
A method for projecting features from observed sets of phonological classes

Connor Mayer

UCLA

Robert Daland

Independent

Abstract

Abstract: Given a set of phonological features, we can enumerate a set of phono-

logical classes. Here we consider the inverse of this problem: given a set of

phonological classes, can we derive a feature system? We show that this is in-

deed possible, using a collection of algorithms that assign features to a set of

input classes and differ in terms of what types of features are permissible. This

work bears on theories of both language-specific and universal features, provides

testable predictions of the featurizations available to learners, and serves as a use-

ful component in computational models of feature learning.

Keywords: Phonological features, feature learning, underspecification, computa-

tional phonology

1 Introduction

Features are the substantive building blocks of phonological theory. They represent

phonetic qualities of speech sounds, and can be used in isolation or combination to de-

scribe individual sounds or classes of sounds (e.g., Chomsky and Halle, 1968; Clements,

1985; Jakobson et al., 1952).

The goals of feature theory are to capture the following generalizations. First, seg-

ments that have common phonetic properties tend to behave alike, both within and

across languages. Features allow such commonalities between sounds to be explic-

itly represented. For example, the English voiceless non-continuants {p, t,
>
tS, k} are

1

all produced with a complete closure of the oral cavity and no vocal fold vibration,

and exactly these segments undergo the allophonic process of aspiration. The feature

notation
[

–continuant
–voice

]
exposes these shared phonetic properties to the phonological

grammar, and the processes that might reference them. More generally, the set of ob-

struents, which may be specified with the feature [–sonorant], tends to undergo similar

voicing processes across languages (regressive voicing assimilation within obstruent

clusters, word-final devoicing, intervocalic and/or postnasal voicing, etc.).

Common behavior among phonetically similar segments also extends diachroni-

cally. For example, the Wakashan language Ditidaht underwent a sound change where

all nasal consonants became oral Thompson and Thompson (1972). The feature nota-

tion [+nasal] allows the set of sounds that participated in this change to be specified.

Second, sound changes often preserve phonetic qualities of affected sounds, even

when the host segment is altered or destroyed. The sub-segmental representation af-

forded by features allows these changes to be modeled in a principled way. An in-

stance of feature preservation was the fall of the yers in Old Church Slavonic. The

front yer (a short, unstressed, high front vowel) deleted in most prosodic positions.

However, the preceding consonant typically became palatalized, preserving the high

and front articulations even while the vowel segment was deleted Carlton (1991).

Finally, feature theory reflects featural economy in the segmental inventory: if a

language treats a particular featural contrast as distinctive, it is likely to be exploited

widely throughout its inventory. In other words, segment inventories are more sym-

metric than might be expected if segments were the atoms of representation Clements

(2003); Maddieson (1985); Ohala (1980); Schwartz et al. (1997).

Classic texts (e.g., Chomsky and Halle, 1968) have assumed that phonological

features are universal: all the sounds in the world’s languages can be described by

the same finite set of features, which reflect properties of the human vocal tract and

perceptual system. According to this view, speakers inherently produce and perceive

speech in terms of these features because they are the substantive ‘atoms’ of which

2

segments and higher prosodic constituents are composed. Children represent speech

in terms of these atoms, which is why phonological processes operate on the classes

they define. Feature theory is manifestly successful in explaining why many common

phonological processes involve segments that share relevant phonetic properties.

However, there is evidence that many phonological processes target sets of seg-

ments that cannot be singled out by a set of phonetic properties. A canonical example

is the ruki rule of Sanskrit, in which an underlying /s/ becomes retroflexed when it oc-

curs later in a word than any of {r, u, k, i} (e.g., Kiparsky, 1973; Vennemann, 1974).

It has been proposed that the ruki process originated from the acoustic effects of these

segments on neighboring sounds, e.g., a lowering of the noise frequency of a follow-

ing /s/ Longerich (1998). However, no conventional feature system can pick out all

four of these segments to the exclusion of others. A more recent example is given by

Gallagher (2019), who provides compelling corpus and experimental evidence that the

voiced uvular fricative /K/ patterns as a voiceless stop in Cochabamba Quechua.

While the existence of a small number of idiosyncratic cases such as these is not

grounds for theoretical concern, it has been proposed that phonetically disparate classes

are fairly common. Mielke (2008) conducted a survey of phonological processes in al-

most 600 languages. Of the classes that underwent or conditioned a phonological pro-

cess, 71% could be expressed as a combination of simple features by the best feature

system he considered. It is unclear whether the remaining 29% can be captured by

other means. A formal mechanism that generates new classes with an OR operation

suffices for most (but not all) of these classes. However, the addition of such a mech-

anism would seriously compromise the explanatory power that makes feature theory

attractive.

It may be the case that classes that superficially appear to be phonetically disparate

result from interactions between phonological processes that target phonetically coher-

ent classes. Only a better understanding of the data will clarify this point.

Alternatively, these classes may share phonetic similarities that have not yet been

3

formalized in any feature system, as was suggested for ruki above. This is related

to another challenge for universal feature theory: variable patterning. For example,

/l/ behaves as [+continuant] in some languages, and as [–continuant] in others (e.g.,

Kaisse, 2002; Mielke, 2008). If we wish to maintain that features are universal and

that the same segment should have the same featural specification across languages,

then perhaps what is needed is to divide [continuant] into two features: something like

[midsagittal continuant] and [parasagittal continuant].

Although it may be possible in this way to exhaustively enumerate all phonetic

dimensions that languages use to characterize classes or phonemic contrasts, this is

probably not a straightforward task. How many additional features would we require

to completely account for the classes that current feature systems cannot characterize?

Furthermore, it is unclear whether this kind of featural cartography is useful for mod-

els of individual speakers’ linguistic acquisition and competence. That is, although

there may be many phonetic dimensions along which sounds can be grouped, not all

of these are salient in every language. Thus the learner must not only identify pho-

netic commonalities between sounds, but also discover which of these dimensions

are phonologically active in the target language when constructing their phonological

grammar. Simply enumerating features does not provide insight into this process.

Considerations such as these have resulted in proposals that distinctive features are

learned and language-specific (e.g., Archangeli and Pulleyblank, 2015, 2018; Blevins,

2004; MacWhinney and O’Grady, 2015; Mielke, 2008). These proposals generally

maintain that learners organize their phonological grammars using symbolic feature

systems. Instead of starting with a universal feature system and mapping sounds they

encounter onto it, however, learners derive their feature system from perceived simi-

larities between sounds in their language.

Crucially, this means that features may be defined across modalities. In general,

phonological classes tend to converge in their acoustic, articulatory, and distributional

properties, providing robust evidence to the learner. For example, high vowels may be

4

associated with a high tongue position, a low F1, and distributional properties such as

phonotactic restrictions, the conditioning of processes such as affrication, and so on.

Theories of learned features do not assign primacy to any one of these dimensions;

instead they suggest that the learner makes use of a range of available information to

identify classes. This entails that phonological classes need not be defined in terms

of their phonetic properties, nor must a phonetic distinction necessarily give rise to

a phonological class. Thus the primary role of features becomes to identify and dis-

tinguish classes of sounds (cf., e.g., Dresher, 2009; Hall, 2007, who adopt this con-

ception of features for a universal set). The striking commonalities in feature systems

across languages may be explained as by-products of general human cognitive capa-

bilities, such as categorization, sensitivity to frequency, and the ability to generalize,

as well as the properties of the human vocal tract and auditory system.

The primary goals of this paper are to address one part of the question of what a

phonological feature learning system would look like under this theory, and to pro-

vide a computational implementation of such a system. We assume that the learner

has converged on a segmental representation of their language (e.g., Feldman et al.,

2013; Lin, 2005), and that some mechanism has identified particular sets of segments

as ‘candidate’ classes (e.g., based on acoustic, articulatory, or distributional similar-

ity, etc.). These classes serve as the input from which a phonological feature system

is learned. We adopt this approach because it is unclear how features could be learned

without being somehow motivated by the classes they characterize. Past attempts at

unsupervised learning of phonological categories are similar, making no a priori as-

sumptions about features, but rather deriving classes from the phonetic or distribu-

tional properties of segments (e.g., Calderone, 2009; Goldsmith and Xanthos, 2009;

Lin, 2005; Mayer, under revision). More will be said about this in Section 2. Proceed-

ing beyond classes to a feature system is motivated by the generalizations given at the

beginning of this section.

We will illustrate how a feature system can be learned from an arbitrary input, i.e.,

5

without any reference to the phonetic properties of the segments contained in the input

classes. Section 2 briefly expands on some of the basic assumptions outlined above

about how these input classes are determined, and exactly which aspects of phonolog-

ical learning we will address. In Section 3, we formalize our notation for feature sys-

tems. This notation and the lattice-like structures it motivates are similar to past work

such as Broe (1993), although we provide a more detailed formalism, which aids in

proofs of some interesting properties. In particular, the notion of parenthood in these

structures is crucially important for deriving feature systems. Section 4 describes the

intersectional closure of a set of classes, which is necessarily generated by any fea-

turization sufficient to characterize that set. Relying on key properties of the intersec-

tional closure, Section 5 describes a suite of algorithms for learning various types of

featurizations for a set of input classes and demonstrates their operation on a simple

class system. Section 6 then illustrates these featurizations on a more realistic vowel

system, and discusses the theoretical predictions of each. Finally, in Section 7 we ana-

lyze some tradeoffs between the featurization algorithms, and discuss implications for

feature theory and feature learning. Section 8 offers a brief conclusion.

This paper makes several contributions. First, it demonstrates a method for work-

ing backwards to feature systems that underpin learned classes of sounds. Second, it

provides a detailed formalization of feature systems in general. This allows careful

reasoning about the expressiveness of such featurizations.

Third, by comparing multiple types of featurizations, this work makes explicit pre-

dictions about what classes should be describable under each. This is of interest even

for theories of universal features, as it generates precise empirical predictions about

the properties of the featurizations used by humans. In particular, it provides a deter-

ministic method for identifying phonological underspecification. For example, the

full specification algorithm predicts that the class of all non-nasal sounds should be

available to speakers as a byproduct of the nasal class, which suggests that participants

in an artificial grammar learning experiment (AGL; e.g., Moreton and Pater, 2012)

6

should be able to effectively learn patterns involving this class. The other featurization

methods to be discussed do not make this prediction. Comparison of the predictions

made by the models in this paper, past phonological analyses, and the results of AGL

studies has the potential to settle some of the longstanding controversies associated

with underspecification Steriade (1995).

Finally, it provides the code1 for use and extension in future research and models.

In principle, a system that learns features from classes allows for the construction of

a computational model that takes (minimally) a segmental corpus or some phonetic

properties of segments as input and outputs a featurization of the inventory. This pa-

per describes the final stage of such a model, and may be effectively combined with

past approaches that derive phonological classes from distributional or phonetic simi-

larity (e.g., Calderone, 2009; Goldsmith and Xanthos, 2009; Lin, 2005; Mayer, under

revision).

2 On the assumptions and scope of this paper

We assume that a symbolic feature system is derived from classes of sounds that have

been identified by the learner based on phonetic or distributional properties. A schematic

representation of this learning model is shown in Fig. 1. This model is a departure

from the standard assumption that a universal set of features determines all possi-

ble phonological classes, and accordingly it shifts much of the work of phonological

learning onto identification of these input classes.

Phonetics

Distribution

Classes Features

Figure 1: A schematic representation of the model of feature learning assumed here.
This paper focuses on the red arrow between ‘classes’ and ‘features’.

We believe that this shift is motivated. Rather than constructing models that gen-

7

erate the typology and subsequently concerning ourselves with the exceptions, we

think that deeper insights into speech may be gained by focusing on the mechanisms

by which learners identify common properties between sounds in their language, and

how these mechanisms contribute to typological patterns.

Models of phonological class learning have been presented for various modalities,

both phonetic and distributional. We are not aware of any proposals to date that have

been fleshed out enough to be carefully tested, and that have proven empirically ade-

quate. For example, Lin (2005) showed that unsupervised clustering on acoustic data

was able to distinguish manner of articulation well, but not place. Conversely, unsu-

pervised clustering on articulatory data is better able to distinguish place features, but

poor at manner Mielke (2012). Such phonetically-based methods are able (in princi-

ple) to identify features corresponding to acoustic, articulatory, or perceptual proper-

ties, but these provide limited insights into the phonetically disparate classes described

in the introduction, and into which classes are phonologically active in a particular

language.

Conversely, while distributional approaches (e.g., Calderone, 2009; Goldsmith

and Xanthos, 2009; Mayer, under revision) have the potential (in principle) to identify

both phonetically coherent and phonetically disparate classes to the extent that they

are reflected in their distribution, they are blind to the phonetic properties that inform

speakers’ intuitions about similarities between sounds, and suffer from the presence of

distributional noise.

It seems likely to us that progress towards understanding how classes are learned

will come from integrating multiple sources of information, with phonetic informa-

tion providing an outline of possible classes, and distributional information shedding

additional light on whether and how these classes (and possibly others) are used in a

language. We see potential in methods like those described in a companion paper by

Mayer (under revision), which uses a combination of vector embedding (representing

sounds numerically as points in space based on their distributional properties), Princi-

8

pal Component Analysis, and clustering algorithms to explicitly extract classes from a

corpus. Incorporating phonetic information with distributional information may im-

prove the performance of such models. Alternatively, a Bayesian approach, where

phonetic similarity serves as an initial prior on segmental classes and considerations of

their distribution inform the likelihood function, may also hold promise. A challenge

for the extraction of classes from phonetic data is that classes of sounds are almost al-

ways similar only on a subset of phonetic dimensions (e.g., sonorants are articulatorily

heterogeneous, but have similar acoustic properties), and the use of dimensionality

reduction techniques such as Principal Component Analysis is likely to be useful in

teasing apart these sources of coherence.

In any case, what must be initially identified under models that assume learned and

language-specific features are classes, with features subsequently derived from their

relation. Although we see the question of how phonological classes are learned as one

of great interest, the focus of this paper is on how a symbolic feature system can be

derived once these classes are learned (the bold, red arrow in Fig. 1). In the examples

presented below, we assume that the set of input classes has been generated by mech-

anisms such as those just described, and focus instead on how a feature system can be

derived from that set. For expositional purposes, we generally use simple, fabricated

class systems, though we try to make these linguistically plausible.

Because of the relatively narrow focus of this paper, it is in many ways a stepping

stone towards larger research goals. The algorithms described below make concrete

predictions about questions such as where underspecification should occur, to what

extent generalization occurs in feature learning, and what the feature systems of lan-

guages with phonetically disparate classes might look like. These predictions can be

tested using standard phonological methods, such as AGL experiments, wug tests, cor-

pus work, etc., as well as by revisiting the existing literature. This work, while inter-

esting and important, is well beyond the scope of the current paper. We instead limit

ourselves to carefully describing the formal properties and predictions of this approach

9

to feature learning, while pointing out possible applications to future research. Though

we hope the formal results presented here are interesting in their own right, we are

equally hopefully that they may serve as useful tools in more general phonological

research.

3 Definitions and notation

We will begin by providing a detailed notation for feature systems. This will allow

us to prove several properties of these systems that are crucial for the operation of the

featurization algorithms described in later sections.

3.1 Class systems

Let Σ denote an alphabet of segments. We use the term class to mean a subset of Σ.

Definition: A class system (C,Σ) consists of an alphabet Σ and a set of classes C over

that alphabet.

A simple class system, meant to evoke a manner class system, is shown in Table 1.

alphabet {V, G, L, N, T}
sonorants {V, G, L, N}
non-continuants {N, T}
continuants {V, G, L}
singletons {V}, {G}, {L}, {N}, {T}

Table 1: Manner hierarchy class system

3.2 Feature systems

Definition: A feature system is a tuple (F,Σ,V) where

• Σ is a segmental alphabet,

• V is a set of values, and

• F is a featurization: a set of features { f j}M
j=1, where each feature is a function

f : Σ→V mapping segments to feature values.

10

A possible feature system for the manner system in Table 1 is shown in Table 2.

σ syl cons apprx son
V + – + +
G – – + +
L – + + +
N – + – +
T – + – –

Table 2: Example of a feature system. Rows represent segments, columns represent
feature functions, and cells represent feature function values for each segment.

3.3 Featural descriptors

Featural descriptors relate class and feature systems. Let (F,Σ,V) be a feature system.

We restrict V to the following possibilities, whose names are intended to invoke ideas

from the research literature on underspecification (e.g., Archangeli, 1988):

• privative specification: V = {+,0}

• full specification: V = {+,−}

• contrastive specification: V = {+,−,0}

We will use the notation Vspec for the set V \ {0}, where \ is the set difference oper-

ator. Thus Vspec is the value set minus the zero value, or the set of non-zero values.

This is because zero values are a formal mechanism to achieve underspecification, and

the theoretical driver for underspecification is the idea that underspecified features are

phonologically inactive (i.e., cannot define classes). Then, a featural descriptor d is

a set of feature/value pairs where the values cannot be 0: i.e., d ⊂ Vspec×F (where

Vspec×F is the set of all pairs (v, f) where v ∈Vspec and f ∈ F).

For example, d =
[–cons

+son
]

is a featural descriptor. This is an intensional descrip-

tion of a class; that is, a description of a class in terms of its properties. The extension

of a featural descriptor is the set of segments that match (at least) the feature/value

11

pairs in the descriptor. We use angle brackets to indicate this:

〈
d
〉
= {x ∈ Σ | ∀(αk, fk) ∈ d, [fk(x) = αk]}

In prose, this equation says that
〈
d
〉

is the set of all segments in Σ such that, for ev-

ery feature in d, the value of the feature for that segment is the same as the value in

d. Note that under this definition, the extension of the empty featural descriptor is Σ,

since the predicate is vacuously true for all segments when d is empty.

We use the notation V F
spec to denote the powerset of Vspec×F , i.e., the set of all licit

featural descriptors. Lastly, we define 〈V F
spec〉= {〈d〉 | d ∈V F

spec}, the set of all classes

described by some featural descriptor in V F
spec. We say that the feature system (F,Σ,V)

generates the class system 〈V F
spec〉.

While every featural descriptor in V F
spec picks out a class in 〈V F

spec〉, the two are not

generally in 1-1 correspondence. This is because the same class can often be described

by multiple featural descriptors. For example, under the the feature system of Table 2,

the featural descriptor [–cons] picks out the same class as
[–cons

+son
]
, namely {V, G}.

Moreover, the featural descriptors
[+syl

–syl

]
and

[
+syl
–son

]
both pick out the empty set.

A feature system (F,Σ,V) covers a class system (C,Σ) if C ⊆ 〈V F
spec〉; in other

words if the feature system provides a distinct representation for every class in C.

In the next subsection, we work an example to illustrate the importance of the

choice of the value set in feature systems.

3.4 Example: Sonorants and obstruent voicing

In this section we introduce a simple, three-segment class system to illustrate the nota-

tion, as well as the difference between the privative, full, and contrastive specification

value sets.

Let Σ = {R, D, T}, where R is meant to evoke a sonorant, D a voiced obstru-

ent, and T a voiceless obstruent. We begin with the featurization using the privative

value set, shown on the left in Table 3. This defines three unique classes, including

12

σ son voice
R + +
D 0 +
T 0 0

σ son voice
R + +
D – +
T – –

σ son voice
R + 0
D – +
T – –

Table 3: Sonorants and obstruents with privative (left), full (middle), and contrastive
(right) specification.

the alphabet. Using the simplest featural descriptors for each class, 〈[]〉 ={R, D, T},

〈[+son]〉 ={R}, and 〈[+voice]〉 ={R, D}. Note that this featurization provides (i) no

featural descriptor that uniquely picks out the voiceless obstruent {T}, (ii) no way to

pick out the obstruents {T} and {D} to the exclusion of {R}, (iii) no way to pick out

the voiced obstruent {D} without {R}, and (iv) no way to pick out the empty set.

Next, consider the featurization in which the ‘0’s from the privative set are re-

placed with ‘−’s. This is the full specification value set. A featurization of Σ using

this set is shown in the middle in Table 3. While the privative featurization just cov-

ers three classes, the full specification featurization covers six (not counting the empty

set). Referring to ‘–’ values provides a greater number of ways to ‘slice and dice’ the

alphabet. It follows that featurizations that assign more ‘0’ values generally (though

not always) require more distinct feature functions to cover the same class system.

Note however that the full featurization is still restrictive, in the sense that it does not

allow any arbitrary subset of segments to be identified: for example, we cannot specify

{R, T} to the exclusion of {D}.

Finally, we can strike a balance in expressivity between the privative and full value

sets by allowing features to take ‘+’, ‘−’, and ‘0’ values. This is the contrastive value

set. A possible contrastive featurization of Σ is shown on the right in Table 3. Un-

der this featurization, [voice] is now ternary, contrasting only for obstruents (e.g.,

Kiparsky, 1985). This featurization picks out the same classes as the full featurization,

minus the class {R, D}.

13

3.5 Parent/child relationships in class systems

Because the classes in a class system fall into subset/superset relationships with one

another, we can represent them hierarchically. An example for the manner system in

Table 1 is shown in Fig. 2. Each node in this figure is a class. Downward arrows indi-

cate a parent/child relationship between the connected classes. The parent/child rela-

tionship is of central importance to this work, so we formalize it carefully.

Definition: Let (C,Σ) be a class system. X ∈ C is a parent of Y ∈ C (and Y is a child

of X) if and only if Y ⊂ X , and there exists no Z ∈C such that Y ⊂ Z ⊂ X

In other words, X is a parent of Y if a subset/superset relation holds, and there is no

intervening class between them.

Figure 2: A manner hierarchy class system.

In Fig. 2, there is a path from the alphabet through the sonorants to the continu-

ants. This means the sonorants are a child of the alphabet, and the continuants are a

child of the sonorants. This path implies the continuants are a subset of the alphabet,2

but crucially, the continuants are not a child of the alphabet because the sonorants in-

tervene. We define the functions PARENTSC(Y) as the set of classes that are parents of

a class Y ∈C, and CHILDRENC(Y) as the set of classes that are children of Y ∈C.

Note that the empty set is technically a child of the singletons (since it is a subset

of everything) but it does not appear in the graph. This is because the empty set is a

phonologically irrelevant class: it cannot partition the alphabet into segments that pat-

tern together and those that do not. To say that it is equivalent to the source or target

14

of a process is equivalent to saying that the process does not happen at all.3 For this

reason, we generally omit the empty set throughout this paper.

One reason that we depict parent/child relationships (rather than subset/superset) is

to avoid crowding the graph with arrows. But there is an additional, theoretical reason

that will be crucial for the featurization algorithms we define later – roughly speak-

ing, in order to build a covering feature system for a set of input classes, a new fea-

ture/value pair is required only in cases where a class has exactly one parent. How-

ever, this does not hold for any class system, but only for a class system that is inter-

sectionally closed. The next section describes this important concept and its implica-

tions for feature systems.

4 Intersectional closure

The intersectional closure of a class system C is the set of classes that can be gener-

ated by intersecting an arbitrary subset of classes in C. We relate the intersectional

closure to features by showing that if a feature system is expressive enough to gener-

ate all the classes in C, it necessarily generates the intersectional closure of C. This is

a consequence of the familiar process of combining featural descriptors (also called

feature bundles), where the union of a set of featural descriptors defines the class that

is the intersection of the classes they pick out individually. We formalize this carefully

in order to prove a less obvious result: when generating a feature system from an in-

put class system, a new feature/value pair must be added for all and only the classes

that have a single parent in the intersectional closure of the input. This is because a

class with more than one parent can be expressed as the union of its parents’ featural

descriptors.

4.1 Definitions

Definition: A collection of sets C is intersectionally closed if and only if for all X ∈C

and Y ∈C, X ∩Y ∈C.

15

The intersectional closure of a class system (C,Σ), written C∩, is the smallest intersec-

tionally closed class system that contains C and Σ.

Definition: C∩ = {
⋂

P | P⊆C}∪{Σ}

where P ranges over every subset of the classes in C and
⋂

P indicates the intersection

of all classes in P. In other words, the intersectional closure contains every class that

can be generated by finite intersections of classes from C (and Σ), and no other classes

besides these.

To illustrate this concept, we introduce the vowel inventory in Table 4 and a pos-

sible class system over this inventory in Table 5. This class system will serve as a

running example throughout the rest of the paper. It is intended to strike a balance

between linguistic plausibility and simplicity for expositional purposes.

front central back
high i y u
mid e ø o
low a

Table 4: Vowel inventory

alphabet {a, i, u, e, o, y, ø}
non-low {i, u, e, o, y, ø}
high {i, u, y}
front {i, e, y, ø}
round {u, o, y, ø}
singletons {a}, {i}, {u}, {e}, {o}, {y}, {ø}

Table 5: Vowel classes

Let (C,Σ) consist of the classes in Table 5. (C,Σ) and C∩ are depicted in Fig. 3.

The difference between the two is highlighted by using dashed ovals for the ‘extra’

classes.

The key difference is that the intersectional closure contains several two-segment

classes that are the intersection of larger classes. For example, the high, front class {i,

16

Figure 3: The original vowel system (left) and its intersectional closure (right).
Classes added in the closure are indicated with dashed ovals. Dotted lines in the
intersectional closure indicate classes with more than one parent.

y} is the intersection of the high class and the front class:

{i, y}= {i, y, u}∩{i, y, e, ø}

In the next section, we prove that if a feature system is expressive enough to cover C,

it also covers C∩.

4.2 Feature systems generate an intersectional closure

There is a dual relationship between featural descriptors and the classes they describe:

intersection of classes corresponds to union of featural descriptors. We formalize this

property with a lemma and then provide a concrete example. An important conse-

quence of the following lemma is that it entails that if a featurization covers C, it must

also cover the intersectional closure C∩. We prove this in the theorem that follows.

Featural Intersection Lemma

Let (F,Σ,V) be a feature system. If di,d j ∈V F
spec, then 〈di∪d j〉= 〈di〉∩ 〈d j〉.

Proof :

The proof proceeds by showing that 〈di〉∩ 〈d j〉 ⊆ 〈di∪d j〉 and 〈di∪d j〉 ⊆ 〈di〉∩

〈d j〉. Let Ci = 〈di〉 and C j = 〈d j〉. First, suppose x ∈Ci∩C j. Then x ∈Ci. By defini-

tion, x has the features in di. Similarly, x ∈C j, and therefore must have the features in

17

d j. Thus, x has the features in di∪d j. This shows that Ci∩C j ⊆ 〈di∪d j〉. Now, sup-

pose x ∈ 〈di∪d j〉. Then x has all the features of di, and so x ∈Ci. Similarly, x has all

the features of d j, so x ∈C j. Therefore x ∈Ci∩C j. This shows that 〈di∪d j〉 ⊆Ci∩C j.

Since both Ci∩C j and 〈di∪d j〉 are subsets of each other, they are equal. �

We illustrate this lemma with reference to the vowel inventory system introduced

above. For concreteness, let us adopt the featurization in Table 6.

σ low front round high
a + 0 0 0
i – + 0 +
u – – + +
e – + 0 –
o – – + –
ø – + + –
y – + + +

Table 6: A featurization of the vowel inventory. The low vowel is unspecified for
front/round/high features; the round feature is privative.

Let d1 = [+front] and d2 = [+round]. Then we have:

• 〈d1〉= 〈[+front]〉= {i, e, y, ø}

• 〈d2〉= 〈[+round]〉= {u, o, y, ø}

For these values, the Featural Intersection Lemma tells us that ‘the set of vowels that

are both front and round’ is the intersection of ‘the set of vowels that are front’ and

‘the set of vowels that are round’:

• 〈d1〉∩ 〈d2〉= 〈[+front]〉∩ 〈[+round]〉={i, e, y, ø} ∩ {u, o, y, ø} = {y, ø}

• 〈d1∪d2〉= 〈
[

+front
+round

]
〉= {y, ø}

The Featural Intersection Lemma proves that this kind of relationship holds for any

pair of featural descriptors and the classes they describe.

An important consequence of this lemma is that it can be applied inductively, to re-

late the union of multiple featural descriptors with the intersection of multiple classes.

18

Because the intersectional closure is defined as the intersection of arbitrarily many

classes in an input C, the Featural Intersection Lemma entails that if a featurization

covers C, it must cover the intersectional closure.

Intersectional Closure Covering Theorem

Let (C,Σ) be a class system and (F,Σ,V) a feature system. If C⊆〈V F
spec〉, then C∩⊆〈V F

spec〉.

Proof :

Let Y be an arbitrary class in C∩. By definition of C∩, there exist {Xi ∈ C}i∈I (for

some index set I, hereafter omitted) such that Y =
⋂

i Xi. The hypothesis that C ⊆

〈V F
spec〉 implies that for every such Xi, there is a featural descriptor di such that 〈di〉 =

Xi. Thus, Y =
⋂

i Xi = X1∩X2∩ . . .∩Xn can also be written Y =
⋂

i 〈di〉= 〈d1〉∩〈d2〉∩

. . .∩〈dn〉. It follows by induction using Featural Intersection Lemma that Y = 〈
⋃

i di〉:

Y = 〈d1〉∩ 〈d2〉∩ . . .∩〈dn〉

= 〈d1∪d2〉∩d3∩ . . .∩〈dn〉

= 〈d1∪d2∪d3〉∩ . . .∩〈dn〉

. . .

= 〈d1∪d2∪ . . .∪dn〉

= 〈
⋃

i di〉

The preceding chain of logic demonstrates the following fact: if a class can be ex-

pressed as the intersection of classes in C, then its features are the union of the fea-

tures in each of those classes. The intersectional closure is defined as all possible in-

tersections of classes in C. Thus, because (
⋃

i d) ∈V f
spec, if (F,Σ,V) covers C, it covers

the intersectional closure. �

A dynamic programming algorithm for efficiently calculating the intersectional

closure of a set of classes is presented in Appendix A.

19

4.3 Parenthood in the intersectional closure

The intersectional closure not only characterizes the expressiveness of a featurization,

but is also instrumental in deriving featurizations from a class system. When generat-

ing a feature system from a set of classes, a new feature/value pair is required for all

and only the classes that have a single parent in the intersectional closure. The reason

for this is that if a class has two parents, it must be their intersection.

Multiple Parenthood Theorem

Let (C,Σ) be a class system and Y ∈C∩. If X1,X2 ∈ PARENTSC(Y), then Y = X1∩X2.

Proof :

First, observe that Y ⊆ X1∩X2. This follows trivially from the definition of parent-

hood: X1 is a parent of Y implies Y ⊂ X1; X2 is a parent of Y implies Y ⊂ X2; and so

every element in Y is in both X1 and X2.

Now suppose that X1∩X2 6= Y . The preceding logic showed that either the two are

equal, or Y is a proper subset of X1 ∩X2. But the latter case creates a contradiction.

By definition, X1 ∩X2 must be in the intersectional closure. It must also be the case

that X1 ∩X2 ⊂ X1. If X1 ∩X2 = X1 then X2 is either identical to or a supserset of X1,

contradicting the assumption that X1 and X2 are parents of Y , and X1∩X2 ⊃ X1 is ruled

out by the fundamental properties of sets. Thus X1∩X2 intervenes between Y and X1,

contradicting the hypothesis that Y is a daughter of X1. Thus, Y = X1∩X2. �

Note that the Multiple Parenthood Theorem does not logically exclude the possi-

bility that a class may have more than two parents. Rather, it guarantees that in such

cases, the intersection is the same so long as two or more parents are considered. A

case of this arose already in Fig. 3, in the intersectional closure of the vowel inventory.

There, the three features front, high, and round give rise to three distinct 2-feature

classes (featural descriptors:
[

+front
+high

]
,
[

+high
+round

]
,
[

+front
+round

]
). The intersection of any

pair of these is {y} (the high, front, round vowel). Thus, the set {y} has three parents,

20

but which segments it contains is uniquely determined by any two of them.

4.4 Interim summary

In Section 3, we defined a formal notation for class systems, feature systems, and fea-

tural descriptors, and explored the expressiveness of different value sets in feature

systems. In Section 4, we proved that any feature system that is expressive enough to

cover a class system necessarily covers the intersectional closure of that class system.

We then showed that if a class has more than one parent in the intersectional closure of

a class system, it is the intersection of any two of those parents. This latter point will

be the key element of the featurization algorithms described in the rest of the paper.

With the necessary components in place, we now turn to the main question ad-

dressed in this paper: given a set of phonological classes, how can we generate a cov-

ering feature system? We detail four algorithms that accomplish this, differing in their

assumptions about which value sets are used and how these values are assigned.

5 Generating a feature system from a set of input classes

In this section, we will detail the operation of four algorithms that generate a feature

system from a set of input classes. The basic principle these algorithms share is that

we must introduce a new feature/value pair for each class in the intersectional clo-

sure that has a single parent. This is because classes with more than one parent may be

specified by the union of the features of any two of their parents, and so do not need a

new feature to distinguish them from their parents. The four algorithms differ in which

value sets they use and how they assign these values. We do not claim to present an

exhaustive set of possibilities for possible featurization algorithms, but rather a selec-

tion that seem motivated by questions and proposals in the phonological literature,

focusing on the value set used and the capacity of the learner for generalization.

We will use the simple class system shown in Fig. 4 to illustrate the properties of

each algorithm. This system is intersectionally closed. Note that this system does not

include all of the singleton classes. This is equivalent to removing the stipulation that

21

Require Expresses constraints on the input
Ensure Expresses constraints on the output
Q
DEQUEUE

ENQUEUE

Q is a queue, which is a set of ordered values.
Queues are “first in, first out”, which means val-
ues are removed from the queue using DEQUEUE in
the same order they were added to the queue using
ENQUEUE. Statements like Q ← C∩ indicate that the
sets in C∩ are added to Q in an arbitrary order.

INTERSECTIONALCLOSURE Returns the intersectional closure of the input class
system. Q′ indicates the starting state of the queue
(see Appendix A).

Table 7: Definitions for some terms used in algorithms.

the resulting feature system must be able to pick out each segment individually. Al-

though this is doubtless a desirable property in real phonological systems, we relax it

here for expositional purposes. The next section will provide a substantive discussion

of the theoretical implications of each featurization type using a more realistic input.

Figure 4: A toy class system.

Table 7 provides definitions for some of the less obvious terms. The rest of the

notation should be familiar from basic set theory.

5.1 Privative specification

The first algorithm yields a privative featurization of a set of classes: that is, one where

the set of legal feature values V = {+,0}. It does so by assigning a different fea-

ture/value pair, [+ f], to the segments in each class with a single parent.

Require: C∩ is the intersectional closure of a class system (C,Σ)

22

Ensure: F is a featurization over V = {+,0} that covers C

Q←C∩

F ←∅

while Q 6=∅ do

X ← DEQUEUE(Q)

if |PARENTSC(X)|= 1 then

define fX : Σ→V by fX(σ) =

+ if σ ∈ X

0 otherwise

F ← F ∪{ fX}

end if

end while

Proof of soundness for the privative specification algorithm

A featurization algorithm is sound if for every class system (C,Σ), it returns a fea-

ture system that covers C. To see that the privative specification algorithm is sound,

note that every class in C∩ enters the queue Q. For an arbitrary class X in the queue,

there are three cases. If X has 0 parents, then it is Σ, and is covered by the empty feat-

ural descriptor. If X has exactly 1 parent, then the segments in X will have the features

of that parent (which uniquely pick out the parent class), plus a new feature f that dis-

tinguishes the segments in X from X’s parent. If X has more than 1 parent, then Mul-

tiple Parenthood Theorem shows, via the Featural Intersection Lemma, that the union

of features of X’s parents uniquely pick out all and only the segments in X . Thus, each

class that exits the queue has a set of features assigned to its segments that pick out

that class uniquely. This completes the proof. �

The output of this algorithm on the simple class system in Fig. 4 is shown in Fig. 5.

The visual style is similar, but this figure contains additional annotations for the feau-

tures themselves. The boxes that represent the classes contain the segments in the

23

Figure 5: Yield of the privative specifi-
cation algorithm.

σ F1 F2 F3
a + 0 0
b 0 + +
c 0 + 0

Table 8: Featural specification of the
toy system with privative specification.

class, followed by the list of features that are shared by all segments in the class. Re-

call that if a class has a feature, all descendants of the class share that feature. The

introduction of a feature is thus indicated explicitly by labeling and coloring the edge

that points to the first/highest class whose segments share the feature. This could give

the misleading impression that features are assigned to classes, so it is worth reiterat-

ing that features are maps from segments to values. The complete featurization of each

individual segment is given in Table 8. Each class with a single parent has resulted in

a new feature/value pair being generated, resulting in a total of three features.

5.2 Complementary specification

It is common for theoretical reasons to assign corresponding ± feature values to pairs

of classes, such as [+back] and [−back] vowels. Such binary features are often relevant

for only certain segments (e.g., we may want to only specify voicing for obstruents,

backness for dorsal sounds, and so on). In all such cases, the contrastive feature values

denote complementary classes – but complements with respect to what?

The central insight developed in this paper is that a new feature needs to be as-

signed just in case a class has a single parent in the intersectional closure. This sug-

gests that a relevant domain for complementation is with respect to the parent. This is

the distinction between privative specification and complementary specification: a ‘−’

24

value is assigned when the complement of the class being processed with respect to its

parent is in the input.

Require: C∩ is the intersectional closure of input class system (C,Σ)

Ensure: F is a featurization over V = {+,−,0} that covers C

Q←C∩

F ←∅

while Q 6=∅ do

X ← DEQUEUE(Q)

if |PARENTSC(X)|= 1 then

PX ← DEQUEUE(PARENTSC(X))

X ←

PX \X if (PX \X) ∈C

∅ otherwise

define fX : Σ→V by fX(σ) =

+ if σ ∈ X

− if σ ∈ X

0 otherwise

F ← F ∪{ fX}

Q←{x ∈ Q|x 6= X}

end if

end while

The soundness of this algorithm follows from the soundness of the privative specifi-

cation algorithm. This is because the complementary specification algorithm yields

a feature system that generates the same class system as privative specification does.

The difference between the two is that if the input contains complement sets, then

complementary specification will use a single feature with ‘+’ and ‘−’ values, where

25

privative specification will have two features with just ‘+’ values.

Figure 6: Yield of the complementary
specification algorithm.

σ F1 F2
a + 0
b – +
c – 0

Table 9: Featural specification of
the toy system with complementary
specification.

The output of this algorithm on the simple class system in Fig. 4 is shown in Fig. 6,

and the complete featurization is shown in Table 9. Note that each class with a sin-

gle parent has still been assigned a new feature/value pair. However, because the ‘−’

value is available, and two classes fall into a complementary relationship with respect

to their parent, we require only two features to generate the same class system.

The term complementary specification is meant to capture the fact that specifica-

tion for a particular feature occurs just for segments that are in the class that motivates

the addition of the feature, or in its complement with respect to the parent if this class

is in the input. In the next section, we consider a variant of the algorithm that guaran-

tees members of such complement classes will receive ‘−’ values, even if they were

not present in the input. We call this variant inferential complementary specification.

5.3 Inferential complementary specification

Inferential complementary (IC) specification, like complementary specification, gen-

erates a ternary feature system. The key difference is that IC specification adds com-

plements with respect to the parent to the set of classes. Every complement gets a ‘−’

feature, including those that were not in the input. In other words, the learner performs

a limited generalization from the input classes to infer the existence of certain classes

26

that were not in the input.

IC specification thus requires modifying the intersectional closure of the input.

One way to handle this is to update the intersectional closure as features are assigned.

However, it is also possible to precompute the result, because the classes that must be

added can be defined in terms of subset/superset relations, which do not depend on

features. We do this as it is conceptually simpler.

We denote the function that adds complement classes with ADDCOMPLEMENTS.

When adding complement classes, the ordering in which classes are processed is cru-

cially important. Breadth-first traversal – processing all the siblings of a class before

its children – is done to avoid configurations that duplicate a feature. In addition, the

order in which siblings are processed during breadth-first traversal has important con-

sequences for the generated class and feature systems. We adopt a procedure whereby

the complements of all siblings are added simultaneously to the class set if they are

not already present. This has the potential to result in more features than would be

generated if the complements were added one-by-one as each class is processed, but

it avoids imposing class hierarchies that are not motivated by the input class set. A

further motivation for this scheme is that if classes are not processed simultaneously,

some order must be chosen, and there is no obvious motivation for choosing one over

another. A detailed description of ADDCOMPLEMENTS and additional discussion of

the points above can be found in Appendix B.

Require: C∩ is the intersectional closure of input class system (C,Σ)

Ensure: F is a featurization over V = {+,−,0} that covers C

Q← ADDCOMPLEMENTS(C∩)

F ←∅

while Q 6=∅ do

X ← DEQUEUE(Q)

27

if |PARENTSC(X)|= 1 then

PX ← DEQUEUE(PARENTSC(X))

X ← PX \X

define fX : Σ→V by fX(σ) =

+ if σ ∈ X

− if σ ∈ X

0 otherwise

F ← F ∪{ fX}

Q←{x ∈ Q|x 6= X}

end if

end while

This algorithm is sound because it considers all the classes that the privative specifica-

tion algorithm does, plus others. Thus, it necessarily covers C.

The output of this algorithm on the simple class system in Fig. 4 is shown in Fig. 7,

and the complete featurization is shown in Table 10.

Figure 7: Yield of the IC specification algorithm. Classes added by complementary
inference are shaded.

σ F1 F2
a + 0
b - +
c - -

Table 10: Featural specification of the toy system with IC specification.

Note that, as with complementary specification, only two features are needed to

28

cover the input. However, the learner has inferred the existence of a class {c}, because

its complement {b} with respect to its parent {b,c} was present in the input. As a re-

sult, c is no longer unspecified for F2.

The feature system yielded by IC specification is more expressive than the ones

yielded by privative or complementary specification, but it is not maximally expres-

sive, since there are still ‘0’ values. When a new feature is added, non-zero values are

assigned only to classes that are descendants of the parent of the class that generates

the feature. If we want to eliminate all ‘0’ values, we can do complementation with

respect to Σ rather than the parent. That is the final variant – full specification.

5.4 Full specification

Full specification differs from IC specification in that complementation is calculated

with respect to the whole alphabet, rather than the parent class. Therefore, it is algo-

rithmically almost the same as IC specification. As with IC specification, the comple-

ment classes are precomputed and added to the intersectional closure in breadth-first

search order, and siblings are processed simultaneously. We denote this process as

ADDCOMPLEMENTSFULL: see Appendix B for a detailed discussion.

Require: C∩ is the intersectional closure of input class system (C,Σ)

Ensure: F is a featurization over V = {+,−} that covers C

Q← ADDCOMPLEMENTSFULL(C∩)

F ←∅

while Q 6=∅ do

X ← DEQUEUE(Q)

if |PARENTSC(X)|= 1 then

X ← Σ\X

29

define fX : Σ→V by fX(σ) =

+ if σ ∈ X

− otherwise

F ← F ∪{ fX}

Q←{x ∈ Q|x 6= X}

end if

end while

The full specification algorithm is sound for the same reason that the IC specification

algorithm is – it considers a superset of classes that the privative specification algo-

rithm does, and thus it covers the input.

The output of this algorithm on the simple class system in Fig. 4 is shown on the

left side of Fig. 8, and the complete featurization is shown in Table 11.

Figure 8: Featural (left) and topological (right) plots of the output of the full specifi-
cation algorithm. Classes added by complementary inference are shaded. New classes
generated due to the addition of these classes to the intersectional closure are dashed.

σ F1 F2
a + -
b - +
c - -

Table 11: Featural specification of the toy system with full specification.

The resulting feature system from the full specification algorithm contains no ‘0’

values, and so all segments are fully specified for all features. The {a,c} class has been

added because it is the complement of {b} with respect to the alphabet, and the class

{c} has been generated by intersectional closure of this new class system.

30

There is an important difference between this plot and previous ones. We may con-

sider two types of plots when plotting featural relations: a topological plot, which

plots relationships between classes using the familiar notions of the parent/child re-

lationship, and a featural plot, where classes corresponding to [+ f] and [− f] fea-

ture/value pairs are plotted as siblings. In all cases considered so far, these two plot-

ting strategies have resulted in identical outcomes. With the full specification algo-

rithm on the toy class system, this is no longer the case. This mismatch is the result of

[− f] values being assigned to classes that have multiple parents and/or are not siblings

of the class motivating the new feature.

The plot on the left of Fig. 8 is the featural plot. The topological plot is shown

to the right. The most salient difference is that the [–F1] and [–F2] classes are repre-

sented as siblings of the [+F1] and [+F2] classes in the featural plot, corresponding to

the structure of the feature system. The topological plot, however, shows that these

classes are not in fact siblings.

We use featural plots through the rest of the paper because they are more represen-

tative of the abstract structure and relationships assigned by the feature system, which

subsume the topological system to some degree. Topological plots can be found in

Appendix B.4. Comparing these types of plots provides some insight into how topo-

logical and featural relationships in a class system may diverge.

5.5 Summary of the algorithms

This section described four algorithms that take a set of input classes and return a

feature system that covers that class system. All four algorithms generate a new fea-

ture/value pair for any class that has a single parent in the intersectional closure of

the input class system. The privative specification algorithm generates a system using

only privative values. The complementary specification algorithm generates a ternary-

valued feature system by assigning ± feature values to classes in the input that are

complements with respect to their single parent. The inferential complementary spec-

31

ification algorithm behaves similarly, but it assigns ‘−’ values to complement classes

with respect to a parent in every case, adding them to the input if they are not present.

Finally, the full specification algorithm assigns ‘−’ values to complement classes with

respect to the alphabet, resulting in no ‘0’ values being assigned.

We now illustrate the performance of these algorithms on a more plausible input

class system, and discuss some of the theoretical implications of each method.

6 Theoretical implications of different featurizations

The examples in this section will use the vowel class inventory shown in Fig. 3 as in-

put. For readability we generally use familiar feature names when the feature picks

out more than one segment, and the segment’s name (e.g., [+i]) when the feature only

picks out a single segment. These single segment features are a consequence of in-

cluding singleton sets in the input. Because the feature systems generated by this

model must be able to pick out every class in the input, these features are generated

when a singleton set cannot be described as the intersection of the larger sets in the

intersectional closure. This is consistent with the suggestion in Section 1 that the pri-

mary role of features is to distinguish classes of sounds.

The feature names used below are a convenience for the reader, and do not reflect

the featurization algorithm. In the code we provide, learned features are generated

with numeric labels like F1, F2, etc. We will also occasionally swap the ‘+’ and ‘–’

values of a learned feature for readability.

6.1 Privative specification

In Fig. 9, we illustrate the outcome of applying the privative specification algorithm

to (the intersectional closure of) the vowel class inventory shown in Fig. 3. Table 12

shows the resulting feature chart.

The privative featurization generates a feature system that covers the intersectional

closure of the input class system and consists only of privative values. Note that /y/

does not require a [+y] feature because it is the intersection of the front, high, and

32

Figure 9: Yield of the privative specification algorithm.

σ nonlow front high round a i u e o ø
a 0 0 0 0 + 0 0 0 0 0
i + + + 0 0 + 0 0 0 0
u + 0 + + 0 0 + 0 0 0
e + + 0 0 0 0 0 + 0 0
o + 0 0 + 0 0 0 0 + 0
y + + + + 0 0 0 0 0 0
ø + + 0 + 0 0 0 0 0 +

Table 12: Featural specification of the vowel system with privative specification.

round classes.

Any class system can be covered using only privative features, and completely

privative systems have been proposed by researchers in the past (e.g., Anderson and

Ewen, 1987; Avery and Rice, 1989; Frisch, 1996; Lahiri and Marslen-Wilson, 1991).

In these models, ‘−’ feature values are unmarked, and thus may be filled in by redun-

dancy rules, or only positive values of features need ever be referred to in the phonol-

ogy. The privative algorithm generates featurizations consistent with such proposals.

There are valid theoretical reasons to prefer non-privative specifications, however.

33

One argument arises from complement classes, such as ATR vs. RTR vowels. Lan-

guages with an ATR/RTR distinction frequently have ATR harmony Archangeli and

Pulleyblank (1994). Under privative specification one would need to write one har-

mony rule for the [+ATR] feature, and an otherwise identical rule for the [+RTR] fea-

ture. By making the ATR feature binary (i.e., [±ATR]), one formally recognizes the

sameness of ATR/RTR with respect to the harmony process Archangeli (2011). In

addition, allowing ‘−’ feature values will also generally result in feature systems con-

taining fewer features.

6.2 Complementary Specification

Consider the plot of the same vowel system under complementary specification, shown

in Fig. 10, and the accompanying feature chart shown in Table 13.

Figure 10: Yield of the complementary specification algorithm.

Now only nine features are required. The segment /a/, which was [+nonlow] under

34

σ low front high round i u e o ø
a + 0 0 0 0 0 0 0 0
i – + + 0 + 0 0 0 0
u – 0 + + 0 + 0 0 0
e – + 0 0 0 0 + 0 0
o – 0 0 + 0 0 0 + 0
y – + + + – – 0 0 –
ø – + 0 + 0 0 0 0 +

Table 13: Featural specification of the vowel system with complementary specifica-
tion.

the privative algorithm, has instead been featurized as [–low] here. This is because the

low and non-low classes are complements with respect to their parent (Σ), and both are

present in the input. Contrastive [low] is doing the work of privative [low] and priva-

tive [nonlow] together, so there is no need for a contrastive [nonlow] feature.

An additional point of note is that /y/ is assigned the feature/value pairs [–i], [–u],

and [–ø], and hence these features are now ternary. This occurs because /y/ is a com-

plement to the classes with single parents that motivate the addition of these features.

In general, the requirements for receiving a [− f] value are not as strict as receiving

a [+ f] value: [− f] classes may have more than one parent (as {y} does here). In addi-

tion, they do not necessarily need to be siblings of the class motivating the addition of

the new feature, although in Fig. 10 they happen to be. Restricting the assignment of

[− f] values in the same way as [+ f] values introduces complications for other types

of featurization presented here, such as the full specification algorithm. Note that the

remaining features ([front], [high], [round], [e], [o]) are still privative, because their re-

spective complements are not present in the input.

The type of featurization generated by the complementary specification algorithm

is consistent with many contemporary feature systems, where some features are priva-

tive (e.g., [LABIAL]), some are binary (e.g., [son]), and some are ternary (e.g., [back].

This most closely resembles systems that assume what Archangeli (1988) calls con-

trastive specification: feature/value pairs are assigned only to the subset of segments

35

where the feature is distinctive.

Consistent with much work on underspecification (e.g., Archangeli, 1984; Archangeli

and Pulleyblank, 1989, 1994), this model predicts that underspecification may vary

across languages. The typological regularities that have led researchers to propose cer-

tain features as being inherently underspecified, such as the place features [LABIAL],

[CORONAL], and [DORSAL] (e.g., Sagey, 1986) are considered to be consequences

of the system that identifies classes in a language, rather than a restriction on the kinds

of contrasts feature systems can encode. This model is also incompatible with theo-

ries where markedness plays some role in determining featural specification (see sec-

tion 2.1.3 in Archangeli, 1988, and references therein), since there is no notion of

markedness encoded in the model.

The particular featurization derived here using contrastive specification does not

seem linguistically plausible, but as the next section will show, this is largely a con-

sequence of the particular input classes chosen. See Section 7.2 for an example of a

more realistic featurization derived using contrastive specification.

6.3 Conservational properties of featurizations

One point to observe is that the privative specification and complementary specifica-

tion algorithms are maximally conservative. What we mean by this is that the result-

ing feature system generates the smallest class system that covers C. As the Intersec-

tional Closure Covering Theorem showed, any featurization that covers C will cover

C∩. This means that any classes that are the intersection of input classes, but were not

themselves in the input, will be accessible to the output feature system. But the pri-

vative and complementary specification algorithms will not make it possible to refer

to any other classes outside the intersectional closure. For example, the vowel sys-

tem here contains a [+front] class and a [+round] class, and it necessarily generates a[
+front
+round

]
class. However, it does not infer the existence of a [–round] class based on

the existence of the [+round] class.

36

It is easy to show that one can sometimes achieve a smaller feature system by

adding classes to the system. For example, the privative featurization of the vowel

system contains ten features, and the complementary specification featurization con-

tains nine. If we change the input to consist of the classes shown in Table 14, however,

the privative specification algorithm returns a featurization with eight features, and

complementary specification returns one with only four features.

alphabet {a, i, u, e, o, y, ø}
non-low {i, u, e, o, y, ø}
high {i, u, y}
mid {e, o, ø}
front {i, e, y, ø}
back {u, o}
round {u, o, y, ø}
unround {i, e}
singletons {a}, {i}, {u}, {e}, {o}, {y}, {ø}

Table 14: Vowel inventory with extra classes (bolded)

The privative system requires two fewer features because the addition of the new

classes requires an additional three features ([back], [unround], and [mid]), but allows

us to remove five singleton features (all except [a]), since the corresponding singleton

classes can now be generated by the intersection of larger classes.

This is also true for the contrastive system, which in addition can remove the [mid],

[back], [unround], and [a] features, since they fall into a complementary relationship

with the [+high], [+front], [+round], and [+nonlow] classes respectively. The segments

in these classes are therefore assigned ‘−’ values for those features.

Crucially, these featurizations cover the original class system shown in Fig. 3.

Thus, they use fewer features while generating a richer class system.

This example is presented to make two points. First, the relationship between

classes in the input and the specification algorithm is not monotone. In general, adding

features to a system will make more classes accessible – but in this example, a smaller

number of features covers a larger class system. Thus, the minimal number of features

37

needed to cover C is not predictable from a simple property, such as the total num-

ber of classes in C. More precisely, the privative specification algorithm is an upper

bound on the number of features needed to cover a class system (namely, the number

of classes in the intersectional closure with a single parent). We return to the issue of

feature efficiency and expressiveness in Section 7.

In the meantime, we turn to the second point this example makes – adding the

‘right’ classes to the input enables a more economical feature system. This is exactly

what the inferential complementary and full specification algorithms do, differing only

in which classes they add.

6.4 Inferential complementary specification

Fig. 11 illustrates the featural plot of the IC specification algorithm on the vowel sys-

tem, with the corresponding feature chart shown in Table 15 (the topological plot is

shown in Appendix B.4). Now the complement classes with respect to their parent of

the round, high, and front classes have been added, resulting in a smaller and more

expressive featurization containing only binary or ternary features. Only /a/ has any

unspecified values, since it is a child only of Σ. In fact, this algorithm infers the same

classes that we added in the vowel system in Table 14 above.

σ low front high round
a + 0 0 0
i – + + –
u – – + +
e – + – –
o – – – +
y – + + +
ø – + – +

Table 15: Featural specification of the vowel system with IC specification.

Note that while the class systems for the privative and contrastive specifications

shown in Figs. 9 and 10 are identical to the input and to each other, the derived class

system in Fig. 11 is larger. The output contains an additional five classes. The [–round],

[–high], and [–front] classes, indicated in Fig. 11 by shaded boxes, were added by

38

Figure 11: Class system and featurization yielded by IC specification. Classes added
by complementary inference are shaded. New classes generated due to the addition of
these classes to the intersectional closure are dashed.

complementary inference. Intersectional closure with these new classes produced the

remaining two, indicated by dashed boxes.

The addition of these classes produces a smaller featurization that covers the same

classes as the complementary algorithm, at the cost of altering the original class sys-

tem. Thus this featurization reflects a model of feature learning that differs in an im-

portant way from the previous two algorithms.

We assume that the input classes for these algorithms have been motivated by the

phonetics and phonology of the language. The privative and complementary algo-

rithms differ primarily on theoretical grounds: do we wish to allow ‘−’ feature values,

or not? The difference between these algorithms and the IC and full specification al-

gorithms is somewhat more substantial, however: the latter assume that learners are

capable of some degree of generalization, inferring new classes based on the structure

of existing classes, rather than on explicit phonetic or phonological evidence. They

39

differ in terms of how the new classes are defined. For the IC algorithm, the learner in-

fers the existence of complement classes with respect to the parent of classes that only

have a single parent, if these complements are not present in the input. The full featur-

ization algorithm infers the existence of complement classes with respect to Σ, and in

doing so eliminates all underspecification from the resulting feature system.

6.5 Full specification

The featural plot of the full specification algorithm on the vowel system is shown in

Fig. 12, and the corresponding feature chart is shown in Table 16 (the topological plot

is shown in Appendix B.4).

Figure 12: Class system and featurization yielded by full specification. Classes added
by complementary inference are indicated with shaded boxes. New classes generated
due to the addition of these classes to the intersectional closure are dashed.

The number of features in the full featurization is the same as the IC featurization,

but now /a/ is fully specified for all features, and several new classes have been intro-

duced as a consequence, significantly altering the overall structure of the class system.

The output now contains 10 more classes than the input. As in the IC algorithm,

40

σ low front high round
a + – – –
i – + + –
u – – + +
e – + – –
o – – – +
y – + + +
ø – + – +

Table 16: Featural specification of the vowel system with full specification.

only three new classes are added by complementary inference, indicated by shaded

boxes in Fig. 12. The inclusion of /a/ in these classes increases the number of new

classes generated by intersectional closure, indicated by dashed boxes.

A key way in which full specification differs from IC specification is that no un-

derspecification can occur whatsoever. This is due to the domain over which new

classes are created: IC specification creates new classes with respect to the parent of

the class motivating the new features, while full specification creates them with re-

spect to the entire alphabet.

For example, if a single feature [+nasal] is used to pick out nasal segments, then

the feature system will also generate the class [–nasal] consisting of all non-nasal seg-

ments. According to our understanding of nasal typology, this is probably not the

desired behavior for the nasal feature (e.g., Trigo, 1993).4 However, it is possible

to avoid generating a [–nasal] class by ensuring that the nasals are generated as the

union of pre-existing features, rather than needing their own feature. For example, if

[–continuant] picks out the nasals and oral stops, while [+sonorant] picks out vowels,

glides, liquids, and nasals, then the nasal class is picked out by
[

–continuant
+sonorant

]
. There-

fore, the set of all non-nasals will not be generated as a complement class because

the [+nasal] feature is not generated at all. A desirable property of this solution is that

the following classes fall out: continuant non-sonorants (fricatives), continuant sono-

rants (approximants), and non-continuant non-sonorants (stops and affricates). Less

desirably, this solution fails to transparently represent nasal spreading processes; for

41

example, vowel nasalization cannot be described as continuancy or sonorancy assim-

ilation. Thus, the cross-linguistic behavior and learnability of classes like [–nasal] has

the potential to inform feature theory. We take up this and other issues in Section 7.

7 Discussion

In this paper, we have described a number of algorithms that assign a featurization to

a set of classes, such that every class in the input can be picked out by a featural de-

scriptor. We gave several variants of the algorithm, differing in the types of features

they assign and how conservative they are with respect to the input. The most conser-

vative algorithm assigns a privative specification, i.e., feature functions that only pick

out positively specified elements. Complementary specification is achieved with the

same algorithm, except that a negative specification is assigned just in case the com-

plement of a class with respect to its parent class is in the input. Inferential comple-

mentary specification is similar, except that a negative specification is assigned even

if the complement with respect to the parent was not in the input. Full specification is

similar to IC specification, except the complement is taken with respect to the entire

segmental alphabet. In this section, we discuss some outstanding issues, such as fea-

ture efficiency and expressiveness, and how the current work bears on feature theory.

7.1 Feature efficiency and expressiveness

Here we present examples that further illustrate the expressiveness of class systems.

Let C = {{σ}|σ ∈ Σ}; that is, the input consists of all and only the singleton sets.

For convenience, we will refer to this as the singleton input. Privative specification

will yield a featurization with n features, where n is the cardinality of Σ. This is be-

cause each segment gets its own feature, since the only parent of each segment is Σ.

This featurization will generate only the classes in the input (and Σ, and ∅).

The opposite extreme is obtained by the singleton complement input – where the

input consists not of all singleton sets, but the complement of each singleton set: C =

{Σ\{σ}|σ ∈ Σ}. It is possible to show that when the privative specification algorithm

42

is given this input, it generates the full powerset of Σ – every possible subset gets a

unique combination of features. This follows from the fact that any set can be defined

by listing the features for the segments not contained in it. Thus, privative specifica-

tion is still compatible with a maximally expressive system.

The powerset of Σ is also generated by running the full specification algorithm on

the singleton input. Thus, there are cases where a more conservative algorithm yields

the same class system as a less conservative algorithm (albeit with a different num-

ber of features). In fact, it is generally true that the more conservative algorithms can

achieve the same level of expressiveness as any less conservative algorithm, by virtue

of including the relevant complement classes in the input. For example, if all com-

plement classes with respect to Σ are included, the privative specification algorithm

yields the same class system as the full specification one does, although with twice

the number of features (the singleton complement input discussed above is a special

case of this). Moreover, complementary specification, IC specification, and full spec-

ification all yield the same featurization (as well as the same class system) if every

relevant complement class is included. In short, the algorithms can yield radically dif-

ferent class systems depending on their input – but all can be made highly expressive

by tailoring the input appropriately.

7.2 Relation to feature theory

As the examples in the preceding section illustrate, the most conservative algorithms

(privative and complementary specification) are able to yield class systems that are as

expressive as the less conservative algorithms. However, the converse is not true. For

example, full specification cannot yield a class system as unexpressive as the singleton

input does under privative specification. So which algorithm best reflects our knowl-

edge of feature systems? One principle is that a feature system is good to the extent

that learned features render the grammar simpler and/or more insightful. For exam-

ple, the use of ‘+’ and ‘−’ values yields insight if both values behave in the same way

43

with respect to a harmony or assimilation process.

Although there are exceptions, most commonly employed feature systems gen-

erally recognize the following cases: (a) treat certain features as binary: e.g., all seg-

ments are either [+son] or [–son]; (b) treat certain features as privative: e.g., nasals are

[+nasal] and all others are [0nasal]; (c) treat most features as ternary: e.g., all vowels

are [+ATR] or [–ATR], but consonants are simply [0ATR].

Out of the algorithms we have discussed here, only the complementary algorithms

are capable of yielding a featurization that creates all three feature types. The distinc-

tion between complementary and inferential complementary featurizations depends

on whether complements of input classes with respect to their parents must also be in

the input (which perhaps corresponds to phonological activeness) or can be defined

implicitly. This is an issue that can be resolved empirically.

The complementary algorithm creates those three types of feature functions under

the following conditions. Binary features are generated when a class X and its com-

plement Σ \X are both in the input. Privative features are generated when a class X is

in the input, but no complement (with respect to any ancestor, including its parent, Σ,

and any intervening classes) is. Ternary features are generated when a class X is in the

input, and its complement X with respect to its parent other than Σ is in the input.

For reasons of space, we do not prove that those are the correct conditions. In-

stead, we present an example that generates privative, binary, and ternary features. Let

C include the classes in Table 17.

We omit most of the singleton sets for reasons of exposition, although many are

derived by intersectional closure. The class system that results from running the com-

plementary algorithm on this input is shown in Fig. 13. The features [cons] and [son]

are binary because each one partitions Σ. The features [LAB], [COR], [DOR], [nas]

and [liquid] are privative, because their complement (with respect to every ancestor) is

not included in the input. The remaining features [voice] and [lat] are ternary, because

their complements (with respect to the parent, which is not Σ) are included in the in-

44

alphabet {a, i, u, l, r, m, n, N, p, t, k, b, d, g}
consonants {l, r, m, n, N, p, t, k, b, d, g}
sonorants {a, i, u, l, r, m, n, N}
obstruents {p, t, k, b, d, g}
coronal {n, l, r, t, d}
vowels {a, i, u}
nasals {m, n, N}
voiceless {p, t, k}
voiced {b, d, g}
labial {m, p, b}
dorsal {N, k, g}
liquids {l, r}
lateral {l}
rhotic {r}

Table 17: A large class system

put. We invite the reader to determine what happens to the [voice] feature if the input

includes the class of all phonetically voiced segments (i.e., Σ\{p, t, k}).

It is our hope that the algorithms described in this paper might be used in generat-

ing explicitly testable empirical hypotheses on learning phonological features. Varying

the input classes and the featurization method generates different predictions about the

available phonological classes in a language. This is particularly true in the cases of

the IC and full specification algorithms, where new classes are inferred based on the

relationships between classes in the input. These featurizations provide a starting point

for hypotheses that are testable in phonological experiments. For example, are speak-

ers able to infer the existence of productive phonological classes for which the only

evidence in the input is that the complement (with respect to some ancestor) behaves

productively?

Because these algorithms generate underspecification as a function of the relation-

ship between the input classes, it may be expected to vary cross-linguistically. In addi-

tion, the model of feature learning requires that notions of markedness not be a deter-

mining factor in underspecification. The appropriate application of underspecification

has been somewhat controversial in the past (e.g., Steriade, 1995). A contribution of

45

Figure 13: The output of complementary specification on a large class system.

this paper is that it provides a completely deterministic method for generating under-

specification, depending only on the input classes and the featurization method used.

This is perhaps similar to hierarchical decision-tree systems (e.g., Dresher, 2009; Hall,

2007), except that in such models, the hierarchical ordering of features must be spec-

ified by the analyst, while here it falls out naturally from the relations between the in-

put classes. An unambiguous method for determining underspecification is doubtless

46

of value to the field, and we leave as a question for future research how closely the

methods described here line up with past analyses, and whether the predictions they

make are borne out empirically.

We have not discussed the possibility of applying ‘−’ feature values to comple-

ments with respect to an ancestor other than the parent or Σ. This bears on where

underspecification should occur. We may want to specify every coronal obstruent

as either [+strident] or [–strident], and all non-coronals as [0strident]. It is less clear,

though, whether coronal sonorants should be specified as [–strident] or [0strident].

Figure 14: Resulting feature systems if the complement is taken with respect to the
parent of the strident class (left) or the coronals class (right).

Defining the [–strident] class to be the complement with respect to the parent of

the stridents results in the featurization shown on the left of Fig. 14, while taking the

complement with respect to the full set of coronals results in the system on the right.

There are some technical complications regarding the order in which classes are pro-

cessed if complements can be taken with respect to another ancestor, and we do not

put forth a concrete proposal for how one might choose which ancestor to use. A pos-

sible strategy would be to consider the complement with respect to every ancestor of

the target class, and choose the one that results in the most efficient feature system

(by some criterion), or that avoids implausible features (perhaps based on phonetic

criteria). We leave this as a possible area for future research informed by empirical

47

phonological evidence.

Finally, it is worth touching briefly upon the challenges for underspecification the-

ory posed by Richness of the Base Prince and Smolensky (1993). This stipulates that

there are no constraints on the input, and so a grammar must be able to deal sensibly

with both fully specified and underspecified forms. This rules out analyses that rely

on certain segments being underspecified in the input, but underspecification is still

permitted, and important for other reasons. For example, if phonological constraints

are learned from positive input data (e.g., Hayes and Wilson, 2008), underspecified

features serve an important role in constraining the generalizations the learner may

make by limiting what the phonological grammar can reference. We also note that

language-specific features complicate the handling of non-native input forms. We fol-

low Hall (2007) in suggesting that the answer for this lies in a better understanding of

how speakers map acoustic input onto the phonological representations of their lan-

guage.

8 Conclusion

This paper provides a detailed formalization of the properties of phonological feature

systems and describes algorithms for efficiently calculating various types of featuriza-

tions of a set of input classes. An implementation of these algorithms is available for

use in further research. This work provides a stronger formal grounding for the study

of phonological features, may serve as a useful component in computational models of

feature learning, and makes concrete predictions about the sources of phonological un-

derspecification and how learners might generalize across classes. We hope that these

predictions will provide useful, testable empirical hypotheses for future experimental

phonological research.

A Calculating the intersectional closure

The following algorithm yields the intersectional closure of a class system (C,Σ).

It bears a close resemblance to Dijkstra’s shortest-paths algorithm Dijkstra (1959).

48

Names used in the pseudocode below are defined in Table 7.

Ensure: C′ is the intersectional closure of the input class system (C,Σ)

C′←{Σ}

Q←C

while Q 6=∅ do

X ← DEQUEUE(Q)

if not X ∈C′ then

for Y ∈C′ do

ENQUEUE(Q,X ∩Y)

end for

C′←C′∪{X}

end if

end while

The proof of the algorithm’s soundness goes by induction. First, we show that every

class that can be generated by the intersection of 0 classes (Σ) or 1 class from C (i.e.,

C itself) belongs to C′. Next, we prove the induction step: if every class that can be

generated by the intersection of n classes from C is in C′, then every class that can be

generated by the intersection of n+1 classes from C is in C′.

C′ is initialized to contain Σ. Moreover, Q is initialized to contain every class in

C. Each of these must be transferred to the intersectional closure because they do not

belong to it already (dequeued from Q, and appended to C′). This demonstrates that

every intersection of 0 classes (Σ) and 1 class from C (namely, C itself) belongs to C′.

Now, suppose that the algorithm has guaranteed that every intersection of n classes

from C is in C′. If there exists a Y ∈C′ that can be written as the intersection of n+ 1

classes, i.e., Y = X1∩X2∩ . . .∩Xn+1 = Y ′∩Xn+1 where Y ′ = X1∩X2∩ . . .∩Xn. Since

49

every intersection of n classes is in C′, Y ′ must be in C′. Now, regardless of whether

Xn+1 was transferred from Q to C′ before or after Y ′ was, there was some point at

which one was in Q and the other in C′. When the for loop dequeued the one in Q, it

added the intersection of this one with all others in C′ – i.e., Y ′∩Xn+1. Either this class

was already in C′, or else it was not; and in the latter case, it was transferred. Thus, all

sets generated by the intersection of n+1 classes from C are in C′. �

B The breadth-first algorithm for adding complement classes

The inferential complementary (IC) and full featurization algorithms add classes to C∩

during their execution. In this section, we provide descriptions of the ADDCOMPLE-

MENTS and ADDCOMPLEMENTSFULL algorithms introduced in Sections 5.3 and 5.4.

We then motivate the use of breadth-first traversal using examples where traversing the

classes in an arbitrary order produces spurious features, and discuss considerations on

the order in which siblings are processed.

B.1 The algorithms

The algorithms for adding complement classes traverse C∩ and, for classes with a

single parent, add their complement with respect to their parent (IC specification) or

Σ (full specification) to the class system. In order to avoid specifying spurious fea-

tures, C∩ must be traversed in breadth-first order: that is, processing all the siblings

of a class before processing any of its children. We provide some examples where this

results in smaller feature systems in Appendix B.2. We conjecture that breadth-first

traversal will always produce identical or smaller feature systems than traversal in an

arbitrary order, but do not provide formal proofs here. In addition, siblings are pro-

cessed simultaneously, and all their generated complements (if any) are added to the

class system simultaneously. The motivation for this is discussed in Appendix B.3.

Below is the algorithm for ADDCOMPLEMENTS:

Require: C∩ is the intersectional closure of input class system (C,Σ)

50

Q←{Σ}

while Q 6=∅ do

X ← DEQUEUE(Q)

CHILDCLASSES← CHILDRENC(X)

CHILDCOMPLEMENTS←∅

while CHILDCLASSES 6=∅ do

Y ← DEQUEUE(CHILDCLASSES)

if |PARENTSC(Y)|= 1 then

Y ← X \Y

CHILDCOMPLEMENTS← CHILDCOMPLEMENTS∪Y

end if

end while

C∩← INTERSECTIONALCLOSURE(C∩,Q′ = CHILDCOMPLEMENTS)

NEWCHILDREN← CHILDRENC(X)

Q← Q∪NEWCHILDREN

end while

ADDCOMPLEMENTSFULL is identical, except the complement is taken with respect

to Σ rather than the parent (i.e., the line c← p\ c is replaced with c← Σ\ c).

B.2 Breadth-first vs. arbitrary traversal

A new feature only needs to be added when a class has a single parent. The IC and full

specification algorithms add the complement with respect to the parent and the alpha-

bet, respectively. These new classes alter the class structure, meaning that a class that

has a single parent at one point may have two parents after a class is added. Thus re-

dundant classes and features may be added if a class with a single parent is processed

before another class whose complement would become a parent of the first class.

Consider the input classes shown in Fig. 15, and suppose we are processing them

51

Figure 15: A simple class system.

using full specification (i.e., adding complement classes with respect to Σ). If {c, e, f}

is processed before {a, b}, its complement with respect to Σ, {a, b, d} will be added

to the class system. When {a, b} is processed later, its complement with respect to Σ,

{c, d, e, f} is added to the class system, and becomes an additional parent to {c, e, f}.

This results in the feature system shown on the left side of Fig. 16. Note that the only

purpose of F3 is to differentiate the newly added class {a, b, d}, whose presence is

unmotivated since {c, e, f}, the class that generated it, ends up having two parents.

Figure 16: The classes generated after running ADDCOMPLEMENTSFULL if classes
are processed in an arbitrary order (left) and in breadth-first order (right).

Now consider the same input, but suppose that we process {a, b} before {c, e, f}

(i.e., in breadth-first order). Processing {a, b} adds its complement with respect to

Σ, {c, d, e, f}, which becomes the second parent to {c, e, f}. Now when {c, e, f} is

processed, its complement with respect to Σ is not added because it does not have only

a single parent. This results in the feature system shown on the right side of Fig. 16.

52

Note that the breadth-first feature system is exactly as expressive as the arbitrary

system, with the exception of the unmotivated class {a, b, d}. Both cover the original

input. A similar example can be generated for the IC case.

Thus using breadth-first traversal produces a smaller featurization system that

differs only in its ability to generate unmotivated classes. We conjecture that using

breadth-first traversal guarantees that when a class is processed, all of its parents that

will be added to the input by the end of the algorithm will have already been added,

but we leave the proof as a question for future research.

B.3 Considerations on the ordering of siblings

Although breadth-first traversal gives us a rough guide for how to process classes, it

does not completely determine the order. The question of the order in which siblings

should be processed is still unanswered. Here, too, ordering proves to be important for

the resulting class system. Consider the input shown in Fig. 17, and suppose this time

that we are running the IC specification algorithm.

Figure 17: A simple class system.

Suppose we process the class {b} before either of the other classes. This will re-

sult in the complement of {b} with respect to Σ, {d, g}, being added to the class sys-

tem. This is shown on the left side of Fig. 18.

This is troubling, however, because it predicts that the class {d, g} should be avail-

able in the phonology, while the similar classes {b, g} and {b, d} should not. This

prediction is unmotivated by the class structure, and occurs in some form regardless of

which class is processed first.

In light of this observation, and given the lack of an obvious principled way to

choose which class should be processed first, we process siblings simultaneously: that

53

Figure 18: The resulting feature systems when siblings are processed sequentially
(left) and simultaneously (right) using the IC specification algorithm.

is, the complements of all siblings are calculated, and added to the class system at the

same time. In this case, the resulting class system is shown on the right side of Fig. 18.

This feature system is less efficient, in the sense that it requires more features, but

the overall structure is the one best motivated by the input classes. If the simpler struc-

ture is indeed the desired one, the class {d, g} can simply be added to the input.

When the full specification algorithm is run on the input in Fig. 17 with sequential

processing, a similarly arbitrary class structure is generated, although in this case it

involves two of the three possible two-segment subclasses rather than only one.

B.4 Topological plots

These are the topological plots of the output the IC and full specification algorithms

on the vowel system. The parent/child relationship is maintained in the graph, but fea-

tural siblings (i.e., +/- pairs) are not necessarily plotted at the same level.

54

Figure 19: The topological plot of the output of the IC specification algorithm.

Figure 20: The topological plot of the output of the full specification algorithm.

References

Anderson, John M. and Colin J. Ewen. 1987. Principles of Dependency Phonology.

Cambridge: Cambridge University Press.

Archangeli, Diana. 1984. Underspecification in Yawelmani phonology and morphol-

55

ogy. Ph.D. thesis, MIT.

Archangeli, Diana. 1988. Aspects of underspecification theory. Phonology 5(2):183–

207.

Archangeli, Diana. 2011. Feature specification and underspecification. In The Black-

well Companion to Phonology, edited by Marc van Oostendorp, Colin J. Ewen,

Elizabeth Hume, and Keren Rice, 148–170. Oxford: Wiley-Blackwell.

Archangeli, Diana and Douglas Pulleyblank. 1989. Yoruba vowel harmony. Linguistic

Inquiry 20:173–217.

Archangeli, Diana and Douglas Pulleyblank. 1994. Grounded phonology. Cambridge,

MA: MIT Press.

Archangeli, Diana and Douglas Pulleyblank. 2015. Phonology without universal

grammar. Frontiers in Psychology 6:1229.

Archangeli, Diana and Douglas Pulleyblank. 2018. Phonology as an emergent system.

In The Routledge Handbook of Phonological Theory, edited by S.J. Hannahs and

Anna R.K. Bosch, 476–503. London: Routledge.

Avery, Peter and Keren Rice. 1989. Segment structure and coronal underspecification.

Phonology 6:179–200.

Blevins, Juliette. 2004. Evolutionary phonology: The emergence of sound patterns.

Cambridge: Cambridge University Press.

Broe, Michael. 1993. Specification theory: The treatment of redundancy in generative

phonology. Ph.D. thesis, University of Edinburgh.

Calderone, Basilio. 2009. Learning phonological categories by independent compo-

nent analysis. Journal of Quantitative Linguistics 16(2):132–156.

56

Carlton, Terence R. 1991. Introduction to the phonological history of the Slavic lan-

guages. Bloomington, Indiana: Slavica Publishers.

Chomsky, Noam and Morris Halle. 1968. The sound pattern of English. New York:

Harper & Row.

Clements, George N. 1985. The geometry of phonological features. Phonology Year-

book 2:225–252.

Clements, George N. 2003. Feature economy in sound systems. Phonology 20:287–

333.

Dijkstra, Edsger W. 1959. A note on two problems in connexion with graphs. Nu-

merische Mathematik 1:269–271.

Dresher, Elan. 2009. The contrastive hierarchy in phonology. Cambridge: Cambridge

University Press.

Feldman, Naomi H., Thomas L. Griffiths, Sharon Goldwater, and James L. Morgan.

2013. A role for the developing lexicon in phonetic category acquisition. Psycho-

logical Review 120(4):751–778.

Frisch, Stefan A. 1996. Similarity and frequency in phonology. Ph.D. thesis, North-

western University.

Gallagher, Gillian. 2019. Phonotactic knowledge and phonetically unnatural classes:

the plain uvular in Cochabamba Quechua. Phonology 36:37–60.

Goldsmith, John and Aris Xanthos. 2009. Learning phonological categories. Lan-

guage 85(1):4–38.

Hall, Daniel Currie. 2007. The Role and Representation of Contrast in Phonological

Theory. Ph.D. thesis, University of Toronto.

57

Hayes, Bruce and Colin Wilson. 2008. A maximum entropy model of phonotactics

and phonotactic learning. Linguistic Inquiry 39(3):379 – 440.

Jakobson, Roman, C. Gunnar M. Fant, and Morris Halle. 1952. Preliminaries to

speech analysis: The distinctive features and their correlates. Cambridge, MA:

MIT Press.

Kaisse, Ellen M. 2002. Laterals are [-continuant]. MS, University of Washington.

Kiparsky, Paul. 1973. Phonological representations. In Three Dimensions of Linguistic

Theory, edited by Osamu Fujimura, 1–136. Tokyo: TEC Co.

Kiparsky, Paul. 1985. Some consequences of lexical phonology. Phonology Yearbook

2:85–138.

Lahiri, Aditi and William Marslen-Wilson. 1991. The mental representation of lexical

form: a phonological approach to the recognition lexicon. Cognition 38(3):245–

294.

Lin, Ying. 2005. Learning features and segments from waveforms: A statistical model

of early phonological acquisiton. Ph.D. thesis, UCLA.

Longerich, Linda. 1998. Acoustic conditioning for the RUKI rule. Master’s thesis,

Memorial University of Newfoundland.

MacWhinney, Brian and William O’Grady, eds. 2015. The Handbook of Language

Emergence. Chichester: John Wiley & Sons.

Maddieson, Ian. 1985. Patterns of Sounds. Cambridge: Cambridge University Press.

Mayer, Connor. under revision. An algorithm for learning phonological classes from

distributional similarity. Phonology .

Mielke, Jeff. 2008. The emergence of distinctive features. Oxford: Oxford University

Press.

58

Mielke, Jeff. 2012. A phonetically-based metric of sound similarity. Lingua

1222:145–163.

Moreton, Elliott and Joe Pater. 2012. Structure and substance in artificial phonology

learning. part i: Structure, part ii: Substance. Language and Linguistics Compass

6(11):686–701 and 702–718.

Ohala, John. 1980. Moderator’s introduction to the symposium on phonetic universals

in phonological systems and their explanation. In Proceedings of the Ninth Inter-

national Congress of Phonetic Sciences, edited by Eli Fischer-Jørgensen, Jørgen

Rischel, and Nina Thorsen, vol. 3, 181–185. Institute of Phonetics: University of

Copenhagen.

Padgett, Jaye. 2002. Russian Voicing Assimilation, Final Devoicing, and the Problem

of [v] (or, the Mouse that Squeaked). Ms., University of California, Santa Cruz.

Prince, Alan and Paul Smolensky. 1993. Optimality Theory: Constraint Interaction in

Generative Grammar. Technical Report 2, Rutgers Center for Cognitive Science.

Sagey, Elizabeth. 1986. The representation of features and relations in non-linear

phonology. Ph.D. thesis, MIT.

Schwartz, Jean-Luc, Louis-Jean Boë, Nathalie Vallée, and Christian Abry. 1997. The

dispersion-focalization theory of vowel systems. Journal of Phonetics 25:255–286.

Steriade, Donca. 1995. Markedness and underspecification. In The Handbook of

Phonological Theory, edited by John Goldsmith, 114–175. Oxford/Cambridge,

MA: Blackwell.

Thompson, Laurence C. and M. Terry Thompson. 1972. Language universals, nasals,

and the Northwest Coast. In Studies in Linguistics in Honor of George L. Trager,

edited by M. Estellie Smith, 441–456. The Hague: Mouton, Janua Linguarum.

59

Trigo, Rosario Lorenza. 1993. The inherent structure of nasal segments. In Phonetics

and Phonology 5: Nasals, Nasalization, and the Velum, edited by Marie K. Huff-

man and Rena A. Krakow, 369–400. San Diego: Academic Press.

Vennemann, Theo. 1974. Sanskrit ruki and the concept of a natural class. Linguistics

130:91–97.

Connor Mayer

Department of Linguistics

UCLA

connormayer@ucla.edu

3125 Campbell Hall, Box 951543

Los Angeles, CA 90095-1543

Robert Daland

Independent

r.daland@gmail.com

Notes

This research was supported by the Social Sciences and Humanities Research Council of Canada

Doctoral Award to the first author. Thanks to Bruce Hayes, Tim Hunter, Kie Zuraw, the members of the

UCLA phonology seminar for their feedback and guidance. Thanks also to two anonymous reviewers

for their valuable comments and feedback. All mistakes are our own. Supplemental material can be

found at https://github.com/connormayer/featurizer.

1 https://github.com/connormayer/featurizer

2Formally, the subset/superset relation is the transitive closure of the parent/child relation, and the par-

ent/child relation is the transitive reduction of the subset/superset relation.

3Some confusion may arise with regard to SPE-style rules. In SPE, the null set symbol is used to indi-

cate the source/target of epenthesis/deletion rules. Thus, in SPE the null set symbol is used to denote an empty

60

string. In the present work, the null set symbol is used to denote the null set.

4Though see, e.g., Padgett (2002) for an analysis that relies on [–nasal] specification.

61

