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Take-home messages

❖ A novel representational system: continuous features
❖ A log-bilinear model compatible with both continuous and discrete features
❖ Finding: In several cases, models with continuous representations 

outperformed their counterparts
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ROADMAP

1. Phonotactic learning and features
2. A log-bilinear model of phonotactic learning
3. Model/feature comparison
4. Conclusions and future directions
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Phonotactics

Restrictions on how sounds can be sequenced;

Phonotactics vary across languages and must be learned

● /st/ onset is acceptable in English, but not in Spanish

4



Gradient acceptability in phonotactics

Gradient well-formedness is often found in acceptability experiments. (e.g. Coleman & 
Pierrehumbert 1997, Albright 2009, Hayes et al. 2009, Daland et al. 2011)

● blick >> ?bwick >> *bnick >> **bzick (Albright 2009)

This motivated probabilistic models of phonotactics

(Hayes & Wilson 2008, Futrell et al. 2017, Mayer & Nelson 2020; cf. Gorman 2013, Kahng & Durvasula 2023)
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Why features?

Segmental generalizations often overlook sub-segmental properties

● b[+approximant] ([bj, br, bl]) is highly frequent
● No b[-approximant] 
● This explains why [bw] >> [bn] even though both unattested in English

This motivates sub-segmental representations such as phonological features.
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Traditional view of phonological features

● Universal: all languages described by same set of features
● Phonetically-based: reflect phonetic properties 
● Discrete: values are +, –, or 0
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● Input: training data (lexicon) + universal feature system

● Output: learned model
● The learning succeeds if the learned model predicts a probabilistic distribution 

that matches the acceptability of nonce forms.

1. Training data

Traditional view of phonotactic learning
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2. Universal feature system

berari
boka

pupabopa
pabarubo

…

(Hayes & Wilson 2008)



PHONOTACTIC 
LEARNING 

MODEL

2. Universal feature system

Traditional phonotactic learning with universal features
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1. Training data

berari
boka

pupabopa
pabarubo

…

3. learned model

*[-cont][-cont]: 4.3
*[+voice][+voice]: 3.4

…



Challenge: processes of unnatural classes

Many phonological classes don’t share phonetic properties. (Mielke 2008)
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Invent a new universal feature 
for every unnatural class? 



Our “Emergent” view of features

● Language-specific
● Learned or emergent
● Distributional: shared contexts (e.g. {v, s, g}/[-nasal]_) implies shared 

features; 

(Mielke 2008, Nazarov 2014, 2016, Archangeli & Pulleyblank 2018, 2022, Gallagher 2019)
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Distributional learning: continuous representations 

Distributional learning models produce continuous (real-valued) 
representations 

ta

ata

tata

atta

taa

Distributional 
learning

Training data

(e.g. Goldsmith & Xanthos 2009, Mayer 2020, Nelson 2022, a.o.) 12

Continuous representations



Distributional learning: continuous representations 

Distributional learning models produce continuous (real-valued) 
representations

ta

ata

tata

atta

taa

Distributional 
learning

how frequently 
it occurs 

following /a/

13(e.g. Goldsmith & Xanthos 2009, Mayer 2020, Nelson 2022, a.o.)

Training data
Continuous representations



Distributional learning: discretization

1. Clustering to produce classes (Goldsmith & Xanthos 2009, Mayer 2020)

2. Derive feature system from sets of classes (Mayer & Daland 2020)
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Induced classes Derived discrete feature 
system

Continuous representations



2. Universal feature system

Traditional phonotactic learning with universal features
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1. Training data

berari
boka

pupabopa
pabarubo

…

5. Learned 
model

PHONOTACTIC 
LEARNING 

MODEL



2. Continuous representations 3. Induced classes

PHONOTACTIC 
LEARNING 

MODEL

Phonotactic learning with derived discrete features
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1. Training data

berari
boka

pupabopa
pabarubo

…

4. Derived discrete feature 
system

5. Learned 
model



Correlation with phonetic distinctions

Learned distributional representations can reflect phonetic distinctions;

(Goldsmith & Xanthos 2009, Mayer 2020)

Perform comparably to phonetic features in phonotactic learning

(Nelson 2022)
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Challenge from discretization

● Too many steps
● Some information from continuous representations is discarded
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2. Continuous representations 3. Induced classes

PHONOTACTIC 
LEARNING 

MODEL

Phonotactic learning with derived discrete features
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1. Training data

berari
boka

pupabopa
pabarubo

…

4. Derived discrete feature 
system

5. Learned 
model



2. Continuous representations

PHONOTACTIC 
LEARNING 

MODEL

Another possibility
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1. Training data

berari
boka

pupabopa
pabarubo

…

3. Learned 
model

how?



ROADMAP

1. Phonotactic learning and features
2. A log-bilinear model of phonotactic learning (20 slides left!)
3. Model/feature comparison
4. Conclusions and future directions
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A log-linear model

22

In a log-linear (Maximum Entropy) model, the probability of an outcome x is



In a log-linear (Maximum Entropy) model, the probability of an outcome x is

A log-linear model

weight for first feature value of first feature
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𝜙: learned or engineered 

𝐰: learned from data

In Hayes & Wilson (2008): constraint weights constraint violations
by form x

A log-linear model
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In a log-linear (Maximum Entropy) model, the probability of a outcome x is



A log-linear model

In a log-linear (Maximum Entropy) model, the probability of a outcome x is

How can we make this conditional, so we can calculate the probability of a 
segment given context? e.g. 
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a segment a context



A log-bilinear model: overview

In a log-bilinear model, the probability of a segment x given context c is

A guides how to connect the features of c and x 26

In our model:     feature vector of context c         feature vector of segment x 

connector



A log-bilinear model: interaction matrix A

In a log-bilinear model, the probability of a segment x given context c is

Weight matrix Aij:  how likely a feature 𝜙i(x) co-occur with feature 𝜓j(c).

27A is learned by gradient descent to maximize likelihood of training data.



A log-bilinear model: interaction matrix A

In a log-bilinear model, the probability of a segment x given context c is

weight for first context feature
and first segment feature

value of first context feature value of first segment feature
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ROADMAP

1. Phonotactic learning and features
2. A log-bilinear model of phonotactic learning
3. Model/feature comparison (15 slides left!)
4. Conclusions and future directions
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Compatibility

Log-bilinear model is compatible to all types of featural representations;

We test the model using three types of featural representations

1. Discrete phonetic features
2. Continuous distributional features
3. Discretized distributional features
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Type 1: Discrete phonetic features

We use the feature specifications from Hayes (2009)

● Segment is either 1 or 0 for each feature-value pair
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log-bilinear 
model

Type 1: Discrete phonetic features
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2. Universal feature system

1. Training data

berari
boka

pupabopa
pabarubo

…

Hayes (2009)

3. Learned model



Type 2: Continuous distributional features

Dimensions: preceding and following bigram contexts (Mayer 2020)

Values: Calculated in two steps

1. Compute bigram probabilities using a smoothed bigram language model 
2. Convert probabilities to Pointwise mutual information (PMI):
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2. Continuous representations

log-bilinear 
model

Type 2: Continuous distributional features

34

1. Training data

berari
boka

pupabopa
pabarubo

…

3. Learned model



Type 3: discretized distributional features

Starting point: continuous distributional features

Steps:

1. Run clustering algorithm from Mayer (2020) to 
convert into classes

2. Run algorithm from to derive feature system that 
describes classes (Mayer & Daland 2020) 
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2. Continuous representations 3. Induced classes

log-bilinear 
model

Type 3: discretized distributional features

36

1. Training data

berari
boka

pupabopa
pabarubo

…

4. Derived discrete feature 
system

5. Learned model



Testing the models and featurizations on English onsets

Training data: English onset corpus from Hayes & Wilson (2008)

● 31,641 unlabelled onsets from CMU Pronouncing Dictionary (Weide et al. 1998)

Testing data: Experimental data from Daland et al. (2011)

● Likert ratings given to English nonce words with 48 different onsets by 48 
participants

● Broken down into attested, marginal (type frequency < 11), and unattested
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Model comparison

We also compare it against three other phonotactic learning models:

● Benchmark: Hayes & Wilson learner (Hayes & Wilson 2008)
● MaxEntGrams (Nelson 2022)
● Smoothed bigram model
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Model comparison

We also compare it against three other phonotactic learning models:

● Benchmark: Hayes & Wilson learner (Hayes & Wilson 2008)
● MaxEntGrams (Nelson 2022)
● Smoothed bigram model

See final paper 
for these results
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Training procedure

Log-bilinear model

● All three types of features
● Cross-validation done to select optimal hyperparameters

Hayes & Wilson learner (Benchmark)

● Discrete phonetic features and discretized distributional feature 
● Maximum of 300 constraints
● Default O/E threshold of 0.3
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Result: Kendall’s 𝛕 correlation
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Comparing the two
best models
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Future directions

New data and new patterns

● We found our model inherently predicts distance decay (Zymet 2015)

Fine-grained phonetic features (Mielke 2012)

The definition of ‘context’ is flexible

● We focus local context
● Could be be extended to different types of contexts
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Conclusion

❖ A log-bilinear model compatible with both continuous and discrete features
❖ A technique of learning featural representations from the distribution
❖ Finding: In several cases, models with continuous representations 

outperformed their counterparts
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Thank you!
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Q & A
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Discussion

The log-bilinear model with continuous features outperforms the same model with 
discretized features

● We lose relevant information when we discretize them
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Results

r = Pearson’s rho τ = Kendall’s tau
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What are “features”?

Usually: A discrete representational system we used to rationalize the internal 
structure of basic linguistic representation, such as phonemes. 

Some of them have phonetic underpinnings. However, the space of phonetic 
representations itself is a continuum. e.g. i—e. 

 Most previous phonotactic models require a prespecified feature file with 
segments corresponding values in discrete features.
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What are “features”?

But also: 

We can learn continuous representations from distributions: they function just as 
well as discrete representation, see Mayer (2020).

Proposals for continuous phonetic features (Mielke, 2012)

=> How would a phonotactics model work that operates natively over 
continuous features, without discretizing?
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Two types of research in computational phonology

1. Mathematical underpinning of phonological patterns
2. Modeling human performance

We are the second type
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Put discrete featural representation in a matrix

sonorant voice labial

p - - +

b - + +

m + + +
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Put discrete featural representation in a matrix

sonorant voice labial

p 0 0 1

b 0 1 1

m 1 1 1
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Open question: continuous phonetic feature? 

sonorant voice labial

p 0 0 1

b 0 1 1

m 1 1 1
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Put discrete featural representation in a matrix

#_l #_r #_n

p 1 1 0

b 1 1 0

m 0 0 0
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PMI

#_l #_r #_n

p 2.464 1.934 0

b 2.464 1.934 0

m 0 0 0
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