The effect of language proficiency on patterns of epenthesis by Persian learners of English

Noah Khaloo - University of California, San Diego Connor Mayer - University of California, Irvine

Research Question(s)

What are the underlying mechanisms behind the observable patterns of L1 and L2 epenthesis. Specifically, how to explain:

- frequency of epenthesis in different contexts
- location of epenthetic vowel within an utterance

<u>Specific question</u>: What does the interaction between language proficiency and epenthesis patterns tell us about these mechanisms?

Vowel Epenthesis

The insertion of a vowel that is not present in the underlying representation of an utterance (Hall 2011)

Commonly used in L2 acquisition to repair complex onsets that are not present in L1

Asymmetric patterning of L2 epenthesis

Anaptyxis: The placement of the epenthetic vowel *within* the consonant cluster

 $(\text{pliz/ 'please'} \rightarrow [\text{pe.liz}])$

 Typically occurs within obstruent + sonorant clusters (Fleischhacker, 2001) Prothesis: The placement of the epenthetic vowel *before* the consonant cluster

 $(/stap/ 'stop' \rightarrow [estap])$

- Typically occurs before sibilant + C clusters (Fleischhacker, 2001)

This asymmetry can be thought of as a reflection of 'splittability'. How likely is it that particular onset can be split, and what are the mechanisms behind this?

What drives 'splittabilty'?

Sonority: roughly loudness, openness, resonance (Clements 1990)

High sonority

glides liquids nasals fricatives stops

4 3 2 1 0

Complex onsets can be defined in terms of *sonority deltas*

- Difference between sonority of second and first sounds $\Delta(/st/) = -1$ $\Delta(sn) = 1$ $\Delta(/\theta_I/) = 2$ $\Delta(/pl/) = 3$

Sonority-based theoretical accounts

Onsets with larger sonority deltas are less marked and more splittable (Singh 1985)

/sC/ (marked onsets with lower sonority deltas) are represented as single, complex segments, and can't be split (Broselow 1987, 1992, 1993)

'Splittability' follows from an innate preference for a drop in sonority across syllable boundaries (Gouskova 2001)

Phonetically-based accounts

Perceptual distance: Location of the epenthetic vowel occurs due to **minimization of perceptual distance** between input and output representations (Fleischhacker, 2001)

- E.g. [epliz] for 'please' would be more perceptually 'damaging' than [peliz]

Articulatory: Clusters that aren't very splittable require more precise coordination between articulators, requiring tighter timing restrictions (Hall, 2003)

- sC clusters show **greater gestural overlap** and less variability than other CC clusters (e.g. Pouplier et al. 2022) thus making them harder to be split

Epenthesis usage amongst native speakers of Persian

Native persians who have learned English as their L2 tend to follow the following pattern of epenthesis usage: əST, əSN, əSL, TəR (e.g., Fleischhacker, 2001)

Examples:

- /skul/ 'school' → [eskul] (prothesis)
- /brɪŋ/ 'bring' → [berɪŋ] (anaptyxis)

Why research this topic?

- L2 speakers' epenthesis rates decline with increased proficiency (Yazawa et al. 2015). This research does not consider the different types of epenthesis.
- Unmarked complex onsets (SSP abiding) are repaired less frequently by L2 learners (Carlisle 2001)
- It has also been shown that unmarked onsets are more easily acquired than marked clusters by children (Geirut 1999)
- Is the rate of improvement for anaptyxis and prothesis in L2 speakers the same? Do we acquire all complex onsets at the same rate?

Hypothesis

 Considering the patterns of epenthesis amongst Persian English learners, we predict that as L2 (English) proficiency rises, rates of anaptyxis use decline at a faster rate than do prothesis rates

 For example, we predict that a low-proficiency speaker might use both anaptyxis and prothesis in their respective contexts (see slide 5), while a more proficient speaker might only use prothesis and be able to successfully produce obstruent + sonorant onsets without repair

Data Collection

https://accent.gmu.edu/ (Speech Accent Archive)

32 pre-recorded Persian natives who have learned English as a second language reading a passage

language/speakers atlas/ regions native phonetic inventory

Biographical Data

birth place: ghasreshirin, iran (map) native language: farsi other language(s): kurdish dari pashto german age, sex: 37, male age of english onset: 12 english learning method: academic english residence: usa length of english residence: 10 years

0:00 / 0:32 farsi13 Elicitation Paragraph:

Please call Stella. Ask her to bring these things with her from the store: Six spoons of fresh snow peas, five thick slabs of blue cheese, and maybe a snack for her brother Bob. We also need a small plastic snake and a big toy frog for the kids. She can scoop these things into three red bags, and we will go meet her Wednesday at the train station.

blue = potential areas for this generalization red = actual areas for this generalization

Phonetic Transcription:

[phlis khal šstela æsk har tu bain dis θĭŋs wid hơ fiam do stoi siks əspunz αν fief snou pis faiv θik slæbz λy blu t∫iz æn meibi ε snæk for ha braða bob' wi olso nid' e smal phlæstik ssneik ænd ə big` tʰɔɪ fɹag fɔɹ də kɪḍs ʃi kæ̃n ðskup' ðis θĭηs intu θzi æd' bægs æn wi wil gou mit hæ wenzdei æ da tiein asteisan]

Generalizations about

Consonant:

Vowel:

Syllable Structure:

Clear

Statistical analysis

For this study, we recorded each instance of a disegmental onset produced by each speaker Statistical analysis using *multinomial mixed effects logistic regression*

<u>Dependent variable</u>: *Epenthesis type* (none, anaptyxis, prothesis)

Independent variables:

- Sonority delta
- Age of English onset

- Presence of preceding vowel
- Cluster identity (/sn/, /pl/, etc.)

Random intercepts for *speaker* and *word*

Results (sonority delta)

Overall rates of epenthesis decrease as sonority delta increases

- Relative rate of anaptyxis increases
- Relative rates of prothesis decreases

Results (onset age)

Higher English onset age corresponds to higher rates of both anaptyxis and prothesis

Results (onset age)

As **age of onset** goes up, a greater proportion of total epenthesis use is **anaptyxis**

- Not quite significant, but close!
- Trending in the expected direction

Discussion

Results confirm aspects of previous studies

- Onsets with low sonority deltas produce greater rates of epenthesis
- Onsets with low sonority deltas prefer prothesis
- Epenthesis rates decrease with language ability

New finding

More adept speakers improve at clusters where anaptyxis is used (obstruent + sonorant onsets) faster than clusters where prothesis is used (sibilant + C)

Not straightforwardly captured by perceptual account

- Accounts for position of epenthesis but not difference in learning rates

Consistent with articulatory account

- Contexts where anaptyxis occurs require less precise coordination and timing to produce, potentially making them easier to acquire
- Contexts where prothesis is used have greater degrees of gestural overlap and more precise timing, potentially making them harder to acquire

Limitations and further study

Speaker proficiency is not well-balanced in the corpus

- Most speakers learned English early
- Onset age is a coarse measure of proficiency

We are collecting new data from Persian English learners

- Sample a wider range of onset ages
- Assess participant language proficiency using LEAP-Q (Blumfield & Kaushankaya 2007)

Goal: collect richer data that we can use to confirm observations from corpus, and gain greater insight into the acquisition of complex onset clusters

Appendix Slides

Minimization of perceptual distance

- Fleischhacker (2001) proposes that the placement of the epenthetic vowel within loanwords is dependent on the minimization of perceptual distance between input and output representations
- She proposes the following hierarchy using the DEP-V/X_Y constraint that penalizes insertion of a vowel that is not present in the input representation:
- DEP-V/S_T » DEP-V/S_N » DEP-V/S_L » DEP-V/T_R
- "T", "R", and "S" represent the class of stops, resonants (nasals, liquids, and glides), and sibilant fricatives

Articulatory phonology

- Articulatory phonology is the idea that each segment has multiple articulatory gestures that are regulated by a phonological grammar (Browman & Goldstein 1986)
- In temporal order, the gestural landmarks are onset, target, center, release, and offset
- Hall (2003) proposes a general constraint, applying to all consonants, requiring alignment of C1's release to C2's target (/st/)
- She proposes a more specific constraint for obstruent-sonorant clusters requiring obstruent C1's center to be aligned with sonorant C2's onset, a configuration that results in an excrescent vowel (/pl/)
- least likely to trigger excrescent vowel most likely to trigger excrescent vowel:
- obstruents < glides, nasals (within which m < n) < r < l < , < gutturals

Statistical analysis

Statistical analysis using multinomial mixed effects logistic regression

- Multinomial logistic regression: prediction over > 2 categorical outcomes
 - o Here three possibilities: No epenthesis, anaptyxis, prothesis
- Mixed effects allows idiosyncratic variation across speakers/words to be incorporated into the model

Fit using the *brms* R library (Burkner 2017)

• We report 95% Bayesian confidence intervals rather than p-values

Results (preceding vowel)

A preceding vowel

- Decreases the likelihood of prothesis
 - o none vs. prothesis: β = -3.83, 95% CI = [-5.81, -1.42]

- No effect on likelihood of anaptyxis
 - \circ none vs. anaptyxis: β = -0.75, 95% CI = [-5.05, 3.51]
 - Trending in same direction as prothesis

Results (cluster identity)

Only two of the 12 clusters had significant effects

- /sl/ and /sn/ more likely to undergo prothesis than sonority delta predicts
- Previous studies of L2 learning find similar effects (TODO)