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Abstract 

This paper presents the UCI Phonotactic Calculator (UCIPC), a new online tool for quantifying the 

occurrence of segments and segment sequences in a corpus. This tool has several advantages compared 

to existing tools: it allows users to supply their own training data, meaning it can be applied to any 

language for which a corpus is available; it computes a wider range of metrics than is typical; and it 

provides an accessible point-and-click interface that allows researchers with more modest technical 

backgrounds to take advantage of phonotactic models. After describing the metrics implemented by the 

calculator and how to use it, we present the results of a proof-of-concept study comparing how well 

different types of metrics implemented by the UCIPC predict human responses from eight published 

nonce word acceptability judgment studies across four different languages. These results suggest that 

metrics that do not take absolute position within the word into account are better at predicting human 

responses than those that do. We close by discussing the usefulness of tools like the UCIPC in 

experimental design and analysis and outline several areas of future research that this tool will help 

support. 

 

1 Introduction 

Phonotactics refers to restrictions on the sequencing of sounds into words. For example, although the 

word /skif/ “skeef” is not a real English word (at least in the authors’ dialects), it could in principle 

become an English word. It could not be a Spanish word, however, because Spanish has a general 

phonotactic restriction against /s/-initial complex onsets. The fact that different languages impose 

different restrictions on phonotactic patterns indicate that phonotactics must be learned from data 

(though some aspects like sonority sequencing preferences have been proposed to be innate; Selkirk 

1984, Prince & Smolensky 1993; Berent et al. 2008; etc.). Speakers generally have strong intuitions 



about what possible words could look like in their language. The process of developing these intuitions is 

typically taken to correspond to forming generalizations over sound patterns in the lexicon. 

One common method for getting insight into speakers’ phonotactic knowledge is to perform 

acceptability judgment tasks where speakers are asked to rate a nonce word based on its suitability as a 

possible word in their language. This might involve a forced choice task, a numeric rating, or other 

responses like magnitude estimation. It has long been observed on the basis of such studies that 

phonotactic judgments are gradient: speakers do not generally think of words as being “in” or “out” but 

can often arrange them on a cline of acceptability. The classic example from Chomsky & Halle (1965) is 

the three words “blick”, “bnick”, and “bzick”. Although none of these are real English words, speakers 

typically find “blick” to be acceptable, “bzick” to be unacceptable, and “bnick” to be somewhere in 

between. Every experimental study that has tested for gradience has found it (e.g. Chomsky & Halle 

1965, Coleman & Pierrehumbert 1997, Scholes 1966, Bailey and Hahn 2001, Hayes and Wilson 2008, 

Daland et al. 2011, a.o.). Further, Daland (2015) makes a compelling case for how gradient knowledge of 

phonotactics is crucially important for speech perception (e.g., Norris & McQueen 2008, Davidson & 

Shaw 2012, Chodroff & Wilson 2014; Steffman & Sundara, 2023). 

As researchers, we are interested in understanding what knowledge of phonotactics speakers possess, 

how they acquire that knowledge, and how it is deployed in other areas of language. A common 

approach is to develop models that allow phonotactic metrics to be computed for words given some 

training data sample meant to approximate a speaker’s lexicon, over which phonotactic generalizations 

can be formed. These metrics are commonly used as predictors of experimental data such as reading 

time or acceptability scores. Such models are useful because they allow us to stipulate precisely (a) what 

phonotactic configurations speakers are sensitive to; (b) how exposure to these configurations shapes 

phonotactic knowledge; and (c) how phonotactics influences speech perception more generally. A key 

criterion for these models is that they output gradient, rather than categorical acceptability scores. 



The goal of this paper is to present a new online tool used for calculating phonotactic metrics: the UCI 

Phonotactic Calculator (https://phonotactics.socsci.uci.edu/). This tool has several advantages 

compared to existing tools for computing phonotactic acceptability: it allows users to supply their own 

training data, meaning it can be run on any language where a corpus representing the lexicon is 

available; it computes a wider range of metrics than is typical; and it provides an accessible point-and-

click interface that allows researchers with more modest technical backgrounds to take advantage of 

phonotactic models. 

The structure of the paper is as follows: Section 2 describes several existing tools for computing 

phonotactic metrics and the limitations of these tools that motivated the development of the UCI 

Phonotactic Calculator. Section 3 describes the UCI Phonotactic Calculator and the metrics it 

implements. Section 4 shows how the UCI Phonotactic Calculator can be used to compare a variety of 

proposed phonotactic models against data from eight phonotactic acceptability studies across four 

languages. The results demonstrate that, in every case, metrics that reference the relative position of 

segments in words outperform more commonly used metrics that reference the absolute position of 

segments. This raises several other questions that would benefit from future research. Section 5 offers a 

brief discussion and conclusion. 

 

2 Limitations of existing tools for computing phonotactic acceptability 

In this section we will discuss existing tools that quantify the occurrence of segment or segment 

sequences in a corpus embodying a lexicon. Overall, such tools are available for a small number of 

languages and cannot be customized because the training corpora they are based on are not accessible 

to the user. Both these limitations severely restrict the range of questions that can be empirically 

investigated.  



 

2.1 The Phonotactic Probability Calculator 

Currently, the most well-known phonotactics calculator, with 641 citations in google scholar, is the 

Phonotactic Probability Calculator (PPC; Vitevitch and Luce 2004). The PPC allows the phonotactic 

metrics described in Jusczyk et al. (1994) and Vitevitch and Luce (1999) to be computed for novel words 

in English, Spanish, and Modern Standard Arabic (Aljasser & Vitevitch, 2018). A related tool, the 

Neighborhood Density Calculator, allows neighborhood density to be calculated for words in the same 

languages (Vitevich and Luce 2016). 

The English model is trained on a phonetic transcription of the 1964 Merriam-Webster Pocket 

Dictionary, which consists of about 20,000 words. Information about word frequency comes from 

Kučera and Francis 1967). Stress is not encoded. The website does not state what training data was used 

for the Spanish model, though it may be the data from the Beginning Spanish Lexicon (Vitevitch et al. 

2012), which consists of 3,854 words from the glossary of a first-year Spanish textbook, transcribed in 

Castilian Spanish. The Modern Standard Arabic model is trained on a list of the 100,000 most frequent 

Modern Standard Arabic lemmas purchased from https://www.sketchengine.eu/.  

The metrics calculated by the PPC are positional, frequency-weighted, unigram and bigram scores. The 

mathematical implementation of this is described in detail in Section 3.1.4, but we provide some 

intuitive definitions of the properties of these metrics here: 

• Unigram/bigram: Unigram metrics consider the frequency of occurrence of individual sounds. 

Bigram metrics consider the frequency of occurrence of adjacent pairs. Together these 

measures can capture how likely listeners are to hear individual sounds, as well as particular 

sequences of sounds. 

https://www.sketchengine.eu/


• Frequency-weighted: words that occur more frequently in the training data contribute more 

than do less frequent words. In a model that is not frequency-weighted, all word types in the 

training set contribute equally, regardless of their frequency. 

• Positional: the absolute position of the unigrams/bigrams in a word is considered when 

calculating metrics. This differs from standard unigram/bigram models, where absolute position 

is not considered (Markov 1913, Shannon 1948). For example, in a positional unigram model, 

the influence of a /t/ on the computed metric for a word can differ depending on whether it 

occurs in the first position, second position, etc. In non-positional unigram model, to be 

described below, the influence of /t/ on the metric will be the same regardless of where in the 

word it occurs. Analogously, in a positional bigram model the influence of a sequence /st/ on the 

computed metric can differ depending on whether this sequence occurs as the first and second 

sounds, the second and third, etc. In a non-positional bigram model, the influence of this 

sequence on the metric will be the same regardless of the positions it occurs in.  In more 

rigorous mathematical terms, positional models are non-stationary while the non-positional 

models are stationary.  

Note that the positional metrics implemented in Vitevitch and Luce (2004) have two other 

important differences from standard implementations of non-positional metrics. First, the 

positional metrics do not explicitly reference word boundaries. This is not an issue for word-

initial segments, since these are always in the first position, but it means these metrics cannot 

differentiate between segments that occur at the end of words and segments that don’t. The 

non-positional models, on the other hand, insert word boundary symbols at the edges of words 

and reference them when computing the metrics (so, for example, a bigram sequence like /t#/, 

where # is a word boundary, refers to a /t/ in word-final position). Second, the positional bigram 



metrics are implemented as joint probabilities while the non-positional metrics are 

implemented as conditional probabilities. These issues will be discussed more in Section 3. 

The name “Phonotactic Probability Calculator” is something of a misnomer. Values associated with word 

forms per the PPC do not constitute valid probabilities because the positional probabilities of individual 

unigrams and bigrams are combined by addition rather than multiplication. In addition, because training 

data is hardcoded into the PPC, it is available only for English, Spanish and Modern Standard Arabic, and 

the properties of the training data cannot be customized. Finally, the use of positional unigram and 

bigram metrics may lead to data sparsity issues for longer words. For example, the mean number of 

phonemes in an English word is about 5.77 (sd=1.93; Marian et al. 2012). Estimates for a unigram score 

corresponding to /t/ in the third position will be based on a large number of data points (since most 

English words have something in the third position), while estimates for a score corresponding to /t/ in 

the 10th position will be less reliable, as fewer words have ten or more segments. This is not an issue for 

non-positional models, because unigram and bigram values are calculated without taking absolute 

position into account. 

 

2.2 Irvine Phonotactic Online Dictionary 

A tool called the Irvine Phonotactic Online Dictionary (IPhOD; Vaden et al. 2009; 

http://www.iphod.com/) provides similar functionality to the PPC. IPhOD can compute a large range of 

phonotactic metrics, including both positional/non-positional and frequency-weighted/non-frequency-

weighted probabilities, as well as neighborhood densities for English words provided by the user. In 

addition, it allows users to search for words that meet certain criteria with respect to these metrics (e.g. 

“find English words with fewer than three neighbors”).  



There are two main limitations of the IPhOD calculator. The first is that the training dataset is limited to 

English, and more specifically to the approximately 54,000 words in the CMU English Pronouncing 

Dictionary (Weide 1994). While this database is quite extensive, words that do not exist in it cannot be 

used as part of the calculation process. This also limits users’ ability to provide their own training 

dataset, which may be more practical for certain research purposes. Second, the overall usage of the 

IPhOD calculator is limited as it only supports a few phonotactic metrics and users must enter their 

testing dataset manually rather than through a file upload. These are minor issues that we aim to 

address with the UCI Phonotactic Calculator.  

 

2.3 CLEARPOND 

CLEARPOND is a tool maintained by Northwestern University that computes orthographic and 

phonological neighborhood density and other metrics like word length and frequency (Marian et al. 

2012; https://clearpond.northwestern.edu/). CLEARPOND supports five languages, English, Dutch, 

French, German, and Spanish, and also allows cross-language neighborhood densities to be computed. 

CLEARPOND also supports the calculation of positional, frequency-weighted biphone and bigram scores 

using the same method described in Vitevitch and Luce (2004). Unlike the other programs described 

here, CLEARPOND has experimental functionality that computes neighborhood density and neighbors 

for a list of training words given a custom training data set. This functionality is limited in that it only 

computes a subset of the neighborhood density metrics and no phonotactic metrics. Thus, CLEARPOND 

is similar to the PPC but with support for a wider range of languages. 

 

2.4 The UCLA Phonotactic Learner 



The UCLA Phonotactic Learner (Hayes & Wilson 2008; 

https://linguistics.ucla.edu/people/hayes/Phonotactics/) is a program for calculating phonotactic 

probabilities. It is a maximum entropy model (Goldwater & Johnson 2003) that penalizes words that 

violate certain featural n-gram constraints. Features refer to properties of sounds like voicing, sonority, 

manner of articulation, etc. Examples of such constraints might be “don’t have a voiced sound following 

a voiceless sound”. The UCLA Phonotactic Learner induces from a training set both what constraints are 

necessary and how strongly they should be weighted.  

An advantage of referring to features rather than segments is that it can capture variability in the 

acceptability of unattested sequences. For example, even though both ‘bnick’ and ‘bzick’ are poorly 

formed with respect to English phonotactics, speakers often have an intuition that the first is not as bad 

as the second (Chomsky & Halle 1965). Models that refer to segments alone, like all the models 

discussed above, cannot capture this distinction, since both /bn/ and /bz/ are unattested. Featural 

models, however, can capture the idea that because there are more onsets like /bn/ (e.g., onsets with a 

/b/ followed by non-nasal coronal sonorant, like /bl/, or an obstruent followed by a coronal nasal, like 

/sn/) than there are like /bz/, speakers should find the former more acceptable.  

The UCLA Phonotactic Learner has been an enormously influential model of phonotactic learning, and its 

performance compares favorably to other models (e.g. Daland et al. 2011). Some limitations are that it is 

a standalone executable and cannot integrate directly into programming workflows, and that it does not 

output probabilities directly but rather numeric weights that correlate with them. The model has the 

additional task relative to the other models of discovering the constraints: there are several 

hyperparameters that govern how this process takes place that the model is sensitive to.  

 

2.5 Other tools 

https://linguistics.ucla.edu/people/hayes/Phonotactics/


There are also several databases that contain phonotactic or neighborhood density metrics for 

individual languages. EsPal allows neighborhood densities and other metrics to be calculated for both 

Latin American and Castilian Spanish based on both written and spoken corpora, though it does not 

support any phonotactic metrics (Duchon et al. 2013). It also allows Spanish words to be selected based 

on these properties. Diphones-fr is a simple database that contains diphone frequency information from 

over 50 million French words (New & Spinelli 2013). 

The remaining existing tools are mainly used for word selection or generation under restrictions on 

phonotactic probability or neighborhood density. In this sense, they do not provide the same 

functionality as many of the tools discussed above, but still serve an important purpose in designing 

experimental stimuli. WordGen is one such example in which users can specify linguistic constraints to 

generate nonce words in Dutch, English, French, or German (Duyck et al. 2004). The main downside to 

WordGen is that it is a standalone Windows program and cannot easily be integrated into a broader 

programming workflow. Wuggy is a similar tool for word generation that takes the utility of WordGen a 

step further. It supports more languages, including Spanish and Vietnamese, and has a Python library 

(Keuleers & Brysbaert 2010).  

 

3 The UCI Phonotactic Calculator 

The UCI Phonotactic Calculator (henceforth UCIPC; https://phonotactics.socsci.uci.edu/) is an online tool 

we have developed that can be used to calculate various metrics to quantify phonotactic information. 

This tool has several primary differences from the existing tools discussed above. 

1. It allows the user to specify their own training data set. To our knowledge, this is the only online 

tool supporting this functionality for phonotactic metrics (note that CLEARPOND does support 

https://phonotactics.socsci.uci.edu/


this, but for neighborhood density alone). This allows the UCIPC to be deployed on any language 

or input register (e.g. infant-directed speech). 

2. It supports a wider range of metrics than most existing tools. 

3. It can be run both via an online interface and via the command line, which allows it to be 

integrated into larger programming workflows. 

4. It is open source: https://github.com/connormayer/uci_phonotactic_calculator 

 

3.1 Currently supported phonotactic metrics 

The UCIPC supports a range of phonotactic metrics that differ in how or whether they encode context, 

token frequency, and position. This section will provide a qualitative and quantitative description of 

each metric. The set of metrics is roughly divided into four classes based on the following two factors: 

1. Unigram vs. Bigram metrics: do we consider the preceding context in which a sound occurs 

(bigram) or not (unigram)? 

2. Positional vs. non-positional metrics: do we consider the absolute position in the word in which 

a unigram or bigram occurs or not? The positional metrics correspond to the calculations done 

in Jusczyk et al. (1994) and Vitevitch and Luce (2004), while the non-positonal metrics 

correspond to more standard implementations of n-gram models (Markov 1913, Shannon 1948). 

The UCIPC also includes metrics produced by a neural network model of phonotactics (Mayer and 

Nelson, 2020). This differs substantially from the other metrics and is presented in its own section. 

 

3.1.1 Non-positional unigram probabilities 

https://github.com/connormayer/uci_phonotactic_calculator


In all of the sections below, we will use 𝑤  =  𝑥1…  𝑥𝑛  to refer to a word consisting of symbols 𝑥1 

through 𝑥𝑛. 

The unigram score reflects the probability of a word under a simple unigram model. Here, the 

probability of a word is defined as the product of the probabilities of its individual symbols. In the non-

positional version of unigram metrics, probabilities are calculated without considering the position of 

symbols. Rather, only the frequencies of symbols are used in the calculation (Markov 1913, Shannon 

1948). If a particular symbol exists in the test dataset but not in the training set, its probability is set to 

zero. Mathematically, we express the standard unigram probability as 

𝑃(𝑤 = 𝑥1…𝑥𝑛) ≈ ∏𝑃(𝑥𝑖)

𝑛

𝑖=1

 

where we express the probability of encountering an individual unigram as 

𝑃(𝑥) =
𝐶(𝑥)

∑ 𝐶(𝑦) 
𝑦∈Σ 

 

where 𝐶(𝑥) represents the number of occurrences of 𝑥 in the training data and Σ is the set of all sounds 

in the training data. The UCIPC returns log unigram probabilities. 

 

3.1.2 Positional unigram scores 

The UCIPC also computes positional unigram scores. These differ from the unigram probabilities above 

in that they are sensitive to the absolute position of each segment in a word, as well as its identity. The 

positional-unigram score is a type-weighted variant of the unigram score from Vitevitch and Luce (2004). 

It is defined as follows: 



𝑃𝑜𝑠𝑈𝑛𝑖𝑆𝑐𝑜𝑟𝑒(𝑤 = 𝑥1…𝑥𝑛)  =  1  +  ∑𝑃(𝑤𝑖 = 𝑥𝑖)

𝑛

𝑖=1

 

where 

𝑃(𝑤𝑖 = 𝑥)  =  
𝐶(𝑤𝑖 = 𝑥)

∑ 𝐶(𝑤𝑖 = 𝑦) 
𝑦 ∈ Σ

 

where refers to the ith position in a word and is the number of times in the training data the symbol x 

occurs in the ith position of a word. 

Vitevich and Luce (2004) add 1 to the sum of the unigram probabilities “to aid in locating these values 

when you cut and paste the output [...] to another program.” They recommend subtracting 1 from these 

values before reporting them. 

Under this metric, the score assigned to a word is based on the sum of the probability of its individual 

symbols occurring at their respective positions. Note that the ordering of the symbols with respect to 

one another does not affect the score, only their relative frequencies within their given positions. For 

example, for a sequence /xy/, the fact that /x/ immediately precedes /y/ is not explicitly represented in 

the model; only that /x/ occurs in position 1 and /y/ occurs in position 2. Higher scores represent words 

with more probable phonotactics, but note that this score cannot be interpreted as a probability 

because the individual probabilities are summed together rather than multiplied. 

 

3.1.3 Non-positional bigram probabilities 

Unlike unigram metrics, the bigram metrics consider pairs of symbols instead of individual symbols. 

Calculating the standard bigram score is done in a similar way to that of unigram scores. That is, it is 

represented as the product of probabilities of consecutive symbols in each word conditioned on the 



previous symbol. Like the unigram model, the absolute position of the bigrams in the word is not 

considered, and bigrams not occurring in the training data are assigned a probability of zero. We pad the 

words with a special symbol at the beginning and end, which allows us to compute the probabilities of 

symbols starting and ending words. For example, the input /kæt/ ‘cat’ would consist of the bigrams {#k, 

kæ, æt, t#}, where # is a word boundary symbol. This allows the model to be sensitive to the frequencies 

with which certain segments begin and end words. 

Mathematically, we express the standard bigram probability as 

𝑃(𝑤 = 𝑥1…𝑥𝑛) ≈∏𝑃(𝑥𝑖|𝑥𝑖−1)

𝑛

𝑖=2

 

where the probability of a particular bigram is calculated as 

𝑃(𝑥|𝑦) =
𝐶(𝑦𝑥)

𝐶(𝑦)
 

where the count function 𝐶(∙) is defined as in Section 3.1.1.  The UCIPC returns log bigram probabilities. 

 

3.1.4 Positional bigram metrics 

The UCIPC also computes positional bigram scores. This is a type-weighted variant of the bigram score 

from Vitevitch and Luce (2004). It is defined as: 

𝑃𝑜𝑠𝐵𝑖𝑆𝑐𝑜𝑟𝑒(𝑤 = 𝑥1…𝑥𝑛)  =  1  +  ∑𝑃(𝑤𝑖−1 = 𝑥𝑖−1,  𝑤𝑖 = 𝑥𝑖)

𝑛

𝑖=2

 

where 

𝑃(𝑤𝑖−1 = 𝑥𝑖−1,  𝑤𝑖 = 𝑥𝑖)  =  
𝐶(𝑤𝑖−1 = 𝑥𝑖−1,  𝑤𝑖 = 𝑥𝑖)

∑ ∑ 𝐶(𝑤𝑖−1 = 𝑧,  𝑤𝑖 = 𝑣) 
𝑣 ∈Σ

 
𝑧 ∈ Σ

 



The same caveats apply here with respect to these scores not forming valid probabilities. These scores 

also differ from non-positional bigrams in that the bigram probabilities used to calculate the overall 

scores are joint probabilities rather than conditional probabilities: they tell us the probability of segment 

𝑥  occurring in position 𝑖  and segment 𝑦  occurring in position 𝑖 + 1 , while the non-positional bigram 

probabilities tell us the probability of segment 𝑦  occurring in position 𝑖 + 1  given that segment 𝑥  

occurred in position 𝑖 . 

 

3.1.5 Token frequency-weighted metrics  

In the standard metrics, which we call type-weighted, the frequency of individual word types does not 

affect the output scores. That is, word types that occur more frequently are weighted the same as word 

types that occur very few times. The token-weighted variants of each metric do account for frequency of 

word types. Specifically, word types that occur frequently are weighted higher than less frequent word 

types. To account for this weighting, the count function is weighted so that each occurrence of a 

particular configuration is weighted by the natural log of the count of the word it occurs in.  

For example, consider a corpus that contains the word type “kæt” 1000 times and “tæk” 50 times. 

Under a token-weighted unigram model, we would have 𝐶(æ) = ln(1000) + ln(50) ≈ 10.82, whereas 

in a type-weighted unigram model, we would have 𝐶(æ)  =  1  +  1  =  2. 

Note that the token-weighted positional unigram and bigram scores correspond to the metrics in 

Vitevitch and Luce (2004). The only difference is that they use logarithms with base 10 and the UCIPC 

uses natural logarithms.  

 

3.1.6 Smoothed metrics 



The calculator also calculates variants of every metric with add-one smoothing. With this type of 

smoothing, every configuration (unigram, bigram, etc.) has a default count of one. Thus, configurations 

that are not encountered in the training set, but do appear in the test set, are treated as if they occurred 

once in the former rather than not at all. This assigns a small probability to such configurations. Without 

smoothing, the default count is zero and the associated probability is also zero. Mathematically, for a 

configuration 𝑥 that originally has 𝐶(𝑥) = 0, under add-one smoothing, the count function starts with 

𝐶(𝑥) = 1. Performing smoothing in the token-weighted versions of metrics is done by simply adding 

one to the log-weighted counts. Smoothed metrics provide a way to distinguish sequences with 

unattested segments or segment sequences, which would otherwise be assigned probabilities of 0. 

 

3.1.7 An RNN model of phonotactics 

In addition to these phonotactic metrics, the UCPIC also computes scores based on a simple recurrent 

neural network (sRNN) described in Mayer and Nelson (2020). Rather than considering fixed context 

windows of one or two phonemes, as is done with unigram and bigram metrics, the sRNN can in theory 

learn phonotactic constraints across arbitrarily large distances. In the sRNN architecture, any given state 

is solely dependent on the input and the state of the immediately preceding timepoint. A visual 

representation of this characteristic is given in Figure 1. 

 



Figure 1: sRNN architecture from Mayer and Nelson (2020) 

The state of the network at a given timepoint 𝑡 is given by 

ℎ𝑡  = tanh(𝑊𝑥𝑥𝑡 +𝑊ℎℎ𝑡−1 + 𝑏ℎ) 

where 𝑥𝑡is the vector corresponding to the phoneme input at time 𝑡 , 𝑊𝑡 and 𝑊ℎ are weighted matrices 

for the input and previous state vectors, and 𝑏ℎ is a fixed bias vector. The neural network then produces 

a probability distribution that serves as a prediction as to what segment(s) will appear in the next 

timepoint. Using a weight matrix 𝑊𝑦 and the softmax function 𝜎(𝑧), the probability distribution is 

calculated as 

ŷ𝑡 = 𝜎(𝑊𝑦ℎ𝑡). 

During each iteration, the weighted matrices and bias vector are updated based on the accumulation 

and backpropagation of the cross-entropy loss between the predicted probability distribution before 

encountering a particular phoneme and that phoneme’s identity 𝑦 . The loss function is defined as 

𝐿(𝑦, ŷ) = −𝑦 ∙ log(ŷ). 

For a more in-depth explanation of the implementation of the sRNN, relevant hyperparameter choices, 

and an evaluation of the model’s performance, see the original paper (Mayer and Nelson 2020). 

 

3.1.8 Summary of UCIPC Metrics 

To summarize, the UCIPC can compute the following metrics given training and test data: 

1. Unigram probability 

2. Smoothed unigram probability 

3. Bigram probability 



4. Smoothed bigram probability 

5. Frequency-weighted unigram probability 

6. Frequency-weighted bigram probability 

7. Smoothed, frequency-weighted bigram probability 

8. Positional unigram score 

9. Positional bigram score 

10. Smoothed positional unigram score 

11. Smoothed positional bigram score 

12. Frequency-weighted positional unigram score 

13. Frequency-weighted positional bigram score 

14. Smoothed, frequency-weighted positional unigram score 

15. Smoothed, frequency-weighted positional bigram score 

16. RNN score 

Note that all metrics except the positional variants and the RNN score are reported as log probabilities. 

 

3.2 A brief tutorial for the UCIPC 

The UCIPC requires three inputs: a properly formatted training file, a test file, and the type of training 

model to use. For the training set, users have the choice of uploading their own file or selecting from the 

several existing datasets readily available to the UCIPC. To choose an existing dataset, users may use the 

dropdown menu which contains a short description of the available datasets. For a more detailed 

description of each file, users should view the Datasets page, which is dedicated to storing and 

explaining the use case of each dataset. Existing datasets include, English, Spanish, Turkish and Polish 



corpora (referenced below in this paper) as well as the Finnish, French and Samoan datasets used in 

Mayer (2020). 

If uploading a personal training file, users must take care to follow a few specifications: 

• The file must be in .csv format. 

• The file must consist of one or two columns without headers. 

In user-uploaded training files, the first column is mandatory and should consist of a word list where 

symbols are separated by spaces. Any transcription system is valid, so long as individual symbols are 

space-separated. The second column is optional and, if included, should contain the corresponding 

frequencies for each word, expressed as counts. If this column is included in the training file, both the 

type- and token-weighted variants of each metric will be computed. Otherwise, just the type-weighted 

metrics will have values in the output file. Note that users may not both upload their own training file 

and select a default training file; the UCIPC will display an error message requesting a single choice to be 

made. 

The test file needs to be a CSV file with a single column of test words and no headers. The transcription 

system used in the test file should match the system used in the training file. The mechanism for 

uploading the test file is the same as uploading the training file.  

Finally, users should select the models to train. Selecting the simple model (labeled “Unigram/Bigram 

Scores”) will result in unigram and bigram scores being calculated, along with the positional, smoothed, 

and token-weighted variants. The “RNN model” runs the recurrent neural network model proposed in 

Mayer and Nelson (2020). This model requires significantly more time to train and run than the simple 

model which is why the two appear as separate options instead of being run together. Note that the 

RNN model is run with default hyperparameters. Users who wish to modify the hyperparameters should 



use the command line interface provided in the source code: 

https://github.com/MaxAndrewNelson/Phonotactic_LM 

Once users submit their training file, test file, and model type, the UCIPC will direct them to a separate 

page to download the output file. The output file will be formatted differently depending on the model 

type selected, but the overall structure will be the same. If the simple model is selected, users will 

receive a CSV file where each row contains the test word, its length, and all the calculated variations of 

the unigram and bigram metrics. If the RNN model is selected, users will receive a CSV file where each 

row contains the test word, its length, and the calculated perplexity score. Lower perplexities 

correspond to higher probabilities. To run the model again, users must go back to the UCIPC home page 

and resubmit the input form with the necessary fields (training/test file, model type). 

 

3.3 Planned extensions of the UCIPC 

Currently the UCIPC does not implement calculation of neighborhood density. This is largely due to the 

contexts in which it has been applied so far: we have focused primarily on the phonotactic acquisition in 

the first year, and previous research has indicated that infants are not sensitive to neighborhood density 

in this time period (Swingley & Aslin, 2002; Sundara et al. 2022). To make the UCIPC more applicable to 

the study of adult phonotactic knowledge, we plan to implement this functionality soon. 

We also plan to add more sophisticated smoothing techniques. Currently all smoothed metrics involve 

add-one, or Laplace, smoothing. This technique has the virtue of being simple, but it tends to shift too 

much probability mass from observed to unobserved word forms. We plan to add additional smoothing 

techniques, such as Modified Kneser-Ney or Witten-Bell smoothing, which have been shown to perform 

more favorably in NLP tasks (e.g., Chen & Goodman, 1998). To our knowledge no work has looked at 

smoothing as it relates to modeling phonotactic acceptability judgments. More detailed study of how 



well different smoothing techniques correlate with empirical observations in this domain will be 

valuable. 

Finally, we would like to emphasize that the UCIPC is an open-source project (the source code can be 

found at https://github.com/connormayer/uci_phonotactic_calculator). If you are interested in adding 

new functionality or fixing bugs, please reach out to the corresponding author. 

 

4 Applications of phonotactic metrics in experiments with adults 

In this section, we model phonotactic acceptability ratings given by human participants in published 

studies as a function of a variety of phonotactic metrics. Our purpose here was to determine whether 

positional metrics that encode absolute positional information or non-positional metrics that take word 

edges but no other positional information into account that are best able to predict acceptability 

judgements by adult native listeners. For each of the following datasets, we run the UCIPC with an 

appropriate training set in the same language. The calculator’s outcomes are used as predictors in a 

regression model that attempts to predict the human ratings. All the code and data can be found at 

https://github.com/aryarksub/phonotactic_metrics.  

The general format for each regression model is 

𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦  ∼  𝑈𝑛𝑖𝑔𝑟𝑎𝑚𝑆𝑐𝑜𝑟𝑒 ∗ 𝐵𝑖𝑔𝑟𝑎𝑚𝑆𝑐𝑜𝑟𝑒  

with random intercepts included for individual participants and items when possible. The unigram and 

bigram score predictors are mean-centered and scaled. Outputs from the UCIPC that are negative 

infinity (corresponding to a probability of zero) are adjusted to a large negative value (e.g. -50) so that 

scaling can be done without error. The specific type of regression used (linear or logistic) depends on the 

experimental design of each study. 

https://github.com/connormayer/uci_phonotactic_calculator


We consider a maximum of eight models for each data set: 

1. Standard: Non-positional unigram and bigram probability 

2. Frequency-weighted: Token-weighted non-positional unigram and bigram probability 

3. Smoothed: Smoothed non-positional unigram and bigram probability 

4. Frequency-weighted, smoothed: smoothed, token-weighted non-positional unigram and bigram 

probability 

5. Positional: Positional unigram and bigram scores 

6. Frequency-weighted positional: Token-weighted positional unigram and bigram scores 

7. Smoothed positional: Smoothed positional unigram and bigram scores 

8. Frequency-weighted, smoothed positional: Smoothed, token-weighted positional unigram and 

bigram scores 

Token-weighted metrics are omitted when frequency information is not available for the training data. 

We do not report results for the RNN model. 

Each of the following subsections examines an individual test dataset and reports the results of the 

relevant models as run on the corresponding data. The results are formatted in a tabular manner, with 

the following column headers: 

• Model: Specifies the metrics used as predictors in the model  

• Intercept: Regression intercept 

• Uni. Coef: Coefficient for the unigram score term 

• Bi. Coef: Coefficient for the bigram score term 

• Int. Coef: Coefficient for the interaction (between unigram and bigram score) term 

• AIC: Akaike Information Criterion (estimation of prediction error; Akaike 1974) 



AIC is a metric for model comparison that estimates out of sample prediction error. It rewards model fit 

to the data and penalizes model complexity. Lower values of AIC indicate better model performance. 

However, absolute AIC values are not meaningful, but differences in AIC between a model and the 

model with the lowest AIC can be used to evaluate their performance on a dataset. We interpret 

differences in AIC using the rule of thumb proposed in Burnham & Anderson (2004; p. 271): an AIC 

difference of <= 2  between a model 𝑀 and the model with the lowest AIC score 𝑀𝑚𝑖𝑛  means there is 

“considerable support” for 𝑀 (i.e., 𝑀  and 𝑀𝑚𝑖𝑛  are both plausibly the best model); a difference of 

between 4 and 7 means 𝑀  has “considerably less support” relative to 𝑀𝑚𝑖𝑛, and a difference of more 

than 10 indicates “essentially no support” for  𝑀  relative to𝑀𝑚𝑖𝑛. 

Each table below is sorted in increasing order of AIC, with models at the top of each table having lower 

AIC, and therefore, better overall performance.  

 

4.1 English 

Unsurprisingly, the most numerous reports are on native English speakers phonotactic judgments. In 

this section, we report results from modeling data obtained from 5 published studies.  

4.1.1 Albright and Hayes (2003) 

The data used in Albright and Hayes (2003) consists of 58 English monosyllabic nonce verbs consisting of 

between 3 and 5 segments rated for phonological well-formedness by 20 native English speakers. These 

data correspond to the pretest portion of Experiment 1 in their paper. Participants were asked to rate 

forms on a Likert scale between 1 (impossible as an English word) and 7 (would be a fine English word). 

The data is in the form of mean ratings across participants; individual ratings are not available. 



The phonotactic models were trained on the English CMU Pronouncing Dictionary (CMU Pronouncing 

Dictionary 2008) with frequency information from CELEX (Baayen et al. 1995). Stress location was not 

represented in the training data. The fitted models provided scores for the 58 nonce verbs used in the 

study. We used these scores as predictors in a set of linear models to model the mean rating. Because 

the dataset does not contain individual ratings by subject, we do not use any random effects.  

The results in Table 1 show that the non-positional metrics outperform their positional counterparts in 

each case, and that these differences indicate considerably less support for the positional models. The 

differences within the classes of non-positional and positional metrics are not meaningful. 

Model Intercept Uni. Coef. Bi. Coef. Int. Coef. AIC 

Smoothed 4.69160 0.15713 0.11632 -0.01857 123.115 

Frequency-weighted smoothed 4.68971 0.16792 0.10045 -0.01575 123.437 

Standard 4.70083 0.22337 0.07286 -0.14096 123.965 

Frequency-weighted 4.69640 0.22241 0.05458 -0.11392 124.152 

Positional frequency-weighted 4.72162 -0.11934 0.13720 -0.05067 129.562 

Positional frequency-weighted 

smoothed 
4.72111 -0.11911 0.13690 -0.05002 129.566 

Positional 4.70156 -0.10987 0.12717 -0.02460 129.706 

Positional smoothed 4.70003 -0.10882 0.12585 -0.02265 129.714 

Table 1: Coefficients and AIC scores of the regression models fit to data from Albright & Hayes (2003). 

 

4.1.2 Daland et al. (2011) 



The test data obtained from Daland consists of 96 disyllabic English nonce words consisting of six 

segments. These words were rated on a five-point Likert rating scale and aggregated over a set of 

subjects. The main goal of Daland et al. (2011) was to compare the acceptability of different onsets in 

English. These nonce words accordingly consist of a set of 48 complex onsets and four tails. Each onset 

was paired with two different tails. Models were fit to the same English training data set described in 

the previous section, and the 96 nonce words (including tails) were scored by the fitted models. We 

used these scores as predictors in a linear regression model that uses the mean word ratings across 

participants as its output feature. Because scores were aggregated across subjects, there were no 

random effects in the model. 

The results are shown in Table 2. The most accurate models are the smoothed and frequency-weighted 

smoothed non-positional metrics. Although in this case all of the positional models outperform the 

frequency-weighted and standard non-positional models, a difference of > 10 in AIC between the best 

non-positional model and the best positional model indicates very little support for the latter.  

Model Intercept Uni. Coef. Bi. Coef. Int. Coef. AIC 

Smoothed 2.62606 -0.08283 0.67846 0.29493 242.270 

Frequency-weighted smoothed 2.61921 -0.08328 0.68104 0.31075 244.621 

Positional frequency-weighted 

smoothed 
2.75135 -0.06492 0.66884 -0.04975 258.460 

Positional frequency-weighted 2.74997 -0.06262 0.66403 -0.04779 258.719 

Positional smoothed 2.73739 -0.03431 0.62606 -0.03083 259.450 

Positional 2.73305 -0.02656 0.61117 -0.02467 260.176 

Frequency-weighted 2.62998 -0.05006 0.42167 0.21011 284.260 

Standard 10.93989 0.34735 0.32775 0.01387 284.538 



Table 2: Coefficients and AIC scores of the regression models fit to data from Daland et al. (2011). 

 

4.1.3 Needle and Pierrehumbert (2022) 

The data from Needle et al. (2022) consists of ratings of 8400 English nonce words by 1440 participants. 

Nonce words consisted of 4-7 segments. Each participant rated 140 stimuli each, leading to 24 ratings 

for each individual nonce word. Ratings were provided on a five-point Likert scale.  

In this case, the training dataset we use is the same one used in Needle et al. (2022) and consists of 

about 11,000 monomorphemic words from CELEX (Baayen et al. 1995) in the DISC transcription system. 

We converted the DISC transcriptions to ARPABET to stay consistent with the system used for English 

throughout this paper. Because this training data does not contain frequency information, the token-

weighted models could not be used. The other models were fitted to this training data and used to score 

the experimental stimuli.  

These scores were used as predictors in a linear mixed-effects model, with random intercepts for word 

and participant. The coefficients and AIC values of the fitted models are shown in Table 3. We see again 

that the non-positional models substantially outperform the positional ones. In addition, the non-

smoothed non-positional model outperforms the smoothed one.  

Model Intercept Uni. Coef. Bi. Coef. Int. Coef. AIC 

Standard 2.72212 0.05903 0.54662 -0.00847 566148.8 

Smoothed 2.66202 -0.32281 0.69883 0.08722 566288.5 

Positional smoothed 2.79281 -0.16563 0.33620 -0.10043 570030.7 

Positional 2.79435 -0.15024 0.32053 -0.10272 570084.3 

Table 3: Coefficients and AIC scores of the regression models fit to data from Needle et al. (2022). 



 

4.1.4 Scholes (1966) 

The test data from Scholes (1966) were obtained from the supplementary material of Hayes & Wilson 

(2008). It consists of 62 monosyllabic nonce words rated by 33 seventh grade students. These words 

varied primarily in their onsets. The students were asked whether each word was a possible word of 

English and asked to provide a yes/no response: thus, the data here consist of binary responses rather 

than Likert scores. The data were aggregated across onset, which means each of the 62 onsets is 

associated with a value between 0 and 1 that represents the proportion of “yes” responses across 

participants. 

The training data used were also from the supplementary materials of Hayes & Wilson (2008) and 

consists of 55 English onsets and their type frequencies. This is a subset of the onsets in the CMU 

Pronouncing Dictionary with “exotic” onsets like [zw] and [sf] removed. This is rather different from the 

training data sets in previous cases because our training data consists of onsets, rather than words, and 

our frequency counts correspond to the number of word types each onset occurs in. The models were 

trained on this dataset and tested on the 62 words from Scholes (1966); this testing data also comes 

from the supplementary material for Hayes & Wilson (2008). The model scores were used as predictors 

in a logistic regression model over the proportions, weighted by the number of participants. Because we 

do not have individual ratings, we do not include any random effects.  

The results in Table 4 show again that the non-positional metrics perform better than the positional 

metrics, although the overall differences between models are relatively minor. The frequency-weighted 

models have a small advantage over equivalent non-frequency-weighted models. We will discuss this 

phenomenon more in Section 4.2 below when we look at Polish onsets, where the effect is much 

stronger. 



 

Model Intercept Uni. Coef. Bi. Coef. Int. Coef. AIC 

Frequency-weighted smoothed -0.58485 0.02450 1.93349 0.20597 35.40623 

Smoothed -0.31853 -1.12792 2.83191 -0.24395 36.03306 

Frequency-weighted -0.20491 0.55417 1.60020 -0.30457 36.53359 

Standard -0.16237 0.51992 1.64383 -0.36761 36.65767 

Positional frequency-weighted 

smoothed 
-0.11198 0.70349 1.65370 -0.48528 37.56650 

Positional frequency-weighted -0.25016 0.84140 1.38754 -0.21887 38.09191 

Positional 0.70141 0.06254 3.19127 -1.93961 39.76660 

Positional smoothed -0.00595 0.67075 2.32122 -1.25656 41.47684 

Table 4: Coefficients and AIC scores of the regression models fit to data from Scholes (1966). 

 

4.1.5 Hayes and White (2013) 

The test data procured by Hayes and White (2013) consists of 160 English nonce words consisting of 

between 2 and 7 segments rated on a logarithmic scale by 29 participants. Participants were asked to 

perform a magnitude estimation task (Lodge 1981, Bard et al. 1996) comparing the well-formedness of 

each word with the reference word “poik”. The log of these magnitudes is the dependent variable we 

use here. The training data is the same CMU Pronouncing Dictionary data used in the analyses of 

Albright & Hayes (2003) and Daland et al. (2011). Models were trained on this data and used to score 

each nonce word. These scores were used as predictors in a linear mixed-effects model with random 

intercepts for participant and word. 



The coefficients and AIC values of the fitted models are shown in Table 5. Again, the non-positional 

metrics tend to do better than positional metrics, with the smoothed frequency-weighted model 

performing the best.  

Model Intercept Uni. Coef. Bi. Coef. Int. Coef. AIC 

Frequency-weighted smoothed 4.40106 -0.35521 0.52082 0.02889 12338.82 

Smoothed 4.39708 -0.40281 0.55471 0.03242 12349.81 

Standard 4.41836 -0.29086 0.44213 0.00310 12507.21 

Frequency-weighted 4.41401 -0.28490 0.43514 0.01021 12519.93 

Positional frequency-weighted 4.42823 -0.02101 0.18375 -0.00925 13009.03 

Positional frequency-weighted 

smoothed 
4.42809 -0.02090 0.18315 -0.00907 13009.36 

Positional 4.43072 -0.03758 0.19762 -0.01205 13013.83 

Positional smoothed 4.43027 -0.03711 0.19561 -0.01148 13014.93 

Table 5: Coefficients and AIC scores of the regression models fit to data Hayes and White (2013). 

 

4.2 Polish (Jarosz & Riesling 2017) 

The Polish test data we use comes from Jarosz and Rysling (2017). In this paper, 81 native Polish 

speakers were asked to rate 159 test words consisting of 53 onsets and 3 tails (similar to the design in 

Daland et al. 2011) on a Likert scale of 1-5. Each participant rated each word once, leading to 12,880 

responses. 

Our training data set consisted of the list of Polish onsets with accompanying type frequencies from 

Jarosz (2017). These are generated from a corpus of child-directed speech consisting of about 43,000 



word types (Haman et al. 2011). Because we trained only on onsets, we generated model predictions for 

the 53 onsets in isolation (meaning that the three tails corresponding to each onset receive the same 

score). The model scores are used as predictors in a linear mixed-effects model with random intercepts 

for word (including tail) and participant.  

Table 6 shows again that the best models are non-positional, smoothed metrics. Similar to the Scholes 

data presented in Section 4.1.4, but more pronounced, frequency-weighting appears to be crucial for 

model performance. This may reflect some language-specific sensitivity to frequency. However, as with 

the Scholes data, the training data consists of onsets with type frequencies rather than words with 

token frequencies. When a non-frequency-weighted model is applied to this data, the training data 

consists of a simple list of attested onsets lacking both type and token frequency information. It is more 

likely therefore than the success of the frequency-weighted models here corresponds to a sensitivity to 

type frequency information. 

Model Intercept Uni. Coef. Bi. Coef. Int. Coef. AIC 

Frequency-weighted smoothed 3.08772  0.00761 0.72491 0.07526 44609.70 

Smoothed 3.09279 -0.02533 0.68918 0.06116 44799.76 

Positional frequency-weighted 

smoothed 
3.22977 0.30610 0.58109 -0.19084 44835.34 

Positional frequency-weighted 3.22888 0.30468 0.58098 -0.18967 44836.69 

Frequency-weighted 3.05181 0.05792 0.63124 0.18117 44849.67 

Standard 3.05091 -0.03312 0.67438 0.15339 44883.97 

Positional smoothed 3.14070 0.42246 0.34818 -0.05221 44907.11 

Positional 3.14046 0.42175 0.34839 -0.05175 44908.04 

Table 6: Coefficients and AIC scores of the regression models fit to data from Jarosz & Riesling (2017). 



 

4.3 Spanish  

This data set was collected by authors CM and MS using the methodology from Sundara & Breiss 

(submitted) for use in an unrelated study that is still in progress. The data consists of 576 unique CVCV 

Spanish nonce words rated on a discrete scale from 1 to 100 by 168 participants. Each participant rated 

144 tokens, leading to 24,192 ratings. The phonotactic models were trained on a set of about 27,000 

word types including citation and inflected forms taken from the EsPal database (Duchon et al. 2013) 

with stress encoded. The frequencies associated with these words were calculated from a large 

collection of Spanish subtitle data. The trained models were used to score the 576 nonce words. 

We use these scores as predictors in a linear mixed-effects model with random intercepts for 

participants and words. Random intercepts are used for individual words and subjects. The results in 

Table 7 below show again that the non-positional metrics substantially outperform the positional 

metrics, and that the non-frequency-weighted metrics are generally more successful. 

Model Intercept Uni. Coef. Bi. Coef. Int. Coef. AIC 

Smoothed 51.07835 -1.03073 8.11025 1.32290 187729.1 

Standard 50.83292 -0.97408 7.08787 1.68646 187932.9 

Frequency-weighted 50.82480 -1.02140 7.11876 1.72649 188059.9 

Frequency-weighted smoothed 51.03021 -1.15668 8.26838 1.45804 188059.9 

Positional smoothed 52.95626 -2.64322 6.81189 -2.55959 188252.1 

Positional 52.95591 -2.64340 6.81094 -2.55890 189100.6 

Positional frequency-weighted 52.99178 -2.25829 6.75389 -2.48905 189668.1 



Positional frequency-weighted 

smoothed 
52.99200 -2.25728 6.75381 -2.48962 189668.3 

Table 7: Coefficients and AIC scores of the regression models fit to the Spanish dataset. 

 

4.4 Turkish  

The test data, described in more detail in Mayer (2024), consists of 596 Turkish CVCVC nonce words 

rated on a discrete scale from 1 to 100 by 90 subjects following the same methodology as the Spanish 

study above. Each participant rated 192 tokens, leading to 17,280 ratings. The phonotactic models were 

trained on a set of 18,472 citation forms from the Turkish Electronic Living Lexicon database (TELL; 

Inkelas et al. 2000). This training data does not contain frequency information, so we omit results from 

the frequency-weighted models. Fitted models were used to generate scores for the 596 nonce words. 

These scores were used as predictors in a linear mixed-effects model with random intercepts for word 

and participant. 

Again, the results in Table 8 show that non-positional metrics again do a better job of capturing human 

ratings than their positional counterparts, and the best model appears to be the standard smoothed 

model.  

Model Intercept Uni. Coef. Bi. Coef. Int. Coef. AIC 

Smoothed 39.42271 6.56583 2.46451 6.26266 159545.6 

Standard 39.16679 6.88337 1.84632 7.46382 159581.9 

Positional 45.03984 -0.33506 11.17251 -1.29134 159628.4 

Positional smoothed 45.03317 -0.31176 11.13564 -1.28345 159628.8 

Table 8: Coefficients and AIC scores of the regression models fit to Turkish data from Mayer (2024). 



 

4.5 Summary of results 

Several clear trends emerge from the results presented above: 

• Non-positional models outperform positional models in every case. 

• Non-positional smoothed models generally outperform non-positional unsmoothed models. 

However, for positional models smoothing typically has little effect and sometimes reduces their 

performance. 

• Frequency-weighted models generally performed similarly to or slightly worse than non-

frequency weighted models. The exceptions to this are Hayes & White (2013), Scholes (1966) 

and Jarosz & Riesling (2017). The latter two cases are not really exceptions because the 

frequency information in the training data consists of onset type frequencies rather than token 

frequency: the success of the frequency-weighted models in these cases simply indicates that 

type frequency is important. The only true exception is Hayes & White (2013), where including 

token frequency improved the performance of the smoothed model. 

What is even more striking about these results is that they emerge across a range of different domains 

and languages: some, like Scholes (1966), Daland et al. (2011), and Jarosz & Rysling (2017) focus only on 

onsets, while the others look at whole word forms. In all cases, non-positional models that encode 

information about word edges, but no other absolute position information best predict native speaker 

judgements. 

Why should it be the case that non-positional models do better? There are several possible reasons. 

First, as mentioned earlier in Section 2.1, positional models have issues with data sparsity which make it 

difficult for them to assign accurate scores to long words: estimates for later positions will necessarily be 

based on less data than for earlier positions, because there are fewer words with material in those 



positions. Thus, we might expect scores assigned to longer words to be less useful in predicting human 

behavior. However, the maximum length of test words in the eight studies we looked at was 7 

segments, and even in published results on monosyllabic nonce words with fewer segments or onsets 

alone (Albright and Hayes 2003, Scholes 1965, Jarosz and Riesling 2017), non-positional models 

outperformed positional ones. 

Second, the non-positional metrics can capture phonotactic constraints that target both word-initial and 

word-final material, which are often important positions in terms of phonotactic constraints (e.g. 

Beckman 1997, Lombardi 1999) and an important source of information in word segmentation and 

allophonic learning. In native Turkish words, for example, /ɾ/ can never begin a word and words cannot 

end in voiced stops or affricates. The non-positional models can encode this with the use of boundary 

symbols: such a model trained on Turkish would assign a low probability to the sequences ‘#r’ and ‘b#’, 

where # is a word boundary, reflecting the prohibition on word-initial /r/ and word-final voiced stops. 

Although the positional models can encode word initial constraints, since every occurrence of a sound in 

position 0 is a word-initial occurrence, they cannot encode word-final constraints, since the position of 

the final element in a word depends on its length. A positional model struggles to encode restrictions 

like Turkish’s ban on final voiced stops: a [b] in the third position could have a high probability if a word 

is of length five (as in [babam] ‘my father’), but a low probability if it’s of length three. 

Finally, in addition to these factors, it may simply be the case that non-positional models simply 

correspond better to human cognitive processes than positional ones do, either because humans do not 

take absolute position into account, because they compute conditional rather than joint probabilities, or 

some combination of these. More detailed investigation using tools such as the UCIPC will be useful in 

teasing these factors apart. 



These results have important implications. First, positional metrics of phonotactics, at least as currently 

implemented, do not predict human phonotactic generalization as well as non-positional metrics: the 

non-positional metrics outperform the positional ones in every case. This suggests that the positional 

metrics used by many phonotactic calculators, including the popular Phonotactic Probability Calculator 

(Vitevitch & Luce 2004), may not be the most suitable for modeling human acceptability judgments.  

Second, it is generally the case that models that take token frequency into account perform more poorly 

than models that don’t: this is somewhat less clear cut, however. Further research is needed to 

determine the extent to which speakers are sensitive to token frequency when forming phonotactic 

judgments. 

Finally, smoothed models generally outperform unsmoothed models. This is not surprising: speakers do 

not judge words containing unattested sequences as totally unacceptable. It is important to note, 

however, that the add-one smoothing used in these models is rather coarse, assigning each unattested 

sequence the same pseudo-count. It has been well established in linguistic research that speakers 

generalize to unattested sequences based on their similarity to existing sequences in the language (e.g. 

Chomsky & Halle 1965, Hayes & Wilson 2008, Wilson & Gallagher 2018, Dai et al. 2023, a.o.). More 

robust smoothing metrics that can capture these differences would be valuable but are beyond the 

scope of the current paper. 

 

5.   Applications of phonotactic metrics in stimulus construction 

In addition to serving as variables of interest in experimental work or computational models of speech, 

the metrics calculated by the UCIPC are also useful for constructing and selecting experimental stimuli.  

 



5.1  Experiments with infants 

As shown in the previous sections, the UCIPC can be used to calculate a wide array of metrics to 

summarize how likely segments and segment sequences are in any given corpus. Such metrics are also 

extremely useful when constructing stimuli for experiments. For instance, the UCIPC can be used to 

quantify the extent to which some segments or segment sequences are frequent, in any language for 

which a phonologically transcribed lexicon or corpus of speech is available. Such quantification is 

necessary when manipulating segment or segment sequence frequencies as an independent variable in 

experiments designed to determine when, if at all, infants are sensitive to native language patterns (e.g., 

Archer & Curtin, 2011; Gonzalez-Gomez & Nazzi, 2012; Friederici & Wessels, 1993). Quantification is also 

necessary to identify and index experimental confounds when differences in segment and segment 

sequence likelihood are not the target of inquiry but are nonetheless likely to influence infant behavior 

(Gonzalez-Gomez & Nazzi, 2012; Nazzi, Bertoncini, Bijeljac-Babic, 2009; Sebastián-Gallés & Bosch, 2002; 

Solá-Llonch & Sundara, under review). 

In addition to standardizing the calculations of metrics to promote replicability, tools like the UCIPC 

lower the bar for new investigators, particularly those working on under resourced languages to develop 

stimuli. Typically, to develop stimuli in a new language, an investigator would need access to a corpus, as 

well as computational skills to conduct corpus analyses to identify patterns and index the incidence of 

sounds and sound sequences, With UCIPC, the metrics can be obtained for any language as long as there 

is a dataset with all the words in a dictionary or corpus listed in a consistent transcription system. With 

time, we expect to increase the number of pre-existing datasets for different languages, to alleviate the 

challenge of identifying suitable-sized corpora in different languages. 

 

5.2  Experiments with Artificial Languages 



The outcome of artificial language experiments has been reported to differ in adults with different 

native languages (White, et al., 2018; Huang and Do, 2021, Do and Yeung, 2021, etc.). This is typically 

dealt with by either recruiting only participants who speak the same language(s), so that the same L1 

biases are shared across participants, or to use language background as a control variable in the analysis. 

Phonotactic metrics such as those generated by the UCIPC can also be useful in designing or analyzing 

artificial language learning experiments. For example, if a study were to be run on both English and 

Spanish speakers, phonotactic models fit to English and Spanish training data could be useful to score 

each stimulus and identify and remove cases where the models’ scores deviate substantially between 

languages. Alternatively, these scores could themselves be used as control variables, rather than the 

coarser metric of language background. This approach has the potential not only to better control for L1 

effects in AGL, but also to quantify and predict them. 

Finally, the artificial language itself can be used as the training data to ensure that the test items do not 

vary on segment and segment sequence likelihood that are themselves not the target of inquiry 

 

6. Discussion and conclusion 

In this paper we have presented the UCI Phonotactic Calculator, a new online tool that allows users to 

compute a suite of different phonotactic acceptability metrics. Compared to existing tools, the UCIPC 

has several desirable properties: 

• It allows users to provide their own training data, allowing it to be applied to any language, 

whether natural or artificial, for which appropriate training data is available 

• It computes a large suite of different types of acceptability metrics 

• It has a simple point and click interface that allows it to be used by researchers with limited 

technical backgrounds 



Section 4 provided an example of how the calculator can be applied to answer questions about what 

aspects of phonotactic patterns speakers encode and how they generalize to unattested patterns. This 

demonstrated that, overall, models that are not sensitive to absolute position in the word or to token 

frequency do the best at predicting human judgments across a range of studies in four different 

languages. 

The UCIPC has several valuable research applications in addition to modeling phonotactic acceptability. 

It can be used in stimulus construction for lexical decision tasks, infant experiments, or artificial 

grammar learning studies to control for the effects of phonotactic probability in participants’ native 

languages. It can also be used be used to model changes in phonotactic generalizations resulting from 

changing vocabulary size (see, e.g., Sundara and Breiss, submitted).  

We hope that the UCIPC will be a valuable tool for researchers who are interested in phonotactic 

acceptability. We would like to close by emphasizing that the UCIPC is an open-source project: the 

source code can be freely examined, and we welcome contributions from researchers who would like to 

add additional functionality or fix existing bugs. 
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Appendix A 

Aside from the web interface, phonotactic metrics can also be calculated via the command-line interface 

for the UCIPC. To use the interface, users must download the UCIPC source code from the GitHub 

https://github.com/aryarksub/phonotactic_metrics
https://github.com/connormayer/uci_phonotactic_calculator


repository and, in their local terminal, navigate to the src directory which holds the 

ngram_calculator.py file. The calculator can then be run with the command 

python ngram_calculator.py [train_file] [test_file] [results_file] 

where the arguments refer to the local paths to the training file, test file, and output file to use, 

respectively.  For example, using the command-line interface on sample files located in the data 

directory can be done as follows: 

python ngram_calculator.py ..\data\english_cmu_freq.txt 

..\data\sample_test_data\english_test_data.csv outfile.csv 
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