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Abstract
This paper presents the UCI Phonotactic Calculator (UCIPC), a new online tool for quantifying the occurrence of segments 
and segment sequences in a corpus. This tool has several advantages compared to existing tools: it allows users to supply 
their own training data, meaning it can be applied to any language for which a corpus is available; it computes a wider range 
of metrics than most existing tools; and it provides an accessible point-and-click interface that allows researchers with more 
modest technical backgrounds to take advantage of phonotactic models. After describing the metrics implemented by the 
calculator and how to use it, we present the results of a proof-of-concept study comparing how well different types of metrics 
implemented by the UCIPC predict human responses from eight published nonce word acceptability judgment studies across 
four different languages. These results suggest that metrics that take into account the relative position of sounds and include 
word boundaries are better at predicting human responses than those that are based on the absolute position of sounds and 
do not include word boundaries. We close by discussing the usefulness of tools like the UCIPC in experimental design and 
analysis and outline several areas of future research that this tool will help support.
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Introduction

Phonotactics refers to restrictions on the sequencing of sounds 
into words. For example, although the word /skif/ “skeef” is 
not a real English word (at least in the authors’ dialects), it 
could in principle become an English word. It could not be a 
Spanish word, however, because there are no Spanish words 
that begin with /s/-initial complex onsets. The fact that dif-
ferent languages impose different restrictions on phonotac-
tic patterns indicates that phonotactics must be learned from 
speech input (though some aspects like sonority sequenc-
ing preferences have been proposed to be innate, e.g., Ber-
ent et al., 2008; Prince & Smolensky, 1993; Selkirk, 1984). 
Speakers generally have strong intuitions about what possi-
ble words could sound like in their language. The process of 
developing these intuitions is typically taken to correspond 
to forming generalizations over sound patterns in the lexicon, 

with learners forming generalizations based on the type fre-
quency (rather than token frequency) of particular phonotactic 
structures (e.g., Chomsky & Halle, 1965, 1968; Bybee, 1995, 
2003; Pierrehumbert, 2001; Bailey & Hahn, 2001; Edwards 
et al., 2004, a.o.).

One common method for gaining insight into speakers’ 
phonotactic knowledge is to perform acceptability judg-
ment tasks where speakers are asked to rate a nonce word 
based on its suitability as a possible word in their language. 
This might involve a forced-choice task, a numeric rating, 
or other responses like magnitude estimation. It has long 
been observed on the basis of such studies that phonotactic 
judgments are graded: speakers do not generally think of 
words as being “in” or “out” but can often arrange them on 
a cline of acceptability. The classic example from Chom-
sky and Halle (1968) is the three words “blick,” “bnick,” 
and “bnzk.” Although none of these is a real English word, 
speakers typically find “blick” to be acceptable, “bnzk” to 
be unacceptable, and “bnick” to be somewhere in between. 
Every experimental study that has tested for gradience has 
found it (e.g., Coleman & Pierrehumbert, 1997; Scholes, 
1966; Bailey & Hahn, 2001; Hayes & Wilson, 2008; Daland 
et al., 2011, a.o.).
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Further, graded knowledge of phonotactics is crucially 
important for speech perception (e.g., Norris & McQueen, 
2008; Davidson & Shaw, 2012, Dupoux et  al., 2011, 
Chodroff & Wilson, 2014; Steffman & Sundara, 2024) and 
speech production (e.g., Edwards et al., 2004). It is also 
important for word segmentation and word learning, even 
in infants and children (e.g., Mattys et al., 1999; McQueen, 
1998; Mersad & Nazzi, 2011; Vitevitch & Luce, 1999; 
Storkel, 2001). Speech errors produced by native speakers 
also respect gradient phonotactic restrictions (e.g., Gol-
drick & Larson, 2008; Taylor & Houghton, 2005; Warker, 
2013; Warker & Dell, 2006, 2015). As researchers, we are 
interested in understanding what knowledge of phonotac-
tics speakers possess, how they acquire that knowledge, and 
how it is deployed in other areas of language. A common 
approach is to develop models that allow phonotactic metrics 
to be computed for words given some training data sample 
meant to approximate a speaker’s lexicon, over which pho-
notactic generalizations can be formed. These metrics are 
commonly used as predictors of experimental data such as 
reading time, categorization, accuracy or reaction time for 
lexical decisions, production, speech errors, or acceptability 
scores. Such models are useful because they allow us to stip-
ulate precisely (a) what phonotactic configurations speakers 
are sensitive to, (b) how exposure to these configurations 
shapes phonotactic knowledge, and (c) how phonotactics 
influences speech more generally. A key criterion for these 
models is that they output graded rather than categorical 
acceptability scores.

The goal of this paper is to present a new online tool 
used for calculating phonotactic metrics: the University of 
California, Irvine (UCI) Phonotactic Calculator (https://​
phono​tacti​cs.​socsci.​uci.​edu/). This tool has several advan-
tages compared to existing tools for computing graded lexi-
cal statistics: it allows users to supply their own training 
data, meaning it can be run on any language where a corpus 
representing the lexicon is available; it computes a wider 
range of metrics than is typical; and it provides an acces-
sible point-and-click interface that allows researchers with 
more modest technical backgrounds to take advantage of 
phonotactic models.

The paper is structured as follows: Sect. "Limitations 
of existing tools for computing phonotactic acceptabil-
ity" describes several existing tools for computing phono-
tactic metrics and the limitations of these tools that moti-
vated the development of the UCI Phonotactic Calculator. 
Sect. "The UCI Phonotactic Calculator" describes the UCI 
Phonotactic Calculator and the metrics it implements. 
Sect. "Applications of phonotactic metrics in experiments 
with adults" shows how the UCI Phonotactic Calculator can 
be used to compare a variety of proposed phonotactic mod-
els against data from eight phonotactic acceptability studies 
across four languages. The results demonstrate that, in every 

case, metrics that reference the relative position of segments 
in words outperform more commonly used metrics that ref-
erence the absolute position of segments. This raises sev-
eral other questions that would benefit from future research. 
Sect. "Applications of phonotactic metrics in stimulus con-
struction" offers a brief discussion and conclusion.

Limitations of existing tools for computing 
phonotactic acceptability

In this section we will discuss existing tools that quantify 
the occurrence of a segment or segment sequences in a cor-
pus embodying a lexicon. Overall, such tools are available 
for a small number of languages and cannot be customized 
because the training corpora they are based on are not acces-
sible to the user. Both these limitations severely restrict the 
range of questions that can be empirically investigated.

The Phonotactic Probability Calculator

Currently, the most well-known phonotactics calculator, 
with 675 citations in Google Scholar, is the Phonotactic 
Probability Calculator (PPC; Vitevitch & Luce, 2004). The 
PPC allows the phonotactic metrics described in Jusczyk 
et al. (1994) and Vitevitch and Luce (1999) to be computed 
for novel words in English, Spanish, and Modern Stand-
ard Arabic (Aljasser & Vitevitch, 2018). A related tool, the 
Neighborhood Density Calculator, allows neighborhood 
density to be calculated for words in the same languages 
(Vitevitch & Luce, 2016).

The English model is trained on a phonetic transcription 
of the 1964 Merriam-Webster Pocket Dictionary, which 
consists of about 20,000 words. Information about word 
frequency comes from Kučera and Francis (1967). Stress 
is not encoded. The website does not state what training 
data were used for the Spanish model, though it may be the 
data from the Beginning Spanish Lexicon (Vitevitch et al., 
2012), which consists of 3,854 words from the glossary of a 
first-year Spanish textbook, transcribed in Castilian Spanish. 
The Modern Standard Arabic model is trained on a list of 
the 100,000 most frequent Modern Standard Arabic lemmas 
purchased from https://​www.​sketc​hengi​ne.​eu/.

The metrics calculated by the PPC are absolute posi-
tional, frequency-weighted unigram and bigram scores. The 
mathematical implementation of this is described in detail in 
Sect. "Absolute positional bigram metrics", but we provide 
some intuitive definitions of the properties of these metrics 
here:

•	 Unigram/bigram: Unigram metrics consider the fre-
quency of occurrence of individual sounds. Bigram 

https://phonotactics.socsci.uci.edu/
https://phonotactics.socsci.uci.edu/
https://www.sketchengine.eu/
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metrics consider the frequency of occurrence of adjacent 
pairs. Together these measures can capture how likely lis-
teners are to hear individual sounds, as well as particular 
sequences of sounds.

•	 Frequency-weighted: Words that have a higher token fre-
quency contribute more than do less frequent words. In 
a model that is not frequency-weighted, all word types 
in the training set contribute equally, regardless of their 
token frequency.

•	 Absolute positional: The absolute position of the uni-
grams/bigrams in a word is considered when calculating 
metrics. This differs from standard unigram/bigram mod-
els, where absolute position is not considered (e.g., Bahl 
et al., 1983; Chen & Goodman, 1999; Jurafsky & Martin, 
2025; Markov, 1913; Shannon, 1948). For example, in an 
absolute positional unigram model, the influence of a /t/ 
on the computed metric for a word can differ depending 
on whether it occurs in the first position, second position, 
and so on. In a relative positional unigram model, to be 
described below, the influence of /t/ on the metric will 
be the same regardless of where in the word it occurs. 
Analogously, in an absolute positional bigram model, the 
influence of a sequence /st/ on the computed metric can 
differ depending on whether this sequence occurs as the 
first and second sounds, the second and third, etc. In a 
relative positional bigram model, the influence of this 
sequence on the metric will be the same regardless of 
the positions it occurs in. The term “relative positional” 
is meant to indicate that the model can make reference 
only to the position of a sound in a word relative to other 
sounds (e.g., does /t/ occur following an /s/), while in an 
absolute positional model, the model can additionally 
make reference to the specific position in a word in which 
a sound or sequence occurs. In more rigorous mathemati-
cal terms, absolute positional models are nonstationary, 
while the relative positional models are stationary or 
translation-invariant.

The absolute positional metrics implemented in Vitevitch 
and Luce (2004) have two other important differences from 
standard implementations of relative positional metrics. 
First, the absolute positional metrics do not explicitly refer-
ence word boundaries. This is not an issue for word-initial 
segments, since these are always in the first position, but 
it means these metrics cannot differentiate between seg-
ments that occur at the end of words and segments that do 
not. In relative positional models, word boundary sym-
bols are typically inserted at the edges of words and thus 
referenced when computing the metrics (so, for example, 
a bigram sequence like /t#/, where # is a word boundary, 
refers to a /t/ in word-final position). Second, the absolute 

positional bigram metrics are implemented as joint proba-
bilities ( P(A and B) ) while the relative positional metrics are 
implemented as conditional probabilities ( P(B|A) ). These 
issues will be discussed more in Sect. "The UCI Phonotactic 
Calculator".

Although this model has been extremely influential, it 
has a number of limitations, both mathematical and practi-
cal. We will discuss the mathematical issues in Sect. "Cur-
rently supported phonotactic metrics". In terms of practical 
issues, because training data are hardcoded into the PPC, it 
is available only for English, Spanish, and Modern Standard 
Arabic, and the properties of the training data cannot be cus-
tomized. Finally, the use of absolute positional unigram and 
bigram metrics may lead to data sparsity issues for longer 
words. For example, the mean number of phonemes in an 
English word is about 5.77 (SD = 1.93; Marian et al., 2012). 
Estimates for a unigram score corresponding to /t/ in the 
third position will be based on a large number of data points 
(since most English words have something in the third posi-
tion), while estimates for a score corresponding to /t/ in the 
10th position will be less reliable, as fewer words have 10 
or more segments. This is not an issue for relative positional 
models, because unigram and bigram values are calculated 
without taking absolute position into account.

Irvine Phonotactic Online Dictionary

A tool called the Irvine Phonotactic Online Dictionary 
(IPhOD; Vaden et al., 2010; http://​www.​iphod.​com/) pro-
vides similar functionality to the PPC. IPhOD can compute 
a large range of phonotactic metrics, including both relative/
absolute positional and frequency-weighted/non-frequency-
weighted metrics, as well as neighborhood densities for Eng-
lish words provided by the user. In addition, it allows users 
to search for words that meet certain criteria with respect 
to these metrics (e.g., “find English words with fewer than 
three neighbors”).

There are two main limitations of the IPhOD calculator. 
The first is that the training dataset is limited to English, 
and more specifically to the approximately 54,000 words in 
the Carnegie Mellon University (CMU) English Pronounc-
ing Dictionary (Weide, 1994). While this database is quite 
extensive, words that do not exist in it cannot be used as 
part of the calculation process. This also limits users’ ability 
to provide their own training dataset, which may be more 
practical for certain research purposes. Second, the overall 
usage of the IPhOD calculator is limited, as it only supports 
a few phonotactic metrics, and users must enter their testing 
dataset manually rather than through a file upload. These 
are minor issues that we aim to address with the UCI Pho-
notactic Calculator.

http://www.iphod.com/
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CLEARPOND

CLEARPOND is a tool maintained by Northwestern Uni-
versity that computes orthographic and phonological neigh-
borhood density and other metrics like word length and fre-
quency (Marian et al., 2012; https://​clear​pond.​north​weste​
rn.​edu/). CLEARPOND supports five languages—English, 
Dutch, French, German, and Spanish—and also allows 
cross-language neighborhood densities to be computed. 
CLEARPOND also supports the calculation of absolute 
positional, frequency-weighted biphone and bigram scores 
using the same method as described in Vitevitch and Luce 
(2004). Unlike the other programs described here, CLEAR-
POND has experimental functionality that computes neigh-
borhood density and neighbors for a list of training words 
given a custom training dataset. This functionality is limited 
in that it only computes a subset of the neighborhood density 
metrics and no phonotactic metrics. Thus, CLEARPOND 
is similar to the PPC but with support for a wider range of 
languages.

The UCLA Phonotactic Learner

The University of California, Los Angeles (UCLA) Phono-
tactic Learner (Hayes & Wilson, 2008; https://​lingu​istics.​
ucla.​edu/​people/​hayes/​Phono​tacti​cs/) is a program for cal-
culating phonotactic probabilities. It is a maximum entropy 
model (Goldwater & Johnson, 2003) that penalizes words 
that violate certain featural n-gram constraints. Features 
refer to properties of sounds like voicing, sonority, and man-
ner of articulation. Examples of such constraints might be 
“don’t have a voiced sound following a voiceless sound.” 
The UCLA Phonotactic Learner induces from a training set 
both what constraints are necessary and how strongly they 
should be weighted.

An advantage of referring to features rather than seg-
ments is that it can capture variability in the acceptability 
of unattested sequences. For example, even though both 
“bnick” and “bnzck” are poorly formed with respect to 
English phonotactics, speakers often intuitively perceive 
that the first is not as bad as the second (Chomsky & Halle, 
1968). Models that refer to segments alone, like all the 
models discussed above, cannot capture this distinction, 
since both /bn/ and /bz/ are unattested. Featural models, 
however, can capture the idea that because there are more 
onsets like /bn/ (e.g., onsets with a /b/ followed by non-
nasal coronal sonorant, like /bl/, or an obstruent followed 
by a coronal nasal, like /sn/) than there are like /bz/, speak-
ers should find the former more acceptable.

The UCLA Phonotactic Learner has been an enormously 
influential model of phonotactic learning, with over 1,000 
citations on Google Scholar at the time of this writing, 
and its performance compares favorably to other models 

(e.g., Daland et al., 2011). Some limitations are that it is 
a standalone executable and cannot integrate directly into 
programming workflows, and that it does not output prob-
abilities directly but rather numeric weights that correlate 
with them. The model has the additional task relative to the 
other models of discovering the constraints: there are several 
hyperparameters that govern how this process takes place 
that the model is sensitive to.

Other tools

There are also several databases that contain phonotactic 
or neighborhood density metrics for individual languages. 
EsPal allows neighborhood densities and other metrics to 
be calculated for both Latin American and Castilian Span-
ish based on both written and spoken corpora, and supports 
relative/absolute positional and frequency-weighted/non-fre-
quency-weighted metrics, as well as neighborhood densities 
(Duchon et al., 2013). It also allows Spanish words to be 
selected based on these properties. Diphones-fr is a simple 
database that contains diphone frequency information from 
over 50 million French words (New & Spinelli, 2013).

The remaining existing tools are mainly used for word 
selection or generation under restrictions on phonotactic 
probability or neighborhood density. In this sense, they do 
not provide the same functionality as many of the tools dis-
cussed above, but still serve an important purpose in design-
ing experimental stimuli. WordGen is one such example, in 
which users can specify linguistic constraints to generate 
nonce words in Dutch, English, French, or German (Duyck 
et al., 2004). The main downside to WordGen is that it is 
a standalone Windows program and cannot be easily inte-
grated into a broader programming workflow. Wuggy is 
a similar tool for word generation that takes the utility of 
WordGen a step further. It supports more languages, includ-
ing Spanish and Vietnamese, and has a Python library (Keu-
leers & Brysbaert, 2010).

The UCI Phonotactic Calculator

The UCI Phonotactic Calculator (henceforth UCIPC; https://​
phono​tacti​cs.​socsci.​uci.​edu/) is an online tool we have devel-
oped that can be used to calculate various metrics to quantify 
phonotactic information. This tool has several primary dif-
ferences from the existing tools discussed above:

1.	 It allows the user to specify their own training dataset. 
To our knowledge, this is the only online tool support-
ing this functionality for phonotactic metrics (note that 
CLEARPOND does support this, but for neighborhood 
density alone). This allows the UCIPC to be deployed 

https://clearpond.northwestern.edu/
https://clearpond.northwestern.edu/
https://linguistics.ucla.edu/people/hayes/Phonotactics/
https://linguistics.ucla.edu/people/hayes/Phonotactics/
https://phonotactics.socsci.uci.edu/
https://phonotactics.socsci.uci.edu/
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on any language or input register (e.g., infant-directed 
speech).

2.	 It supports a wider range of metrics than most existing 
tools.

3.	 It can be run both via an online interface and via the 
command line, which allows it to be integrated into 
larger programming workflows.

4.	 It is open source: https://​github.​com/​conno​rmayer/​uci_​
phono​tactic_​calcu​lator.

Training and test data files uploaded by the user are 
stored on a secure server. Files that are more than 10 min 
old are deleted by an automated process that runs every 10 
min, meaning that, in the worst case, the longest a file will 
persist on the server is about 20 min. If data privacy is a 
major concern, the user can download the UCIPC source 
code from the GitHub repository and calculate the metrics 
locally, without the data ever leaving their computer (see 
Appendix A).

Currently supported phonotactic metrics

The UCIPC supports a range of phonotactic metrics that dif-
fer in how or whether they encode context, token frequency, 
and position. This section will provide a qualitative and 
quantitative description of each metric. The set of metrics 
is roughly divided into four classes based on the following 
two factors:

•	 Unigram vs. bigram metrics: do we consider the preced-
ing context in which a sound occurs (bigram) or not (uni-
gram)?

•	 Absolute positional vs. relative positional metrics: do we 
consider the absolute position in the word in which a 
unigram or bigram occurs or not? The absolute positional 
metrics correspond to the calculations done in Jusczyk 
et al. (1994) and Vitevitch and Luce (2004), while the 
relative positional metrics correspond to more standard 
implementations of n-gram models with word boundary 
symbols (Bahl et al., 1983; Chen & Goodman, 1999; 
Jurafsky & Martin, 2025; Markov, 1913; Shannon, 1948).

Relative positional unigram probabilities

In all of the sections below, we will use w = x1 … xn to refer 
to a word consisting of symbols x1 through xn.

The relative positional unigram score reflects the prob-
ability of a word under a standard unigram model. Here, the 
probability of a word is defined as the product of the prob-
abilities of its individual symbols. In the relative positional 
version of unigram metrics, probabilities are calculated 

without considering the position of symbols. Rather, only 
the frequencies of symbols are used in the calculation. If 
a particular symbol exists in the test dataset but not in the 
training set, its probability is set to zero. Mathematically, 
we express the relative positional unigram probability of a 
word as

where we express the probability of encountering an indi-
vidual unigram as

where C(x) represents the number of occurrences of x in the 
training data and Σ is the set of all sounds in the training 
data. C(x) is divided by the total count of every symbol y ∈ Σ 
in the training data, meaning that unigram probabilities are 
simply the relative frequency of the sound x . The UCIPC 
returns log unigram probabilities. It is important to note that 
the training process for all the models in this paper is deter-
ministic: the unigram/bigram probabilities learned by the 
model will always be the same for a given input.

Absolute positional unigram scores

The UCIPC also computes absolute positional unigram 
scores, following the approach in Vitevitch and Luce (2004). 
These differ from the relative positional unigram probabili-
ties above in that they are sensitive to the absolute posi-
tion of each segment in a word, as well as its identity. The 
absolute positional unigram score is a type-weighted variant 
of the unigram score from Vitevitch and Luce (2004). It is 
defined as follows:

where

where wi refers to the ith position in a word and C
(
wi = x

)
 is 

the number of times in the training data the symbol x occurs 
in the ith position of a word.

Vitevitch and Luce (2004) add 1 to the sum of the uni-
gram probabilities “to aid in locating these values when you 
cut and paste the output […] to another program” (p. 484). 
They recommend subtracting 1 from these values before 
reporting them.
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Under this metric, the score assigned to a word is the 
sum of the probability of its individual symbols occurring 
at their respective positions. Higher scores represent words 
with more probable segments.

It is important to keep in mind that the values the abso-
lute positional models associate with word forms are not valid 
probabilities, because the probabilities of individual unigrams 
and bigrams are combined by addition rather than multiplica-
tion. However, even if multiplication were used, this could 
not be interpreted as a probability distribution over words, 
since the probability of a sequence is generally not equal to 
the product of its joint bigram probabilities. The relative posi-
tional models, by comparison, decompose the probability of 
a sequence into the product of conditional probabilities using 
the chain rule of probability, and then approximate the indi-
vidual conditional probabilities using the Markov assumption 
(see Jurafsky & Martin, 2025, Ch. 3). Therefore, users need 
to be aware that the behavior of absolute positional metrics is 
not mathematically well defined, and is thus more difficult to 
predict and reason about.

There is also an additional practical difference between 
absolute and relative positional models that emerges from 
the use of addition in the former models: all else being equal, 
longer words will have higher scores under the absolute model 
because the individual n-gram probabilities are combined by 
addition, and thus each additional symbol increases the score, 
favoring longer words. In the relative model, on the other hand, 
shorter words are preferred, because the individual n-gram 
probabilities are combined by multiplication, and thus each 
additional symbol decreases the score. A preference for longer 
words runs counter to a bias towards shorter words that is often 
employed in phonotactic modeling (e.g., Goldwater et al., 
2009; Johnson et al., 2015; see also Storkel, 2004, for versions 
of the absolute model that are not sensitive to word length).

Relative positional bigram probabilities

Unlike unigram metrics, the bigram metrics consider pairs 
of symbols instead of individual symbols. Calculating the 
relative positional bigram score is done in a similar way to 
that of the relative positional unigram scores. That is, it is 
represented as the product of probabilities of consecutive 
symbols in each word conditioned on the previous symbol. 
Like the relative positional unigram model, the absolute 
position of the bigrams in the word is not considered, and 
bigrams not occurring in the training data are assigned a 
probability of zero. To incorporate information about word 
boundaries, we pad the words with a special symbol at the 
beginning and end, which allows us to compute the prob-
abilities of symbols starting and ending words. For example, 
the input /kæt/ “cat” would consist of the bigrams {#k, kæ, 
æt, t#}, where # is a word boundary symbol. This allows the 

model to be sensitive to the frequencies with which certain 
segments begin and end words.

Following the standard definition of a bigram model 
(Jurafsky & Martin, 2025, Ch. 3), we define the bigram 
probability of a word as

where the probability of a particular bigram is calculated as

where the count function C(∙) is defined as in Sect. "Relative 
positional unigram probabilities". The UCIPC returns log 
bigram probabilities.

Absolute positional bigram metrics

The UCIPC also computes absolute positional bigram 
scores. This is a type-weighted variant of the bigram score 
from Vitevitch and Luce (2004). It is defined as

where

The same caveats apply here with respect to these 
scores not forming valid probabilities. These scores also 
differ from relative positional bigrams in that the bigram 
probabilities used to calculate the overall scores are joint 
probabilities rather than conditional probabilities: they tell 
us the probability of segment x occurring in position i and 
segment y occurring in position i + 1 , while the relative 
positional bigram probabilities tell us the probability of 
segment y occurring in position i + 1 given that segment x 
occurred in position i.

Token frequency‑weighted metrics

In the standard metrics, which we call type-weighted, the 
frequency of individual word types does not affect the out-
put scores. That is, word types that occur more frequently 
are weighted the same as word types that occur very few 
times. The token-weighted variants of each metric do 
account for frequency of word types. Specifically, each 
occurrence of a particular configuration is weighted by the 
natural log of the count of the word it occurs in.
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For example, consider a corpus that contains the 
word type /kæt/ 1,000 times and /tæk/ 50 times. 
Under a token-weighted unigram model, we would 
have C(t) = In(1, 000) + In(50) ≈ 10.82 , whereas in a type-
weighted unigram model, we would have C(t) = 1 + 1 = 2.

The token-weighted absolute positional unigram and 
bigram scores correspond to the metrics in the PPC (Vite-
vitch & Luce, 2004). Although both the PPC and the 
UCIPC use log frequency counts, the PPC uses the base 
10 logarithm, while the UCIPC uses the natural logarithm 
(logarithm with base e ). Because logarithms with differ-
ent bases differ only in a constant multiplicative factor, 
the choice of base does not have an impact on the relative 
differences between word scores.

Smoothed metrics

The calculator also calculates variants of every metric with 
add-one smoothing (Jeffreys, 1948, Sect. 3.23). With this 
type of smoothing, every n-gram has a default count of 1. 
Thus, n-grams that are not encountered in the training set, 
but do appear in the test set, are treated as if they occurred 
once in the former rather than not at all. This assigns a small 
probability to such configurations. Without smoothing, the 
count for an unencountered n-gram will be 0, and hence the 
model will assign it a probability of 0. The effect of zero-
probability n-grams on word scores differs between the rela-
tive and absolute positional models. In the relative positional 
models, where word scores are computed by taking the prod-
uct of the individual n-gram probabilities, this means that 
any word in the training data with an unattested n-gram will 
be assigned a probability of zero, making it indistinguishable 
from other words containing unattested n-grams, even if the 
probabilities of other n-grams in the words differ substan-
tially. The effect of smoothing on the absolute positional 
models is less dramatic because probabilities are combined 
using addition. In unsmoothed models, unattested sequences 
have no effect on word scores, while in smoothed models, 
they will result in a small increase. Performing smoothing 
in the token-weighted versions of metrics is done by simply 
adding 1 to the log-weighted counts.

Summary of UCIPC metrics

To summarize, the UCIPC can compute the following met-
rics given training and test data:

	 1.	 Relative positional unigram probability
	 2.	 Relative positional bigram probability
	 3.	 Smoothed relative positional unigram probability
	 4.	 Smoothed relative positional bigram probability

	 5.	 Frequency-weighted relative positional unigram prob-
ability

	 6.	 Frequency-weighted relative positional bigram prob-
ability

	 7.	 Smoothed, frequency-weighted relative positional uni-
gram probability

	 8.	 Smoothed, frequency-weighted relative positional 
bigram probability

	 9.	 Absolute positional unigram score
	10.	 Absolute positional bigram score
	11.	 Smoothed absolute positional unigram score
	12.	 Smoothed absolute positional bigram score
	13.	 Frequency-weighted absolute positional unigram score
	14.	 Frequency-weighted absolute positional bigram score
	15.	 Smoothed, frequency-weighted absolute positional 

unigram score
	16.	 Smoothed, frequency-weighted absolute positional 

bigram score

All metrics except the absolute positional variants are 
reported as log probabilities.

A brief tutorial for the UCIPC

The UCIPC requires two inputs: a training file and a test file. 
For the training set, users have the choice of uploading their 
own file or selecting from the several existing datasets read-
ily available to the UCIPC. To choose an existing dataset, 
users may use the dropdown menu, which contains a short 
description of the available datasets. For a more detailed 
description of each file, users should view the Datasets page, 
which is dedicated to storing and explaining the use case 
for each dataset. Existing datasets include English, Spanish, 
Turkish, and Polish corpora (referenced below in this paper) 
as well as the Finnish, French, and Samoan datasets used in 
Mayer (2020).

If uploading a personal training file, users must take care 
to follow a few specifications:

•	 The file must be in CSV format.
•	 The file must consist of one or two columns without 

headers.

The first column is mandatory and should consist of a 
word list where symbols (phonemes, phones, letters, etc.; 
see Sect. "Application to domains beyond phonotactics") 
are separated by spaces. Any transcription system is valid, so 
long as individual symbols are space-separated. The second 
column is optional and, if included, should contain the corre-
sponding frequencies for each word, expressed as counts. If 
this column is included in the training file, both the type- and 
token-weighted variants of each metric will be computed. 
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Otherwise, just the type-weighted metrics will have values 
in the output file, and the token-weighted metrics will have 
NaN values. Note that users may not both upload their own 
training file and select a default training file; the UCIPC 
will display an error message requesting a single choice to 
be made.

The test file needs to be a CSV file with a single column 
of test words and no headers. The transcription system used 
in the test file should match the system used in the training 
file. The mechanism for uploading the test file is the same as 
uploading the training file. It is generally the case that test 
files will contain data not found in the training set in order 
to test the models’ ability to generalize and avoid the risk of 
overfitting to the training data (e.g., Ying, 2019), but this is 
not required. A test file that partially or completely overlaps 
with the training forms can also be used if the intention is 
simply to calculate scores for particular lexical items, rather 
than to evaluate the capacity of the models to generalize.

Once users submit their training file, test file, and model 
type, the UCIPC will direct them to a separate page to 
download the output file. Users will receive a CSV file 
where each row contains the test word, its length, and all 
the calculated variations of the unigram and bigram met-
rics. To run the model again, users must go back to the 
UCIPC home page and resubmit the input form with the 
necessary fields (training/test file, model type). Because 
both files uploaded to the server and the output CSV files 
are cleaned frequently, users should be sure to download 
their output data within 10 min of generating it.

Applications of phonotactic metrics 
in experiments with adults

In this section, we model phonotactic acceptability ratings 
given by human participants in published studies as a func-
tion of a variety of phonotactic metrics. Our purpose here 
was to determine whether metrics that encode absolute 
positional information or relative positional metrics that 
take word edges but no other positional information into 
account are best able to predict acceptability judgments 
by adult native listeners. For each of the following data-
sets, we run the UCIPC with an appropriate training set in 
the same language. The calculator’s outcomes are used as 
predictors in a regression model that attempts to predict 
the human ratings. All the code and data can be found at 
https://​github.​com/​aryar​ksub/​phono​tactic_​metri​cs.

The general format for each regression model is

Acceptability ∼ UnigramScore ∗ BigramScore

with random intercepts included for individual participants 
and items when the data were sufficiently granular. Because 
the model includes an interaction term, the unigram and 
bigram score predictors are mean-centered, by subtracting 
the mean from each observation, and scaled to Z-scores, by 
dividing each centered observation by the standard devia-
tion. Outputs from the UCIPC that are negative infinity 
(corresponding to a probability of zero) are adjusted to a 
large negative value (e.g., − 50) so that scaling can be done 
without error. The specific type of regression used (linear or 
logistic) depends on the experimental design of each study.

We consider eight models for each dataset resulting from 
the combination of type of metric (relative positional or 
absolute positional), whether or not metrics were smoothed, 
and whether or not the metrics were token frequency-
weighted. Token-weighted metrics are omitted when fre-
quency information is not available for the training data.

We compare the performance of models using the Akaike 
information criterion (AIC; Akaike, 1974). The AIC is a 
metric for model comparison that estimates out of sample 
prediction error. It rewards model fit to the data and penal-
izes model complexity. Lower values of AIC indicate better 
model performance. However, absolute AIC values are not 
meaningful, but differences in AIC between a model and the 
model with the lowest AIC can be used to evaluate their per-
formance on a dataset. We interpret differences in the AIC 
using the rule of thumb proposed in Burnham and Anderson 
(2004; p. 271): an AIC difference of ≤ 2 between a model M 
and the model with the lowest AIC score Mmin means there 
is “considerable support” for M(i.e., M and M

min
 are both 

plausibly the best model); a difference of between 4 and 7 
means M has “considerably less support” relative to M

min
 , 

and a difference of more than 10 indicates “essentially no 
support” for M relative to Mmin.

For each of the four languages, we briefly summarize 
each study whose data we use and then present the results for 
all datasets in a single table. The summary table displays the 
corresponding AIC for each combination of model and data-
set. The best-performing model on each dataset (the model 
with the lowest AIC) is highlighted in bold.

English

Unsurprisingly, the greatest number of reports are on native 
English speakers’ phonotactic judgments, as is the case in 
psycholinguistics more generally (Vitevitch et al., 2014; 
Blasi et al., 2022). In this section, we report results from 
modeling data obtained from five published studies.

https://github.com/aryarksub/phonotactic_metrics
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Albright and Hayes (2003)

The data used in Albright and Hayes (2003) comprise 58 
English monosyllabic nonce verbs consisting of between 
three and five segments rated for phonological well-
formedness by 20 native English speakers. All stimuli were 
presented auditorily. These data correspond to the pretest 
portion of Experiment 1 in their paper. Participants were 
asked to rate forms on a Likert scale between 1 (impossible 
as an English word) and 7 (would be a fine English word). 
The data are in the form of mean ratings across participants; 
individual ratings are not available.

The phonotactic models were trained on the English 
CMU Pronouncing Dictionary (CMU Pronouncing Dic-
tionary, 2008) with frequency information from CELEX 
(Baayen et al., 1995). Stress location was not represented in 
the training data. The fitted models provided scores for the 
58 nonce verbs used in the study. We used these scores as 
predictors in a set of linear models to model the mean rating. 
Because the dataset does not contain individual ratings by 
subject, we do not use any random effects.

Daland et al. (2011)

The test data obtained from Daland et al. (2011) consist of 
96 disyllabic English nonce words, each six segments long. 
These nonce words were rated on a five-point Likert rating 
scale by 48 native English speakers and the ratings were 
aggregated across participants. All stimuli were presented 
orthographically. The main goal of Daland et al. (2011) was 
to compare the acceptability of different onsets in English. 
These nonce words accordingly consist of a set of 48 com-
plex onsets (e.g., /tw/, /vr/, /bl/, etc.) and six “tails” to com-
plete the word (e.g., /-ɑtɪf/, /-ɛzɪg/). Each onset was paired 
with two of the six tails, resulting in a total of 96 nonce 
words. Models were fit to the same English training dataset 
as described in the previous section, and the 96 nonce words 
(including tails) were scored by the fitted models. We used 
these scores as predictors in a linear regression model that 
uses the mean word ratings across participants as its output 
feature. Because scores were aggregated across participants, 
there were no random effects in the model.

Needle et al. (2022)

The data from Needle et al. (2022) consist of ratings of 8,400 
English nonce words by 1,440 participants. Nonce words 
consisted of 4–7 segments. All stimuli were presented ortho-
graphically. Each participant rated 140 stimuli each, leading 
to 24 ratings for each individual nonce word. Ratings were 
provided on a five-point Likert scale.

In this case, the training dataset we use is the same as that 
used in Needle et al. (2022) and consists of about 11,000 

monomorphemic words from CELEX (Baayen et al., 1995) 
in the DISC transcription system. We converted the DISC 
transcriptions to ARPABET to stay consistent with the sys-
tem used for English throughout this paper. Because these 
training data do not contain frequency information, the 
token-weighted models could not be used. The other mod-
els were fitted to these training data and used to score the 
experimental stimuli. These scores were used as predictors 
in a linear mixed-effects model, with random intercepts for 
word and participant.

Scholes (1966)

The test data from Scholes (1966) were obtained from the 
supplementary material of Hayes and Wilson (2008). It con-
sists of 62 monosyllabic nonce words rated by 33 seventh-
grade students. Words were presented orthographically. 
These words varied primarily in their onsets. The students 
were asked whether each word was a possible word in Eng-
lish and asked to provide a yes/no response; thus, the data 
here consist of binary responses rather than Likert scores. 
The data were aggregated across onset, which means each 
of the 62 onsets is associated with a value between 0 and 
1 that represents the proportion of “yes” responses across 
participants.

The training data used were also from the supplementary 
materials of Hayes and Wilson (2008) and consist of 55 Eng-
lish onsets and their type frequencies. This is a subset of the 
onsets in the CMU Pronouncing Dictionary with “exotic” 
onsets like /zw/ and /sf/ removed. This is rather different 
from the training datasets in previous cases, because our 
training data consist of onsets, rather than words, and our 
frequency counts correspond to the number of word types 
each onset occurs in. The models were trained on this data-
set and tested on the 62 words from Scholes (1966); these 
testing data also come from the supplementary material for 
Hayes and Wilson (2008). The model scores were used as 
predictors in a logistic regression model over the propor-
tions, weighted by the number of participants. Because we 
do not have individual ratings, we do not include any random 
effects.

Hayes and White (2013)

The test data procured by Hayes and White (2013) consist 
of 160 English nonce words consisting of between two and 
seven segments rated on a logarithmic scale by 29 partici-
pants. Stimuli were presented simultaneously in both ortho-
graphic and auditory form. Participants were asked to per-
form a magnitude estimation task (Bard et al., 1996; Lodge, 
1981) comparing the well-formedness of each word with the 
reference word “poik.” The log of these magnitudes is the 
dependent variable we use here. The training data are the 
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same CMU Pronouncing Dictionary data used in the analy-
ses of Albright and Hayes (2003) and Daland et al. (2011). 
Models were trained on these data and used to score each 
nonce word. These scores were used as predictors in a linear 
mixed-effects model with random intercepts for participant 
and word.

English results

Table 1 shows the AIC of each of the eight model types 
on the five English datasets. These results show that the 
best-performing model in each case is a relative positional 
model. Indeed, relative positional models almost always 
outperformed their absolute positional counterparts, the 
sole exception being the data from Daland et al. (2011), 
where some absolute positional models outperformed 
their relative positional counterparts (though in this case 
the best-performing model is still a relative positional 
one). The differences in AIC between the best relative 
positional model and best absolute positional model are 
> 10 in all cases, indicating strong support for the relative 
positional models; the exception is Scholes (1966), where 
the difference is 2.16, indicating weak support for the 
relative positional models. Smoothing generally results in 
a decreased AIC, except on the Needle et al. (2022) data. 
The non-frequency-weighted models generally perform 
better than the frequency-weighted ones, though this is 
not the case for the Scholes (1966) and Hayes and White 
(2013) data (this difference is minor in the former case). 
We will discuss this phenomenon more in Sect. "Other 
languages" when we look at Polish onsets, where the 
effect is much stronger.

Other languages

The remaining three studies we discuss are on non-English 
languages. We describe them together in this section.

Polish (Jarosz & Rysling, 2017)

The Polish test data we use come from Jarosz and Rysling 
(2017). In this paper, 81 native Polish speakers were asked 
to rate 159 test words consisting of 53 onsets and three tails 
(similar to the design in Daland et al., 2011) on a Likert scale 
of 1–5. Each participant rated each word once, leading to 
12,880 responses. Stimuli were presented orthographically.

Our training dataset consisted of the list of Polish onsets 
with accompanying type frequencies from Jarosz (2017). 
These are generated from a corpus of child-directed speech 
consisting of about 43,000 word types (Haman et al., 2011). 
Because we trained only on onsets, we generated model pre-
dictions for the 53 onsets in isolation (meaning that the three 
tails corresponding to each onset receive the same score). 
The model scores are used as predictors in a linear mixed-
effects model with random intercepts for word (including 
tail) and participant.

Spanish

This dataset was collected by authors CM and MS using 
the methodology from Sundara and Breiss (under review) 
for use in an unrelated study that is still in progress (Mayer 
& Sundara, in prep). The data consist of 576 unique conso-
nant–vowel-consonant–vowel (CVCV) Spanish nonce words 
rated on a discrete scale from 1 to 100 by 168 participants. 

Table 1   AIC scores of the regression models fit to the data of all five published studies in English; full model results with coefficients are avail-
able in Appendix B. The best-performing model in each column is highlighted in bold

Model Albright and Hayes 
(2003)

Daland et al. (2011) Needle et al. (2022) Scholes (1966) Hayes and 
White (2013)

Relative positional 123.965 284.538 566,148.8 36.65767 12,507.21
Relative positional
 + smoothed

123.115 242.270 566,288.5 36.03306 12,349.81

Relative positional
 + frequency-weighted

124.152 284.260 – 36.53359 12,519.93

Relative positional
 + frequency-weighted
 + smoothed

123.437 244.621 – 35.40623 12,338.82

Absolute positional 129.706 260.176 570,030.7 39.76660 13,013.83
Absolute positional
 + smoothed

129.714 259.450 570,084.3 41.47684 13,014.93

Absolute positional 
+ frequency-weighted

129.562 258.719 – 38.09191 13,009.03

Absolute positional
 + frequency-weighted
 + smoothed

129.566 258.460 – 37.56650 13,009.36
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Each participant rated 144 tokens, leading to 24,192 ratings. 
Stimuli were presented simultaneously in both orthographic 
and auditory form. The phonotactic models were trained 
on a set of about 27,000 word types including citation and 
inflected forms taken from the EsPal database (Duchon 
et al., 2013) with stress encoded. The frequencies associ-
ated with these words were calculated from a large collection 
of Spanish subtitle data. The trained models were used to 
score the 576 nonce words. We use these scores as predic-
tors in a linear mixed-effects model with random intercepts 
for participants and words. Random intercepts are used for 
individual words and subjects.

Turkish

The test data, described in more detail in Mayer (2024, 
2025), consist of 596 Turkish consonant–vowel-conso-
nant–vowel-consonant (CVCVC) nonce words rated on a 
discrete scale from 1 to 100 by 90 participants following 
the same methodology as the Spanish study above. Each 
participant rated 192 tokens, leading to 17,280 ratings. 
Stimuli were presented simultaneously in both ortho-
graphic and auditory form. The phonotactic models were 
trained on a set of 18,472 citation forms from the Turkish 
Electronic Living Lexicon database (TELL; Inkelas et al., 
2000). These training data do not contain frequency infor-
mation, so we omit results from the frequency-weighted 
models. Fitted models were used to generate scores for the 
596 nonce words. These scores were used as predictors in 
a linear mixed-effects model with random intercepts for 
word and participant.

Other language results

Table 2 shows again that the best models are generally the 
relative positional, smoothed metrics without frequency 

weighting. The difference in AIC between the best-per-
forming relative positional model and the best-performing 
absolute positional model on each dataset was > 10, indi-
cating strong support for the relative positional models. 
Although frequency weighting was generally not benefi-
cial, the Polish dataset from Jarosz and Rysling (2017) 
was an exception. Similar to the data from Scholes (1966) 
presented above, but more pronounced, frequency weight-
ing appears to be crucial for model performance. This may 
reflect some language-specific sensitivity to frequency. 
However, as with the Scholes (1966) data, the training data 
consist of onsets with type frequencies rather than words 
with token frequencies. When a non-frequency-weighted 
model is applied to these data, the training data consist of 
a simple list of attested onsets lacking both type and token 
frequency information. It is more likely, therefore, that 
the success of the frequency-weighted models here cor-
responds to a sensitivity to type frequency information. It 
is less clear why the Hayes and White (2013) English data 
benefit from frequency weighting.

Discussion

Several clear trends emerge from the results presented above. 
Relative positional models outperform positional models in 
every case. Relative positional smoothed models generally 
outperform their unsmoothed counterparts. However, for 
absolute positional models, smoothing typically has little 
effect and sometimes reduces their performance: this is not 
unexpected given the discussion in Sect. "Smoothed met-
rics". Finally, frequency-weighted models generally perform 
similarly to or slightly worse than non-frequency-weighted 
models. The exceptions to this are Hayes and White (2013), 
Scholes (1966), and Jarosz and Riesling (2017). The second 
and third cases are not really exceptions, because the fre-
quency information in the training data consists of onset type 
frequencies rather than token frequency: the success of the 

Table 2   AIC scores of the regression models fit to the data of studies on Polish, Spanish, and Turkish; full model results with coefficients are 
available in Appendix B. The best-performing model in each column is highlighted in bold

Model Jarosz & Riesling (2017) 
Polish

Mayer & Sundara (in prep) 
Spanish

Mayer (2024, in 
press) Turkish

Relative positional 44,883.97 187,932.9 159,581.9
Relative positional + smoothed 44,799.76 187,729.1 159,545.6
Relative positional + frequency-weighted 44,849.67 188,059.9 –
Relative positional + frequency-weighted, + smoothed 44,609.70 188,059.9 –
Absolute positional 44,908.04 189,100.6 159,628.4
Absolute positional + smoothed 44,907.11 188,252.1 159,628.8
Absolute positional + frequency-weighted 44,836.69 189,668.1 –
Absolute positional, + frequency-weighted + smoothed 44,835.34 189,668.3 –
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frequency-weighted models in these cases simply indicates 
that type frequency is important. The only true exception is 
Hayes and White (2013), where including token frequency 
improved the performance of the smoothed model.

What is even more striking about these results is that they 
emerge across a range of different domains and languages: 
some studies, like Scholes (1966), Daland et al. (2011), and 
Jarosz and Rysling (2017), focus only on onsets, while the 
others look at whole word forms. In some, the stimuli are 
presented orthographically, in others auditorily, and in oth-
ers, both. In all cases, relative positional models that encode 
information about word edges, but no other absolute position 
information, best predict native speaker judgments.

Why should it be the case that relative positional mod-
els do better? There are several possible reasons. First, as 
mentioned earlier in Sect. "The Phonotactic Probability 
Calculator", absolute positional models have issues with 
data sparsity which make it difficult for them to assign accu-
rate scores to long words: estimates for later positions will 
necessarily be based on less data than for earlier positions, 
because there are fewer words with material in those posi-
tions. Thus, we might expect scores assigned to longer words 
to be less useful in predicting human behavior. However, 
the maximum length of test words in the eight studies we 
looked at was seven segments, and even in published results 
on monosyllabic nonce words with fewer segments or onsets 
alone (Albright & Hayes, 2003; Scholes, 1966; Jarosz & 
Riesling, 2017), relative positional models outperformed 
absolute positional ones.

Second, the relative positional metrics can capture pho-
notactic constraints that target both word-initial and word-
final material, which are often important positions in terms 
of phonotactic constraints (e.g., Beckman, 1997; Lombardi, 
1999) and an important source of information in word seg-
mentation and allophonic learning for adults (e.g., Endress 
et al., 2009; Newman et al., 2011; Skoruppa et al., 2015) and 
for infants (e.g., Jusczyk et al., 1999; Katsuda & Sundara, 
2024). In native Turkish words, for example, /ɾ/ can never 
begin a word, and words cannot end in voiced stops or 
affricates. The relative positional models can encode these 
restrictions with the use of boundary symbols: such a model 
trained on Turkish would assign a low probability to the 
sequences /#ɾ/ and /b#/, where # is a word boundary, reflect-
ing the prohibition on word-initial /ɾ/ and word-final voiced 
stops. Although the absolute positional models can encode 
word-initial constraints, since every occurrence of a sound 
in position 1 is a word-initial occurrence, they cannot encode 
word-final constraints, as the position of the final element in 
a word depends on its length. An absolute positional model 
struggles to encode restrictions like Turkish’s ban on final 
voiced stops: a /b/ in the third position could have a high 
probability if a word is of length five (as in /babam/ “my 
father”), but a low probability if it is of length three.

Finally, in addition to these factors, it may simply be the 
case that relative positional models correspond better to 
human cognitive processes than absolute positional ones do, 
because humans do not take absolute position into account, 
because they compute conditional rather than joint prob-
abilities, because they are biased to prefer shorter words 
(e.g., Goldwater et al., 2009; Johnson et al., 2015), or some 
combination of these. A more detailed investigation using 
tools such as the UCIPC will be useful in teasing these fac-
tors apart.

These results have important implications. First, abso-
lute positional metrics of phonotactics, at least as currently 
implemented, do not predict human phonotactic generaliza-
tion as well as relative positional metrics: the relative posi-
tional metrics outperform the absolute positional ones in 
every case. This suggests that the absolute positional metrics 
used by many phonotactic calculators, including the popu-
lar Phonotactic Probability Calculator (Vitevitch & Luce, 
2004), may not be the most suitable for modeling human 
acceptability judgments.

Second, it is generally the case that models that take token 
frequency into account perform more poorly than models 
that do not: this is somewhat less clear cut, however. The 
greater utility of type (vs. token) frequency to model human 
behavior has also been reported in domains besides phono-
tactic judgments (Albright, 2002; Albright & Hayes, 2003; 
Bybee, 1995, 2003; Goldwater, 2007; Hayes & Londe, 
2006; Hayes & Wilson, 2008; Pierrehumbert, 2001; Richts-
meier, 2011). Further research is needed to determine the 
circumstances under which speakers are sensitive to token 
frequency when forming phonotactic judgments, and in lan-
guage processing more generally (e.g., Conrad et al., 2008; 
del Prado Martin et al., 2004; Ellis, 2002; Endress & Hauser, 
2011).

Finally, smoothed models generally outperform 
unsmoothed models. This is not surprising: speakers do not 
judge words containing unattested sequences as totally unac-
ceptable. It is important to note, however, that the add-one 
smoothing used in these models is rather coarse, assigning 
each unattested sequence the same pseudo-count. It has been 
well established in linguistic research that speakers gener-
alize to unattested sequences based on their similarity to 
existing sequences in the language (e.g., Chomsky & Halle, 
1965, 1968; Hayes & Wilson, 2008; Wilson & Gallagher, 
2018; Dai et al., 2023, a.o.). More robust smoothing metrics 
that can capture these differences would be valuable but are 
beyond the scope of the current paper.

One important limitation of this research is that all of 
the data we consider here are phonotactic ratings. Castro 
and Vitevitch (2023) note that different phonotactic met-
rics may be more predictive depending on the task itself 
(e.g., reading time as opposed to acceptability judgments) 
and more specific details of the task such as the presence 
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of noise, time pressure, and so on. Although these results 
support relative positional metrics as the best predictors of 
acceptability judgments, it remains to be seen whether this 
will hold across other tasks to which phonotactic sensitivity 
is relevant.

Applications of phonotactic metrics 
in stimulus construction

In addition to serving as variables of interest in experimen-
tal work or computational models of speech, the metrics 
calculated by the UCIPC are also useful for constructing 
and selecting experimental stimuli. As shown in the previ-
ous sections, the UCIPC can be used to calculate a wide 
array of metrics to summarize how likely segments and 
segment sequences are in any given corpus. Such metrics 
are also extremely useful when constructing stimuli for 
experiments.

Experiments with infants

The UCIPC can be used to quantify the extent to which 
some segments or segment sequences are frequent in any 
language for which a phonologically transcribed lexicon or 
corpus of speech is available. Such quantification is nec-
essary when manipulating segment or segment sequence 
frequencies as an independent variable in experiments 
designed to determine when, if at all, infants are sensi-
tive to native language patterns (e.g., Archer & Curtin, 
2011; Friederici & Wessels, 1993; Gonzalez-Gomez & 
Nazzi, 2012). Quantification is also necessary to identify 
and index experimental confounds when differences in seg-
ment and segment sequence likelihood are not the target 
of inquiry but are nonetheless likely to influence infant 
behavior (Gonzalez-Gomez & Nazzi, 2012; Nazzi et al., 
2009; Sebastián-Gallés & Bosch, 2002; Solá-Llonch & 
Sundara, 2025).

In addition to standardizing the calculations of metrics 
to promote replicability, tools like the UCIPC allow new 
investigators with more modest technical backgrounds, par-
ticularly those working on under-resourced languages, to 
employ phonotactic models in their research. Typically, to 
develop stimuli in a new language, an investigator would 
need access to a corpus, as well as computational skills to 
conduct corpus analyses to identify patterns and index the 
incidence of sounds and sound sequences. With the UCIPC, 
metrics can be obtained for any language as long as there is 
a dataset with all the words in a dictionary or corpus listed 
in a consistent transcription system. With time, we expect 
to increase the number of pre-existing datasets for different 
languages, to alleviate the challenge of identifying suitably 
sized corpora in different languages.

Experiments with artificial languages

The outcome of artificial language experiments has been 
reported to differ in adults with different native languages 
(e.g., Do & Yeung, 2021; Huang & Do, 2021; White et al., 
2018). This is typically dealt with by either recruiting only 
participants who speak the same language(s), so that the 
same L1 biases are shared across participants, or using lan-
guage background as a control variable in the analysis. Pho-
notactic metrics such as those generated by the UCIPC can 
also be useful in designing or analyzing artificial language 
learning experiments. For example, if a study were to be run 
on both English and Spanish speakers, phonotactic models 
fit to English and Spanish training data could be useful to 
score each stimulus and identify and remove cases where 
the models’ scores deviate substantially between languages. 
Alternatively, these scores could themselves be used as con-
trol variables, rather than the coarser metric of language 
background. This approach has the potential not only to bet-
ter control for L1 effects in AGL, but also to quantify and 
predict them.

Finally, the artificial language itself can be used as the 
training data to ensure that the test items do not vary on seg-
ment and segment sequence likelihood that are themselves 
not the target of inquiry.

Application to domains beyond phonotactics

Although the UCIPC is intended to be used as a model of 
phonotactics, it has applications in other domains as well. 
One clear application is in the study of orthotactics, which 
deals with restrictions on how orthographic symbols can 
be combined into words in a language, and how aware-
ness of these restrictions influences tasks such as reading 
and spelling (e.g., Apel et al., 2006; Krasa & Bell, 2021). 
Computing orthotactic probabilities using the UCIPC is as 
simple as substituting orthographic symbols for phonetic 
symbols. Similarly, the UCIPC could also be deployed on 
morpheme sequences to compute morphotactic probability 
(e.g., Sproat, 1992; Crysmann & Bonami, 2016). Although 
the metrics computed by the UCIPC are unlikely to be use-
ful for syntax, where it is common to have dependencies 
between non-adjacent words, morphological dependencies 
tend to be local in the same way as phonotactic dependencies 
(Aksenova et al., 2016), making n-gram models a suitable 
choice in many cases.

Planned extensions of the UCIPC

Currently, the UCIPC does not implement calculation of 
neighborhood density. This is largely due to the contexts in 
which it has been applied so far: we have focused primarily 
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on phonotactic acquisition in the first year, and previous 
research has indicated that infants are not sensitive to neigh-
borhood density during this time period (Sundara et al., 
2022; Swingley & Aslin, 2002). To make the UCIPC more 
applicable to the study of adult phonotactic knowledge, we 
plan to implement this functionality soon. Although there 
are online tools that support neighborhood density measure-
ments in a wide range of languages (e.g., Alzahrani, 2025, 
as well as some discussed in Sect. "Limitations of existing 
tools for computing phonotactic acceptability" above), the 
UCIPC could provide greater flexibility by allowing neigh-
borhood density measurements to be computed for arbitrary 
training data.

We also plan to add more sophisticated smoothing tech-
niques. Currently, all smoothed metrics involve add-one 
smoothing. This technique has the virtue of being simple, 
but it tends to shift too much probability mass from observed 
to unobserved word forms. We plan to add additional 
smoothing techniques, such as modified Kneser–Ney or 
Witten–Bell smoothing, which have been shown to perform 
more favorably in NLP tasks (e.g., Chen & Goodman, 1999). 
To our knowledge, no work has looked at smoothing as it 
relates to modeling phonotactic acceptability judgments. A 
more detailed study of how well different smoothing tech-
niques correlate with empirical observations in this domain 
will be valuable.

Finally, we would like to emphasize that the UCIPC is an 
open-source project (the source code can be found at https://​
github.​com/​conno​rmayer/​uci_​phono​tactic_​calcu​lator). If 
you are interested in adding new functionality or fixing bugs, 
please reach out to the corresponding author.

Conclusion

In this paper we have presented the UCI Phonotactic Calcu-
lator, a new online tool that allows users to compute a suite 
of different phonotactic acceptability metrics. Compared to 
existing tools, the UCIPC has several desirable properties:

•	 Users can provide their own training data, allowing it to 
be applied to any language, whether natural or artificial, 
for which suitable data are available.

•	 It computes a large suite of different types of acceptabil-
ity metrics.

•	 It has a simple point-and-click interface that allows it 
to be used by researchers with limited technical back-
grounds.

Sect. "Applications of phonotactic metrics in experi-
ments with adults" provided an example of how the calcu-
lator can be applied to answer questions about what aspects 

of phonotactic patterns speakers encode and how they 
generalize to unattested patterns. This demonstrated that, 
overall, models that are not sensitive to absolute position 
in the word or to token frequency do the best at predicting 
human judgments across a range of studies in four different 
languages.

The UCIPC has several valuable research applications 
in addition to modeling phonotactic acceptability. It can 
be used in stimulus construction for lexical decision tasks, 
infant experiments, or artificial grammar learning studies 
to control for the effects of phonotactic probability in par-
ticipants’ native languages. It can also be used be used to 
model changes in phonotactic generalizations resulting from 
different hypotheses about infants’ changing lexicons (see, 
e.g., Sundara, Breiss, Dickson, & Mayer, under revision).

We hope that the UCIPC will be a valuable tool for 
researchers who are interested in phonotactic acceptability. 
We would like to close by emphasizing again that the UCIPC 
is an open-source project: the source code can be freely 
examined, and we welcome contributions from researchers 
who would like to add additional functionality or fix exist-
ing bugs.
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