

SANSKRIT N-RETROFLEXION IS INPUT-OUTPUT TIER-BASED STRICTLY LOCAL

Thomas Graf¹ • Connor Mayer²

¹Department of Linguistics, Stony Brook University

• ²Department of Linguistics, UCLA

Subregular phonology and nati

- Segmental phonology is regular, but regular languages generate patterns unattested in natural language.
- Subregular phonology looks for subclasses of the regular languages that:
 - 1. Can generate natural language phenomena.
- 2. Generate only attested patterns.
- Provides a tighter typology, insights into learnability and computational universals of language [1].
- ➤ Sanskrit /n/-retroflexion, or *nati*, is subregular, but highly complex.
 - Cannot be handled by established classes like strictly local (SL) or tier-based strictly local (TSL).

Contribution: *Nati* can be captured by an extension of TSL: input-output TSL (IO-TSL), providing a tighter bound on the complexity of segmental phonology.

Input-Output Tier-based Strictly Local

- ► SL-*k* grammars require that strings do not contain any of a set of illegal k-grams.
- ► Handles local assimilation, word-final devoicing, etc.
- ► TSL-*k* grammars ban a set of *k*-grams, but candidate strings are first filtered by a projection function [2].
- ► The projection function erases certain symbols.
- ► Handles culminativity, long-distance harmony, etc.
- ightharpoonup IO-TSL-(i,j,k) grammars extend TSL-k by modifying the projection function (IOSL-(i, j)).
 - ► There is still a set of illicit *k*-grams.
 - \triangleright Consider a window of length i-1 around the symbol in the input string when choosing whether to project.
 - ▶ We can also look at the preceding j 1 symbols that have already been projected.
- ► IO-TSL grammars are sensitive to the structure of both the input and output when constructing a tier.

Relation to other subregular languages

- ► IO-TSL is conjectured to be a proper subset of the star-free languages.
- ► IO-TSL contains the TSL languages.

The *nati* pattern [3]

► Basic pattern: /n/ becomes retroflex [η] when preceded in the word by a non-lateral retroflex continuant.

No <i>nati</i>		nati		
kárm-er n a	'by desire'	na վ -eːηa	'by man'	
jorg-er n a	'by means'	manusi-erna	'by human'	

Coronal blocking: Coronals that intervene between the trigger and target block nati.

ų átʰ-e≀na	'by	chariot'	p ų a-ηi n arja	'lead forth'
gajud-eina	'by	Garuda'	υα ιη -a n aːnam	no gloss

Sonorant adjacency: The /n/ target must be immediately followed by a non-liquid sonorant.

byahman 'brahman' cay-a-n-ti 'wander (3PI)'

- Velar/labial blocking: Preceding velar and labial plosives can block *nati*, but only when:
 - ► They occur immediately before the target /n/; and
 - ► There is a left root boundary between target and trigger.

No blocking		Blocking		
υ ιτι α-√há η α	'Vrtra-killing'	p ₄ -√ax p -nox-ti	'attains (3s)'	
√ lug- ηá	'break (PP)'	p ₄ a-√b ^h a g-n a	'broken'	

- ► Retroflex blocking: *nati* is blocked when a retroflex occurs to the right of the target, but only when there is:
- ► A left root boundary between target and trigger.
- ► No coronal between /n/ and the blocking retroflex.

No blocking		Blocking		
p ₄ a-√ηe ₁ -t ₄	'leader'	p ₄ a-√nakş-	'approach'	
$\sqrt{p_4-\eta_a-k-s_i}$	'unite (2s)'	p ₁ a-\/n ₁ t-	'dance forth'	

Formal analysis

Nati is (3,2,3)-IO-TSL.

- ► I-TSL projects symbols that matter in a specific context.
- ▶ O-TSL omits segments that do not affect grammatically given what we already know about the string.
- ► Only a bounded number of symbols form a "nati zone" on the tier, so these can be regulated by k-grams.

R: Retroflex triggers S: Non-liquid sonorants P: Labial and velar plosives C: Coronals

Projection function:

- ► Always project *R* (*IOSL*-(1, 1))
- Project S if it is immediately preceded by [n] in the input (*IOSL*-(2, 1))
- ▶ Project $\sqrt{}$ if the previous tier symbol is R(IOSL-(1,2))
- ightharpoonup Project \dot{P} if the previous tier symbol is $\sqrt{\ }$ and the next two input symbols are [n] and S (IOSL-3, 2))
- ▶ Project *C* if previous tier symbol is R, $\sqrt{\ }$, or S, unless C is [n] and next input symbol is $S(IO\dot{S}L-(2,2))$

Banned substrings:

 \blacktriangleright \sqrt{SX} (where X is \ltimes , C, or S) ► RS

Example	Tier	Forbidden substring	Example	Tier	Forbidden substring
na _l e _x ηa	aįηκ	_	√≀ugná	√uk	_
*na _l ezna	а≀ак	Įа	*√ ₂ ugná	ιάκ	_λ á
p _l aninarja	ιηaκ	_	p _i a√ηext _i	√ηįκ	_
ca _l anti	ųtκ	_	*p ₄ a _√ next ₄	ų√extų×	√eːt
υ _λ t _λ a γháηa	ųtų√n×	_	/bainmanéisu	ίμεκ [']	<u>.</u>
*v ₄ t ₄ a√hána	ųtų√aκ	√a×	*/b / b / b / b / b / b / b / b	λę χέκ	λ éː
p _{l√} arpnorti	l√bort×		pia_/nakş	ړ√aş×	_

Discussion and future work

- ► IO-TSL is a natural upper bound on the complexity of nati when construed as a phonotactic constraint.
- ▶ But IO-TSL is too powerful (first-last harmony)
- ► Open questions: Is IO-TSL learnable? Is IO-TSL FO-definable? How can we restrict IO-TSL without losing empirical coverage?

Selected references

[1] Heinz, J. 2018. The computational nature of phonological generalizations. In L. Hyman and F. Plank, eds, *Phonological Typology*, Phonetics and Phonology, ch. 5, 126-195. Mouton De Gruyter. ● [2] **Heinz**, J. 2011. Tier-based strictly local constraints in phonology. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, 58-64. • [3] Ryan, K. 2017. Attenuated spreading in Sanskrit retroflex harmony. Linguistic Inquiry, 48(2):299-340.