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Introduction
Humans display gradient preferences towards una�ested sequences of sounds.

▸ Phonotactic models that predict gradient preferences give insight into

computations and representations (Hayes and Wilson, 2008; Albright, 2009;

Daland et al, 2011; Futrell et al, 2017).

▸ Existing models operate on some form of n-grams.

This task is similar to the more general task of language modeling.

▸ Language models assign probabilities to sequences.

Recurrent neural language models outperform n-gram variants (Elman, 1990;

Mikolov et al., 2010; Sundermeyer et al. 2012).

▸ These models overcome some limitations of n-gram models.

Goal: Show that RNN architectures can be adapted to serve as phonotactic

models, providing a closer match to human judgements than existing models.

Use these models to probe questions of representation and claims of poverty of

the stimulus.

Model architecture
Simple Recurrent Neural Networks (Elman, 1990) – define a probability

distribution over phonemes conditioned on the preceding sequence of phonemes.

▸Network’s state depends only on the current input and the previous state:

ht = tanh(Wxxt +Whht−1 + bh)
▸ Probability distribution over the next phoneme:

ŷt = σ(Wyht)
▸Model is trained to optimize predictions to match observed sequences:

L(y, ŷ) = −y ⋅ log(ŷ)
Two types of phoneme representations (xt):

▸ Features: Ternary phonological feature vectors.

▸ Embeddings: Randomly initialized vectors in Rn
, learned along with weights.

Evaluation data sets
Three data sets with di�erent phonotactic properties:

1. Finnish vowel harmony – Unbounded dependencies.

2. English sonority projection – Poverty of the stimulus generalization.

3. Cochabamba �echua – Restriction involving an unnatural class.

Hayes & Wilson phonotactic learner as a baseline (H&W; Hayes & Wilson, 2008).

H&W scores novel forms with maxent value:

P∗(x) = exp ( −
N

∑
i=1

wiCi(x))

RNNLM scores novel forms with perplexity:

ρ(x) = exp ( −
∣x ∣
∑
i=1

1

∣x ∣log2(p(xi)))

Finnish vowel harmony
Words in Finnish generally contain all front {y, ø, æ} or all back {u, o, a} vowels.

▸ {i, e} are transparent to harmony.

Are RNNs more e�ective than H&W in learning this long-distance dependency?

Trained on corpus of 94k Finnish words.

▸ Tested on 20k nonce words: 10k harmonic and 10k disharmonic.

Model scores of nonce words by span of consecutive transparent vowels:

Neural models distinguish between harmonic and disharmonic forms more

robustly (Cohen’s d), even as transparent span increases.

English sonority sequencing
Cross-linguistic preference for syllables that conform to sonority sequencing

principle (SSP): monotonically rising sonority in onset, falling in coda.

▸ Innate (Berent et al., 2007; 2008) or learned from data (Daland et al., 2011)?

English sonority sequencing (cont.)
Trained on 133k word CMU dict.; tested on nonce words (Daland et al., 2011).

▸A�ested, una�ested, and marginal onset clusters of varying sonority profiles.

Model score correlations with human

judgements from Daland et al. (2011),

by cluster type.

Overall A�ested Una�ested Marginal

H&W (H) 0.759 0.000 0.686 0.362

Feat 0.868 0.354 0.823 0.551

Emb 0.853 0.491 0.738 0.664

RNN models learn English SSP without phonetic features or syllable structure.

▸ Featural model generalizes be�er: embedding model is overfi�ing?

Cochabamba �echua
CQ exhibits laryngeal co-occurrence restrictions: ejective and aspirated stops

must be the first stop in the root (Gallagher, 2019).

▸ Plain stops can occur a�er any type of stop.

▸ /q/ is always realized as [K], but still pa�erns with the plain stops.

Do models with learned embeddings do be�er with this pa�ern?

Trained on corpus of 2,500 root forms.

Tested on nonce forms from Gallagher (2019):

▸ 25 licit: e.g., [sap’a].

▸ 25 illicit by [k]: e.g., [*kap’a].

▸ 25 illicit by [K]: e.g., [*Kap’a].

Licit Illicit (k) Illicit (K)
H&W (P∗) 0.67 0.28 0.30

Feat (ρ) 4.91 8.45 7.42

Emb (ρ) 4.89 8.45 7.55

Tied Emb (ρ) 4.91 8.28 7.16

No models make a significant distinction between k-initial and K-initial forms.

▸Because of the unnatural class, H&W must represent the restriction with

multiple independent constraints (conspiracy).

▸ The embedding model has the ability to learn an unnatural class. Does it?

Cosine similarity between [K] and

mean representation of continuants

and non-continuants.

continuant non-continuant

Featural [K] 0.62 0.51

Emb [K] –0.26 0.19

Embedding model treats [K] more like a non-continuant.

Discussion
RNN phonotactic models perform at least as well in matching human

judgements as existing phonotactics. They have several desirable properties:

▸Overcome limits of n-gram models (Finnish).

▸ Provide insight into what information is present in learning data (English).

▸ Provide insight into possible distinctions between representations and

processes that operate on them (CQ).

Future questions:

▸Do humans learn unnatural classes like H&W or like the embedding models?

▸How can we gain insight into what RNNs have learned?


