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Abstract

Should phonotactic knowledge be modeled as
categorical or gradient? In this paper, I present
new data from a Turkish acceptability judgment
study that addresses some limitations of previ-
ous work on this question. This study shows
that gradient models account for the variability
in acceptability ratings better than categorical
ones. However, I suggest that the distinction be-
tween gradient and categorical models is some-
what superficial when we think of models in a
mathematically general way. I propose on this
basis that both categorical and gradient models
have a role to play in linguistic research.

1 Is phonotactics gradient or categorical?

Phonotactics is the restrictions that languages place
on how sounds can be sequenced into words. Dif-
ferent languages impose different phonotactic re-
strictions. For example, although English and Span-
ish both contain the sounds {k, p, s, i}, a word like
/skip/ ‘skeep’ is only possible in English. Spanish
has more restrictive phonotactics, prohibiting /s/-
initial complex onsets. For similar reasons, a word
like /fstSONs/ is a perfectly fine Polish word (wstrząs
‘shock’), but would not be a suitable English word
because of English’s more restrictive onset phono-
tactics. It is generally accepted that phonotactic
knowledge is learned by generalizing across forms
in the lexicon (e.g. Chomsky and Halle, 1968; Bai-
ley and Hahn, 2001; Edwards et al., 2004).

One common method of probing phonotactic
knowledge is phonotactic acceptability judgments,
where participants are asked to rate the acceptabil-
ity of novel words as possible words in their lan-
guage. A longstanding empirical observation is
that phonotactic acceptability judgments are gradi-
ent. That is, participants do not simply treat words
as acceptable or not, but rather ascribe varying de-
grees of acceptability to them. A classic example
from Chomsky and Halle (1968) is the three nonce
words /blIk/, /bnIk/, and /bnzk/. Despite all three

being unattested in English, English speakers (or
at least Chomsky and Halle) rank them in terms of
acceptability such that /bnzk/ ≪ /bnIk/ ≪ /blIk/.
That is, speakers judge /bnIk/ to be a more accept-
able word than /bnzk/, but a less acceptable word
than /blIk/. Similar results have been found in a
wide range of studies (e.g. Coleman and Pierrehum-
bert, 1997; Scholes, 1966; Hayes, 2000; Bailey and
Hahn, 2001; Hayes and Wilson, 2008; Albright,
2009; Daland et al., 2011, a.o.).

Two question that naturally arise from these re-
sults are where this gradience comes from and how
we should represent it in our models of language.
There have been two broad theoretical approaches,
which we will cover in the following sections (see
Schütze, 1996, for a discussion of these perspec-
tives in linguistics more broadly).

1.1 Gradient models of phonotactics

The first approach proposes that we see gradience
in these studies because the phonotactic grammar is
itself gradient, or that a gradient measure of accept-
ability can be derived from the grammar. Chomsky
and Halle (1968) write that “a real solution to the
problem of ‘admissibility’ will not simply define
a tripartite categorization of occurring, accidental
gap, and inadmissible, but will define the ‘degree
of admissibility’ of each potential lexical matrix in
such a way as to distinguish /blIk/ from /bnIk/ and
/bnIk/ from /bnzk/, and to make numerous other
distinctions of this sort” (pp. 416–417). They
operationalize this ‘degree of admissibility’ as a
quantity derived from the phonological grammar
and the lexicon: the minimum number of featural
changes required to convert a word into an existing
word in the language. Chomsky and Halle also
note that this gradience exists within the lexicon
itself (p. 418). In English, for example, there are
semi-admissible words like /sfINks/ ‘Sphinx’ that
constitute exceptions to otherwise strong phonotac-
tic restrictions on onset formation.



Chomsky and Halle do not do away with the con-
cept of grammaticality: there are still forms that
can be produced by the grammar and forms that
cannot. Rather, they suggest that a gradient accept-
ability score can be derived from the grammar by
some additional mechanism. Subsequent propos-
als have gone further, claiming that the grammar
itself generates both categorical and gradient out-
comes: whether we get one or the other depends
primarily on the amount of variability in the learn-
ing data. It’s beyond the scope of this paper to
cover these approaches in detail, but many have
been expressed within the context of Optimality
Theory (Prince and Smolensky, 1993/2004) and
typically either vary constraint rankings in order
to generate gradient outcomes (e.g. Hayes, 2000)
or derive probabilities from weighted constraints
(e.g. Hayes and Wilson, 2008; Dai et al., 2023).
Gradient models of phonotactics have also been
proposed in the context of formal language theory
(Mayer, 2021). Under these approaches, gradience
emerges from an interaction between the grammar
and the learning data, not a bespoke mechanism.

This perspective is supported outside the world
of generative linguistics, where phonotactic knowl-
edge is typically treated as gradient, and is often
represented by simple probabilistic n-gram models
(Markov, 1913; Shannon, 1948). Gradient knowl-
edge of phonotactics has been claimed to play an
important role in areas such as speech perception
(e.g. Norris and McQueen, 2008; Dupoux et al.,
2011; Chodroff and Wilson, 2014; Steffman and
Sundara, 2023), speech production (e.g. Edwards
et al., 2004), word segmentation and learning (e.g.
Mattys et al., 1999; McQueen, 1998; Mersad and
Nazzi, 2011; Vitevitch and Luce, 1999; Storkel,
2001), and speech errors (e.g. Goldrick and Larson,
2008; Taylor and Houghton, 2005; Warker, 2013;
Warker and Dell, 2006, 2015), among others.1

1.2 Categorical models of phonotactics

The second theoretical approach to gradience pro-
poses that the phonotactic grammar is fundamen-
tally categorical (that is, it really does judge words
to be acceptable or not) and that gradience in ac-
ceptability judgments is solely the result of extra-
grammatical factors such as task effects or mis-

1We do not consider neighborhood density here, another
important property that influences wordlikeness judgments.
For discussion of the relationship between neighborhood den-
sity and phonotactic probability, see e.g. Bailey and Hahn
(2001); Steffman and Sundara (2024).

perception (e.g. Gorman, 2013; Durvasula, 2020;
Kostyszyn and Heinz, 2022; Dai, 2025). There are
two main sources of evidence for this view.

The first is that extra-grammatical performance
factors have indeed been shown to influence phono-
tactic judgments. A convincing demonstration of
this comes from Kahng and Durvasula (2023), who
show that some variability in nonce word judg-
ments by Korean speakers is the result of misper-
ception of certain consonant clusters.

The second source of evidence is several stud-
ies suggesting that categorical models do as well
as or better than gradient models in predicting ac-
ceptability judgments. As Gorman (2013) puts it,
“simple baselines better account for gradient well-
formedness judgements than current computational
models of phonotactic knowledge, suggesting that
the gradience observed in these tasks [does] not de-
rive from known grammatical mechanisms” (p. 17).
Specifically, categorical models have been claimed
to better predict English onset acceptability (Gor-
man, 2013; Durvasula, 2020; Dai, 2025), Polish on-
set acceptability (Kostyszyn and Heinz, 2022; Dai,
2025), Turkish vowel harmony (Gorman, 2013;
Dai, 2025) and English medial consonant cluster
distributions (Gorman, 2013).

We will focus on the second type of evidence
here. With regards to the first, note that propo-
nents of gradient models do not suggest that extra-
grammatical factors have no role at all in the gra-
dience exhibited in acceptability judgment tasks.
Rather, the claim is that a substantial part of the
gradience can be predicted by grammatical factors.
Hayes (2000) puts it as follows:

[P]atterns of gradient well-formedness
often seem to be driven by the very
same principles that govern absolute
well-formedness [. . . ] I conclude that
the proposed attribution of gradient
well-formedness judgments to perfor-
mance mechanisms would be uninsight-
ful. Whatever “performance” mecha-
nisms we adopted would look startlingly
like the grammatical mechanisms that ac-
count for non-gradient judgments (p. 90).

In other words, gradience in acceptability stud-
ies is often predictable from “soft” versions of the
same constraints that govern more categorical pat-
terns like phonological alternations.



1.3 Limitations of past work

There are three important limitations to previous
work comparing categorical and gradient models
of phonotactics. First, these papers have used a
relatively small number of data sets, almost all
focusing on consonant clusters. This makes it dif-
ficult to evaluate how generally these results hold
across different types of phonotactic dependencies.

The second limitation is that the authors of these
papers do not all subscribe to the same definition
of categorical. In some cases the grammar truly is
categorical, assigning words either grammatical or
ungrammatical status (Gorman, 2013; Kostyszyn
and Heinz, 2022; Dai, 2025). In other cases, simi-
lar to Chomsky and Halle (1968), some secondary
gradient measure of admissibility is derived from a
categorical grammar (Durvasula, 2020; Kostyszyn
and Heinz, 2022). We will treat these two defini-
tions of categorical as separate models below.

The third limitation is that the gradient model
typically used is the UCLA Phonotactic Learner
(Hayes and Wilson, 2008), an influential phonotac-
tic learning model implemented in the maximum
entropy Optimality Theory framework (Goldwater
and Johnson, 2003; Mayer et al., 2024). Although
it does implement a gradient model of phonotac-
tics, it has the additional task of inducing the con-
straints themselves from the data. The categorical
models in these papers are typically provided with
predefined constraints (though cf. Dai, 2025). It
is unclear whether the poor performance of the
UCLA learner is due to the fact that it is gradient
or to some aspect of the constraint induction pro-
cess. The UCLA learner is also sensitive to how
it is parameterized, and it is not typical for these
studies to compare performance under a range of
hyperparameters.

1.4 The remainder of the paper

While this paper will by no means resolve this de-
bate, I will try to achieve two more modest goals.
First, I will present new data from a phonotactic
acceptability judgment study of Turkish that ad-
dresses some of the limitations expressed above.
This study will show that gradient models are bet-
ter able to predict participant judgments. Second,
I will try to convince you that the distinction be-
tween categorical and gradient grammars is in fact
a somewhat superficial one when we consider the
matter from a mathematical perspective, and that
both conceptualizations of the grammar have a role

to play in linguistic research and theory-building.

2 Defining our grammars

We will consider three classes of models in the
rest of the paper. Boolean models, cost models,
and probability models. Abstracting away from the
internal details for a moment, we can think of each
of these models as defining a score function that
assigns some value to a string:

score : Σ∗ → T

where Σ is a set of symbols, Σ∗ is the set of all
possible strings generated from this set, and T is
some set of values. The three models differ in what
type of value the score function assigns.

2.1 Boolean models
We will use boolean models to correspond to the
theoretical position that the phonotactic grammar
is categorical, with gradience stemming from non-
grammatical factors (Gorman, 2013; Kostyszyn
and Heinz, 2022; Dai, 2025). The score function
for these models assigns boolean values to strings:

score : Σ∗ → {0, 1}

Such models cannot represent a situation where
the acceptability of /bnzk/ ≪ /bnIk/ ≪ /blIk/. If
we take /bnzk/ to be ungrammatical and /blIk/ to
be grammatical, the model must place the interme-
diate form /bnIk/ into one of these two categories.

2.2 Cost models
Cost models will correspond to the theoretical po-
sition that a gradient measure of acceptability is
derived from a categorical grammar. There are
many ways such a proposal could be implemented,
but we will follow Durvasula (2020) and Kostyszyn
and Heinz (2022), who derive such a gradient mea-
sure by counting the number of (categorical) con-
straints that a form violates. The score function
for cost models assigns non-negative integer val-
ues to strings, with larger integers corresponding
to lower phonotactic acceptability:

score : Σ∗ → {0, 1, 2, . . . }

In this model, acceptability is bounded on one
side by 0, which corresponds to a “perfectly accept-
able” form that violates no constraints. The other
end of the scale is unbounded, since a form can vi-
olate arbitrarily many constraints. This means that,



unlike the other two model types, we expect ac-
ceptability to decrease as the score increases. Such
models can represent the case where the acceptabil-
ity of /bnzk/ ≪ /bnIk/ ≪ /blIk/ by assigning the
forms successively decreasing integer values.

2.3 Probability models
Probability models will correspond to the theo-
retical claim that gradience in acceptability cor-
responds directly to gradience in the grammar. Gra-
dient grammars do not necessarily have to generate
probabilities, but we will assume that is the case
here. The score function for probability models is:

score : Σ∗ → [0, 1]

Such models can also represent the case where
/bnzk/ ≪ /bnIk/ ≪ /blIk/ by assigning the forms
successively increasing probabilities.

3 Turkish study

We will compare these three classes of models
against new data from a large, online acceptabil-
ity judgment study of Turkish nonce words.2 This
study expands on a previous acceptability judgment
study on Turkish (Zimmer, 1969) by including a
much larger number of stimuli and participants
and using a slider task rather than a binary forced
choice task. We will focus on backness harmony
and rounding harmony, which are common in Tur-
kic languages. Backness harmony requires vow-
els to agree in backness with the preceding vowel,
while rounding harmony requires high vowels to
agree in roundness with the preceding vowel (see
Table 1). We can implement these restrictions us-
ing the following bigram constraints over vowel
sequences:

• *[αback] [−αback]: a vowel must agree in
backness with the preceding vowel.

• *[αround] [−αround, +high]: high vowels
must agree in roundness with the preceding
vowel.

These constraints govern suffix allomorphy: e.g.,
the plural form of /kedi/ ‘cat’ is [kedi-ler] ‘cat-PL’,
while the plural of /kuS/ ‘bird’ is [kuS-lar] ‘bird-
PL’. Vowel harmony is is also evident as a strong
tendency across the lexicon (though many dishar-
monic words exist, particularly loanwords) and in
acceptability judgment tasks (Zimmer, 1969).

2The data and code for this paper can be found
at https://github.com/connormayer/turkish_
phonotactics

[−back] [+back]
[−round] [+round] [−round] [+round]

[+high] i y W u
[−high] e ø a o

Table 1: The vowel system of Turkish

3.1 Methodology

The stimuli consisted of 576 wug words with
CVCVC shape. A Python script was used to gener-
ate every possible Turkish CVCVC word. Attested
words found in the Turkish Electronic Living Lexi-
con (TELL; Inkelas et al., 2000) were automatically
removed. Subsequent manual filtering was done by
two native Turkish speakers. The remaining words
were scored for unigram and Laplace-smoothed
bigram probability using the UCI Phonotactic Cal-
culator (Mayer et al., under revision) based on fre-
quencies from citation forms in TELL. For each
unique pair of vowels (8×8 total pairs), nine words
were sampled such that they were distributed in a
roughly uniform way across the unigram-bigram
probability space. As a result, the mean probability
of the tokens for each vowel pair was roughly the
same (Fig. 1). The 576 tokens were synthesized to
speech using Google Cloud. The recordings were
vetted by the same two native Turkish speakers for
naturalness and clarity.

The experiment was administered using Gorilla
(www.gorilla.sc Anwyl-Irvine et al., 2020).
All materials were presented in Turkish. After
providing consent, participants completed a short
demographic questionnaire. Participants then com-
pleted two screening tasks. The first was an audio
check that asked them to identify a word presented
to them acoustically. The second was a training run
of the main experimental task, where participants
were instructed to make a specific selection at the
end as an attention check. Failure in either of these
tasks led to exclusion from the experiment.

Finally, in the main experimental task, partic-
ipants were asked to provide acceptability judg-
ments of the stimuli based on their suitability as
words in Turkish using a sliding, unnumbered scale.
The right side of the scale corresponded to higher
acceptability, and high-, mid-, and low-probability
words were provided as landmarks (Fig. 2). Stim-
uli were presented with simultaneous audio and
orthographic representation. Slider responses were
represented on a numeric scale between 0 and 100,
with 100 being the most acceptable.

https://github.com/connormayer/turkish_phonotactics
https://github.com/connormayer/turkish_phonotactics
www.gorilla.sc


Figure 1: The distribution of unigram and bigram prob-
abilities of the stimuli within each vowel group.

115 native speakers of Turkish were recruited
using Prolific (www.prolific.com). 25 partic-
ipants were excluded because they failed to provide
consent or failed one of the two screening tasks.
An additional 5 participants were excluded because
they indicated in the demographic questionnaire
that they had hearing impairment or that Turkish
was not their native language. This left a total of 85
participants (38F; mostly age 25–35). Each partic-
ipant rated 192 tokens after training and attention
checks, leading to a total of 16,320 token ratings
(about 28 ratings per word). Raw slider responses
were normalized to z-scores within participant to
control for idiosyncratic differences in mean and
spread between participants.

3.2 Results

Fig. 3 shows participant responses broken down
by harmonic class. Participants’ responses reflect
sensitivity to both backness and rounding harmony.

4 Modeling the Turkish data

In this section, we’ll compare how well the differ-
ent models described above predict the acceptabil-
ity judgment data from the Turkish study. Crucially,
each of these models employs the same set of pos-
sible constraints, differing only in the values they

Figure 2: The experimental interface.

Figure 3: Normalized, mean participant responses bro-
ken down by harmonic category. Participants are sensi-
tive to both backness and rounding harmony.

assign to each. This allows the effect of different
value choices to be compared more directly.

Because our interest is primarily in vowel har-
mony, we will use tier-based strictly local models
with bigram constraints on the vowel tier (a TSL-2
model). It is beyond the scope of this paper to pro-
vide a full definition of TSL (see Heinz et al., 2011),
but informally it means that we ignore consonants
completely and assign scores based only on vowel
bigrams. Bigrams can also reference word bound-
aries (#). This means the models are sensitive not
only to which pairs of vowels occur in a word, but
also which vowels begin and end the word.

Each model type has a ∆ function that assigns
a value to a bigram. These bigram values are then
aggregated into the value returned by the score
function discussed above.

4.1 Boolean models
Under a boolean model, the ∆ function is:

∆b : Σ
2 → {0, 1}

where Σ2 is the set of all possible bigrams, in-
cluding the word boundary symbol . The boolean

www.prolific.com


values assigned to each bigram in a string are ag-
gregated into a single boolean by conjoining them:

scoreb(x1, . . . , xn) =
n−1∧
i=1

∆b(xi, xi+1)

Legal and illegal bigrams receive scores of 1 and
0 respectively. The score for a string is 1 iff it
contains only legal bigrams and 0 otherwise.

4.2 Cost models

Under a cost model, the ∆ function is:

∆c : Σ
2 → {0, 1, 2 . . . }

The integers assigned to each bigram are aggre-
gated into a single integer score by summing them.

scorec(x1, . . . , xn) =
n−1∑
i=1

∆c(xi, xi+1)

We will interpret the integer cost assigned to
a bigram as the number of bigram constraints it
violates. For example, a vowel bigram like /oi/
that violates both backness and rounding harmony
might be assigned a cost of 2, while a bigram like
/oy/ that violates only backness harmony might be
assigned a cost of 1. Although these models could
in principle represent varying constraint strengths
by assigning different integer costs to each con-
straint, we will assume following previous work
that all constraint violations are equally penalized
(Durvasula, 2020; Kostyszyn and Heinz, 2022).

4.3 Probability model

Under a probability model, the ∆ function is:

∆p : Σ
2 → [0, 1]

The probabilities for each bigram are aggregated
into a single probability by taking their product:

scorep(x1, . . . , xn) =
n−1∏
i=1

∆p(xi, xi+1)

The individual probabilities assigned to bigrams
typically reflect their frequency (though this need
not be the case). The probability assigned to a
string reflects the probabilities of the bigram se-
quences it contains.

4.4 An example calculation

Consider again the vowel bigram /oi/. In Turkish,
this may be dispreferred because it violates both
backness and rounding harmony. Below I show
how the score for this sequence can be calculated
under each of the three types of models described
above (we will discuss where the values assigned to
each bigram come from in the following section).

scoreb(/oi/) = ∆b(#o) ∧∆b(oi) ∧∆b(i#)

= 1 ∧ 0 ∧ 1

= 0

scorec(/oi/) = ∆c(#o) + ∆c(oi) + ∆c(i#)

= 0 + 2 + 0

= 2

scorep(/oi/) = ∆p(#o)×∆p(oi)×∆p(i#)

= 0.08× 0.107× 0.458

= 0.0004

4.5 Defining ∆

A question that remains is how to actually define ∆
for each model: that is, what specific values do we
assign to each bigram? We will test several variants
that differ in how ∆ is defined.

4.6 ∆ in the probability model

In the probability model, ∆p(x, y) is defined to be
P (y|x), the conditional probability of the second
sound in the bigram given the first. These proba-
bilities were estimated using Laplace smoothing
(Chen and Goodman, 1999) from 18,472 citation
forms in the TELL database (Inkelas et al., 2000).
The conditional probabilities assigned to each bi-
gram are shown in Fig. 4. Note that both backness
harmony and rounding harmony are reflected in
these probabilities: for the most part, harmonic se-
quences have higher probabilities than disharmonic
ones (though other constraints are also apparent,
such as a strong dispreference for /ø/ and /o/ in
non-initial position).

4.6.1 ∆ in the boolean model
We will test three variants of the boolean model.
The first we will call the harmony model, based on
Gorman (2013). Under this model, any bigram that
violates either rounding or backness harmony (or
both) receives a value of 0 and all other bigrams
receive a value of 1. This model is shown in Fig. 5.



Figure 4: The probability model

Figure 5: The boolean harmony model

The second variant we will call the exception fil-
tering model. This is a categorical Turkish phono-
tactic grammar from Dai (2025), which was learned
by a statistical exception filtering process. For rea-
sons of space I will not described the filtering pro-
cess here, but it results in a more restrictive boolean
model that still reflects backness and rounding har-
mony. This model is shown in Fig. 6.

The third variant we will call the threshold
model. Under this model, a bigram is legal only
if its conditional probability (as defined in the pre-
vious section) is above the 40th percentile of all
the conditional bigram probabilities. The 40th
percentile was opportunistically chosen because
it maximized the performance of the model against
this data. This is similar to the exception filtering
model in that it is derived from frequencies in the
lexicon, but it is generally more permissive. The
values assigned by this model are shown in Fig. 7.

Gorman (2013) and Kostyszyn and Heinz (2022)
also explore models where bigrams are only gram-
matical if they are attested. Unfortunately, all
vowel bigrams are attested in TELL, which means
such a model makes no predictions in this case.

4.6.2 ∆ in the cost model
We consider only a single variant of the cost model,
which uses the same bigram constraints as the har-
mony model but assigns them integer values in-
stead. Bigrams that violate both backness and

Figure 6: The boolean exception filtering model

Figure 7: The boolean threshold model

rounding harmony have a cost of 2; bigrams that
violate one or the other have a cost of 1; and all
other bigrams have a cost of 0. The values assigned
to bigrams by this model are shown in Fig. 8.

4.7 Results
Each of the five models was used to score the 576
words from the acceptability judgment study. The
model scores were correlated against the mean of
the normalized acceptability scores for each word
collected in the study. Table 2 reports Pearson,
Kendall and Spearman correlations (See Albright,
2009, for some discussion of differences between
these metrics in the context of phonotactics).

These results generally support the probabilistic
model as the best approximation of human accept-
ability judgments. The boolean threshold model
comes the closest to matching its performance (and
modestly surpasses it according to Kendall’s τ ). It
is important to consider, however, that this model is

Value type Constraints r τ ρ

Probability Cond. probs 0.54 0.36 0.50
Boolean Threshold 0.46 0.37 0.45
Cost Harmony 0.38 0.30 0.38
Boolean Harmony 0.38 0.30 0.37
Boolean Exception 0.36 0.27 0.33

Table 2: Correlations between model scores and mean
acceptability judgments.



Figure 8: The cost harmony model

derived from the conditional probability model: in
other words, the best performing categorical model
was produced by attending to gradience in the learn-
ing data. This is exactly the kind of model argued
against by Chomsky (1957), where we “sharpen the
blurred edges in the full statistical picture” (p. 17)
by designating high probability forms as grammati-
cal and low probability forms as ungrammatical.

Chomsky’s objections aside, two natural ques-
tions the threshold model must deal with are (a)
why the learner should track variability during ac-
quisition only to discard it once the grammar is
formed; and (b) how the threshold separating gram-
matical and ungrammatical structures is set. The
learning algorithm in Dai (2025) uses a similar
thresholding parameter to determine whether a bi-
gram is exceptional or not. However, Dai finds that
the best values of this threshold differ across data
sets, and provides no principled way to derive it
from the data. In contrast, the conditional bigram
model is fit using maximum likelihood estimation,
a robust and well-understood learning procedure.

These results favor the use of gradient models for
modeling phonotactics. However, in the remain-
der of the paper I hope to convince you that the
similarities between these models outweigh their
differences.

5 Reconciling gradient and categorical
models

Although these three model types differ in the val-
ues they assign to strings, there are many similari-
ties in their basic structure. The boolean, cost, and
probability models all assign some value to each
segmental bigram (booleans, integers, or probabili-
ties respectively) and aggregate them to get a single
value for a string using some binary operation (con-
junction, addition, or multiplication respectively).
Approaching the models from this perspective, we
can abstract away from the specific values and ag-

gregation methods and express them in more math-
ematically general terms.
∆ maps bigrams to some set of values T :

∆: Σ2 −→ T
Our score function aggregates these values us-

ing some binary operator ⃝∧ over T :

score(x1 . . . xn) =
n−1

⃝∧
i=1

∆(xi, xi+1)

The boolean, cost, and probability models de-
scribed above can be instantiated from this more
abstract model by specifying particular values of
T and ⃝∧ .

If ⃝∧ is associative and there is an identity ele-
ment ⊤ in T such that a⃝∧ ⊤ = ⊤⃝∧ a = a, which
is the case for each of the set-operation pairs consid-
ered here, then (T ,⃝∧ ) forms a mathematical ob-
ject called a monoid. Thinking in monoid-general
terms allows us to take the same abstract model and
parameterize it with different monoids. This means
the same underlying model can compute different
quantities, unifying models that appear to do vastly
different things on the surface (Goodman, 1999;
Eisner, 2003; Chandlee and Heinz, 2017). In other
words, we can separate the structure of the model
from the values it computes.

In addition to the monoids discussed above, our
humble bigram model can actually compute a range
of other useful quantities, such as constraint viola-
tion profiles using the monoid (Nk,+), where Nk

is the set of vectors of natural numbers of length k
(e.g. Riggle, 2009), or even input SL-2 string trans-
duction (e.g. Chandlee, 2014) using the monoid
(Σ∗, ·), where · is a string concatenation operator.

Most of the models we work with in formal lan-
guage theory, such as subregular models (Heinz,
2018), finite-state automata, context-free gram-
mars, and so on, can be expressed in these general
terms. Although non-deterministic models require
an additional operator to combine multiple parses
of the same string, a more complex mathematical
structure called a semiring can be used analogously
to monoids for such models.3

3The probability monoid/semiring is usually defined to
assign values from R, with the additional implicit restriction
that the assigned values must form a valid probability distribu-
tion. There are non-trivial issues that arise in choosing exactly
which particular values (or weights, to use the more technical
term) our model should assign, such as normalization in prob-
abilistic models, whether the order of the values is total and
monotonic, etc. These considerations are not the focus of this
paper.



5.1 Monoids in phonology

Why is the idea of monoids useful for us as pho-
nologists? An example comes from the domain
of semantics: Giorgolo and Asudeh (2014) apply
different semirings to the same underlying seman-
tic model to capture differences between heuristic
and mathematical reasoning. They suggest that the
underlying structure of both reasoning processes is
the same, but that these processes can generate dif-
ferent types of outcomes depending on the context
(in this case, how important it is to be precise).

There’s perhaps an analogy to be made here with
our categorical and gradient models of Turkish. It is
clear from the results above and past work on Turk-
ish that vowel harmony is centrally important for
both suffix allomorphy and phonotactics (it is strik-
ing how much of the variation in participants’ re-
sponses above can be captured by only attending to
the vowels in each word). However, these sensitivi-
ties manifest in different ways in each domain. Har-
mony constraints are essentially categorical when
determining suffix allomorphy (it’s always [kedi-
ler] and never *[kedi-lar]), but these constraints
provide only a gradient preference when determin-
ing word acceptability.

Even if we choose to treat alternations as es-
sentially categorical and phonotactics as essen-
tially gradient, our categorical and gradient mod-
els have more in common than might be evident
at first glance. Each of the models we discussed
in this paper are TSL-2 grammars: they employ
the same types of representations (segments, con-
straints, etc.); they operate on the vowel tier; they
are sensitive only to constraints between adjacent
vowels; and they disprefer the same types of struc-
tures. The fact that these same representations and
dependencies appear to be necessary for modeling
both gradient and categorical phenomena suggest
that both are governed at least in part by the same
underlying linguistic system (Hayes, 2000), and
past work has claimed that there is a close con-
nection between the acqusition of alternations and
phonotactics (e.g. Hayes, 2004; Chong, 2021; Jun
et al., 2025)

6 Conclusion

Durvasula (2020) implores us to abandon gradience
and adopt categorical models of phonotactics so
that we can “focus on what’s a possible constraint
or rule” and “commit to a specific set of represen-
tations.” I contend that this is a false dichotomy:

constraints and representations in the grammar can
be studied independently of the values the gram-
mar assigns. This flexibility allows us to engage
with a broader range of empirical phenomena for
which categorical or gradient models provide better
approximations while still relating these phenom-
ena to the same core linguistic knowledge (Hayes,
2000). Although the results of this study support
the position that phonotactic knowledge is best cap-
tured using gradient models, we can gain insight
into the representations and dependencies in the
linguistic grammar by considering both types of
models.
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