Stress Patterns in Intra-word Code-switching

Moldir Baidildinova, Connor Mayer, Gregory Scontras

University of California, Irvine

Speech Science Lab

This pilot study examines the phonology of intra-word switches in Kazakh-Russian, presenting an acoustic analysis from a production experiment.

We find evidence of convergence in word-internal switches, with hybrid patterns emerging from the interaction of stress placement (longer duration, greater intensity) and vowel reduction as a secondary effect of stress.

We also analyze this pattern within an Optimality-Theoretic framework.

Phonology of Intra-word CS

Intra-word code-switching is the phenomenon of combining the elements of different languages within a single word, for example:

English root + Spanish affixes (MacSwan, 2005):

(1) /it-eando/ eat-DUR "eating"

(2) /it-ará/ eat-FUT/3SG "will eat"

How do the phonological systems of two languages interact in intra-word code-switching? Does the phonology of L1 or L2 dominate? Or do hybrid patterns emerge?

- Stefanich et al. (2019) **note** mixed views on intra-word CS phonology and limited acoustic/experimental data.
- This study focuses on a specific case of Kazakh-Russian codeswitching.

Stress in Kazakh vs. Russian

Kazakh: final syllable is prominent (Mukhamedova, 2015) Acoustic correlates: duration

(McCollum & Chen, 2021) al.má - 'apple' al.ma.lár - 'apple-PL'

al.ma.lar.d**ə** - 'apple-Pl-ACC'

Russian: has lexical stress (Jouravlev & Lupker, 2014) duration & intensity & vowel quality (Chrabaszcz et al., 2014)

zá.mok 'castle' vs. za.mók 'lock' stra.ná 'country' vs. strá.ny 'countries' ko.le.só 'tire' vs. ko.lé.sa 'tires'

In a Kazakh-Russian CS context, Russian nouns with different stress patterns are often inflected with Kazakh suffixes:

(1) pól'za-men benefit-INST 'with benefit'

wall-LOC 'on the wall' (3) ópit-qa experience-DAT 'on experience'

(4) seló-ny village-ACC 'the village'

Does the addition of Kazakh suffixes to Russian stems affect the stress pattern?

Hypotheses

H1: Kazakh dominant. The stress switches to the last syllable (suffix).

H2: Russian Russian stems keep a Kazakh-style final the original stress. stress may also emerge.

H3: Hybrid stress. The dominant. Inserted Russian stress is retained;

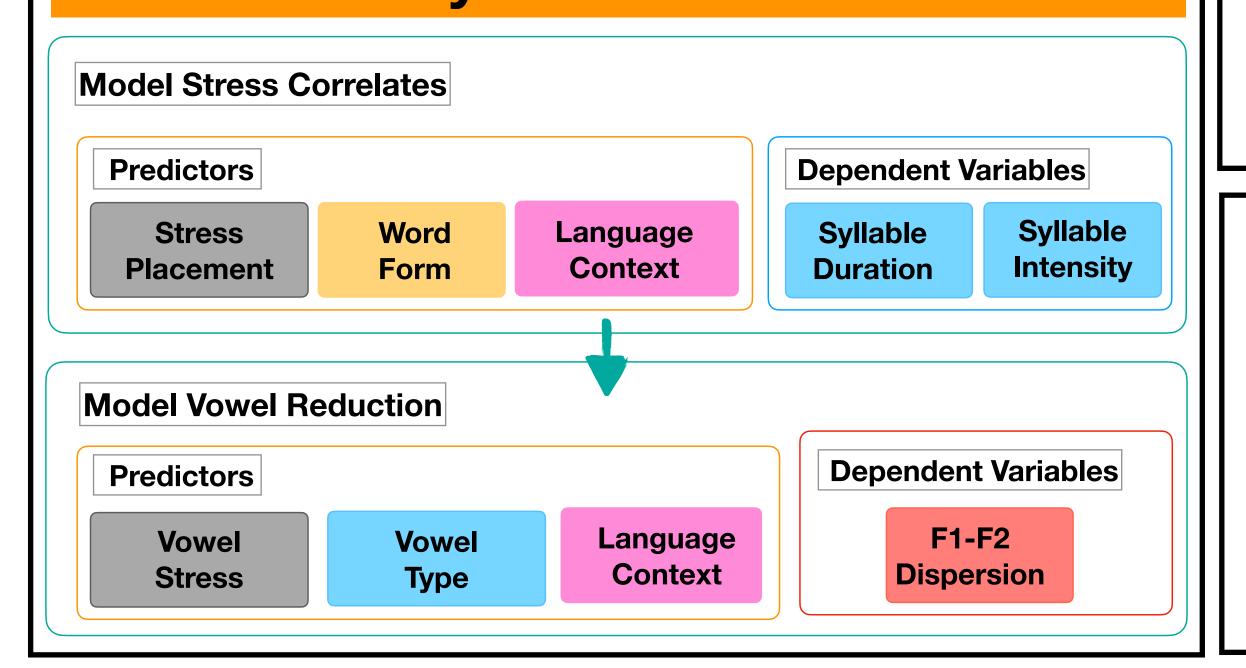
> /ópɨt/ + /qa/ /stená/ + /da/

[opɨtqa:] [stenada:]

[ópətqa] [stɛnáda]

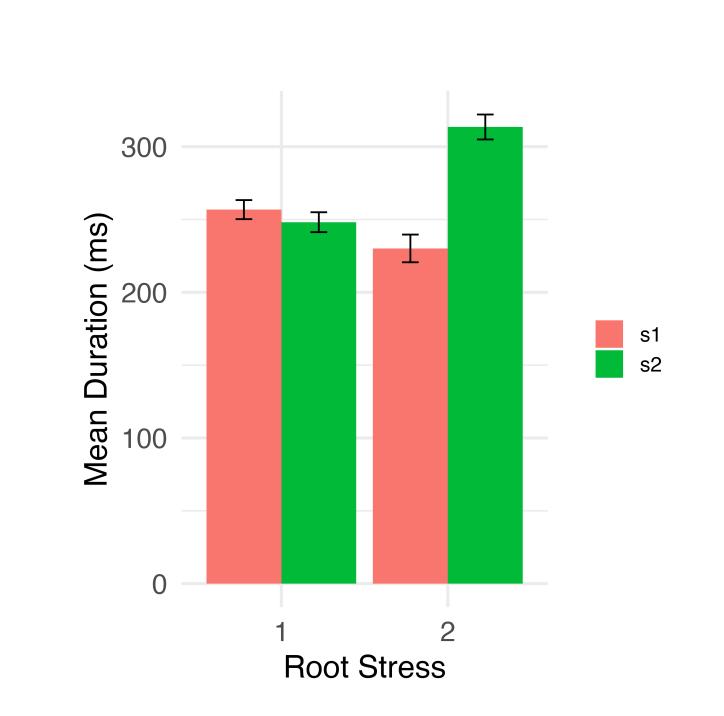
[ópətqa:] [stɛnáda:]

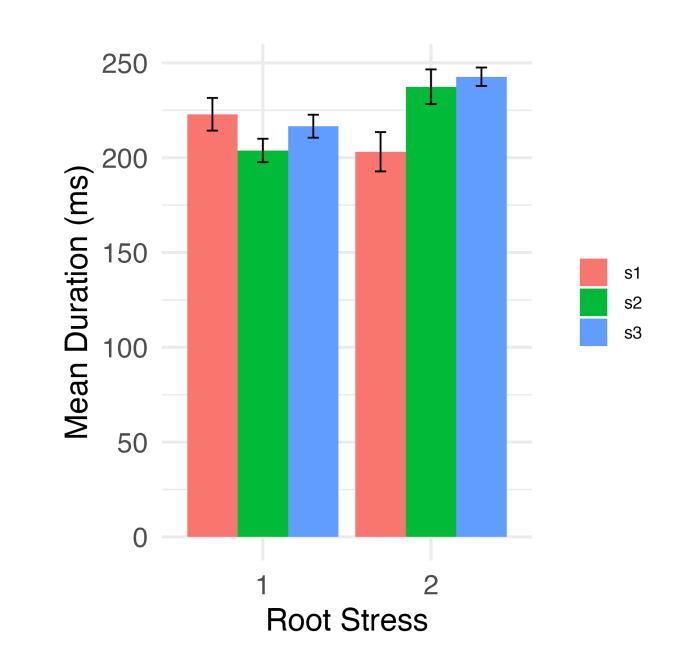
Production Experiment


Participants. 4 Kazakh-Russian bilinguals (2F, 2M), residing in Irvine, CA; Kazakh: native proficiency; Russian: understanding 10/10, speaking 9.5/10, reading 9.5/10 (*LEAP-Q*).

Stimuli. 40 disyllabic nouns (Kazakh & Russian), elicited in unsuffixed and suffixed forms.

Carrier phrase (Kazakh). Bul matinnin ishinde ____ sozi bar.


"This text contains the word ." Methods & measures. Syllables and vowels hand-annotated; extracted: syllable duration (ms), intensity (dB), pitch (f0); vowel formants F1 & F2.


Analysis Framework

Stress Correlates in CS: duration and intensity

We found that Russian stress remains fixed on the root (Figure 1 & 2), signaled most reliably by duration and intensity, while Kazakhstyle final lengthening is also present (Figure 2 & 3), illustrating a nuanced hybrid prosodic integration in intra-word CS.

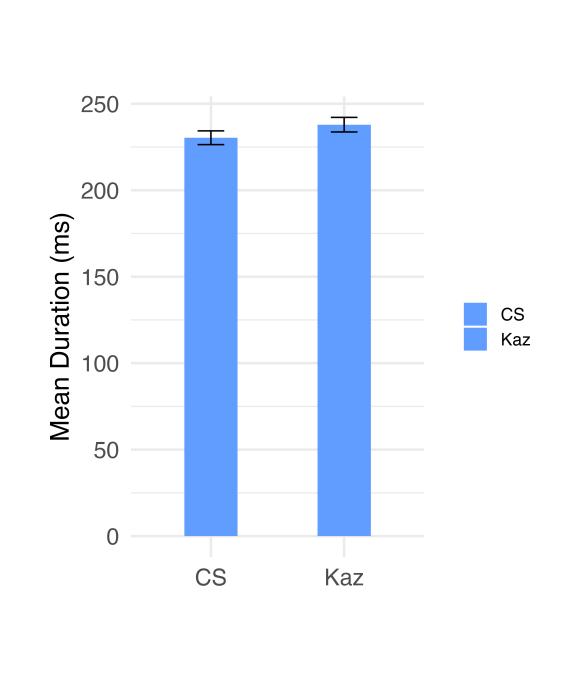
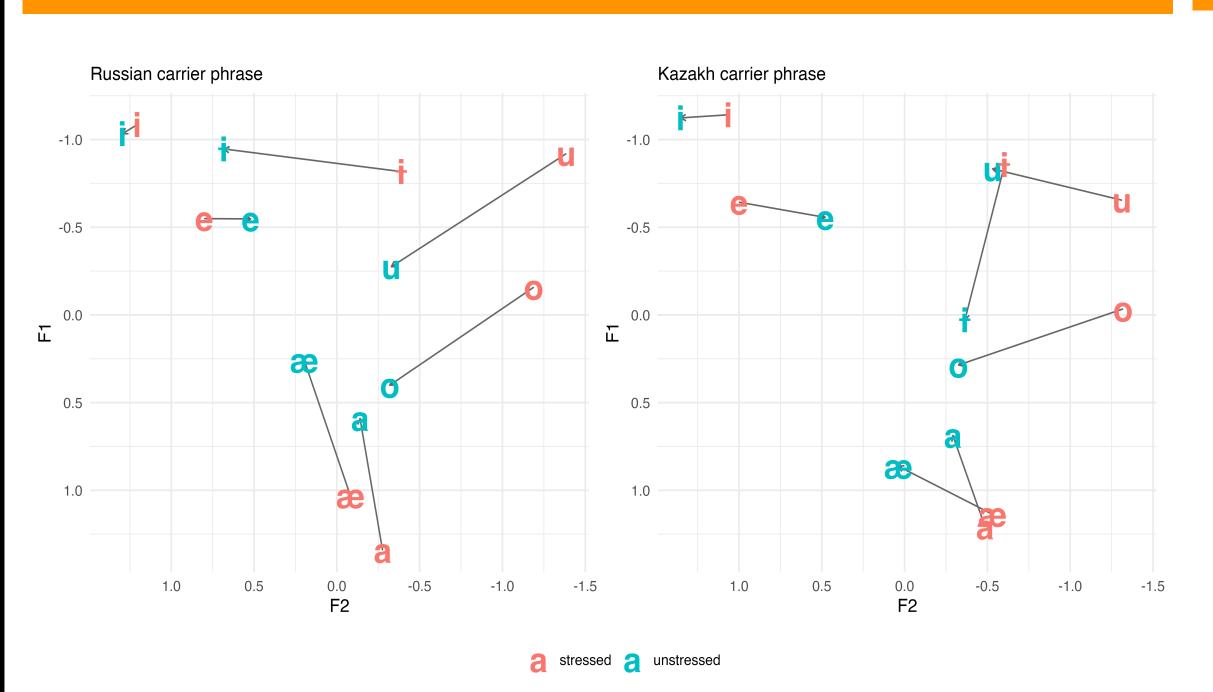
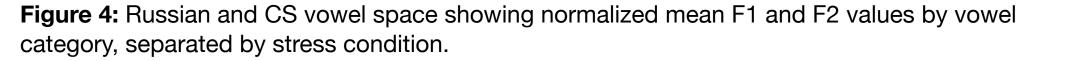


Figure 1: Mean duration in unsuffixed Russian tokens, plotted by root stress position (1 = stress on s1; 2 = stress on s2).


Figure 2: Mean duration in suffixed CS tokens, grouped by root stress position (1 = stress on s1; 2 = stress on s2).


Figure 3: Mean duration of the final syllable (s3) in suffixed Kazakh (non-CS) and CS tokens.

Russian stressed syllables are significantly longer than unstressed ones in both unsuffixed and suffixed CS tokens. The same pattern holds for **intensity**: stressed Russian syllables show higher intensity in both conditions.

There is **no significant difference** in the **duration** of final syllables (s3) in suffixed non-CS and CS tokens; the same holds for intensity.

Vowel Reduction in Russian vs CS

- Vowel reduction occurs in both Russian and code-switched CS **tokens** (Russian: $\beta = -0.22$, p < .001; CS: $\beta = -0.29$, p < .001).
- Russian stress is characterized by vowel quality: unstressed vowels undergo reduction (Crosswhite, 2000; Padgett & Tabain, 2005).
- Vowel dispersion was measured as Euclidean distance from the center of each speaker's F1-F2 vowel space (Wright et al., 2004).

Context vs Stress

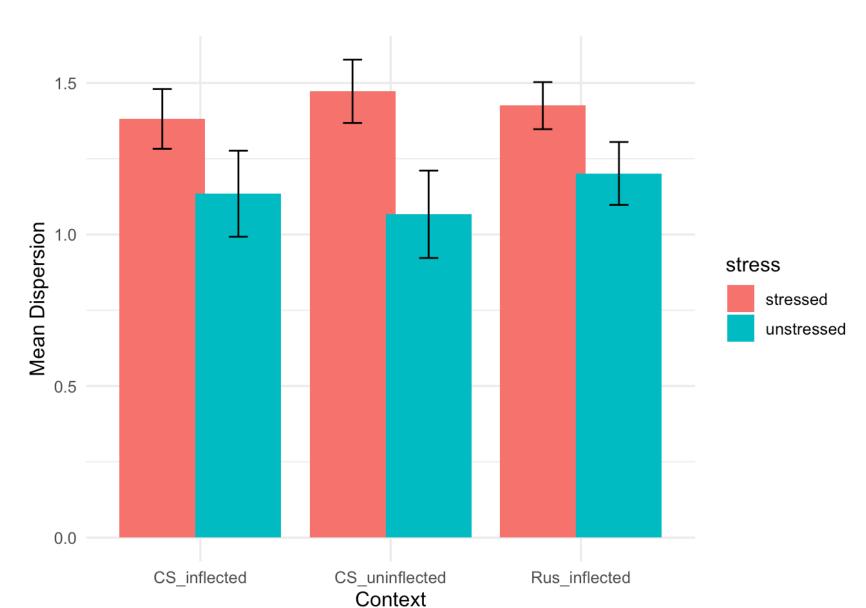


Figure 5: Mean dispersion for stressed and unstressed vowels by context.

- Context (CS vs. Russian) did not significantly affect vowel space distance, suggesting that phonetic realization is stable across monolingual (Russian) and mixed CS tokens.
- Significant stress effect: unstressed vowels had reduced dispersion vs. stressed vowels $(\beta = -0.26, p < .001).$

Phonological Analysis

Stratal OT for Kazakh-Russian Code-Switching (Kiparsky, 2000)

Constraints:

<u>ID(Head-σ)</u> preserve stressed syllable; *FullV(root) ban full vowels in unstressed root syllables; ID(root) root faithfulness; AGREE Kazakh vowel harmony; *Struc(Ft) avoid extra feet.

Cycle 1: Russian stem (/ópit/):

Ranking: $ID(Head-\sigma) \gg *FullV(root) \gg ID(root) \gg *Struc(Ft)$ \rightarrow [ópət] (stress preserved; σ 2 vowel reduced).

Cycle 2: Kazakh word-level (/ópət/ + /qA/):

Ranking: $ID(root) \gg AGREE \gg *Struc(Ft) \gg ID(Head-\sigma)$ → [ópətqa] (root unchanged; suffix harmonizes; no new stress).

Post-lexical:

FINAL-LENGTHENING {**DUR+**} → [**ópətqa**x]

lengthening only; no phonemic vowel length in Kazakh.

Cycle 1: Russian

/ óp i t/ 'experience'	ID(Head-σ)	*FullV(root)	ID(root)	*Struc(Ft)
☞ [ópət]			*	*
[ópɨt]		*!		*
[opɨt]	*!	*		*
[opɨt]	*!	**	9	
[opət]	*!	*	*	

Cycle 2: Kazakh

/ ópət / + / qA /	ID(root)	AGREE	*Struc(Ft)	ID(Head-σ)
'on experience'	NW .0410		, , , , , , , , , , , , , , , , , , , ,	0.0000
☞ [ópətqa]			*	
[opətqa]	*!			*
[ópətke]		*!	*	
[opétqa]	*!		*	*
[opətqá]	*!		*	*

Post-lexical: FINAL-LENGTHENING {DUR+} → [ópətqa:]

Selected References:

Chrabaszcz, A., Winn, M., Lin, C. Y., & Idsardi, W. J. (2014). Acoustic cues to perception of word stress by English, Mandarin, and Russian speakers. Journal of Speech, Language, and Hearing Research, 57(4), 1468–1479. Crosswhite, K. M. (2000). Vowel reduction in Russian: a unified account of standard, dialectal, and 'dissimilative' patterns. University of Rochester Working Papers in the Language Sciences, 1, 107–172. Jouravlev, O., & Lupker, S. J. (2014). Stress consistency and stress regularity effects in Russian. Language, Cognition and Neuroscience, 29(5), 605-619. Kiparsky, Paul. 2000. Opacity and cyclicity. In S. Inkelas & K. Hanson (eds.), The Nature of the Word: Essays in Honor of Paul Kiparsky, 161-183. MIT Press. MacSwan, J. (2005). Codeswitching and generative grammar: A critique of the MLF model and some remarks on "modified minimalism". Bilingualism: Language and Cognition, 8(1), 1–22. McCollum, A. G., & Chen, S. (2021). Kazakh. Journal of the International Phonetic Association, 51(2), 276–298. Mukhamedova, R. (2015). Kazakh: A comprehensive grammar. Routledge. Padgett, J., & Tabain, M. (2005). Adaptive dispersion theory and phonological vowel reduction in Russian. Phonetica, 62(1), 14-54. Stefanich, S., Cabrelli, J., Hilderman, D., & Archibald, J. (2019). The morphophonology of intra-word codeswitching: Representation and processing. Frontiers in Communication, 4, 54. Wright, R., Local, J., Ogden, R., & Temple, R. (2004). Factors of lexical competition in vowel articulation. Papers in Laboratory Phonology VI, 75–87.

In intra-word CS,

Russian stress is preserved

while **Kazakh-style** final **lengthening** applies.