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About me

e Computational [phonologist and phonetician]

e Training in linguistics and computer science
from the University of British Columbia

e \Worked as a software developer on big
budget video games for about 4 years

e Did my PhD in linguistics at UCLA

e Assistant prof in UCI Language Science

e | study speech!
o Phonotactic learning
o Speech biomechanics and motor control
o Variability in phonological patterns
o The Uyghur language




Collaborators

This work is part of a larger NSF-funded project
(#2214017) with Megha Sundara (UCLA)



Goals of this talk

1. | want to teach you something about phonotactics!

2. | want to illustrate a general approach to theory comparison that takes
computational models seriously as formal instantiations of linguistic theory
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Background on phonotactics

Study 1: Theory comparison using phonotactic models
Study 2: Infant acquisition of phonotactics

Discussion and take-aways
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1. Background on phonotactics



Phonology

Phonology studies how sounds pattern within and across languages

Phonologists treat sound systems as formal symbolic systems
e Languages have a finite set of sounds from which words are formed

‘bash’ [bae]] ‘cache’ [keg[]

WEe'll focus on a subdomain of phonology called phonotactics



Hugo ran fast and Hugo ran sl

. . Hugo ran and ran and ran and ran
Infinite use of finite means

Slow and fast
~— Hugo ran

Hugo ra
Hugo ran fast

/

\Hugo ran slow

*Ran ran and slow

*Fast ran and Hugo

*Fast slow anc
*And and slow Hugo and

—_ *Slow slow and Hugo fast



. . [e] “at’ [22k] ‘ack’
Infinite use of finite sounds

—

[keet] ‘cat”  [eekt] ‘act’
[taek] ‘tack’

\

*Tkae] ‘kah’

*[tkae] ‘tkah’
*[aetk] ‘atck’
*[kta] ‘ktah’ *[tk] ‘tck’

*Tkt] ‘kt’ *[tae] ‘tah’



Phonotactics

Restrictions on how sounds can be sequenced into words

This is (mostly) learned and language-specific:

e ‘steek’ would be a fine English word, but not a good Spanish word
e 'kwakwakuhwakw’ is a fine Kwak’wala word, but not a likely English word

Speakers have implicit knowledge of the phonotactic properties of their language
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Probing phonotactic knowledge

A typical source of data is acceptability judgments

e “On ascale of 1-7, how likely is ‘steek’ to be an English word?”
e “Would ‘steek’ be a better English word than ‘kwakwakuhwakw’?”
e “Could ‘steek’ be an English word?”

These judgments consistently display gradience
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What do we mean by gradience?

poik
lvag

Kip
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What do we mean by gradience?

Ivag < poik <€ kip
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Where does phonotactic knowledge come from?
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E.g. Chomsky and Halle (1965, 1968), Bybee (1995, 2003), Pierrehumbert (2001), Bailey & Hahn (2001), Daland et al. (2011) 14



Roadmap

2. Study 1: Theory comparison using phonotactic models
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Study 1: Theory comparison using phonotactic models

Mayer, Kondur & Sundara (accepted). The UCI Phonotactic Calculator: An online
tool for computing phonotactic metrics. Behavior Research Methods.

Mayer, Wagner & Sundara (in prep). Comparing segmental phonotactic models.

Arya Kondur Austin Wagner
Megha Sundara 16



Learning phonotactic generalizations

Broad question: How is phonotactic knowledge operationalized?
e \What dependencies and frequencies in the lexicon are we sensitive t0?

We’'ll compare two computational models of phonotactic probability
e Theoretical purpose: what does this tell us about linguistic theory?
e Practical purpose: which tool is the most appropriate?
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Modeling phonotactic knowledge

Goal: we want a computational model that tracks with human behavior

All the models we consider treat phonotactics as probabilistic

Plw=x...z,)

Output: How probable is a word w composed of the segments x,..x_?

Linking hypothesis: Phonotactic probability correlates with acceptability ratings
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Other applications of phonotactic models

Phonotactic probability is relevant in many speech domains:

Speech perception

Speech production

Word segmentation and learning
Speech errors

Sentence formation

We often use phonotactic probabilities to model phenomena in these domains.
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Two prominent n-gram models

We’'ll compare two widely used n-gram models of
phonotactics based on their ability to predict
acceptability judgments

1. Standard n-grams (viarkov 1913, Shannon 1948)

2. Vitevitch & Luce’s Phonotactic Probability
Calculator (vitevitch and Luce 2004)
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Models as instantiations of theory

V&L describe their calculator as “relatively neutral with regard to linguistic theory”

Hayes claims that linguists would find it “extremely controversial”

e The standard n-gram model is less controversial from this perspective

These models are formal instantiations of different theoretical assumptions

e Our main goal is to assess the validity of these assumptions
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Why these models?

n-gram models are inadequate models of phonotactics, but still worth considering

Often ‘good enough’ for a quick and dirty quantification of phonotactics

e Bigram model on English acceptability judgment data r = 0.877
(Daland et al. 2011, Dai, Mayer and Futrell 2023)

n-gram models are still widely used in research contexts

e Vitevitch and Luce has ~670 citations, ~160 from the last 4 years
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A note on historical precedence

Hayes, B. (2012). The role of computational
modeling in the study of sound structure. Talk given
at the 2012 Conference on Laboratory Phonology.
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The standard unigram model

n
P]_ (W — x1 xn) ~ l_lp(xl)
=1

P, (stik) = P(s) P(t)P(i) P(k)
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The standard bigram model

n
P,(w=2xq1..x,) = np(xilxi—l)
i=2

# S t i K #

P, (#stik#) = P(s|#) P(t|s) P(i|t) P(k|i) P(#|k)



Estimating probabilities from data

Add-one smoothed conditional probabilities from corpus counts

Clx)+1
P = —rs
C: Count function
N: Number of sound tokens
C(xy)+1 S: Number of sound types
P(ylx) =

Cx)+S
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The V&L unigram model

n
PP(w=x;..x,) =1+ P(w; = x;)
i=1
1 2 3 4
S t i K

P; (stik) = P(wy =5s)+ P(wy, =t)+ P(wz =t)+ P(wy =k)+1
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The V&L bigram model

Pr(w=x1..xp) = 1 +ZP(WL—1 = Xi—1, Wi = X;)
(=2
1 2 3 4
S t | K

P,(#stik#) = P(w; =s,w, =t)+ P(wy, =t,wg=i)+Pws=i,w,=k) +1
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Estimating probabilities from data in V&L

Token-weighted, joint probabilities from corpus counts

Pi(w; =x) = Clw, = x)

C (Wl) C is the token-weighted count

C(Wi—l = X, Wi = y)

P,(y|x) = Cw;_ ;)
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Type-weighting vs. Token-weighting

Standard n-gram model is type-weighted
e Each occurrence of unigram/bigram contributes a count of 1

V&L model is token-weighted
e Unigrams/bigrams that occur in more frequent words count for more
e Countis equal to log frequency of word in corpus
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Type-weighting vs. Token-weighting

o {kaet: 1000}
| teek: 50
Type weighting: Cle)=1+1=2

Token weighting: C(e) = In(1000) + In(50) = 10.82
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Summary of major model differences

Model Sensitive to | Probability Word Aggregation
absolute type boundary
position? symbols?
n-gram No Conditional | Yes Product

V&L Yes Joint No Sum

Frequency
Weighting

Type

Token
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Mathematical considerations

The V&L metric does not
define valid probabilities

Tying probabilities to absolute
position leads to data
scarcity issues

Number of Words
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0

Phonological Word Length

—— Dutch
—— English
—*— French
—— German
—*— Spanish

/i' 1 1 1 1 _.?'-

0 2 4 6 8 1012141618 20 22 24 26 28 30
Word Length

Marian et al. 2012
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Linguistic considerations: translation invariance

Phonotactics is translation invariant (vccarthy & Prince 1986, Alderete et al. 2012, Hayes 2012)
e Linguistic models employ ‘constraints’ against certain structures
e Doesn’t matter where in the word a structure is located

e Ideas like “the 7" sound in a word” don’t seem to be necessary

V&L is not translation invariant; standard n-grams are

34



Linguistic considerations: word-final restrictions

Phonotactic restrictions related to word-final position are very common!
e Dutch words cannot end in [d], [g], [b], ...
e Hawaiian words cannot end in a consonant

V&L can’t refer to word-final position

e The index that corresponds to word-final position depends on length of word

The standard n-gram model can
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Linguistic considerations: word length

Phonological models often include a preference for shorter words

The use of addition in V&L imposes a preference for longer words

e Each additional sound raises the score

Standard n-grams prefer shorter words because they multiply probabilities
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Linguistic considerations: type vs. token weighting

Phonotactic generalizations are usually modeled based on type frequency
(e.g. Chomsky and Halle 1965, 1968, Pierrehumbert 2001, Bailey & Hahn 2001, Edwards et al. 2004, Mayer 2020)

V&L uses token frequencies

We train the standard n-gram model on type frequencies
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Model Bake-Off: Round 1

Let’'s compare the standard n-gram and V&L models against eight publicly
available phonotactic acceptability judgment datasets

Question: Which model predicts human responses the best?
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Datasets used in model comparison

Paper Lang

Albright & English
Hayes (2003)

Daland et al. | English
(2011)

Needle et al. | English
(2022)

Scholes English
(1966)
Hayes & English

White (2013)

Subjects

20

48

1440

33

29

Stimuli

58 3-5 segment,
monosyllabic nonce verbs

96 disyllabic nonce words
differing in the initial onset

8400 nonce words,
between 4-7 segments

62 monosyllabic nonce
words differing in initial
onset

160 nonce words, between
2 and 7 segments

Input

Likert scale

Likert scale

Likert scale

Forced choice

Magnitude
estimation

Presentation

Auditory

Orthographic

Orthographic

Orthographic

Orthographic
and auditory

39



Datasets

Paper

Jarosz &
Rysling
(2017)

Mayer &
Sundara

(in prep)

Mayer
(in press)

Lang

Polish

Spanish

Turkish

Subjects
81

168

90

Stimuli
159 nonce words varying

in onset properties

575 CVCV nonce words

596 CVCVC nonce words

Input

Likert scale

Magnitude
estimation

Magnitude
estimation

Presentation

Orthographic

Orthographic
and auditory

Orthographic
and auditory
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Procedure for each dataset

1. Train each of the models on a representative training dataset

2. Use the trained models to score the stimuli from the study

3. Predict participant responses with a (linear/logistic) regression model

response ~ uni prob * bi prob

4. Compare models using the Akaike Information Criterion (AlIC,

41



AlIC Rules of Thumb

AIC is an estimate of prediction accuracy on held-out data

e We interpret AIC in terms of differences between models
e Lower AlC indicates better fit to data

We'll use a rule of thumb from Burnham and Anderson

e AAIC < 2:no difference between models
e AAIC > 10: strong support for model with lower AIC
e Increasing AAIC indicates increasing certainty in better model

42



AIC

Standard n-grams are better in every case

Albright & Hayes (2003)

124

126

128

159560

159580

159600

159620

A6.45

**

Mayer (in press)

V&L

A82.8

**%%

Standard n-gram

245

250

255

188000

188500

189000

189500

Daland et al. (2011)

12400
12600

Al16.4

*k*%
12800
13000
Mayer and Sundara (in prep)

567000
568000

A1939
*k* 569000
570000

V&L Standard n-gram
Model

Hayes & White (2013)

A659

Needle et al. (2022)

A3742

**k%

V&L Standard n-gram

44600

44650

44700

44750

44800

36

37

38

Jarosz & Rysling (2017)

A227

Scholes (1966)

A2.69

V&L Standard n-gram

J1} [9pow Ja)jag



Model Bake-Off 2: but why?

The two models differ on five dimensions

Model Sensitive to | Probability = Final word
absolute type boundary?
position?

n-gram No Conditional | Yes
V&L Yes Joint No

Aggregation Frequency

Weighting
Product Type
Sum Token

Which of these are most important for the performance of the model?

44



Token-weighting

Mayer, Kondur and Sundara (accepted) compared type- and token-weighted
versions of both models

Token weighting was almost always equal to or worse than type weighting
e One dataset was fit better by token frequencies (Hayes and White 2013)

We'll only consider type-weighted models here
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Model Bake-Off 2: but why?

We’'ll consider these four dimensions

Model Sensitive to | Probability Word Aggregation
absolute type boundaries
position?
n-gram No Conditional | Yes Product
V&L Yes Joint No Sum

Which of these are most important for the performance of the model?

46



Bake-Off 2 procedure

We implemented 16 different models
e One model per possible combination of the four parameters

{joint, conditional} x {relative, absolute} x {sum, product} x {no #, yes #}

We fit each model to each dataset

e We’'ll compare models based on their values for each parameter
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Result 1: Adding probabilities is worse

122
124
126
128
130

AIC

40

50

Albright & Hayes (2003)

-

Scholes (1966)
(]
. .*
= &

220

240

260

223200

223300

223400

223500

Daland et al. (2011)

Needle et al. (2022)
8

567000
568000 °
569000 .
570000 ﬁ

onb 0_,06\ Q@b

Mayer & Sundara (in prep) Mayer (in press)

o° 159550 =

» o 159600
159650
& & & &
Aggregation

Each data point is an individual model

44600
44800
45000
45200
45400

12000

12300

12600

12900

Jarosz & Rysling (2017)

Hayes and White (2013)

_»

)1} [9pow Ja)jag
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We’'ll only consider the ‘product’ models going forward
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AIC

Result 2: Strong preference for word boundaries

123

124

34
35
36
37

Albright & Hayes (2003)

ng Q§b
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Scholes (1966)
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Word Boundary

Each data point is an individual model

44600
44800
45000
45200

12000
12300
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Jarosz & Rysling (2017)

\!.0

Hayes and White (2013)
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AIC

Result 3. General preference for conditional probabilities

Albright & Hayes (2003) Daland et al. (2011) Needle et al. (2022) 44600 Jarosz & Rysling (2017)
210 566500 2 *
123 220 567000 44800
230 567500 45000
]
124 240 568000 45200
250 568500 e °
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© 6\\\0 P 6\;\\o ° b\,\\o
& & &
Scholes (1966) Mayer & Sundara (in prep) Mayer (in press) 12000 Hayes and White (2013)
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% 223200 159550
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AIC

Result 4. General preference for relative position

Albright & Hayes (2003)
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Bake-Off 2 Results

Paper

Albright & Hayes (2003)
Daland et al. (2011)
Jarosz & Rysling (2017)
Mayer (in press)

Mayer & Sundara (in prep)
Needle et al. (2022)
Scholes (1966)

Hayes & White (2013)

Aggregation

Prod > Sum

Prod > Sum

Prod > Sum

Prod > Sum

Prod > Sum

Prod > Sum

Prod > Sum

Prod > Sum

102 AAIC > 2 AAIC > 10
Word Probability Type Position Type

Boundaries

No WB > WB — Absolute > Relative
WB > No WB | Conditional > Joint | Relative > Absolute
WB > No WB | Conditional > Joint | Relative > Absolute
WB > No WB | Conditional > Joint | Relative > Absolute
WB > No WB | Conditional > Joint | Relative > Absolute
WB > No WB - -

WB > No WB | Conditional > Joint | Absolute > Relative

B2
54%4




What makes a good phonotactic model?

Immediate practical consequence

V&L is worse than standard n-gram models across all the data sets we examined

e All five dimensions we compared favor standard n-grams

Theoretical perspective

Standard n-grams align more closely with linguistic theory than V&L

e These results are a validation of these theoretical perspectives
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Relating model properties and linguistic theory

1. Combining probabilities with addition is a bad idea

o Probably reflects a bias towards shorter words

2. Encoding word-final boundaries is important
o Humans are sensitive to structure at word edges!
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Zooming in on model properties

3. Conditional probabilities > joint probabilities
o The two are highly correlated
o Only conditional probabilities get us a valid probability distribution

4. Relative > absolute
o Phonotactics is translation invariant
o Differences between datasets likely related to specific stimuli used
I. bigrams can'’t ‘see’ certain longer dependencies
ii. Positional model can track (some of) this information
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Roadmap

3. Study 2: Infant acquisition of phonotactics
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Study 2: Phonotactics and word learning

Sundara, Breiss, Dickson & Mayer (submitted). Developmental Science.

Canaan Breiss (USC) Niels Dickson (UCI)

Megha Sundara (UCLA)
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A puzzle

We've long known infants are sensitive to phonotactics at 8 months

e Also at 5 months

Problem: 5-month-olds don’t “know” many words (~20;

Where does infants’ phonotactic knowledge come from?

e \What's in the lexicon?
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Hypothesis 1: The prelexical hypothesis

Infants learn phonotactic generalization from unsegmented speech
(e.qg., Adriaans & Kager, 2010; Brent & Cartwright, 1996; Daland & Pierrehumbert, 2011)

e Infants access word no eating dog food!
boundary information from
utterance edges

e Computationally simple




Hypothesis 2: The strong lexical hypothesis

Infants learn phonotactic generalization from words associated with referents

(Sundara and Breiss resubmitted)

e Aligns with our no eating dog food!
characterization of adult
phonotactic generalization




Hypothesis 3: The protolexical hypothesis

Infants learn phonotactics from word forms that need not be associated with
referents

no eating dog food!

» Infants can segment
speech by 5 months




How do we test this?

Sundara & Breiss tested 5-mo-olds’ ability to discriminate between word
forms with different phonotactic probabilities

Stimuli were chosen based on adult norming data

e Total of 396 fake words with Consonant-Vowel-Consonant structure
e Varied in their unigram and bigram probabilities (from V&L model)
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Infant experiments

Monolingual English learning 5-month-olds

e > 90% exposure to English

Three experiments

2a: High vs. low unigram probability, low bigram probability (n=30)
2b: (Less) high vs. low unigram probability, low bigram probability (n=30)
e 2c: High vs. low unigram and bigram probability (n=38)
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Method

Experiments used Headturn Preference
Procedure, following Juscyk et al.

Completely infant-controlled preference
experiment

e 2 familiarization trials with music
e 12 test trials, low vs. high probability items

ILUSTRATION OF THE HEAD-TURN PREFERENCE PROCEDURE (HPP)
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2a 2b 2c

Results

20 -

English learning 5-mo-olds are sensitive to
segmental dependencies

—
an
1

Have both cues in 2¢c makes it easier for infants!

—
o
1

e And results in novelty preference

Looking time (seconds)

We now have three stimulus sets that 5-mo-olds
can distinquish

High- Low- High- Low-  High- Low-
prob. prob. prob. prob. prob. prob.
List



Testing hypotheses about phonotactic learning

Approach:

1. Create a corpus embodying each hypothesis

2. Fit unigram and bigram models to corpus (V&L)

3. Use model to score experimental stimuli for unigram/bigram probability
4. Test if assigned probabilities distinguish high vs. low probability stimuli

Novel aspect: we're comparing model performance against infant behavior rather
than adult performance.
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1: Prelexical hypothesis

Infants learn phonotactics from unparsed utterances

Corpus: 15,527 utterances (types) with no word boundaries from Pearl-Brent
corpus of infant-directed speech (phonetically transcribed)

#noeatingdogfood#
#theresmorgansbook#
#ohnoonewantstogetdressed#
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2: Strong lexical hypothesis

Infants learn phonotactics from words with associated referents

At 5-months, infants associate some word forms with referents

e ear, eyes, face, foot, feet, hair, hand(s), leg(s), mouth, nose, apple, banana,
bottle, cookie, juice, milk, spoon, yogurt , mommy, daddy

Corpus: 18 stems; 22 words
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3: Protolexical hypothesis

The premise: The output of any unsupervised model of word segmentation,
regardless of its accuracy, is one hypothesis about the infant proto-lexicon

Bayesian

Transitional
probability

Adaptor
Grammars

& 70



Word segmentation

Word
Segmentation
Model

:> no itrn dog fud
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Categorizing word segmentation models

Lexicon-based: does the model

use previously identified words to
i |
segment future utterances? no eating dog food!




Categorizing word segmentation models

Phonotactics-based: does the _
model evaluate the likeliness of a GRS, Cloghioet]
segmented word based on its

phonotactic properties?




X Lexicon-based

Ll Lexicon-based
X Phonotactics-based

X Phonotactics-based

Baseline models Bayesian Models

[/ Lexicon-based

X Lexicon-based
L1 Phonotactics-based

L Phonotactics-based

Adaptor Grammars

Transitional Probability
PUDDLE

MaxEnt
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3: Protolexical hypothesis

Infants learn phonotactics from word forms in the lexicon

Corpus: Output of 24 unsupervised models of word segmentation on Pearl-
Brent corpus of infant-directed speech
e 24 distinct hypotheses about word segmentation strategies

Mostly run using wordseg
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Relating word scores and infant behavior

High vs. low probability word ~ unigram_probability * bigram_probability

Training set
Training folds Test fold
L -
| |

1% iteration — £

E
2™ jteration - = b2 .

1
— E= EZ Ei

3 iteration - = Es .

10" jteration - — EJO




Sanity Check

Accuracy
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Gold IDS segmentation
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2b 2¢
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Experiment
Adult lexicons & fully-segmented infant-directed speech provide sufficient

information to distinguish lists distinguished by 5-month-olds.
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X Lexicon-based
X Phonotactics-based o

Oracle baseline Random baseline

o
®

Both baselines provide sufficient
information to distinquish list 2c¢!
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Prelexical and Strong Lexical Hypotheses

Prelexical hypothesis Strong lexical hypothesis
1.0
Prelexical hypothesis
0.8
Distinguishes 2a and 2c, but not 2b §
5
£ '
Strongq lexical hypothesis + -+ + -
U R s et T B SEEIRE. SEr et St e s et
Worse than guessing randomly
0.4

2a ob 2¢ 2a 2 2¢



X Lexicon-based

L Phonotactics-based

0/6 distinguish all three lists

Best model = Baseline

Absolute Backwards TP Absolute Forwards TP Absolute PMI
1.0
0.8 1
[
0.6 .
27 n
054 - - Ao B ) . I Y
3044
3 .
3 Relative Backwards TP Relative Forwards TP Relative PMI
Q .
< 1.0
0.8
" .
0.6 ¢---x---" ¢
o5l ®___a_____ (L ¥ _ A+ ____IL_T___ 4 __ ]
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OnlineMem, Bigram OnlineMem, Unigram OnlineOpt, Bigram
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Lexicon-based

Phonotactics-based

7/10 models distinquish all three lists

e MaxEnt: 2/3
e Adaptor grammar: 4/6
e PUDDLE: 1/1
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Evaluating mechanisms

5-month-olds’ sensitivity to phonotactic patterns is predicted by

e Prelexical hypothesis X
e Strong lexical hypothesis X
e Protolexical hypothesis v (some proposals)

Successful protolexical models rely on stored words to bootstrap future segmentation and apply
phonotactic restrictions to segmentation.

Caveat: All protolexical hypotheses are better at segmenting words than 5-month-olds!
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Are successful models the best segmenters?

Model and source

JPSD Maxent (Johnson et al. 2015), d = 1.55

- Adaptor Grammar, Phonotactic

- JPSD Maxent (Johnson et al. 2015),d = 1.64
Adaptor Grammar, U-T-Seg (see main text)

' PUDDLE (Monaghan et al. 2012)

. JPSD Maxent (Johnson et. al 2015), d = 1.44
Adaptor Grammar, U-X-T-X-X-Seg

- BatchOpt, unigram (Goldwater et al. 2009)

- BatchOpt, bigram (Goldwater et al. 2009)
Adaptor Grammar, U-X-T-X-Seg

- Adaptor Grammar, U-T-X-Seg

- Adaptor Grammar, U-T-X-X-Seg
Oracle baseline

- Random baseline

Word segmentation F-score

0.86
0.78
0.76
0.75
0.72
0.67
0.66
0.63
0.63
0.62
0.61
0.45
0.26

0.10

Not always!
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Future directions

The role of prosody:

e Infants are sensitive to large prosodic boundaries
e |[s prosodic information within the utterance sufficient for phonotactic

learning at 5-mo?

Work in progress with Will Chang and undergraduate RAs Alison Howland and
Lauren Hsu e
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Future directions

Comparison across languages

e Are the same segmentation strategies applicable in languages with
different morphophonology?

e \We've collected norming data on Spanish adults

e Spanish infant study to come
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Roadmap

4. Discussion and take-aways
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What have we learned?

These two studies focused on separate aspects of phonotactic learning

e But both take the same broad approach

Model comparison helps us understand how how phonotactic learning progresses

There’s no such thing as a theory-neutral model!
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Study 1: Comparing phonotactic models

The standard n-gram model most consistently predicts experimental responses
e Validates several claims of linguistic theory

Caveat: n-grams are an insufficient (but useful!) model of phonotactics

e More complex models will probably preserve these useful properties
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Study 2: Infant learning of phonotactics

Modeling work supports the protolexical hypothesis: infants learn phonotactic
generalizations from hypothesized word forms

Word segmentation models best support infant phonotactic generalizations when:
1. They use previously identified words to bootstrap segmentation
2. They evaluate possible new words based on identified phonotactic restrictions
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Sharing is caring

We were able to undertake both of these studies because researchers
made their code and datasets publicly available

e This is a big part of the popularity of the V&L model

Our code and data are available for reference and reuse (see papers)
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The UCI Phonotactic Calculator

Home About Datasets GitHub

UCI Phonotactic Calculator

‘Welcome to the UCI Phonotactic Calculator! PPOVide Illpllt fO[‘ C alCllla ﬁOllS

This is a research tool that allows users to calculate a variety of phonotactic metrics. These metrics are intended to capture how
probable a word is based on the sounds it contains and the order in which those sounds are sequenced. For example, a nonce word ini

like [stik] 'steek’ might have a relatively high phonotactic score in English even though it is not a real word. because there are Ul] load a tramlng file or select a default file
many words that begin with [st], end with [ik], and so on_ In Spanish, however, this word would have a low score because there i §

are no Spanish words that begin with the sequence [st]. A sensitivity to the p! i of one's s)isan Training file: | Browse... | No file selected.

important component of linguistic competence, and the various metrics computed by this tool instantiate different models of how —

this sensitivity is operationalized

Default training file: - v
The general use case for this tool is as follows: - ’
1. Choose a training file. You can either upload your own or choose one of the default training files (see the About page for Test file: | Browse... | No file selected.
details on how these should be formatted and the Datasets page for a description of the default files). This file is intended to -
represent the input over which phonotactic generalizations are formed, and will typically be something like a dictionary (a TIPS
large list of word types). The models used to calculate the phonotactic metrics will be fit to this data |_ Submit _|

2. Upload a fest file. The trained models will assign scores for each metric to the words in this file. This file may duplicate data
in the training file (if you are interested in the scores assigned to existing words) or not (if you are interested in the
predictions the various models make about how speakers generalize to new forms).

The calculator computes a suite of metrics that are based on unigram/b (that is, the ies of individual
sounds and the frequencies of adjacent pairs of sounds). This includes type- and token-weighted variants of the positional
unigram/bigram method from Jusczyk et al. (1994) and Vitevitch and Luce (2004), as well as type- and token-weighted variants of
standard unigram/bigram probabilities. See the About page for a detailed description of how these models differ and how to
interpret the scores.

The UCT Phonotactic Calculator was developed by Connor Mayer (UCI), Arya Kondur (UCI), and Megha Sundara (UCLA).
Please direct all inquiries to Connor Mayer (cjmayer@uci.edu)

Citing the UCI Phonotactc Cateutor https://phonotactics.socsci.uci.edu/

If you publish work that uses the UCI Phonotactic Calculator, please cite the GitHub repository:

Mayer, C., Kondur, A.. & Sundara, M. (2022). UCI Phonotactic Calculator (Version 0.1.0) [Computer software].
https:/doi.org/10.5281/zenodo. 7443706


https://phonotactics.socsci.uci.edu/

Thank you
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The UCI Phonotactic Calculator

The UCIPC is a website for computing a suite of phonotactic metrics

e Can be run using 10 built-in training sets across 7 languages
e Users can specify their own training data
e Trained models are used to score user-provided test data

The UCIPC computes

e Standard unigram and bigram probabilities
e PPC unigram and bigram probabilities
e Token-weighted and smoothed variants of each
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Training file

EY 633517.5 .
2 AH B AE K 59
Ll AEBAHKAHS 8 Scored test flle
._ ﬁ: Eﬁi ?HD AHN 1012 word word_len uni_prob uni_prob_freq_weighted uni_prob_smoothed uni_prob_freq_weighted_smoothed
B EVT 2 ElELIYGIHF 6 -21.28560225 -21.28547321 -21.36475687 -21.36471595
- 7 BB LEHZIHG 6 -21.89701032 -21.89653607 -21.96285725 -21.96272277
Pl 2E B EY 7 FRERIVGIHF 6 -21.26431799 -21.26419239 -21.31293023 -21.31289144
o a0 181 FlEREHPIHD 6 -19.85093399 -19.85144946 -19.78328505 -19.78342243
Ll AEBAHT a3 WEWIYGIHF 6 -23.46505863 -23.46365267 -23.44272982 -23.44239313
[l AHBRIYVVIYEYT 35 e W AASIHP § -21.82616145 -21.82539077 -21,76996196 -21.76979186
12 ﬁ: ss}'\"H"K“;‘; SHAHN ig EDGEHPIHD 6 -20.91194316 -20.91206033 -20.85977901 -20.85980997
AL BD I K £ SH AR N w P0G AATIHF 6 -21.1446086 -21.14449317 -21.17316921 -21.17313346
AEED OWMAHN e DNIYGIHF 6 -20.55196506 -20.55203056 -20.5815925 -20.58160607
Y A5 B D AH MAH N 57 WD NAATIHF 6 -19.37124649 -19.37172047 -19.36533752 -19.36546055
8 AEEDAAMAH N AHL 63 HDRIVGIHF 6 -20.8320401 -20.83206664 -20.83634114 -20.83634568
IEY AH B D AAM AH N AH L 63 Y DREHPIHD 6  -19.4186561 -19.41932371 -19.30669597 -19.30687668
AEBDAHKT 19 > DWEHZIHG 6 -23.64418881 -23.642589758 -23.56424112 -23.5638542
AEBDAHKSHAHN 5.5 DWAATIHF 6 -21.85206218 -21.85121683 -21.74988576 -21.74970185
AHBDAHKSHAHN 55 T FLEHZIHG 6 -22.0996585 -22.09908688 -22.12310698 -22.12295264
ﬁ'; s:: ;’ . 1‘1‘ FLAATIHF 6 -20.30753186 -20.30771393 -20.30875163 -20.30880029
A B ER EY SH AH N 5 FNIYBIHD 6 -20.05862089 -20.05896282 -20.07368218 -20.07377139
AHBEHT a FNEHZIHG 6 -21.7982992 -21.79776998 -21.81653169 -21.81638852
AHBEYAHNS 17 FREHPIHD 6 -20.05358216 -20.05400026 -19.94353478 -19.9436523
AEBHHAOR 39 lFRAASIHP 6 -19.82806898 -19.82848129 -19.80041209 -19.80052004
AHBHHAORAHNS 7 AFWIYBIHD 6 -22.53943657 -22.53845917 -22.45823042 -22.4580127
AEBHHAORAHNT 23 FWEHZIHG 6 -24.27911488 -24.27726633 -24.20107993 -24.20062982
AHBAYD &4 GLEHPIHD 6 -20.36556242 -20.36579804 -20.34302202 -20.34308162
ﬁ'; BBJ': : :""J v 152; GLAATIHF 6 -20.59822785 -20.59823087 -20.65641222 -20.6564051
AHBLEVZ 2 GRIYBIHD 6 -20.62939192 -20.62951583 -20.67609141 -20.67611582
EYBAHL prves GRAATIHF 6 -20.57694359 -20.57695004 -20.60458557 -20.60458059
AEBNAORMAH L 105 GWIYBIHD 6 -22.83013257 -22.82897612 -22.80589101 -22.80561751
AEBNAORMAELAHTIY 39 GWAATIHF 6 -22.77768423 -22.77641033 -22.73438516 -22.73408229
AABOW 6
AHBAORD 285
AHBOWD 31 102

EOJ AHBAALIHSH 301



A plot from Hayes

Left-to-right slots in the VL model: Tracking five phonemes
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