

1. Categorical variation in two English sounds

Chunking in the production of tap/flap sequences

Donald Derrick University of Canterbury

2024 Annual Meeting on Phonology

4. Simulation study

Integrating the concept of chunking into a model that learns to produce tap/flap sequences qualitatively replicates the differences between NAE and NZE speakers

Basic model

Implemented in maximum entropy optimality theory [9] • Uses weighted constraints to generate probability

dis	stribu	tions over can	didates
/V/	\rightarrow	[V, , V _H]	maint
/R/	\rightarrow	[」, 」	igra
/T/	\rightarrow	[r↑. r∧. r→. r↔	→] [©] Ö

Markedness constraints:

- all unigram (e.g. * $r\leftrightarrow$) and bigram (e.g. * $r \land V_1$) constraints
- Weights fit to frequencies from ultrasound study [8]

Constraints for chunking - weights set by hand USELISTED: Violation is sum of costs of all chunks in form

• Chunk cost decreases as its usage frequency increases **SHARE**: One violation per chunk

NAE input: {VTV, VTVTV, VTVTV NZE input: {VTV, VTVTV, VTVTV

Outputs: Chunked candidates ("|" = chunk boundary) $[\mathbf{V}_{\mathsf{L}}^{\uparrow\uparrow}\mathbf{V}_{\mathsf{L}}], [\mathbf{V}_{\mathsf{L}}^{\uparrow\uparrow}\mathbf{V}_{\mathsf{L}}], [\mathbf{V}_{\mathsf{L}}^{\downarrow\uparrow}\mathbf{V}_{\mathsf{L}}], [\mathbf{V}_{\mathsf{L}}^{\uparrow\uparrow}\mathbf{V}_{\mathsf{L}}], [\mathbf{V}_{\mathsf{L}}^{\downarrow\uparrow}\mathbf{V}_{\mathsf{L}}], [\mathbf{V}_{\mathsf{L}}^{\downarrow\uparrow}\mathbf{V}_{\mathsf{L}}], [\mathbf{V}_{\mathsf{L}}^{\downarrow\uparrow}\mathbf{V}_{\mathsf{L}}], [\mathbf{V}_{\mathsf{L}}^{\downarrow\uparrow}\mathbf{V}_{\mathsf{L}}], [\mathbf{V}_{\mathsf{L}}^{\downarrow\uparrow}\mathbf{V}_{\mathsf{L}}], [\mathbf{V}_{\mathsf{L}}^{\downarrow\downarrow}\mathbf{V}_{\mathsf{L}}], [\mathbf{V}_{\mathsf{L}}^{\downarrow\downarrow}\mathbf{V}_{\mathsf{L}}], [\mathbf{V}_{\mathsf{L}}^{\downarrow\downarrow}\mathbf{V}_{\mathsf{L}}], [\mathbf{V}_{\mathsf{L}}^{\downarrow\downarrow}\mathbf{V}_{\mathsf{L}}], [\mathbf{V}_{\mathsf{L}}^{\downarrow\downarrow}\mathbf{V}_{\mathsf{L}}], [\mathbf{V}_{\mathsf{L}}^{\downarrow\downarrow}\mathbf{V}_{\mathsf{L}}], [\mathbf{V}_{\mathsf{L}}^{\downarrow\downarrow}\mathbf{V}_{\mathsf{L}}], [\mathbf{V}_{\mathsf{L}}^{\downarrow\downarrow}\mathbf{V}_{\mathsf{L}}], [\mathbf{V}_{\mathsf{L}}^{\downarrow\downarrow}\mathbf{V}_{\mathsf{L}}], [\mathbf{V}_{\mathsf{L}}^{\downarrow\downarrow}\mathbf{V}_{\mathsf{L}}]$

Starting chunk inventory: $\{V_{I}, V_{H}, J, J, r^{\uparrow}, r^{\uparrow}, r^{\downarrow}, r \leftrightarrow\}$

Part 1: Chunk learning							
	Compute probabilities	[V _L r‡V _L]	0.95				
Sample input	using grammar	[V _L r ⁺ V _L]	0.03				
		[V _L r ⁺ V _L]	0.01				
$V_{L}^{\uparrow}V_{L}^{+=1,$	x10.000						
$ \begin{array}{ccc} V_{L} r \uparrow & += 1 \\ r \uparrow V_{L} & += 1 \\ \dots & & \end{array} $	Update chunk inventory, Including sub-chunks		Sample outpu	ıt			

Part 2: Productions under different speech rates

Compute probabilities using grammar and chunk inventory

Scale bigram constraint weights up as speech rate increases (cf. [10])

 $[V_{L}^{\uparrow}V_{L}^{\uparrow}V_{L}]$ /VTVTV/

Rates: [1, 1.25, 1.5, ..., 9.5, 9.75, 10]

[V _L r ⁺ V _L r ⁺ V _L]	0.75
[V_r ¹ V _L r ¹ V _L]	0.004
[V _L r ^r _V _H r _V _L]	0.20

Derrick, D., Mayer, C., & Gick, B. (2024). Uniformity in speech: The economy of reuse and adaptation across contexts. Glossa: talker-specific phonetic realization: Covariation of stop consonant VOT in American English. Journal of Phonetics, 61, 30-47 [7] Faytak, M. D. (2018). Articulatory uniformity through articulatory reuse: insights from an ultrasound study of Sūzhōu Chinese. University of California, Berkeley. [8] Derrick, D., & Gick, B. (2011). Individual variation in English flaps and taps: A case of categorical phonetics. Canadian Journal of Linguistics/Revue canadienne de linguistique, 56(3), 307-319. [9] Goldwater, S., & Johnson, M. (2003). Learning OT constraint rankings using a maximum entropy model. In Proceedings of the workshop on variation within Optimality Theory (pp. 111-120). **[10]** Coetzee, A. W. (2016). A comprehensive model of phonological variation: Grammatical and non-grammatical factors in variable nasal place assimilation. Phonology, 33(2), 211-246.