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Chicken Game!

Hawk-Dove Experimental Conditions 
Conditions Control Raphe PSI = 0.25 PSI = 0.75 Robot Sim 

A x x x 
B x x x 
C x x x 
D x x x 
E x x x 
F x x x 
G x x x 
H x x x 

Chicken Experimental Conditions 
Conditions Control Raphe Robot Sim 

A x x 
B x x 
C x x 
D x x 

 PROCEDURE 
•  8 participants 
•  Double blind study 
•  24 hour dietary modification pre-experimental day 
•  Drink amino acid shake w/ and w/o tryptophan 
•  2 experimental days separated by 1 week (7 days) 
•  Blood draw pre-consumption 
•  Blood draw 5.5 hours post-consumption 
•  Game playing 

• Elucidating the neurobiological basis 
for decision-making under competitive 
and conflicting situations is an 
important step towards understanding 
reciprocity, social cognition, 
cooperation, and competition [1,2].  

• Game theory has been successful in 
describing such social behaviors 
[3,4,5] and has been applied to the 
investigation of their neural bases 
[1,6,7,8].  

• The raphe nucleus, which is the 
source of serotonin in the central 
nervous system (CNS), may underlie 
cognitive control of stress, social 
interactions, and risk-taking behavior 
[9].  

• In studies of the neural basis of 
decision-making during games of 
conflict, subjects typically play against 
opponents with predetermined 
strategies.  

• The present study introduces a 
neurobiologically plausible model of 
action selection and neuromodulation, 
which adapts to its opponent’s strategy 
and environmental conditions [10,11]. 
The model is based on the assumption 
that dopaminergic and serotonergic 
systems track expected rewards and 
costs, respectively.  

• The model controlled both simulated 
and robotic agents playing Hawk-
Dove and Chicken games against 
subjects.  

• When playing against an aggressive version of the model, there was a 
significant shift in the subjects’ strategy from Win-Stay-Lose-Shift to 
Tit-For-Tat.  

• Subjects became retaliatory when confronted with agents that tended 
towards risky behavior.  

• These results highlight the important interactions between subjects and 
agents utilizing adaptive behavior. Moreover, they reveal 
neuromodulatory mechanisms that give rise to cooperative and 
competitive behaviors.   

• In previous studies, treatment with ATD has led to an increased 
number of defections in the Prisoner’s Dilemma [12] and more 
rejections of offers in the Ultimatum Game [13]. In contrast, we did not 
observe a decrease of cooperativeness in our subjects due to ATD, but 
rather the emergence of a significant shift in strategies based on 
opponent type.  

• It may be that iterative interactions with a responsive, adaptive agent 
outweighed the effects of ATD in our human subjects. 

• Our study sheds light on how humans interact with others in 
conflicting situations and assists in the development of neural agents 
that can respond more naturally in human-robot interactions. Neural Agent Straights !
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Groups for Inferred Escalations!
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•  Three groups emerge for percentage of 

Escalations when tryptophan depleted (Tryp-) 
•   NC Group (Green) => no change in Escalation 

percentage 
•   Up Group (Red) => inferred increase in 

Escalation percentage 
•   Down Group (Blue) => inferred decrease in 

Escalation percentage 

•  Green => tryptophan depletion does not alter 
percentage of Escalations  

•  Red => tryptophan depletion results in greater 
percentage of Escalations 

•  Blue => tryptophan depletion results in 
decreased percentage of Escalations 

•  A hierarchical Bayesian Cognitive Model 
was utilized to explore the possibility of 
sub-groups within the subject pool. 

•  The model makes a general prediction 
about a subject’s base-rate amount of 
Escalations independent of tryptophan 
depletion by assuming the prior to be a flat 
Gaussian distribution. 

•  The model utilizes a Markov chain Monte 
Carlo (MCMC) approach to approximate 
the target distributions for the potentially 
different groups that result from changes in 
percentage of Escalations when tryptophan 
depleted.  
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Hierarchical Bayesian Cognitive Model 

μφ	  ~	  Gaussian(0,	  1)	  
σφ	  ~	  Unif(0,	  1)	  
φi	  ~	  Gaussian(μφ,	  σφ)	  
zi	  ~	  Bern(0.5)	  
σc	  ~	  Unif(0,	  1)	  
μu	  ~	  Gaussian(0,	  1)	  I(0, ∞) 
μd	  ~	  Gaussian(0,	  1) I(0, ∞) 
Ψu

ij	  ~	  Gaussian(μu,	  σc)	  
Ψs

ij	  ~	  Gaussian(0,	  σc)	  
Ψd

ij	  ~	  Gaussian(μd,	  σc)	  
dijk	  ~	  Bern(θijk)	  
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