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Short communication

Auditory evoked M100 reflects onset acoustics of speech sounds
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Abstract

Ž .Magnetoencephalography MEG was used to investigate the response to speech sounds that differ in onset dynamics, parameterized
Ž . Ž .as words that have initial stop consonants e.g., rbr, rtr or do not e.g., rmr, rfr . Latency and amplitude of the M100 auditory

evoked neuromagnetic field, recorded over right and left auditory cortices, varied as a function of onset: stops had shorter latencies and
higher amplitudes than no-stops in both hemispheres, consistent with the hypothesis that M100 is a sensitive indicator of spectral
properties of acoustic stimuli. Further, activation patterns in response to stopsrno-stops differed in the two hemispheres, possibly
reflecting differential perceptual processing for the acoustic–phonetic cues at the onset of spoken words. q 1998 Elsevier Science B.V.
All rights reserved.
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Hemispheric asymmetry in the processing of speech and
language is a well-documented phenomenon, and has led
to a general acceptance of the doctrine of left hemisphere
dominance for language. However, there is a fairly large
body of evidence suggesting that such asymmetries are not
uniform across all classes of linguistic computation
w x2,12,17 , including the perception of classes of speech

w xsounds 5 . For example, studies using the dichotic listen-
ing technique have shown that the right ear advantage
Ž .REA for verbal stimuli—which is taken to indicate left
hemisphere dominance—varies as a function of the class
of speech sound: stop consonants produce a REA while
vowels typically produce a smaller, less reliable REA
w x3,14,15 .

Most studies of speech perception using hemodynamic-
Ž .based neuroimaging methods e.g., fMRI, PET have con-

centrated on relatively coarse comparisons such as speech
Ž .vs. non-speech sounds e.g., tones, backwards words

w x1,4,18 , and not the within-speech contrasts relevant to the
present issue. It is worth noting, however, that these
studies have consistently shown bilateral activation of the
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superior temporal gyrus for speech and non-speech stimuli,
particularly in passive listening conditions, which is con-
sistent with the hypothesis that not all speech perception
processes are strongly lateralized.

The lack of obvious hemispheric processing asymme-
tries in auditory cortex for speech perception in studies
using hemodynamic-based methods does not imply that
asymmetries do not exist. It could be that speech percep-
tion asymmetries are evident on a temporal scale that is
not detectable using methods with a temporal resolution of
seconds to minutes. Neuroimaging methods such as mag-

Ž .netoencephalography MEG reflect neural activity on a
millisecond time scale and thus may be better suited to
capturing rapid and transient effects. Two MEG studies are

w xrelevant. Poeppel et al. 10 evaluated hemispheric asym-
metries in the auditory evoked M100 component using
synthesized stop consonant CV syllables. M100 latencies
in the left hemisphere for stop consonant syllables tended
to be longer than those in the right, raising the possibility
that the two hemispheres are treating speech stimuli differ-
ently in some way. In that study, however, only stop
consonants were used and the paradigm tested selective
attention, so there is no information about how speech
sounds with different onset dynamics may be processed in

w xthe two hemispheres. Kuriki et al. 6 used MEG to
examine the response to different types of speech sounds.
The M100 latencies to stop consonants were shorter than
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for other types of speech sounds as measured over the left
hemisphere, suggesting that onset dynamics of speech
sounds are reflected in the M100 response. Unfortunately
for present purposes, they did not record from right hemi-
sphere sites, again leaving open the question of whether
there might be hemispheric differences in the response to
different types of speech sounds. A more complete exami-
nation of within- and across-hemisphere processing is
needed in order to fully assess the time course of process-
ing asymmetries for different speech cues.

We used MEG to investigate hemispheric processing
asymmetries in the perception of speech sounds that differ
in onset dynamics, parameterized as individually-presented
words with initial consonants that are stop consonants
Ž . Ž .e.g., rbr, ‘stops’ or not e.g., rfr, ‘no-stops’ . If the
cues that occur at the onset of initial consonants provided
the basis for processing asymmetries found both in behav-
ioral and neuroimaging studies, then we might expect to
see hemisphere differences in auditory evoked neuromag-
netic responses that vary as a function of the speech onset
properties. Of primary interest in this study, then, is whether
the response to stops and no-stops will differ in the two
hemispheres. Such differences would corroborate similar
effects demonstrated behaviorally.

ŽFive native English speakers four male, mean ages
.27.6 years participated in the experiment. Each gave

informed written consent; none reported any neurological
abnormalities or hearing loss. All subjects were strongly

w xright-handed 8 .
Ž .Forty single-syllable words duration;500 ms that

varied in initial consonant were presented in a passive
listening paradigm. Half of the words had initial stop

Ž .consonants ‘stops’: rbr, rpr, rdr, rtr, rgr, rkr ,
Ž .half did not ‘no-stops’: rfr, rlr, rmr, rrr, rsr but

were otherwise matched for form class, voicing, and rest-
of-word rhyme. Individual words were recorded by a male

Ž .speaker using SoundEdite16 Macromedia software and
were presented digitally. Each word was presented 10
times pseudorandomly for a total of 400 epochs of 1 s
duration each. Stimuli were presented binaurally at a com-

Ž .fortable listening level ;60–70 dB SPL using Ety-
motice ER-3A earphones and air tubes designed for use
with the MEG system. The frequency response of the

Ž .system was flat within"3 dB up to 1250 Hz, attenuated
by 10 dB at 3000 Hz, with a passband to 6000 Hz.

Neuromagnetic fields were recorded bilaterally using a
Žtwin 37-channel biomagnetometer system Magnes II, BTi,

.San Diego, CA in a magnetically-shielded room. Sensor-
arrays were placed over the superior temporal lobes.
Evoked responses to a 1000-Hz pure tone were evaluated
to determine if the sensor arrays were positioned to effec-
tively record the auditory evoked M100 field. Epochs of 1

Žs duration 100 ms pre-stimulus onset and 900 ms post-
.stimulus onset were acquired around each stimulus at a

sampling rate of 1041.7 Hz with a bandwidth of 400 Hz
and a 1.0-Hz high-pass filter.

The data were selectively averaged by stimulus condi-
tion for each hemisphere. Averaged waveforms were digi-
tally filtered using a high cut-off frequency of 40 Hz. The

Ž .root mean square RMS of the field strength across all 37
channels was calculated for each sample point. The M100
latency and amplitude peak served as dependent measures.
M100 peak was determined as the peak RMS value across
37 channels in the interval 80–150 ms. RMS values for the
M100 latency peak were computed and the peak amplitude
was determined as the maximum RMS value that best fit
the dipole subject to a single-dipole fit exceeding 0.97

Ž .correlation in the 10-ms interval "5 ms surrounding the
M100 latency peak.

All stimuli reliably elicited a M100 evoked field re-
sponse. Dipole fitting of the M100 and coregistration of
the dipoles to individual subjects’ MRIs showed that the
M100 response localized to the upper bank of the superior
temporal gyrus in both hemispheres, as has been observed

w xby many investigators 7,9,11,13 .
Ž . Ž .Latency. A 2 hemisphere by 2 consonant analysis of

Ž . Ž .variance ANOVA with M100 latency in ms as the
dependent variable produced a main effect of consonant

Ž .type F s20.942, ps0.01 , with stops producing1,4

shorter latencies than no-stops, but no effect of hemisphere
Ž .F s0.003, ps0.96 . However, there was a hemi-1,4

sphere=consonant type interaction which approached sig-
Ž .nificance F s4.785, ps0.09 : stops processed in the1,4

right hemisphere had shorter latencies than those processed
in the left, while no-stops in the left produced shorter

Ž .latencies than those in the right see Fig. 1a . Further
Ž .analysis showed that consonant type stopsrno-stops pro-

duced a highly reliable difference in the right hemisphere
Ž . ŽF s15.517, ps0.02 , but less so in the left F s1,4 1,4

.4.545, ps0.10 .
Ž . Ž .Amplitude. A 2 hemisphere by 2 consonant ANOVA

Ž .with M100 amplitude in fT as the dependent variable
Žproduced a main effect of consonant type F s12.462,1,4

.ps0.02 , stops produced higher amplitudes than no-stops
Ž . Žsee Fig. 1b , but no effect of hemisphere F s0.298,1,4

.ps0.61 . There was no interaction of hemisphere and
Ž .consonant type F s0.387, ps0.57 .1,4

The key issue addressed in this study was whether
hemispheric processing asymmetries would be found in the
M100 in response to words that differed in onset dynam-
ics. The results provide evidence for that asymmetry:
latency of the M100 component for no-stops was longer in
the right hemisphere than in the left and the latency
difference for stops vs. no-stops was larger in the right
hemisphere than in the left. Several additional findings are
of note: latency for stops was shorter than latencies for
no-stops in both hemispheres, replicating the findings of

w xKuriki et al. 6 for the left hemisphere and extending them
to the right, and latency for stops was longer in the left

w xhemisphere than in the right, replicating Poeppel et al. 10 .
The amplitude analysis revealed that stops produced a

larger response than no-stops in both hemispheres with no
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Ž . Ž . Ž . Ž .Fig. 1. a M100 latency mean and S.E. by hemisphere for stops and no-stops and b M100 amplitude mean and S.E. by hemisphere for stops and
no-stops.

interaction of hemisphere and consonant type. This sug-
gests that the activation levels were symmetric in the
hemispheres. The fact that we only observed hemispheric
asymmetries in latency and not amplitude may explain
why similar asymmetries have not been observed using
hemodynamic methods.

It remains to be determined exactly which stimulus
Ž .feature s are driving these effects, and what the underly-

ing processing mechanisms are doing. We can, however,
propose the following hypothesis: the overall difference in
latency to stops vs. no-stops reflects acoustic differences in
the onset dynamics of these two classes of stimuli—stops
contain more energy at onset than no-stops. That M100
latency is sensitive to stimulus amplitude differences has

w xbeen shown for tonal stimuli 16 and is now extended to
signal differences across speech sounds. The more pro-
nounced difference in latencies in the right hemisphere for
stops vs. no-stops may indicate that right hemisphere
auditory cortex tracks the acoustic variation more ‘di-

w xrectly’ than does left hemisphere auditory cortex 17 . Left
hemisphere auditory systems may reflect an analysis of
auditory stimuli based not solely on acoustic properties but

w xalso on the phonetic restructuring 3,15,17 or temporal
w xprocessing 4,14 mechanisms that have been proposed as

necessary for their decoding.
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