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Abstract 

This paper presents the UCI Phonotactic Calculator (UCIPC), a new online tool for quantifying the 

occurrence of segments and segment sequences in a corpus. This tool has several advantages compared 

to existing tools: it allows users to supply their own training data, meaning it can be applied to any 

language for which a corpus is available; it computes a wider range of metrics than most existing tools; 

and it provides an accessible point-and-click interface that allows researchers with more modest 

technical backgrounds to take advantage of phonotactic models. After describing the metrics 

implemented by the calculator and how to use it, we present the results of a proof-of-concept study 

comparing how well different types of metrics implemented by the UCIPC predict human responses 

from eight published nonce word acceptability judgment studies across four different languages.  These 

results suggest that metrics that take into account the relative position of sounds and include word 

boundaries are better at predicting human responses than those that are based on the absolute position 

of sounds and do not include word boundaries. We close by discussing the usefulness of tools like the 

UCIPC in experimental design and analysis and outline several areas of future research that this tool will 

help support. 

 

1 Introduction 

Phonotactics refers to restrictions on the sequencing of sounds into words. For example, although the 

word /skif/ “skeef” is not a real English word (at least in the authors’ dialects), it could in principle 

become an English word. It could not be a Spanish word, however, because there are no Spanish words 

that begin with /s/-initial complex onsets. The fact that different languages impose different restrictions 

on phonotactic patterns indicate that phonotactics must be learned from speech input (though some 

aspects like sonority sequencing preferences have been proposed to be innate; Selkirk 1984, Prince & 



Smolensky 1993; Berent et al. 2008; etc.). Speakers generally have strong intuitions about what possible 

words could sound like in their language. The process of developing these intuitions is typically taken to 

correspond to forming generalizations over sound patterns in the lexicon, with learners forming 

generalizations based on the type frequency (rather than token frequency) of particular phonotactic 

structures (e.g. Chomsky and Halle 1965, 1968, Bybee 1995, 2001, Pierrehumbert 2001, Bailey & Hahn 

2001, Edwards et al. 2004, a.o.). 

One common method for getting insight into speakers’ phonotactic knowledge is to perform 

acceptability judgment tasks where speakers are asked to rate a nonce word based on its suitability as a 

possible word in their language. This might involve a forced choice task, a numeric rating, or other 

responses like magnitude estimation. It has long been observed on the basis of such studies that 

phonotactic judgments are graded: speakers do not generally think of words as being “in” or “out” but 

can often arrange them on a cline of acceptability. The classic example from Chomsky & Halle (1968) is 

the three words “blick”, “bnick”, and “bnzk”. Although none of these are real English words, speakers 

typically find “blick” to be acceptable, “bnzk” to be unacceptable, and “bnick” to be somewhere in 

between. Every experimental study that has tested for gradience has found it (e.g. Coleman & 

Pierrehumbert 1997, Scholes 1966, Bailey and Hahn 2001, Hayes and Wilson 2008, Daland et al. 2011, 

a.o.).  

Further, graded knowledge of phonotactics is crucially important for speech perception (e.g., Norris & 

McQueen 2008, Davidson & Shaw 2012, Dupoux et al., 2011, Chodroff & Wilson 2014; Steffman & 

Sundara, 2023), and speech production (e.g., Edwards, Beckman & Munson, 2004). It is also important 

for word segmentation and word learning, even in infants and children (e.g., Mattys, Jusczyk, Luce & 

Morgan 1999, McQueen 1998; Mersad & Nazzi 2011, Vitevitch & Luce, 1999, Storkel 2001). Speech 

errors produced by native speakers as well respect gradient phonotactic restrictions (e.g., Goldrick and 

Larson 2008, Taylor and Houghton 2005, Warker, 2013, Warker and Dell  2006, 2015). As researchers, 



we are interested in understanding what knowledge of phonotactics speakers possess, how they acquire 

that knowledge, and how it is deployed in other areas of language. A common approach is to develop 

models that allow phonotactic metrics to be computed for words given some training data sample 

meant to approximate a speaker’s lexicon, over which phonotactic generalizations can be formed. These 

metrics are commonly used as predictors of experimental data such as reading time, categorization, 

accuracy or reaction time for lexical decisions, production, speech errors or acceptability scores. Such 

models are useful because they allow us to stipulate precisely (a) what phonotactic configurations 

speakers are sensitive to; (b) how exposure to these configurations shapes phonotactic knowledge; and 

(c) how phonotactics influences speech perception more generally. A key criterion for these models is 

that they output graded, rather than categorical acceptability scores. 

The goal of this paper is to present a new online tool used for calculating phonotactic metrics: the 

University of California, Irvine (UCI) Phonotactic Calculator (https://phonotactics.socsci.uci.edu/). This 

tool has several advantages compared to existing tools for computing graded lexical statistics: it allows 

users to supply their own training data, meaning it can be run on any language where a corpus 

representing the lexicon is available; it computes a wider range of metrics than is typical; and it provides 

an accessible point-and-click interface that allows researchers with more modest technical backgrounds 

to take advantage of phonotactic models. 

The structure of the paper is as follows: Section 2 describes several existing tools for computing 

phonotactic metrics and the limitations of these tools that motivated the development of the UCI 

Phonotactic Calculator. Section 3 describes the UCI Phonotactic Calculator and the metrics it 

implements. Section 4 shows how the UCI Phonotactic Calculator can be used to compare a variety of 

proposed phonotactic models against data from eight phonotactic acceptability studies across four 

languages. The results demonstrate that, in every case, metrics that reference the relative position of 

segments in words outperform more commonly used metrics that reference the absolute position of 



segments. This raises several other questions that would benefit from future research. Section 5 offers a 

brief discussion and conclusion. 

 

2 Limitations of existing tools for computing phonotactic acceptability 

In this section we will discuss existing tools that quantify the occurrence of segment or segment 

sequences in a corpus embodying a lexicon. Overall, such tools are available for a small number of 

languages and cannot be customized because the training corpora they are based on are not accessible 

to the user. Both these limitations severely restrict the range of questions that can be empirically 

investigated.  

 

2.1 The Phonotactic Probability Calculator 

Currently, the most well-known phonotactics calculator, with 675 citations in Google Scholar, is the 

Phonotactic Probability Calculator (PPC; Vitevitch and Luce 2004). The PPC allows the phonotactic 

metrics described in Jusczyk et al. (1994) and Vitevitch and Luce (1999) to be computed for novel words 

in English, Spanish, and Modern Standard Arabic (Aljasser & Vitevitch, 2018). A related tool, the 

Neighborhood Density Calculator, allows neighborhood density to be calculated for words in the same 

languages (Vitevitch and Luce 2016). 

The English model is trained on a phonetic transcription of the 1964 Merriam-Webster Pocket 

Dictionary, which consists of about 20,000 words. Information about word frequency comes from 

Kučera and Francis (1967). Stress is not encoded. The website does not state what training data was 

used for the Spanish model, though it may be the data from the Beginning Spanish Lexicon (Vitevitch et 

al. 2012), which consists of 3,854 words from the glossary of a first-year Spanish textbook, transcribed in 



Castilian Spanish. The Modern Standard Arabic model is trained on a list of the 100,000 most frequent 

Modern Standard Arabic lemmas purchased from https://www.sketchengine.eu/.  

The metrics calculated by the PPC are absolute positional, frequency-weighted, unigram and bigram 

scores. The mathematical implementation of this is described in detail in Section 3.1.4, but we provide 

some intuitive definitions of the properties of these metrics here: 

• Unigram/bigram: Unigram metrics consider the frequency of occurrence of individual sounds. 

Bigram metrics consider the frequency of occurrence of adjacent pairs. Together these 

measures can capture how likely listeners are to hear individual sounds, as well as particular 

sequences of sounds. 

• Frequency-weighted: words that have a higher token frequency contribute more than do less 

frequent words. In a model that is not frequency-weighted, all word types in the training set 

contribute equally, regardless of their token frequency. 

• Absolute Positional: the absolute position of the unigrams/bigrams in a word is considered when 

calculating metrics. This differs from standard unigram/bigram models, where absolute position 

is not considered (e.g. Markov 1913, Shannon 1948, Bahl et al. 1983, Chen and Goodman 1999,  

Jurafsky and Martin 2025). For example, in an absolute positional unigram model, the influence 

of a /t/ on the computed metric for a word can differ depending on whether it occurs in the first 

position, second position, etc. In relative positional unigram model, to be described below, the 

influence of /t/ on the metric will be the same regardless of where in the word it occurs. 

Analogously, in an absolute positional bigram model the influence of a sequence /st/ on the 

computed metric can differ depending on whether this sequence occurs as the first and second 

sounds, the second and third, etc. In a relative positional bigram model, the influence of this 

sequence on the metric will be the same regardless of the positions it occurs in. The name 

https://www.sketchengine.eu/


relative positional is meant to indicate that the model can make reference only to the position 

of a sound in a word relative to other sounds (e.g. does /t/ occur following an /s/), while in an 

absolute positional model, the model can additionally make reference to the specific position in 

a word in which a sound or sequence occurs. In more rigorous mathematical terms, absolute 

positional models are non-stationary while the relative positional models are stationary or 

translation invariant.  

 

The absolute positional metrics implemented in Vitevitch and Luce (2004) have two other important 

differences from standard implementations of relative positional metrics. First, the absolute positional 

metrics do not explicitly reference word boundaries. This is not an issue for word-initial segments, since 

these are always in the first position, but it means these metrics cannot differentiate between segments 

that occur at the end of words and segments that don’t. In relative positional models, word boundary 

symbols are typically inserted at the edges of words and thus referenced when computing the metrics 

(so, for example, a bigram sequence like /t#/, where # is a word boundary, refers to a /t/ in word-final 

position). Second, the absolute positional bigram metrics are implemented as joint probabilities 

(𝑃(𝐴 𝑎𝑛𝑑 𝐵)) while the relative positional metrics are implemented as conditional probabilities 

(𝑃(𝐵|𝐴)). These issues will be discussed more in Section 3. 

Although this model has been extremely influential, it has a number of limitations, both mathematical 

and practical. We will discuss the mathematical issues in Section 3.1. In terms of practical issues, 

because training data is hardcoded into the PPC, it is available only for English, Spanish and Modern 

Standard Arabic, and the properties of the training data cannot be customized. Finally, the use of 

absolute positional unigram and bigram metrics may lead to data sparsity issues for longer words. For 

example, the mean number of phonemes in an English word is about 5.77 (sd=1.93; Marian et al. 2012). 

Estimates for a unigram score corresponding to /t/ in the third position will be based on a large number 



of data points (since most English words have something in the third position), while estimates for a 

score corresponding to /t/ in the 10th position will be less reliable, as fewer words have ten or more 

segments. This is not an issue for relative positional models, because unigram and bigram values are 

calculated without taking absolute position into account. 

 

2.2 Irvine Phonotactic Online Dictionary 

A tool called the Irvine Phonotactic Online Dictionary (IPhOD; Vaden et al. 2009; 

http://www.iphod.com/) provides similar functionality to the PPC. IPhOD can compute a large range of 

phonotactic metrics, including both relative/absolute positional and frequency-weighted/non-

frequency-weighted metrics, as well as neighborhood densities for English words provided by the user. 

In addition, it allows users to search for words that meet certain criteria with respect to these metrics 

(e.g. “find English words with fewer than three neighbors”).  

There are two main limitations of the IPhOD calculator. The first is that the training dataset is limited to 

English, and more specifically to the approximately 54,000 words in the CMU English Pronouncing 

Dictionary (Weide 1994). While this database is quite extensive, words that do not exist in it cannot be 

used as part of the calculation process. This also limits users’ ability to provide their own training 

dataset, which may be more practical for certain research purposes. Second, the overall usage of the 

IPhOD calculator is limited as it only supports a few phonotactic metrics and users must enter their 

testing dataset manually rather than through a file upload. These are minor issues that we aim to 

address with the UCI Phonotactic Calculator.  

 

2.3 CLEARPOND 



CLEARPOND is a tool maintained by Northwestern University that computes orthographic and 

phonological neighborhood density and other metrics like word length and frequency (Marian et al. 

2012; https://clearpond.northwestern.edu/). CLEARPOND supports five languages, English, Dutch, 

French, German, and Spanish, and also allows cross-language neighborhood densities to be computed. 

CLEARPOND also supports the calculation of absolute positional, frequency-weighted biphone and 

bigram scores using the same method described in Vitevitch and Luce (2004). Unlike the other programs 

described here, CLEARPOND has experimental functionality that computes neighborhood density and 

neighbors for a list of training words given a custom training data set. This functionality is limited in that 

it only computes a subset of the neighborhood density metrics and no phonotactic metrics. Thus, 

CLEARPOND is similar to the PPC but with support for a wider range of languages. 

 

2.4 The UCLA Phonotactic Learner 

The UCLA Phonotactic Learner (Hayes & Wilson 2008; 

https://linguistics.ucla.edu/people/hayes/Phonotactics/) is a program for calculating phonotactic 

probabilities. It is a maximum entropy model (Goldwater & Johnson 2003) that penalizes words that 

violate certain featural n-gram constraints. Features refer to properties of sounds like voicing, sonority, 

manner of articulation, etc. Examples of such constraints might be “don’t have a voiced sound following 

a voiceless sound”. The UCLA Phonotactic Learner induces from a training set both what constraints are 

necessary and how strongly they should be weighted.  

An advantage of referring to features rather than segments is that it can capture variability in the 

acceptability of unattested sequences. For example, even though both ‘bnick’ and ‘bnzck’ are poorly 

formed with respect to English phonotactics, speakers often have an intuition that the first is not as bad 

as the second (Chomsky & Halle 1968). Models that refer to segments alone, like all the models 

https://linguistics.ucla.edu/people/hayes/Phonotactics/


discussed above, cannot capture this distinction, since both /bn/ and /bz/ are unattested. Featural 

models, however, can capture the idea that because there are more onsets like /bn/ (e.g., onsets with a 

/b/ followed by non-nasal coronal sonorant, like /bl/, or an obstruent followed by a coronal nasal, like 

/sn/) than there are like /bz/, speakers should find the former more acceptable.  

The UCLA Phonotactic Learner has been an enormously influential model of phonotactic learning, with 

over 1000 citations on Google Scholar at the time of this writing, and its performance compares 

favorably to other models (e.g. Daland et al. 2011). Some limitations are that it is a standalone 

executable and cannot integrate directly into programming workflows, and that it does not output 

probabilities directly but rather numeric weights that correlate with them. The model has the additional 

task relative to the other models of discovering the constraints: there are several hyperparameters that 

govern how this process takes place that the model is sensitive to.  

 

2.5 Other tools 

There are also several databases that contain phonotactic or neighborhood density metrics for 

individual languages. EsPal allows neighborhood densities and other metrics to be calculated for both 

Latin American and Castilian Spanish based on both written and spoken corpora, and supports 

relative/absolute positional and frequency-weighted/non-frequency-weighted metrics, as well as 

neighborhood densities (Duchon et al. 2013). It also allows Spanish words to be selected based on these 

properties. Diphones-fr is a simple database that contains diphone frequency information from over 50 

million French words (New & Spinelli 2013). 

The remaining existing tools are mainly used for word selection or generation under restrictions on 

phonotactic probability or neighborhood density. In this sense, they do not provide the same 

functionality as many of the tools discussed above, but still serve an important purpose in designing 



experimental stimuli. WordGen is one such example in which users can specify linguistic constraints to 

generate nonce words in Dutch, English, French, or German (Duyck et al. 2004). The main downside to 

WordGen is that it is a standalone Windows program and cannot easily be integrated into a broader 

programming workflow. Wuggy is a similar tool for word generation that takes the utility of WordGen a 

step further. It supports more languages, including Spanish and Vietnamese, and has a Python library 

(Keuleers & Brysbaert 2010).  

 

3 The UCI Phonotactic Calculator 

The UCI Phonotactic Calculator (henceforth UCIPC; https://phonotactics.socsci.uci.edu/) is an online tool 

we have developed that can be used to calculate various metrics to quantify phonotactic information. 

This tool has several primary differences from the existing tools discussed above. 

1. It allows the user to specify their own training data set. To our knowledge, this is the only online 

tool supporting this functionality for phonotactic metrics (note that CLEARPOND does support 

this, but for neighborhood density alone). This allows the UCIPC to be deployed on any language 

or input register (e.g. infant-directed speech). 

2. It supports a wider range of metrics than most existing tools. 

3. It can be run both via an online interface and via the command line, which allows it to be 

integrated into larger programming workflows. 

4. It is open source: https://github.com/connormayer/uci_phonotactic_calculator 

Training and test data files uploaded by the user are stored on a secure server. Files that are more than 

10 minutes old are deleted by an automated process that runs every 10 minutes, meaning that, in the 

worst case, the longest a file will persist on the server is about 20 minutes. If data privacy is a major 

https://phonotactics.socsci.uci.edu/
https://github.com/connormayer/uci_phonotactic_calculator


concern, the user can download the UCIPC source code from the GitHub repository and calculate the 

metrics locally, without the data ever leaving their computer (see Appendix A). 

 

3.1 Currently supported phonotactic metrics 

The UCIPC supports a range of phonotactic metrics that differ in how or whether they encode context, 

token frequency, and position. This section will provide a qualitative and quantitative description of 

each metric. The set of metrics is roughly divided into four classes based on the following two factors: 

1. Unigram vs. Bigram metrics: do we consider the preceding context in which a sound occurs 

(bigram) or not (unigram)? 

2. Absolute Positional vs. relative positional metrics: do we consider the absolute position in the 

word in which a unigram or bigram occurs or not? The absolute positional metrics correspond to 

the calculations done in Jusczyk et al. (1994) and Vitevitch and Luce (2004), while the relative 

positional metrics correspond to more standard implementations of n-gram models with word 

boundary symbols (Markov 1913, Shannon 1948, Bahl et al. 1983, Chen and Goodman 1999,  

Jurafsky and Martin 2025). 

 

3.1.1 Relative positional unigram probabilities 

In all of the sections below, we will use 𝑤  =  𝑥1…  𝑥𝑛  to refer to a word consisting of symbols 𝑥1 

through 𝑥𝑛. 

The relative positional unigram score reflects the probability of a word under a standard unigram model. 

Here, the probability of a word is defined as the product of the probabilities of its individual symbols. In 

the relative positional version of unigram metrics, probabilities are calculated without considering the 



position of symbols. Rather, only the frequencies of symbols are used in the calculation. If a particular 

symbol exists in the test dataset but not in the training set, its probability is set to zero. Mathematically, 

we express the relative positional unigram probability of a word as 

𝑃(𝑤 = 𝑥1…𝑥𝑛) ≈∏𝑃(𝑥𝑖)

𝑛

𝑖=1

 

where we express the probability of encountering an individual unigram as 

𝑃(𝑥) =
𝐶(𝑥)

∑ 𝐶(𝑦) 
𝑦∈Σ 

 

where 𝐶(𝑥) represents the number of occurrences of 𝑥 in the training data and Σ is the set of all sounds 

in the training data. 𝐶(𝑥) is divided by the total count of every symbol 𝑦 ∈ Σ  in the training data, 

meaning that unigram probabilities are simply the relative frequency of the sound 𝑥 . . The UCIPC 

returns log unigram probabilities. It’s important to note that the training process for all the models in 

this paper is deterministic: the unigram/bigram probabilities learned by the model will always be the 

same for a given input.  

 

3.1.2 Absolute positional unigram scores 

The UCIPC also computes absolute positional unigram scores, following the approach in Vitevitch and 

Luce (2004). These differ from the relative positional unigram probabilities above in that they are 

sensitive to the absolute position of each segment in a word, as well as its identity. The absolute 

positional unigram score is a type-weighted variant of the unigram score from Vitevitch and Luce (2004). 

It is defined as follows: 



𝑃𝑜𝑠𝑈𝑛𝑖𝑆𝑐𝑜𝑟𝑒(𝑤 = 𝑥1…𝑥𝑛)  =  1  +  ∑𝑃(𝑤𝑖 = 𝑥𝑖)

𝑛

𝑖=1

 

where 

𝑃(𝑤𝑖 = 𝑥)  =  
𝐶(𝑤𝑖 = 𝑥)

∑ 𝐶(𝑤𝑖 = 𝑦) 
𝑦 ∈ Σ

 

where refers to the ith position in a word and is the number of times in the training data the symbol x 

occurs in the ith position of a word. 

Vitevitch and Luce (2004) add 1 to the sum of the unigram probabilities “to aid in locating these values 

when you cut and paste the output [...] to another program” (p. 484). They recommend subtracting 1 

from these values before reporting them. 

Under this metric, the score assigned to a word is the sum of the probability of its individual symbols 

occurring at their respective positions. Higher scores represent words with more probable segments. 

It is important to keep in mind that the values the absolute positional models associate with word forms 

are not valid probabilities, because the probabilities of individual unigrams and bigrams are combined 

by addition rather than multiplication. However, even if multiplication were used, this could not be 

interpreted as a probability distribution over words, since in general the probability of a sequence is not 

equal to the product of its joint bigram probabilities. The relative positional models, by comparison, 

decompose the probability of a sequence into the product of conditional probabilities using the chain 

rule of probability, and then approximate the individual conditional probabilities using the Markov 

Assumption (see Jurafsky & Martin 2025, Ch. 3). Therefore, users need to be aware that the behavior of 

absolute positional metrics is not mathematically well-defined, and thus, more difficult to predict and 

reason about.  



There is also an additional practical difference between absolute and relative positional models that 

emerges from the use of addition in the former models: all else being equal, longer words will have 

higher scores under the absolute model because the individual n-gram probabilities are combined by 

addition, and thus each additional symbol increases the score, favoring longer words. In the relative 

model, on the other hand, shorter words are preferred, because the individual n-gram probabilities are 

combined by multiplication, and thus each additional symbol decreases the score. A preference for 

longer words runs counter to a bias towards shorter words that is often employed in phonotactic 

modeling (e.g. Goldwater et al. 2009, Johnson et al. 2015; see also Storkel 2004 for versions of the 

absolute model that are not sensitive to word length). 

 

3.1.3  Relative positional bigram probabilities 

Unlike unigram metrics, the bigram metrics consider pairs of symbols instead of individual symbols. 

Calculating the relative positional bigram score is done in a similar way to that of the relative positional 

unigram scores. That is, it is represented as the product of probabilities of consecutive symbols in each 

word conditioned on the previous symbol. Like the relative positional unigram model, the absolute 

position of the bigrams in the word is not considered, and bigrams not occurring in the training data are 

assigned a probability of zero. To incorporate information about word boundaries, we pad the words 

with a special symbol at the beginning and end, which allows us to compute the probabilities of symbols 

starting and ending words. For example, the input /kæt/ ‘cat’ would consist of the bigrams {#k, kæ, æt, 

t#}, where # is a word boundary symbol. This allows the model to be sensitive to the frequencies with 

which certain segments begin and end words. 

Following the standard definitino of a bigram model (Jurafsky and Martin 2025, Ch. 3), we defined the 

bigram probability of a word as 



𝑃(𝑤 = 𝑥1…𝑥𝑛) ≈∏𝑃(𝑥𝑖|𝑥𝑖−1)

𝑛

𝑖=2

 

where the probability of a particular bigram is calculated as 

𝑃(𝑥|𝑦) =
𝐶(𝑦𝑥)

𝐶(𝑦)
 

where the count function 𝐶(∙) is defined as in Section 3.1.1.  The UCIPC returns log bigram probabilities. 

 

3.1.4 Absolute positional bigram metrics 

The UCIPC also computes absolute positional bigram scores. This is a type-weighted variant of the 

bigram score from Vitevitch and Luce (2004). It is defined as: 

𝑃𝑜𝑠𝐵𝑖𝑆𝑐𝑜𝑟𝑒(𝑤 = 𝑥1…𝑥𝑛)  =  1  +  ∑𝑃(𝑤𝑖−1 = 𝑥𝑖−1,  𝑤𝑖 = 𝑥𝑖)

𝑛

𝑖=2

 

where 

𝑃(𝑤𝑖−1 = 𝑥𝑖−1,  𝑤𝑖 = 𝑥𝑖)  =  
𝐶(𝑤𝑖−1 = 𝑥𝑖−1,  𝑤𝑖 = 𝑥𝑖)

∑ ∑ 𝐶(𝑤𝑖−1 = 𝑧,  𝑤𝑖 = 𝑣) 
𝑣 ∈Σ

 
𝑧 ∈ Σ

 

The same caveats apply here with respect to these scores not forming valid probabilities. These scores 

also differ from relative positional bigrams in that the bigram probabilities used to calculate the overall 

scores are joint probabilities rather than conditional probabilities: they tell us the probability of segment 

𝑥  occurring in position 𝑖  and segment 𝑦  occurring in position 𝑖 + 1 , while the relative positional bigram 

probabilities tell us the probability of segment 𝑦  occurring in position 𝑖 + 1  given that segment 𝑥  

occurred in position 𝑖 . 

 



3.1.5 Token frequency-weighted metrics  

In the standard metrics, which we call type-weighted, the frequency of individual word types does not 

affect the output scores. That is, word types that occur more frequently are weighted the same as word 

types that occur very few times. The token-weighted variants of each metric do account for frequency of 

word types. Specifically, word types that occur frequently are weighted higher than less frequent word 

types. To account for this weighting, the count function is weighted so that each occurrence of a 

particular configuration is weighted by the natural log of the count of the word it occurs in.  

For example, consider a corpus that contains the word type “kæt” 1000 times and “tæk” 50 times. 

Under a token-weighted unigram model, we would have 𝐶(æ) = ln(1000) + ln(50) ≈ 10.82, whereas 

in a type-weighted unigram model, we would have 𝐶(æ)  =  1  +  1  =  2. 

The token-weighted absolute positional unigram and bigram scores correspond to the metrics in the PPC 

(Vitevitch and Luce 2004). Although both the PPC and the UCIPC use log frequency counts, the PPC uses 

the base 10 logarithm, while the UCIPC uses the natural logarithm (logarithm with base 𝑒 ). Because 

logarithms with different bases differ only in a constant multiplicative factor, the choice of base does 

not have an impact on the relative differences between word scores.  

 

3.1.6 Smoothed metrics 

The calculator also calculates variants of every metric with add-one smoothing (Jeffreys 1948, Section 

3.23). With this type of smoothing, every n-gram has a default count of one. Thus, n-grams that are not 

encountered in the training set, but do appear in the test set, are treated as if they occurred once in the 

former rather than not at all. This assigns a small probability to such configurations. Without smoothing, 

the count for an unencountered n-gram will be 0, and hence the model will assign it a probability of 0. 



The effect of zero probability n-grams on word scores differs between the relative and absolute 

positional models. In the relative positional models, where word scores are computed by taking the 

product of the individual n-gram probabilities, this means that any word in the training data with an 

unattested n-gram will be assigned a probability of zero, making it indistinguishable from other words 

containing unattested n-grams, even if the probabilities of other n-grams in the words differ 

substantially. The effect of smoothing on the absolute positional models is less dramatic because 

probabilities are combined using addition. In unsmoothed models, unattested sequences have no effect 

on word scores, while in smoothed models, they will result in a small increase. Performing smoothing in 

the token-weighted versions of metrics is done by simply adding one to the log-weighted counts.  

 

3.1.8 Summary of UCIPC Metrics 

To summarize, the UCIPC can compute the following metrics given training and test data: 

1. Relative positional unigram probability 

2. Relative positional bigram probability 

3. Smoothed relative positional unigram probability 

4. Smoothed relative positional bigram probability 

5. Frequency-weighted relative positional unigram probability 

6. Frequency-weighted relative positional bigram probability 

7. Smoothed, frequency-weighted relative positional unigram probability 

8. Smoothed, frequency-weighted relative positional bigram probability 

9. Absolute positional unigram score 

10. Absolute positional bigram score 



11. Smoothed absolute positional unigram score 

12. Smoothed absolute positional bigram score 

13. Frequency-weighted absolute positional unigram score 

14. Frequency-weighted absolute positional bigram score 

15. Smoothed, frequency-weighted absolute positional unigram score 

16. Smoothed, frequency-weighted absolute positional bigram score 

All metrics except the absolute positional variants are reported as log probabilities. 

 

3.2 A brief tutorial for the UCIPC 

The UCIPC requires two inputs: a training file and a test file. For the training set, users have the choice of 

uploading their own file or selecting from the several existing datasets readily available to the UCIPC. To 

choose an existing dataset, users may use the dropdown menu which contains a short description of the 

available datasets. For a more detailed description of each file, users should view the Datasets page, 

which is dedicated to storing and explaining the use case of each dataset. Existing datasets include, 

English, Spanish, Turkish and Polish corpora (referenced below in this paper) as well as the Finnish, 

French and Samoan datasets used in Mayer (2020). 

If uploading a personal training file, users must take care to follow a few specifications: 

• The file must be in CSV format. 

• The file must consist of one or two columns without headers. 

The first column is mandatory and should consist of a word list where symbols (phonemes, phones, 

letters, etc.; see Section 5.3) are separated by spaces. Any transcription system is valid, so long as 

individual symbols are space-separated. The second column is optional and, if included, should contain 



the corresponding frequencies for each word, expressed as counts. If this column is included in the 

training file, both the type- and token-weighted variants of each metric will be computed. Otherwise, 

just the type-weighted metrics will have values in the output file, and the token-weighted metrics will 

have NaN values. Note that users may not both upload their own training file and select a default 

training file; the UCIPC will display an error message requesting a single choice to be made. 

The test file needs to be a CSV file with a single column of test words and no headers. The transcription 

system used in the test file should match the system used in the training file. The mechanism for 

uploading the test file is the same as uploading the training file. It is generally the case that test files will 

contain data not found in the training set in order to test the models’ ability to generalize and avoid the 

risk of overfitting to the training data (e.g. Ying 2019), but this is not required. A test file that partially or 

completely overlaps with the training forms can also be used if the intention is simply to calculate scores 

for particular lexical items, rather than to evaluate the capacity of the models to generalize. 

Once users submit their training file, test file, and model type, the UCIPC will direct them to a separate 

page to download the output file. Users will receive a CSV file where each row contains the test word, its 

length, and all the calculated variations of the unigram and bigram metrics. To run the model again, 

users must go back to the UCIPC home page and resubmit the input form with the necessary fields 

(training/test file, model type). Because both files uploaded to the server and the output CSV files are 

cleaned up frequently, users should be sure to download their output data within 10 minutes of 

generating it. 

 

4 Applications of phonotactic metrics in experiments with adults 

In this section, we model phonotactic acceptability ratings given by human participants in published 

studies as a function of a variety of phonotactic metrics. Our purpose here was to determine whether 



metrics that encode absolute positional information or relative positional metrics that take word edges 

but no other positional information into account are best able to predict acceptability judgements by 

adult native listeners. For each of the following datasets, we run the UCIPC with an appropriate training 

set in the same language. The calculator’s outcomes are used as predictors in a regression model that 

attempts to predict the human ratings. All the code and data can be found at 

https://github.com/aryarksub/phonotactic_metrics.  

The general format for each regression model is 

𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦  ∼  𝑈𝑛𝑖𝑔𝑟𝑎𝑚𝑆𝑐𝑜𝑟𝑒 ∗ 𝐵𝑖𝑔𝑟𝑎𝑚𝑆𝑐𝑜𝑟𝑒  

with random intercepts included for individual participants and items when the data were sufficiently 

granular. Because the model includes an interaction term, the unigram and bigram score predictors are 

mean-centered, by subtracting the mean from each observation, and scaled to Z-scores, by dividing each 

centered observation by the standard deviation. Outputs from the UCIPC that are negative infinity 

(corresponding to a probability of zero) are adjusted to a large negative value (e.g. -50) so that scaling 

could be done without error. The specific type of regression used (linear or logistic) depends on the 

experimental design of each study. 

We consider eight models for each data set resulting from the combination of type of metric (relative 

positional or absolute positional), whether or not metrics were smoothed and whether or not the 

metrics were token frequency weighted. Token-weighted metrics are omitted when frequency 

information is not available for the training data. 

We compare the performance of models using the Akaike Information Criterion (AIC; Akaike 1974). AIC 

is a metric for model comparison that estimates out of sample prediction error. It rewards model fit to 

the data and penalizes model complexity. Lower values of AIC indicate better model performance. 

However, absolute AIC values are not meaningful, but differences in AIC between a model and the 



model with the lowest AIC can be used to evaluate their performance on a dataset. We interpret 

differences in AIC using the rule of thumb proposed in Burnham & Anderson (2004; p. 271): an AIC 

difference of <= 2  between a model 𝑀 and the model with the lowest AIC score 𝑀𝑚𝑖𝑛  means there is 

“considerable support” for 𝑀 (i.e., 𝑀  and 𝑀𝑚𝑖𝑛  are both plausibly the best model); a difference of 

between 4 and 7 means 𝑀  has “considerably less support” relative to 𝑀𝑚𝑖𝑛, and a difference of more 

than 10 indicates “essentially no support” for  𝑀  relative to𝑀𝑚𝑖𝑛. 

For each of the four languages, we briefly summarize each study whose data we use and then present 

the results for all data sets in a single table. The summary table displays the corresponding AIC for each 

combination of model and data set. The best performing model on each dataset (the model with the 

lowest AIC) is bolded and underlined. 

 

4.1 English 

Unsurprisingly, the most numerous reports are on native English speakers phonotactic judgments, as is 

the case in psycholinguistics more generally (Vitevitch, Chan & Goldstein 2014; Blasi, Henrich, Adamou, 

Kemmerer & Majid 2022). In this section, we report results from modeling data obtained from 5 

published studies.  

 

4.1.1 Albright and Hayes (2003) 

The data used in Albright and Hayes (2003) consists of 58 English monosyllabic nonce verbs consisting of 

between 3 and 5 segments rated for phonological well-formedness by 20 native English speakers. All 

stimuli were presented auditorily. These data correspond to the pretest portion of Experiment 1 in their 

paper. Participants were asked to rate forms on a Likert scale between 1 (impossible as an English word) 



and 7 (would be a fine English word). The data is in the form of mean ratings across participants; 

individual ratings are not available. 

The phonotactic models were trained on the English CMU Pronouncing Dictionary (CMU Pronouncing 

Dictionary 2008) with frequency information from CELEX (Baayen et al. 1995). Stress location was not 

represented in the training data. The fitted models provided scores for the 58 nonce verbs used in the 

study. We used these scores as predictors in a set of linear models to model the mean rating. Because 

the dataset does not contain individual ratings by subject, we do not use any random effects.  

 

4.1.2 Daland et al. (2011) 

The test data obtained from Daland et al. (2011) consists of 96 disyllabic English nonce words, each six 

segments long. These nonce words were rated on a five-point Likert rating scale by 48 native English 

speakers and aggregated over a set of subjects. All stimuli were presented orthographically. The main 

goal of Daland et al. (2011) was to compare the acceptability of different onsets in English. These nonce 

words accordingly consist of a set of 48 complex onsets (e.g., [tw], [vr], [bl], etc.) and six “tails” to 

complete the word (e.g., [-ɑtɪf], [-ɛzɪg], etc.). Each onset was paired with two of the six tails, resulting in 

a total of 96 nonce words. Models were fit to the same English training data set described in the 

previous section, and the 96 nonce words (including tails) were scored by the fitted models. We used 

these scores as predictors in a linear regression model that uses the mean word ratings across 

participants as its output feature. Because scores were aggregated across subjects, there were no 

random effects in the model. 

 

4.1.3 Needle, Pierrehumbert & Hay (2022) 



The data from Needle et al. (2022) consists of ratings of 8400 English nonce words by 1440 participants. 

Nonce words consisted of 4-7 segments. All stimuli were presented orthographically. Each participant 

rated 140 stimuli each, leading to 24 ratings for each individual nonce word. Ratings were provided on a 

five-point Likert scale.  

In this case, the training dataset we use is the same one used in Needle et al. (2022) and consists of 

about 11,000 monomorphemic words from CELEX (Baayen et al. 1995) in the DISC transcription system. 

We converted the DISC transcriptions to ARPABET to stay consistent with the system used for English 

throughout this paper. Because this training data does not contain frequency information, the token-

weighted models could not be used. The other models were fitted to this training data and used to score 

the experimental stimuli. These scores were used as predictors in a linear mixed-effects model, with 

random intercepts for word and participant.  

4.1.4 Scholes (1966) 

The test data from Scholes (1966) were obtained from the supplementary material of Hayes & Wilson 

(2008). It consists of 62 monosyllabic nonce words rated by 33 seventh grade students. Words were 

presented orthographically. These words varied primarily in their onsets. The students were asked 

whether each word was a possible word of English and asked to provide a yes/no response: thus, the 

data here consist of binary responses rather than Likert scores. The data were aggregated across onset, 

which means each of the 62 onsets is associated with a value between 0 and 1 that represents the 

proportion of “yes” responses across participants. 

The training data used were also from the supplementary materials of Hayes & Wilson (2008) and 

consists of 55 English onsets and their type frequencies. This is a subset of the onsets in the CMU 

Pronouncing Dictionary with “exotic” onsets like [zw] and [sf] removed. This is rather different from the 

training data sets in previous cases because our training data consists of onsets, rather than words, and 



our frequency counts correspond to the number of word types each onset occurs in. The models were 

trained on this dataset and tested on the 62 words from Scholes (1966); this testing data also comes 

from the supplementary material for Hayes & Wilson (2008). The model scores were used as predictors 

in a logistic regression model over the proportions, weighted by the number of participants. Because we 

do not have individual ratings, we do not include any random effects.  

 

4.1.5 Hayes and White (2013) 

The test data procured by Hayes and White (2013) consists of 160 English nonce words consisting of 

between 2 and 7 segments rated on a logarithmic scale by 29 participants. Stimuli were presented 

simultaneously in both orthographic and auditory form. Participants were asked to perform a magnitude 

estimation task (Lodge 1981, Bard et al. 1996) comparing the well-formedness of each word with the 

reference word “poik”. The log of these magnitudes is the dependent variable we use here. The training 

data is the same CMU Pronouncing Dictionary data used in the analyses of Albright & Hayes (2003) and 

Daland et al. (2011). Models were trained on this data and used to score each nonce word. These scores 

were used as predictors in a linear mixed-effects model with random intercepts for participant and 

word. 

 

4.1.6 English results 

Table 1 shows the AIC of each of the eight model types on the five English data sets. These results show 

that the best performing model in each case is a relative positional model. Indeed, relative positional 

models almost always outperformed their absolute positional counterparts, the sole exception being the 

data from Daland et al. 2011, where some absolute positional models outperform their relative 



positional counterparts (though in this case the best performing model is still a relative positional one). 

The differences in AIC between the best relative positional model and best absolute positional model 

are > 10 in all cases, indicating strong support for the relative positional models; the exception is Scholes 

(1966) where the difference is 2.16, indicating weak support for the relative positional models. 

Smoothing generally results in a decreased AIC, except on the Needle et al. (2022) data. The non-

frequency weighted models generally perform better than the frequency-weighted ones, though this is 

not the case for the Scholes (1966) and Hayes & White (2013) data (this difference is minor in the 

former case). We will discuss this phenomenon more in Section 4.2 below when we look at Polish 

onsets, where the effect is much stronger. 

Model  
Albright & Hayes 

(2003)  

Daland et al., 

(2011)  

Needle, Pierrehumbert & 

Hay (2022)  

Scholes 

(1966)  

Hayes & White 

(2013) 

Relative 

Positional 
123.965  284.538  566148.8  36.65767  12507.21  

Relative 

Positional 

+ Smoothed 

123.115  242.270  566288.5  36.03306 12349.81  

Relative 

Positional 

+ Frequency-

weighted  

124.152  284.260  - 36.53359  12519.93  

Relative 

Positional 

+ Frequency-

weighted 

+ Smoothed 

123.437  244.621  - 35.40623  12338.82 

            

Absolute 

Positional 
129.706  260.176  570030.7  39.76660  13013.83  

Absolute 

Positional 

+ Smoothed 

129.714  259.450  570084.3  41.47684  13014.93  

Absolute 

Positional + 
129.562  258.719  - 38.09191  13009.03  



Frequency-

weighted 

Absolute 

Positional  

+ Frequency-

weighted 

+ Smoothed  

129.566  258.460  - 37.56650  13009.36  

Table 1: AIC scores of the regression models fit to the data of all 5 published studies in English; full 

model results with coefficients are available in Appendix B. The best performing model in each column is 

bolded and underlined. 

4.2 Other languages 

The remaining three studies we discuss are on non-English languages. We describe them together in this 

section. 

4.2.1 Polish (Jarosz & Rysling 2017) 

The Polish test data we use comes from Jarosz & Rysling (2017). In this paper, 81 native Polish speakers 

were asked to rate 159 test words consisting of 53 onsets and 3 tails (similar to the design in Daland et 

al. 2011) on a Likert scale of 1-5. Each participant rated each word once, leading to 12,880 responses. 

Stimuli were presented orthographically. 

Our training data set consisted of the list of Polish onsets with accompanying type frequencies from 

Jarosz (2017). These are generated from a corpus of child-directed speech consisting of about 43,000 

word types (Haman et al. 2011). Because we trained only on onsets, we generated model predictions for 

the 53 onsets in isolation (meaning that the three tails corresponding to each onset receive the same 

score). The model scores are used as predictors in a linear mixed-effects model with random intercepts 

for word (including tail) and participant.  

 

4.2.2 Spanish  



This data set was collected by authors CM and MS using the methodology from Sundara & Breiss (under 

review) for use in an unrelated study that is still in progress (Mayer & Sundara, in prep). The data 

consists of 576 unique CVCV Spanish nonce words rated on a discrete scale from 1 to 100 by 168 

participants. Each participant rated 144 tokens, leading to 24,192 ratings. Stimuli were presented 

simultaneously in both orthographic and auditory form. The phonotactic models were trained on a set 

of about 27,000 word types including citation and inflected forms taken from the EsPal database 

(Duchon et al. 2013) with stress encoded. The frequencies associated with these words were calculated 

from a large collection of Spanish subtitle data. The trained models were used to score the 576 nonce 

words. We use these scores as predictors in a linear mixed-effects model with random intercepts for 

participants and words. Random intercepts are used for individual words and subjects.  

 

4.2.3 Turkish  

The test data, described in more detail in Mayer (2024, under review), consists of 596 Turkish CVCVC 

nonce words rated on a discrete scale from 1 to 100 by 90 subjects following the same methodology as 

the Spanish study above. Each participant rated 192 tokens, leading to 17,280 ratings. Stimuli were 

presented simultaneously in both orthographic and auditory form. The phonotactic models were trained 

on a set of 18,472 citation forms from the Turkish Electronic Living Lexicon database (TELL; Inkelas et al. 

2000). This training data does not contain frequency information, so we omit results from the 

frequency-weighted models. Fitted models were used to generate scores for the 596 nonce words. 

These scores were used as predictors in a linear mixed-effects model with random intercepts for word 

and participant. 

 

4.2.4 Other language results 



Table 2 shows again that the best models are generally the relative positional, smoothed metrics 

without frequency weighting. The difference in AIC between the best performing relative positional 

model and the best performing absolute positional model on each dataset was > 10, indicating strong 

support for the relative positional models. Although frequency-weighting was generally not beneficial, 

the Polish data from Jarosz & Rysling (2017) was an exception. Similar to the data from Scholes (1966) 

presented above, but more pronounced, frequency-weighting appears to be crucial for model 

performance. This may reflect some language-specific sensitivity to frequency. However, as with the 

Scholes (1966) data, the training data consists of onsets with type frequencies rather than words with 

token frequencies. When a non-frequency-weighted model is applied to this data, the training data 

consists of a simple list of attested onsets lacking both type and token frequency information. It is more 

likely therefore than the success of the frequency-weighted models here corresponds to a sensitivity to 

type frequency information. It is less clear why the Hayes and White (2013) English data benefits from 

frequency-weighting. 

Model  
Jarosz & Riesling (2017) 

Polish  

Mayer & Sundara (in prep) 

Spanish  

Mayer (2024, 

under review) 

Turkish  

Relative Positional 44883.97  187932.9  159581.9  

Relative Positional 

+ Smoothed 
44799.76  187729.1 159545.6 

Relative Positional 

+ Frequency-weighted  
44849.67 188059.9  - 

Relative Positional 

+ Frequency-weighted, 

+ Smoothed 

44609.70  188059.9  - 

        

Absolute Positional 44908.04  189100.6  159628.4  

Absolute Positional 

+ Smoothed 
44907.11  188252.1  159628.8  

Absolute Positional 

+ Frequency-weighted 
44836.69  189668.1  - 

Absolute Positional,  44835.34  189668.3  - 



+ Frequency-weighted 

+ Smoothed  

Table 2: AIC scores of the regression models fit to the data of studies on Polish, Spanish and Turkish; full 

model results with coefficients are available in Appendix B. The best performing model in each column is 

bolded and underlined. 

 

4.3 Discussion 

Several clear trends emerge from the results presented above.  Relative positional models outperform 

positional models in every case.  Relative positional smoothed models generally outperform their 

unsmoothed counterparts. However, for absolute positional models smoothing typically has little effect 

and sometimes reduces their performance: this is not unexpected given the discussion in Section 3.1.6. 

Finally, frequency-weighted models generally perform similarly to or slightly worse than non-frequency 

weighted models. The exceptions to this are Hayes & White (2013), Scholes (1966) and Jarosz & Riesling 

(2017). The latter two cases are not really exceptions because the frequency information in the training 

data consists of onset type frequencies rather than token frequency: the success of the frequency-

weighted models in these cases simply indicates that type frequency is important. The only true 

exception is Hayes & White (2013), where including token frequency improved the performance of the 

smoothed model. 

What is even more striking about these results is that they emerge across a range of different domains 

and languages: some studies, like Scholes (1966), Daland et al. (2011), and Jarosz & Rysling (2017) focus 

only on onsets, while the others look at whole word forms. In some the stimuli are presented 

orthographically, in others auditorily, and in others both. In all cases, relative positional models that 

encode information about word edges, but no other absolute position information, best predict native 

speaker judgements. 



Why should it be the case that relative positional models do better? There are several possible reasons. 

First, as mentioned earlier in Section 2.1, absolute positional models have issues with data sparsity 

which make it difficult for them to assign accurate scores to long words: estimates for later positions will 

necessarily be based on less data than for earlier positions, because there are fewer words with material 

in those positions. Thus, we might expect scores assigned to longer words to be less useful in predicting 

human behavior. However, the maximum length of test words in the eight studies we looked at was 7 

segments, and even in published results on monosyllabic nonce words with fewer segments or onsets 

alone (Albright and Hayes 2003, Scholes 1965, Jarosz and Riesling 2017), relative positional models 

outperformed absolute positional ones. 

Second, the relative positional metrics can capture phonotactic constraints that target both word-initial 

and word-final material, which are often important positions in terms of phonotactic constraints (e.g. 

Beckman 1997, Lombardi 1999) and an important source of information in word segmentation and 

allophonic learning for adults (e.g., Endress, Nespor & Mehler, 2009; Skoruppa, Nevins, Gillard & Rosen, 

2015; Newman, Sawusch & Wunnenberg, 2011)  and for infants (e.g., Jusczyk, Hohne, Bauman, 1999; 

Katsuda & Sundara, 2024). In native Turkish words, for example, /ɾ/ can never begin a word and words 

cannot end in voiced stops or affricates. The relative positional models can encode these restrictions 

with the use of boundary symbols: such a model trained on Turkish would assign a low probability to the 

sequences ‘#r’ and ‘b#’, where # is a word boundary, reflecting the prohibition on word-initial /r/ and 

word-final voiced stops. Although the absolute positional models can encode word initial constraints, 

since every occurrence of a sound in position 1 is a word-initial occurrence, they cannot encode word-

final constraints, since the position of the final element in a word depends on its length. An absolute 

positional model struggles to encode restrictions like Turkish’s ban on final voiced stops: a [b] in the 

third position could have a high probability if a word is of length five (as in [babam] ‘my father’), but a 

low probability if it is of length three. 



Finally, in addition to these factors, it may simply be the case that relative positional models correspond 

better to human cognitive processes than absolute positional ones do, either because humans do not 

take absolute position into account, because they compute conditional rather than joint probabilities, 

because they are biased to prefer shorter words (e.g. Goldwater et al. 2009, Johnson et al. 2015), or 

some combination of these. A more detailed investigation using tools such as the UCIPC will be useful in 

teasing these factors apart. 

These results have important implications. First, absolute positional metrics of phonotactics, at least as 

currently implemented, do not predict human phonotactic generalization as well as relative positional 

metrics: the relative positional metrics outperform the absolute positional ones in every case. This 

suggests that the absolute positional metrics used by many phonotactic calculators, including the 

popular Phonotactic Probability Calculator (Vitevitch & Luce 2004), may not be the most suitable for 

modeling human acceptability judgments.  

Second, it is generally the case that models that take token frequency into account perform more poorly 

than models that don’t: this is somewhat less clear cut, however. The greater utility of type (vs. token) 

frequency to model human behavior has also reported in other domains besides phonotactic 

judgements (Albright 2002; Albright and Hayes 2003; Bybee 1995, 2001; Goldwater 2007; Hayes & 

Londe 2006; Hayes & Wilson, 2008; Pierrehumbert, 2001; Richtsmeier, 2011). Further research is 

needed to determine the circumstances under which speakers are sensitive to token frequency when 

forming phonotactic judgments, and in language processing more generally (e.g., Conrad, Carreiras & 

Jacobs, 2008; del Pardo Martin, Ernestus & Baayen, 2004; Ellis, 2002; Endress & Hauser, 2011). 

Finally, smoothed models generally outperform unsmoothed models. This is not surprising: speakers do 

not judge words containing unattested sequences as totally unacceptable. It is important to note, 

however, that the add-one smoothing used in these models is rather coarse, assigning each unattested 



sequence the same pseudo-count. It has been well established in linguistic research that speakers 

generalize to unattested sequences based on their similarity to existing sequences in the language (e.g. 

Chomsky & Halle 1965, 1968, Hayes & Wilson 2008, Wilson & Gallagher 2018, Dai et al. 2023, a.o.). 

More robust smoothing metrics that can capture these differences would be valuable but are beyond 

the scope of the current paper. 

One important limitation of this research is that all of the data we consider here are phonotactic ratings. 

Castro and Vitevitch (2023) note that different phonotactic metrics may be more predictive depending 

on the task itself (e.g. reading time as opposed to acceptability judgments), and more specific details of 

the task such as the presence of noise, time pressure, etc. Although these results support relative 

positional metrics as the best predictors of acceptability judgments, it remains to be seen whether this 

will hold across other tasks to which phonotactic sensitivity is relevant. 

 

5.   Applications of phonotactic metrics in stimulus construction 

In addition to serving as variables of interest in experimental work or computational models of speech, 

the metrics calculated by the UCIPC are also useful for constructing and selecting experimental stimuli. 

As shown in the previous sections, the UCIPC can be used to calculate a wide array of metrics to 

summarize how likely segments and segment sequences are in any given corpus. Such metrics are also 

extremely useful when constructing stimuli for experiments. 

 

5.1  Experiments with infants 

The UCIPC can be used to quantify the extent to which some segments or segment sequences are 

frequent, in any language for which a phonologically transcribed lexicon or corpus of speech is available. 



Such quantification is necessary when manipulating segment or segment sequence frequencies as an 

independent variable in experiments designed to determine when, if at all, infants are sensitive to 

native language patterns (e.g., Archer & Curtin, 2011; Gonzalez-Gomez & Nazzi, 2012; Friederici & 

Wessels, 1993). Quantification is also necessary to identify and index experimental confounds when 

differences in segment and segment sequence likelihood are not the target of inquiry but are 

nonetheless likely to influence infant behavior (Gonzalez-Gomez & Nazzi, 2012; Nazzi, Bertoncini, 

Bijeljac-Babic, 2009; Sebastián-Gallés & Bosch, 2002; Solá-Llonch & Sundara, 2025). 

In addition to standardizing the calculations of metrics to promote replicability, tools like the UCIPC 

allow new investigators with more modest technical backgrounds, particularly those working on under-

resourced languages, to employ phonotactic models in their research. Typically, to develop stimuli in a 

new language, an investigator would need access to a corpus, as well as computational skills to conduct 

corpus analyses to identify patterns and index the incidence of sounds and sound sequences. With the 

UCIPC, metrics can be obtained for any language as long as there is a dataset with all the words in a 

dictionary or corpus listed in a consistent transcription system. With time, we expect to increase the 

number of pre-existing datasets for different languages, to alleviate the challenge of identifying suitable-

sized corpora in different languages. 

 

5.2  Experiments with Artificial Languages 

The outcome of artificial language experiments has been reported to differ in adults with different 

native languages (White, et al., 2018; Huang and Do, 2021, Do and Yeung, 2021, etc.). This is typically 

dealt with by either recruiting only participants who speak the same language(s), so that the same L1 

biases are shared across participants, or using language background as a control variable in the analysis. 

Phonotactic metrics such as those generated by the UCIPC can also be useful in designing or analyzing 



artificial language learning experiments. For example, if a study were to be run on both English and 

Spanish speakers, phonotactic models fit to English and Spanish training data could be useful to score 

each stimulus and identify and remove cases where the models’ scores deviate substantially between 

languages. Alternatively, these scores could themselves be used as control variables, rather than the 

coarser metric of language background. This approach has the potential not only to better control for L1 

effects in AGL, but also to quantify and predict them. 

Finally, the artificial language itself can be used as the training data to ensure that the test items do not 

vary on segment and segment sequence likelihood that are themselves not the target of inquiry. 

 

5.3 Application to domains beyond phonotactics 

Although the UCIPC is intended to be used as a model of phonotactics, it has applications in other 

domains as well. One clear application is in the study of orthotactics, which deals with restrictions on 

how orthographic symbols can be combined into words in a language, and how awareness of these 

restrictions influences tasks such as reading and spelling (e.g. Apel et al. 2006, Krasa and Bell 2021). 

Computing orthotactic probabilities using the UCIPC is as simple as substituting orthographic symbols 

for phonetic symbols. Similarly, the UCIPC could also be deployed on morpheme sequences to compute 

morphotactic probability (e.g. Sproat 1992, Crysmann and Bonami 2016). Although the metrics 

computed by the UCIPC are unlikely to be useful for syntax, where it is common to have dependencies 

between non-adjacent words, morphological dependencies tend to be local in the same way as 

phonotactic dependencies (Aksenova et al. 2021), making n-gram models a suitable choice in many 

cases. 

 



6 Planned extensions of the UCIPC 

Currently the UCIPC does not implement calculation of neighborhood density. This is largely due to the 

contexts in which it has been applied so far: we have focused primarily on phonotactic acquisition in the 

first year, and previous research has indicated that infants are not sensitive to neighborhood density in 

this time period (Swingley & Aslin, 2002; Sundara et al. 2022). To make the UCIPC more applicable to the 

study of adult phonotactic knowledge, we plan to implement this functionality soon. Although there are 

online tools that support neighborhood density measurements in a wide range of languages (e.g. 

Alzahrani 2025, as well as some discussed in Section 2 above), the UCIPC could provide greater flexibility 

by allowing neighborhood density measurements to be computed for arbitrary training data. 

We also plan to add more sophisticated smoothing techniques. Currently all smoothed metrics involve 

add-one, or Laplace, smoothing. This technique has the virtue of being simple, but it tends to shift too 

much probability mass from observed to unobserved word forms. We plan to add additional smoothing 

techniques, such as Modified Kneser-Ney or Witten-Bell smoothing, which have been shown to perform 

more favorably in NLP tasks (e.g., Chen & Goodman, 1999). To our knowledge no work has looked at 

smoothing as it relates to modeling phonotactic acceptability judgments. A more detailed study of how 

well different smoothing techniques correlate with empirical observations in this domain will be 

valuable. 

Finally, we would like to emphasize that the UCIPC is an open-source project (the source code can be 

found at https://github.com/connormayer/uci_phonotactic_calculator). If you are interested in adding 

new functionality or fixing bugs, please reach out to the corresponding author. 

 

7 Conclusion 

https://github.com/connormayer/uci_phonotactic_calculator


In this paper we have presented the UCI Phonotactic Calculator, a new online tool that allows users to 

compute a suite of different phonotactic acceptability metrics. Compared to existing tools, the UCIPC 

has several desirable properties: 

• Users can provide their own training data, allowing it to be applied to any language, whether 

natural or artificial, for which suitable data is available 

• It computes a large suite of different types of acceptability metrics 

• It has a simple point and click interface that allows it to be used by researchers with limited 

technical backgrounds 

Section 4 provided an example of how the calculator can be applied to answer questions about what 

aspects of phonotactic patterns speakers encode and how they generalize to unattested patterns. This 

demonstrated that, overall, models that are not sensitive to absolute position in the word or to token 

frequency do the best at predicting human judgments across a range of studies in four different 

languages. 

The UCIPC has several valuable research applications in addition to modeling phonotactic acceptability. 

It can be used in stimulus construction for lexical decision tasks, infant experiments, or artificial 

grammar learning studies to control for the effects of phonotactic probability in participants’ native 

languages. It can also be used be used to model changes in phonotactic generalizations resulting from 

different hypotheses about infants’ changing lexicons (see, e.g., Sundara, Breiss, Dickson & Mayer, 

under review).  

We hope that the UCIPC will be a valuable tool for researchers who are interested in phonotactic 

acceptability. We would like to close by emphasizing again that the UCIPC is an open-source project: the 

source code can be freely examined, and we welcome contributions from researchers who would like to 

add additional functionality or fix existing bugs. 
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Appendix A 

Aside from the web interface, phonotactic metrics can also be calculated via the command-line interface 

for the UCIPC. To use the interface, users must download the UCIPC source code from the GitHub 

repository and, in their local terminal, navigate to the src directory which holds the 

ngram_calculator.py file. The calculator can then be run with the command 

python ngram_calculator.py [train_file] [test_file] [results_file] 

where the arguments refer to the local paths to the training file, test file, and output file to use, 

respectively.  For example, using the command-line interface on sample files located in the data 

directory can be done as follows: 

python ngram_calculator.py ..\data\english_cmu_freq.txt 

..\data\sample_test_data\english_test_data.csv outfile.csv 

 

Appendix B 

Each of the following subsections examines an individual test dataset and reports the results of the 

relevant models as run on the corresponding data. The results are formatted in a tabular manner, with 

the following column headers: 

• Model: Specifies the metrics used as predictors in the model  



• Intercept: Regression intercept 

• Uni. Coef: Coefficient for the unigram score term 

• Bi. Coef: Coefficient for the bigram score term 

• Int. Coef: Coefficient for the interaction (between unigram and bigram score) term 

• AIC: Akaike Information Criterion (estimation of prediction error; Akaike 1974) 

The models in each table are ordered by ascending AIC, with lower scores indicating better model 

performance. 

B.1 English Models 

B.1.1  Albright and Hayes (2003) 

Model Intercept Uni. Coef. Bi. Coef. Int. Coef. AIC 

Relative Positional 
+ Smoothed 

4.69160 0.15713 0.11632 -0.01857 123.115 

Relative Positional 
+ Frequency-weighted, 

+ Smoothed 

4.68971 0.16792 0.10045 -0.01575 123.437 

Relative Positional 4.70083 0.22337 0.07286 -0.14096 123.965 

Relative Positional 
+ Frequency-weighted 

4.69640 0.22241 0.05458 -0.11392 124.152 

Absolute Positional 
+ Frequency-weighted 

4.72162 -0.11934 0.13720 -0.05067 129.562 

Absolute Positional,  
+ Frequency-weighted 

+ Smoothed 

4.72111 -0.11911 0.13690 -0.05002 129.566 

Absolute Positional 4.70156 -0.10987 0.12717 -0.02460 129.706 

Absolute Positional 
+ Smoothed 

4.70003 -0.10882 0.12585 -0.02265 129.714 

Table 3: Coefficients and AIC scores of the regression models fit to data from Albright & Hayes (2003). 

B.1.2 Daland et al. (2011) 



Model Intercept Uni. Coef. Bi. Coef. Int. Coef. AIC 

Relative Positional 
+ Smoothed 

2.62606 -0.08283 0.67846 0.29493 242.270 

Relative Positional 
+ Frequency-weighted, 

+ Smoothed 

2.61921 -0.08328 0.68104 0.31075 244.621 

Absolute Positional,  
+ Frequency-weighted 

+ Smoothed 

2.75135 -0.06492 0.66884 -0.04975 258.460 

Absolute Positional 
+ Frequency-weighted 

2.74997 -0.06262 0.66403 -0.04779 258.719 

Absolute Positional 
+ Smoothed 

2.73739 -0.03431 0.62606 -0.03083 259.450 

Absolute Positional 2.73305 -0.02656 0.61117 -0.02467 260.176 

Relative Positional 
+ Frequency-weighted 

2.62998 -0.05006 0.42167 0.21011 284.260 

Relative Positional 10.93989 0.34735 0.32775 0.01387 284.538 

Table 4: Coefficients and AIC scores of the regression models fit to data from Daland et al. (2011). 

B.1.3 Needle, Pierrehumbert & Hay (2022) 

Model Intercept Uni. Coef. Bi. Coef. Int. Coef. AIC 

Relative Positional 2.72212 0.05903 0.54662 -0.00847 566178.8 

Relative Positional 
+ Smoothed 

2.66202 -0.32281 0.69883 0.08722 566288.5 

Absolute Positional 
+ Smoothed 

2.79281 -0.16563 0.33620 -0.10043 570030.7 

Absolute Positional 2.79435 -0.15024 0.32053 -0.10272 570084.3 

Table 5: Coefficients and AIC scores of the regression models fit to data from Needle et al. (2022). 

B.1.4 Scholes (1966) 

Model Intercept Uni. Coef. Bi. Coef. Int. Coef. AIC 

Relative Positional 
+ Frequency-weighted, 

-0.58485 0.02450 1.93349 0.20597 35.40623 



+ Smoothed 

Relative Positional 
+ Smoothed 

-0.31853 -1.12792 2.83191 -0.24395 36.03306 

Relative Positional 
+ Frequency-weighted 

-0.20491 0.55417 1.60020 -0.30457 36.53359 

Relative Positional -0.16237 0.51992 1.64383 -0.36761 36.65767 

Absolute Positional,  
+ Frequency-weighted 

+ Smoothed 

-0.11198 0.70349 1.65370 -0.48528 37.56650 

Absolute Positional 
+ Frequency-weighted 

-0.25016 0.84140 1.38754 -0.21887 38.09191 

Absolute Positional 0.70141 0.06254 3.19127 -1.93961 39.76660 

Absolute Positional 
+ Smoothed 

-0.00595 0.67075 2.32122 -1.25656 41.47684 

Table 6: Coefficients and AIC scores of the regression models fit to data from Scholes (1966). 

B.1.5 Hayes and White (2013) 

Model Intercept Uni. Coef. Bi. Coef. Int. Coef. AIC 

Relative Positional 
+ Frequency-weighted, 

+ Smoothed 

4.40106 -0.35521 0.52082 0.02889 12338.82 

Relative Positional 
+ Smoothed 

4.39708 -0.40281 0.55471 0.03242 12349.81 

Relative Positional 4.41836 -0.29086 0.44213 0.00310 12507.21 

Relative Positional 
+ Frequency-weighted 

4.41401 -0.28490 0.43514 0.01021 12519.93 

Absolute Positional 
+ Frequency-weighted 

4.42823 -0.02101 0.18375 -0.00925 13009.03 

Absolute Positional,  
+ Frequency-weighted 

+ Smoothed 

4.42809 -0.02090 0.18315 -0.00907 13009.36 

Absolute Positional 4.43072 -0.03758 0.19762 -0.01205 13013.83 

Absolute Positional 
+ Smoothed 

4.43027 -0.03711 0.19561 -0.01148 13014.93 

Table 7: Coefficients and AIC scores of the regression models fit to data Hayes and White (2013). 



B.2 Other languages  

B.2.1 Polish (Jarosz & Riesling 2017) 

Model Intercept Uni. Coef. Bi. Coef. Int. Coef. AIC 

Relative Positional 
+ Frequency-weighted, 

+ Smoothed 

3.08772  0.00761 0.72491 0.07526 44609.70 

Relative Positional 
+ Smoothed 

3.09279 -0.02533 0.68918 0.06116 44799.76 

Absolute Positional,  
+ Frequency-weighted 

+ Smoothed 

3.22977 0.30610 0.58109 -0.19084 44835.34 

Absolute Positional 
+ Frequency-weighted 

3.22888 0.30468 0.58098 -0.18967 44836.69 

Relative Positional 
+ Frequency-weighted 

3.05181 0.05792 0.63124 0.18117 44849.67 

Relative Positional 3.05091 -0.03312 0.67438 0.15339 44883.97 

Absolute Positional 
+ Smoothed 

3.14070 0.42246 0.34818 -0.05221 44907.11 

Absolute Positional 3.14046 0.42175 0.34839 -0.05175 44908.04 

Table 8: Coefficients and AIC scores of the regression models fit to data from Jarosz & Riesling (2017). 

B.2.2 Spanish (Mayer and Sundara in prep) 

Model Intercept Uni. Coef. Bi. Coef. Int. Coef. AIC 

Relative Positional 
+ Smoothed 

51.07835 -1.03073 8.11025 1.32290 187729.1 

Relative Positional 50.83292 -0.97408 7.08787 1.68646 187932.9 

Relative Positional 
+ Frequency-weighted 

50.82480 -1.02140 7.11876 1.72649 188059.9 

Relative Positional 
+ Frequency-weighted, 

+ Smoothed 

51.03021 -1.15668 8.26838 1.45804 188059.9 

Absolute Positional 
+ Smoothed 

52.95626 -2.64322 6.81189 -2.55959 188252.1 



Absolute Positional 52.95591 -2.64340 6.81094 -2.55890 189100.6 

Absolute Positional 
+ Frequency-weighted 

52.99178 -2.25829 6.75389 -2.48905 189668.1 

Absolute Positional,  
+ Frequency-weighted 

+ Smoothed 

52.99200 -2.25728 6.75381 -2.48962 189668.3 

Table 9: Coefficients and AIC scores of the regression models fit to the Spanish dataset from Mayer and 

Sundara (in prep). 

B.2.3 Turkish (Mayer 2024, under review) 

Model Intercept Uni. Coef. Bi. Coef. Int. Coef. AIC 

Relative Positional 
+ Smoothed 

39.42271 6.56583 2.46451 6.26266 159545.6 

Relative Positional 39.16679 6.88337 1.84632 7.46382 159581.9 

Absolute Positional 
45.03984 -0.33506 11.17251 -1.29134 159628.4 

Absolute Positional 
+ Smoothed 

45.03317 -0.31176 11.13564 -1.28345 159628.8 

Table 10: Coefficients and AIC scores of the regression models fit to Turkish data from Mayer (2024, 

under review). 
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