2: but why? (Mayer, Wagner & Sundara in prep)

We’ll consider these four dimensions
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Model Sensitive to 
absolute 
position?

Probability 
type

Word 
boundaries

Aggregation

n-gram No Conditional Yes Product

V&L Yes Joint No Sum

Which of these are most important for the performance of the model?



Bake-Off 2 procedure

We implemented 16 different models 
● One model per possible combination of the four parameters

{joint, conditional} × {relative, absolute} × {sum, product} × {no #, yes #}

We fit each model to each dataset

● We’ll compare models based on their values for each parameter
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Result 1: Adding probabilities is worse
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B
etter m

odel fit

Each data point is an individual model



We’ll only consider the ‘product’ models going forward
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∏



Result 2: Strong preference for word boundaries
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B
etter m

odel fit

Each data point is an individual model



Result 3: General preference for conditional probabilities
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B
etter m

odel fit

Each data point is an individual model



Result 4: General preference for relative position
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B
etter m

odel fit

Each data point is an individual model
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Paper Aggregation Word 
Boundaries

Probability Type Position Type

Albright & Hayes (2003) Prod > Sum – – –

Daland et al. (2011) Prod > Sum No WB > WB – Absolute > Relative

Jarosz & Rysling (2017) Prod > Sum WB > No WB Conditional > Joint Relative > Absolute

Mayer (in press) Prod > Sum WB > No WB Conditional > Joint Relative > Absolute

Mayer & Sundara (in prep) Prod > Sum WB > No WB Conditional > Joint Relative > Absolute

Needle et al. (2022) Prod > Sum WB > No WB Conditional > Joint Relative > Absolute

Scholes (1966) Prod > Sum WB > No WB – –

Hayes & White (2013) Prod > Sum WB > No WB Conditional > Joint Absolute > Relative

Bake-Off 2 Results
10 ≥ ΔAIC > 2 ΔAIC > 10



What makes a good phonotactic model?

Immediate practical consequence

V&L is worse than standard n-gram models across all the data sets we examined

● All five dimensions we compared favor standard n-grams

Theoretical perspective

Standard n-grams align more closely with linguistic theory than V&L

● These results are a validation of these theoretical perspectives
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Relating model properties and linguistic theory

1. Combining probabilities with addition is a bad idea
○ Probably reflects a bias towards shorter words                      

(e.g. Goldwater et al. 2009, Pearl et al. 2010, Daland 2015, Johnson et al. 2018)

2. Encoding word-final boundaries is important
○ Humans are sensitive to structure at word edges!                  

(e.g. Monaghan and Christiansen 2010, Johnson et al. 2015, Sundara, Breiss, 
Dickson and Mayer under review)

55



Zooming in on model properties

3. Conditional probabilities > joint probabilities
○ The two are highly correlated (Gaygen 1997, Vitevitch and Luce 1999)

○ Only conditional probabilities get us a valid probability distribution

4. Relative > absolute
○ Phonotactics is translation invariant (McCarthy & Prince 1986, Alderete et al. 2012, Hayes 2012)

○ Differences between datasets likely related to specific stimuli used
i. bigrams can’t ‘see’ certain longer dependencies
ii. Positional model can track (some of) this information
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Roadmap

1. Background on phonotactics
2. Study 1: Theory comparison using phonotactic models
3. Study 2: Infant acquisition of phonotactics
4. Discussion and take-aways
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Study 2: Phonotactics and word learning

Sundara, Breiss, Dickson & Mayer (submitted). Developmental Science.
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Megha Sundara (UCLA)
Canaan Breiss (USC) Niels Dickson (UCI)



A puzzle

We’ve long known infants are sensitive to phonotactics at 8 months               
(Jusczyk et al., 1994; Thiessen & Erickson, 2013; Sundara et al., 2022)

● Also at 5 months (Sundara & Breiss resubmitted)

Problem: 5-month-olds don’t “know” many words (~20; Bergelson & Swingley 2011)

Where does infants’ phonotactic knowledge come from?

● What’s in the lexicon?
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Hypothesis 1: The prelexical hypothesis

Infants learn phonotactic generalization from unsegmented speech 
(e.g., Adriaans & Kager, 2010; Brent & Cartwright, 1996; Daland & Pierrehumbert, 2011)
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no eating dog food!● Infants access word 
boundary information from 
utterance edges    
(Christophe et al. 1997; Johnson & 
Seidl, 2008)

● Computationally simple



Hypothesis 2: The strong lexical hypothesis

Infants learn phonotactic generalization from words associated with referents 
(Sundara and Breiss resubmitted)
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no eating dog food!● Aligns with our 
characterization of adult 
phonotactic generalization



Hypothesis 3: The protolexical hypothesis

Infants learn phonotactics from word forms that need not be associated with 
referents (Jusczyk, Houston & Newsome, 1999; Ngon et al., 2011; Kim & Sundara 2021)
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no eating dog food!• Infants can segment 
speech by 5 months 
(Thiessen & Erickson, 2013; 
Johnson & Tyler, 2010)



How do we test this?

Sundara & Breiss (resubmitted) tested 5-mo-olds’ ability to discriminate between word 
forms with different phonotactic probabilities

Stimuli were chosen based on adult norming data

● Total of 396 fake words with Consonant-Vowel-Consonant structure
● Varied in their unigram and bigram probabilities (from V&L model)
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Infant experiments (Sundara & Breiss, resubmitted)

Monolingual English learning 5-month-olds

● > 90% exposure to English

Three experiments

● 2a: High vs. low unigram probability, low bigram probability (n=30)
● 2b: (Less) high vs. low unigram probability, low bigram probability (n=30)
● 2c: High vs. low unigram and bigram probability (n=38)
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Method

Experiments used Headturn Preference 
Procedure, following Juscyk et al. (1994)

Completely infant-controlled preference 
experiment

● 2 familiarization trials with music
● 12 test trials, low vs. high probability items
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Results

English learning 5-mo-olds are sensitive to 
segmental dependencies

Have both cues in 2c makes it easier for infants!

● And results in novelty preference            
(Hunter & Ames 1988)

We now have three stimulus sets that 5-mo-olds 
can distinguish

66

* * *



Testing hypotheses about phonotactic learning

Approach:

1. Create a corpus embodying each hypothesis
2. Fit unigram and bigram models to corpus (V&L)
3. Use model to score experimental stimuli for unigram/bigram probability
4. Test if assigned probabilities distinguish high vs. low probability stimuli

Novel aspect: we’re comparing model performance against infant behavior rather 
than adult performance.
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1: Prelexical hypothesis

Infants learn phonotactics from unparsed utterances                                            
(e.g., Adriaans & Kager, 2010; Brent & Cartwright, 1996; Daland & Pierrehumbert, 2011)

68

Corpus: 15,527 utterances (types) with no word boundaries from Pearl-Brent 
corpus of infant-directed speech (phonetically transcribed)

#noeatingdogfood#
#theresmorgansbook#

#ohnoonewantstogetdressed#



2: Strong lexical hypothesis

Infants learn phonotactics from words with associated referents                                            

At 5-months, infants associate some word forms with referents                      
(Bergelson & Swingley, 2012; Bortfeld et al., 2005)

● ear, eyes, face, foot, feet, hair, hand(s), leg(s), mouth, nose, apple, banana, 
bottle, cookie, juice, milk, spoon, yogurt (Bergelson & Swingley 2011), mommy, daddy 
(Bortfeld et al. 2005)
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Corpus: 18 stems; 22 words



The premise: The output of any unsupervised model of word segmentation, 
regardless of its accuracy, is one hypothesis about the infant proto-lexicon

3: Protolexical hypothesis
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Transitional 
probability

Adaptor 
Grammars

Bayesian 
PUDDLE

MaxEnt



Word segmentation

noitɪŋdɔgfud
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Word 
Segmentation 

Model
no itɪŋ dɔg fud

(Brent & Siskind, 2001)



Categorizing word segmentation models

Lexicon-based: does the model 
use previously identified words to 
segment future utterances?
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no eating dog food!



Categorizing word segmentation models

Phonotactics-based: does the 
model evaluate the likeliness of a 
segmented word based on its 
phonotactic properties?
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no eating dog food!
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Lexicon-based
Phonotactics-based

Adaptor Grammars

PUDDLE

MaxEnt

Lexicon-based
Phonotactics-based

Bayesian Models

Lexicon-based
Phonotactics-based

Transitional Probability
Models

Lexicon-based
Phonotactics-based

Baseline models



3: Protolexical hypothesis

Infants learn phonotactics from word forms in the lexicon                               
(Thiessen, Kronstein & Huffnagle, 2013)
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Corpus: Output of 24 unsupervised models of word segmentation on Pearl-
Brent corpus of infant-directed speech
● 24 distinct hypotheses about word segmentation strategies

Mostly run using wordseg (Bernard et al. 2019)



Relating word scores and infant behavior

High vs. low probability word ~ unigram_probability * bigram_probability
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Sanity Check

Adult lexicons & fully-segmented infant-directed speech provide sufficient 
information to distinguish lists distinguished by 5-month-olds. 77



Both baselines provide sufficient 
information to distinguish list 2c!
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Lexicon-based
Phonotactics-based



Prelexical and Strong Lexical Hypotheses

Prelexical hypothesis

Distinguishes 2a and 2c, but not 2b

Strong lexical hypothesis

Worse than guessing randomly
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0/6 distinguish all three lists

Best model = Baseline

80
Transitional Probability-based models (Saksida et al. 2017)

Lexicon-based
Phonotactics-based



1/8 models distinguish all lists
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Phillips & Pearl (2015)

Goldwater et al. (2009)

Lexicon-based
Phonotactics-based



MaxEnt models (Johnson, Pater, Staubs & Dupoux, 2015)
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7/10 models distinguish all three lists 
● MaxEnt: 2/3
● Adaptor grammar: 4/6
● PUDDLE: 1/1

Adaptor grammar models (Johnson et al. 2006)
PUDDLE 

(Monaghan and Christiansen 2010)

Lexicon-based
Phonotactics-based



Evaluating mechanisms

5-month-olds’ sensitivity to phonotactic patterns is predicted by

● Prelexical hypothesis ✘
● Strong lexical hypothesis ✘
● Protolexical hypothesis (some proposals)

Successful protolexical models rely on stored words to bootstrap future segmentation and apply 
phonotactic restrictions to segmentation.

Caveat: All protolexical hypotheses are better at segmenting words than 5-month-olds!
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Are successful models the best segmenters?

84

Not always!



Future directions

The role of prosody:

● Infants are sensitive to large prosodic boundaries
● Is prosodic information within the utterance sufficient for phonotactic 

learning at 5-mo?

Work in progress with Will Chang and undergraduate RAs Alison Howland and 
Lauren Hsu
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Future directions

Comparison across languages

● Are the same segmentation strategies applicable in languages with 
different morphophonology?

● We’ve collected norming data on Spanish adults (Mayer et al. 2024)

● Spanish infant study to come

86



Roadmap

1. Background on phonotactics
2. Study 1: Theory comparison using phonotactic models
3. Study 2: Infant acquisition of phonotactics
4. Discussion and take-aways
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What have we learned?

These two studies focused on separate aspects of phonotactic learning

● But both take the same broad approach

Model comparison helps us understand how how phonotactic learning progresses

There’s no such thing as a theory-neutral model!
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Study 1: Comparing phonotactic models

The standard n-gram model most consistently predicts experimental responses
● Validates several claims of linguistic theory

Caveat: n-grams are an insufficient (but useful!) model of phonotactics

● More complex models will probably preserve these useful properties
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Study 2: Infant learning of phonotactics

Modeling work supports the protolexical hypothesis: infants learn phonotactic 
generalizations from hypothesized word forms

Word segmentation models best support infant phonotactic generalizations when:
1. They use previously identified words to bootstrap segmentation
2. They evaluate possible new words based on identified phonotactic restrictions
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Sharing is caring

We were able to undertake both of these studies because researchers 
made their code and datasets publicly available

● This is a big part of the popularity of the V&L model

Our code and data are available for reference and reuse (see papers)
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The UCI Phonotactic Calculator (Mayer, Kondur and Sundara, accepted)

https://phonotactics.socsci.uci.edu/

https://phonotactics.socsci.uci.edu/


Thank you!
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The UCI Phonotactic Calculator (Mayer, Kondur and Sundara, resubmitted)

The UCIPC is a website for computing a suite of phonotactic metrics

● Can be run using 10 built-in training sets across 7 languages
● Users can specify their own training data
● Trained models are used to score user-provided test data

The UCIPC computes

● Standard unigram and bigram probabilities
● PPC unigram and bigram probabilities
● Token-weighted and smoothed variants of each
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Training file
Scored test file



A plot from Hayes (2012)
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