Reconciling categorical and gradient models of phonotactics

SCiL 2025 @ The University of Oregon

Connor Mayer
July 20th, 2025

Department of Language Science
University of California, Irvine



What is this talk about?

Question: Are phonotactic grammars categorical or gradient?



What is this talk about?

Question: Are phonotactic grammars categorical or gradient?

Answer: It depends on which monoid you use!



What is this talk about?

Two points | want to make:



What is this talk about?

Two points | want to make:

1. Gradient phonotactic models account for new data from a Turkish acceptability
judgment task better than categorical models.



What is this talk about?

Two points | want to make:

1. Gradient phonotactic models account for new data from a Turkish acceptability
judgment task better than categorical models.

2. This distinction turns out to be somewhat superficial if we think of models from a
monoid-general perspective.
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What is phonotactics?

The legal ways in which sounds can be sequenced into words.

This is (mostly) learned and language-specific:

e /stik/ would be an ok English word; not a good Spanish word

e /bgera/ ‘sound’ is a fine Georgian word; not a good English word
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Phonotactic acceptability judgments are gradient

A typical source of data is to ask speakers for acceptability judgments:

e e.g. “on ascale of 1-7, how likely is ‘steek’ to become an English word?”

These judgments consistently display gradience [e.g. Chomsky and Halle, 1965,
Coleman and Pierrehumbert, 1997, Scholes, 1966, Bailey and Hahn, 2001, Hayes and
Wilson, 2008, Daland et al., 2011, a.o.].
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lvag < poik < kip
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Where does this gradience come from?

Gradience in acceptability judgments can arise from performance factors such as
misperception [e.g. Kahng and Durvasula, 2023]. However...

...patterns of gradient well-formedness often seem to be driven by the very
same principles that govern absolute well-formedness... | conclude that the
proposed attribution of gradient well-formedness judgments to performance
mechanisms would be uninsightful. Whatever “performance” mechanisms we
adopted would look startlingly like the grammatical mechanisms that account
for non-gradient judgments. [Hayes, 2000, p. 90]

Typical modeling approach is to use a grammar that produces a gradient output.

e Often based on statistical frequencies in the lexicon [e.g. Hayes and Wilson, 2008].
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Implementing a gradient phonotactic grammar

Our phonotactic grammars consist of a score function that assigns values to words.
score : Y* — [0, 1]

Such a model can represent gradient acceptability judgments:

score(lvag) = 0.01 < score(poik) = 0.2 < score(kip) = 0.4
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Is phonotactics categorical?

Gorman [2013] argues that we have been premature in assuming the phonotactic
grammar computes gradient outputs.

e Proposal: grammar is categorical and gradience comes from other sources.

e A categorical grammar labels words as either grammatical or ungrammatical

score : ¥ — {0,1}

These models cannot capture a situation where lvag < poik < kip.

10



Past work on categorical grammars

It is claimed that categorical models do as well as or better than gradient models
in predicting empirical phonotactic phenomena.

11



Past work on categorical grammars

It is claimed that categorical models do as well as or better than gradient models
in predicting empirical phonotactic phenomena.

e English onset acceptability [Gorman, 2013, Durvasula, 2020, Dai, 2025]

11



Past work on categorical grammars

It is claimed that categorical models do as well as or better than gradient models
in predicting empirical phonotactic phenomena.

e English onset acceptability [Gorman, 2013, Durvasula, 2020, Dai, 2025]
e Polish onset acceptability [Kostyszyn and Heinz, 2022, Dai, 2025]

11



Past work on categorical grammars

It is claimed that categorical models do as well as or better than gradient models
in predicting empirical phonotactic phenomena.

e English onset acceptability [Gorman, 2013, Durvasula, 2020, Dai, 2025]
e Polish onset acceptability [Kostyszyn and Heinz, 2022, Dai, 2025]
e Turkish vowel distributions [Gorman, 2013, Dai, 2025]

11



Past work on categorical grammars

It is claimed that categorical models do as well as or better than gradient models
in predicting empirical phonotactic phenomena.

e English onset acceptability [Gorman, 2013, Durvasula, 2020, Dai, 2025]
e Polish onset acceptability [Kostyszyn and Heinz, 2022, Dai, 2025]

e Turkish vowel distributions [Gorman, 2013, Dai, 2025]

e English medial cluster distributions [Gorman, 2013]
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Limitations of previous work

1. Use a very small number of data sets, almost all about consonant clusters
2. The gradient model used in (almost) all cases is the UCLA Phonotactic Learner

3. (Authors have different definitions of “categorical”)
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Limitation 2: The UCLA Phonotactic Learner?

The UCLA Phonotactic Learner has become the poster child for gradient phonotactics
[Hayes and Wilson, 2008].

But it also has to learn constraints from the datal

Makes poor predictions for attested structures [e.g. Daland et al., 2011, Wilson
and Gallagher, 2018]

Its performance is sensitive to how it is parameterized.

Do categorical models outperform it because it is gradient? Because of its
constraint selection process? Because it has been run with sub-optimal

hyperparameters?

13
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A simpler comparison

We'll compare the performance of three categorical boolean models of Turkish vowel
phonotactics against a simple probabilistic bigram model with a similar structure.

We'll evaluate how these models predict new experimental data from a Turkish nonce
word acceptability judgment task.
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Constraints on Turkish vowels

BACKNESS HARMONY: *[aback] ... [—aback]

e A vowel must agree in backness with the preceding vowel.

ROUNDING HARMONY: *[around] ... [—around, +high].

e A high vowel must agree in roundness with the preceding vowel.

These constraints govern suffix allomorphy, but their effect is also detectable in the
lexicon and in acceptability judgment tasks [Zimmer, 1969].
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The data we'll look at are acceptability judgments from a large, online study.

e Participants: 85 native Turkish speakers (38F; mostly age 25-35) recruited on
Prolific

e Task: Wug word acceptability judgments
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Stimuli: 576 wug words with CVCVC shape

e Nine words for each unique pair of vowels (8 x 8 total pairs)
e Probability of consonants controlled for within vowel groups
e Synthesized to speech using Google Cloud

e Words and recordings vetted by two native Turkish speakers
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Experiment task

Deney e
beyop
O
vag cacor matan
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Each participant rated 192 tokens after training and attention checks: 16,320 tokens.
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Each participant rated 192 tokens after training and attention checks: 16,320 tokens.

Responses are normalized to z-scores within participant

e Controls for differences in mean and spread between participants
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Defining our models

We'll test four simple models that have similar structures:

Value type Constraint values

Log probability | Conditional probabilities
Boolean Harmony [Gorman, 2013]
Boolean Exception filtering [Dai, 2025]
Boolean Threshold
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General model structure

All the models are TSL-2 grammars that operate on the vowel tier

¢ Informally, we ignore consonants and assign scores based on vowel bigrams

e Constraints can reference start and end symbols x and
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Each model type has a A function that assigns a value to a bigram.

Boolean models

Ap X% —{0,1}

Log probability model
A, X% — (—00,0]
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Boolean model: score is 1 if a word contains only legal bigrams, 0 otherwise

n—1

bool score(xy, ..., x,) = /\ Ap(xi, Xi11)
i=1
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Boolean model: score is 1 if a word contains only legal bigrams, 0 otherwise

n—1

bool score(xy, ..., x,) = /\ Ap(xi, Xi11)
i=1

Log probability model: score is the sum of the log probability of each bigram

n—1
log_prob_score(xy, ..., x,) = Z Ap(Xiy Xit1)
fi=il

24
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Boolean model

bool_score([oi]) = Ap(x0) A Ap(oi) A Ap(ix)
=1A0A1
=0

Log probability model

log_prob_score([oi]) = Ap(x0) + Ap(oi) + Ap(ix)
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An example

Boolean model

bool_score([oi]) = Ap(x0) A Ap(oi) A Ap(ix)
=1A0A1
=0

Log probability model

log_prob_score([oi]) = Ap(x0) + Ap(oi) + Ap(ix)
=—-252+-224+-0.78
= —b.b4

23



Choosing our values

How do we define A for each model?
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Conditional probability model

The probability model uses add-one smoothed conditional log probabilities derived
from 18,472 citation forms in the TELL database [Inkelas et al., 2000].
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Boolean harmony model [Gorman, 2013]

Words are grammatical if they satisfy both rounding and backness harmony.

@ TRUE TRUE TRUE TRUE TRUE

TRUE TRUE TRUE TRUE TRUE

TRUE - TRUE
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TRUE Legal bigram?
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TRUE
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Second segment
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Boolean exception filtering model [Dai, 2025]

Categorical Turkish phonotactic grammar from Dai [2025] learned via an exception
filtering process based on lexical frequency.

@ TRUE
= e TRUE TRUE TRUE TRUE
GEJ y TRUE TRUE
8 | TRUE TRUE TRUE Legal bigram?
_g O TRUE B rase
g a TRUE TRUE TRUE TRUE TRUE TRUE
(&
o u TRUE-TRUE-TRUE
n W TRUE TRUE-TRUE
# TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

# w u a o i Yy e ¢
First segment 29



Threshold constraints

If P(xj+1|x;) is above the 40th percentile, then Ap(x;, xj+1) =1

@
— ©
@
£ Y
2 | Legal bigram?
(2}
= B
c
S a
o u
2 W TRUE TRUE TRUE
# TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

# w u a o i Yy e o
First segment
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Let's look at correlations between model score for each vowel pair compared with its
mean acceptability judgment across words and participants.
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Value type Constraint set r T P
Log probability | Conditional probabilities 0.54 036 0.50
Boolean Threshold (40th percentile) 046 0.37 045
Boolean Harmony [Gorman, 2013] 0.38 0.30 0.37
Boolean Exception filtering [Dai, 2025] || 0.36 0.27 0.33
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Let's look at correlations between model score for each vowel pair compared with its
mean acceptability judgment across words and participants.

Value type Constraint set r T P
Log probability | Conditional probabilities 0.54 036 0.50
Boolean Threshold (40th percentile) 046 0.37 045
Boolean Harmony [Gorman, 2013] 0.38 0.30 0.37
Boolean Exception filtering [Dai, 2025] || 0.36 0.27 0.33

The simple probabilistic model outperforms the other models

e Closest competitor is the threshold model derived from the probabilistic model

31



Reconciling categorical and gradient
models using monoids




The reconciliation begins
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Commonalities between boolean and probabilistic models

Probabilistic and boolean TSL-2 models differ:
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Commonalities between boolean and probabilistic models

Probabilistic and boolean TSL-2 models differ:

e Boolean: Assigns booleans to segmental bigrams, combines them using A.

e Probabilistic: Assigns log probabilities to segmental bigrams, combines using +.

But the basic structure of each model is the same:

o \We assign some value to each segmental bigram

e We aggregate those values to get a score for the word

83
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Commonalities between categorical and structural models

We can abstract away from specific values/aggregators:

A Y R

n—1
score(xy ... x,) = @ A(x;, Xi11)
i=1

where R is some set of values and (Y) is some binary operator over R.
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Other values of R and ()

We can make these simple models compute even more interesting quantities!

What does it compute? H R ®
Boolean scores {0,1} A
[Gorman, 2013, Kostyszyn and Heinz, 2022, Dai, 2025]

Log probabilities (—00,0] +
Probabilities [0,1] X
Integer scores N +
[Durvasula, 2020, Kostyszyn and Heinz, 2022]

Constraint violation profiles Nk +
Left SL-2 string transduction Py +

85
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What'’s going on here?

This definition of our TSL-2 models is in monoid-general terms

A: Y2 R

n—1
score(xy ... X,) = @ A(x, Xi+1)
i=1

We can parameterize our model with different monoids that provide implementations
of R and (M.
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What’s a monoid?

A monoid is an algebraic structure.

Monoid: a set R closed under a binary relation () such that:

e () is associative

e There's an identity element T in R suchthat a® T =T ®a=a
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Why are monoids interesting?

The models we work with in FLT (SL, SP, TSL, FSA, CFG, etc.) can be expressed in
monoid-general terms (or, in some cases, semiring-general terms).

e In terms of R and (® rather than specific values and operators

Different monoids allow the same underlying model to compute different quantities.

e Unifies superficially different models [Goodman, 1999].

We can separate the structure of the model from the values it computes.

38
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Why is this useful for us as phonologists?

Monoids allow us to relate the grammar to different domains or contexts

e Giorgolo and Asudeh [2014] apply different semirings (cf. monoids) to the same
underlying semantic model to capture differences in heuristic vs. mathematical
reasoning.

39



Connecting the grammar to different domains

There's perhaps an analogy to be made to Turkish.

40



Connecting the grammar to different domains

There's perhaps an analogy to be made to Turkish.

e Harmony is essentially categorical when determining suffix allomorphy

40



Connecting the grammar to different domains

There's perhaps an analogy to be made to Turkish.

e Harmony is essentially categorical when determining suffix allomorphy

‘cat-PL'

40



Connecting the grammar to different domains

There's perhaps an analogy to be made to Turkish.

e Harmony is essentially categorical when determining suffix allomorphy

‘cat-PL"  kedi-ler v/

40



Connecting the grammar to different domains

There's perhaps an analogy to be made to Turkish.
e Harmony is essentially categorical when determining suffix allomorphy
‘cat-PL*  kedi-ler v/ kedi-lar X
e Harmony is a gradient property of roots

e 66% of citation forms in TELL satisfy backness harmony
e 70% satisfy rounding harmony

40



Connecting the grammar to different domains

There's perhaps an analogy to be made to Turkish.

e Harmony is essentially categorical when determining suffix allomorphy
‘cat-PL*  kedi-ler v/ kedi-lar X

e Harmony is a gradient property of roots

e 66% of citation forms in TELL satisfy backness harmony
e 70% satisfy rounding harmony

e But both sensitive to the same configurations!

40
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Connecting the grammar to different domains

Regardless of monoid, both the categorical and probabilistic grammars we saw here

e are sensitive only to bigram constraints
e use segmental representations

e operate on the vowel tier

These are segmental TSL-2 grammars, regardless of the values they assign.

The same applies to other representations or grammars.
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Closing remarks

Durvasula [2020] implores us to prioritize work on categorical models so we can

e “focus on what's a possible constraint or rule”; and

e “commit to a specific set of representations”
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We can have our phonotactic cake and eat it too

This is a false dichotomy

e Constraints and representations in the grammar can be studied independently of
the values the grammar assigns.

e Insight into the structure of the grammar can come from both gradient and
categorical analyses!

e This flexibility allows our models to engage with a broader range of empirical
phenomena.
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Thank you!

Thanks to Huteng Dai, Karthik Durvasula, Richard Futrell, Jeff Heinz, Jon Rawski,
Megha Sundara, Bernard Tranel, and three anonymous reviewers for their useful
feedback and discussions.

Thanks also to my Turkish consultants Cem Babalik and Defne Bilhan.

This work was supported by NSF Award #2214017.
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Value type Constraint set r T p
Probability UCLA Learner 0.56 0.37 0.54
Probability Conditional probabilities 0.38 0.36 0.50
Log probability | Conditional probabilities 0.54 0.36 0.50
Integer Harmony 0.38 0.30 0.38
Boolean Threshold (40th percentile) 046 0.37 045
Boolean Harmony [Gorman, 2013] 0.38 0.30 0.37
Boolean Exception filtering [Dai, 2025] || 0.36 0.27 0.33
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