Perception, 1982, volume 11, pages 557-576

Equation counting and the interpretation of sensory data
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Abstract. Many problems in biological information processing require the solution to a complex
system of equations in many unknown variables. An equation-counting procedure is described for
determining whether such a system of equations will indeed have a unique solution, and under
what conditions the solution should be interpreted as ‘correct’. Three examples of the procedure
are given for illustration, one from auditory signal processing and two from vision.

1 Introduction

Biological systems routinely make good use of their sensory data. How organisms
interpret patterns of sensory activity as events in the external world is the fundamental
problem of perception. What makes the problem difficult is that the mapping of
world events onto a sensor is typically many-to-one. A three-dimensional world is
flattened onto the retina; sounds from all directions are funneled into a single signal
of acoustic intensity varying with time. How might useful inverse mappings, from
sensory activity to world events, be discovered? In principle, there are an infinity of
interpretations of sensory events, Under what conditions can the correct interpretation
be found?

Our approach is to consider types of sensory data that can be formally related to
the external events that generated these data. For example, the image intensity of a
patch of surface as seen on a retina will depend upon the strength and position of
the illuminant, as well as the orientation and reflectance of the surface. The relation
between these external physical variables and the observed image intensity can be put
in the form of an equation (Horn 1977). On one side of the equation, there is only
the image intensity, which is known. On the other, there is a complicated function
of several external physical variables, the values of which are unknown. If the
observer wishes to know the value of one of these physical variables, say the surface
reflectance, then in some sense he must ‘solve’ this equation. Clearly with so many
unknowns only one such equation is not sufficient to recover the reflectance. More
information must be sought to restrict the number of solutions. For example,
perhaps the observer can change his viewing angle to obtain another intensity
measurement which is related to the first in a known way, thereby obtaining another
equation. Or better yet, perhaps the orientation of the surface is known at some
position, from which one can deduce the illuminant direction. To make the problem
tractable, several such additional relations or equations must be found until the total
number of equations equals the number of unknowns. Only then is there a chance
that we can find a solution to the reflectance of the surface. This ‘solvable’ set of
relations or equations then expresses a minimum set of conditions required to ‘solve’
the perceptual problem. (Whether or not the perceptual device actually makes use of
this possible solution is a separate issue.) The technique of analysing a given sensory
problem in terms of such equations that relate ‘knowns’ to ‘unknowns’ is called
‘equation counting’.
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The paper begins with a rather simple example of equation counting, namely, the
detection of a narrow-band signal in noise. This problem involves only linear
equations, but still illustrates the general features of the approach and raises three
issues: (i) independence of the equations; (ii) constraints needed to yield a unique
solution; and (iii) whether this unique solution is indeed ‘correct’. We then
introduce a theorem by Bezout which is needed to place bounds on the number of
possible solutions to polynomial equations, as well as a Jacobian test for the
independence of these equations. Finally, two other problem examples are given to
illustrate further details. One example concerns recovering structure from visual
motion; the other shows why three spectral samples are needed to distinguish
shadows from reflectance changes.

2 A classic problem
A problem faced by many animals is the need to isolate a narrow-band species-
specific signal from the background noise. Although examples may be found in
every sense modality, the clearest probably occur in audition. Consider the bird
listening to the call of its mate in the forest of other sounds, the dog perking his ears
at his master’s whistle, or the moth’s task of isolating the cry of the bat as it homes
in for its next meal. In each case the signal is confined to a relatively narrow band,
as illustrated in figure 1, whereas the competing noise is much broader. Given that
the frequency band of the signal is known (as it would be for the bird or the moth),
how many intensity samples must be taken to isolate the signal from the noise?
Clearly, by referring to figure 1, we see that sampling in the signal band at
frequency »y will not allow us to isolate the signal. More formally, the ear will receive
intensity /, at frequency v, equal to the sum of the power produced by each source:

I(v,) = S(v1)+N@y), )]

where S(v,) is the power of the narrow-band signal at », and N(»,) is the background
noise at the same frequency. Since only 7 is available to the listener, S and N cannot
be separated, for we have only one equation in two unknowns, S and N. More
generally, if we allow additional samples at time intervals t;, then equation (1) can
be generalized to

vy, 1) = Svy, 1)+ N(vy, i) (2)

Thus, for T time samples we will obtain T equations in 27 unknowns, which will not
permit a unique solution for S,

vy Va
Frequency

Figure 1. An illustration of 2 narrow-band signal against a background of noise. The noise is
broad-band with a constant time-averaged spectrum.
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Let us now make the obvious next step and consider frequency samples outside
the signal band. The frequency »; in equation (2) then becomes indexed to »;.
However, since the signal is zero outside the band at »,, S(v;, ;) = 0 for i # 1.
These conditions may be expressed as two families of equations:

I(Vi, tj) = S(Vi, tj)+N(Vi, t]), (33)
Sy, t7) = 0, i+ 1. 3b)

Let F and T be the number of frequency and time samples, respectively; then
there will be a total of F' x T equations of form (3a) and (F— 1) x T equations of
form (3b). The total number of equations is thus 2FT—T. Similarly, the total
number of unknowns will be FT for S and FT for N, or 2FT. In order to solve
uniquely for S, the minimum condition is that the number of equations £ equals
{or exceeds) the number of unknowns U:

L>U. €
For solution, equations (3a) and (3b) thus must pass the following inequality test:
2FT—T = 2FT, ®))
or
0=T

3

which fails since T2 1. Thus, regardless of the number of time and frequency
samples, a narrow-band signal cannot be extracted from the broad-band noise without
specifying further constraints upon either the signal or the noise.

2.1 Flat-noise condition

Very often noise is relatively constant over frequency (or time), for example the
hum of an air conditioner, a steady wind flow passing the body, or even body noise.
This condition can be expressed by the following relation:

N1, 1) = N, 1), (6)

where i # 1 and v, serves as the reference frequency. We now see that for a total of
F frequency samples equation (6) adds (F— 1)T equations but no more unknowns.
Applying the inequality test (4), we now find:

(2FT = T)+ T(F~ 1) > 2FT, %)
or

FT > 2T,
or

F>2. (8)

Thus, the minimum condition for a unique solution occurs for two frequency
samples at any temporal interval. If we ignore the time variable, equations (3a),
(3b), and (6) then become

1)) = S@;) +N@y),
;) = S(vy)+ Nwy), ©)
S(wy) = 0,

N(vy) = N(wy).
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We now have four equations in four unknowns, which allows us to solve for Sy),
given that the noise spectrum is flat.

2.2 Independence and uniqueness

Although two frequency samples plus the constraint of “flat noise’ yield the same
number of equations as unknowns, these equations must be shown to be independent.
Certainly we can reduce equations (9) to obtain an explicit solution for S(v,),
thereby demonstrating independence. However, in the more complex cases normally
encountered such a reduction is often difficult or may be impossible (for example if
fifth-degree polynomials are involved). We therefore seek a more general test for
independence,

In the above example the obvious test is to recast equations (9) so all the unknowns
are on the right-hand side (RHS) of the equality, and all the knowns are on the LHS.
Then the determinant of the coefficients of the RHS can be calculated. By Cramer’s
Rule we know that, if this determinant is not zero, then the equations have a unique
solution (Thomas 1951). To proceed, equations (9) are rearranged so the unknowns
are ordered in the sequence S(»,), N(»,), S(v,), N(v,) and are each aligned in their
separate columns on the RHS of the equality. Since there are four unknowns and
four equations, the matrix of the coefficients of the unknowns will be as follows:

1 1 00

0 0 1 1 10
0 010 (10)
0-1 0 1

The determinant of this matrix is easily found to be nonzero (its value is 1), and
hence the set of equations (9) must have a unique solution.
We now can proceed with confidence to find the following solution for S(»,):

Sw1) = I(v1) = I(v,). an

2.3 Corroboration and constraint

Unfortunately, any pair of sensory intensities I(v;} and I(v,) will provide a value for
S(v1). How do we know that the obtained value for S(vy) is indeed correct? Clearly,
if the noise stimulus is not flat over frequency, but varies as shown in figure 1, then
the solution for S(v;) will be wrong because the assumed condition does not hold.
Without some evidence supporting the flat-noise assumption, a meaningful
interpretation of the intensity values I(»,), I(v;) cannot be made.

Ideally, any assumed condition, such as the flat-noise condition, that is introduced
to match the number of equations to the unknowns should be a regularity in the
world or a ‘law’ that is never (or rarely) broken by nature. Such conditions are
difficult to discover, but when found and introduced into the system of equations
provide powerful constraints on the solutions (Huffman 1971; Waltz 1975). Often the
constraint may be a statistical regularity (Witkin 1980; Pentland 1980). Poor choices
for constraints are those conditions that are very narrow and restrictive and which do
not capture a very general property of the world.

In the case of detecting a narrow-band signal in flat noise the imposed condition is
very restrictive. However, some attempt can be made to verify the validity of
invoking this condition. For example, one possibility might be to examine other
frequencies to see if the relation N(v,) = N(v;) holds for a range of frequencies
outside the signal band. [Note that the solution for S(v1) should also hold.] If so,
then the chance that the flat-noise condition is invalid is reduced, although the




Equation counting and the interpretation of sensory data 561

uncertainty is never eliminated. Sampling at additional frequencies thus provides
some (weak) corroboration for the interpretation, increasing its likelihood. (In fact,
the condition assumed here has merely been replaced by another, less restrictive
assumption about the smoothness of waveforms.) Stronger forms of corroboration
will be discussed in later sections,

Finally, it should be noted that in cases where the imposed conditions are not
verifiable, the appropriateness of the condition can often be rejected quite easily,
For example, if S(v,) is found to be negative, then, since negative signals are not
physically realizable, the assumption must not be valid, This strategy of rejecting
certain conditions or possible states of the environment has been found useful
elsewhere (Rubin and Richards 1981).

3 Nonlinear (polynomial) equations

3.1 Bezout’s Theorem

In the above example all of the equations were linear, and simple techniques of linear
algebra could be used. What if one or more of the equations were quadratic or a still
higher-degree polynomial? In such cases, which are quite common, each nth order
polynomial will at most have n distinct roots. How many possible solutions will
there be if there are M polynomial equations of degree N? Can we even guarantee
that there will in fact be a finite set of solutions? If this cannot be guaranteed, then
the test that states that the number of equations E should at least equal the number
of unknowns U is not useful, and the simple equation-counting procedure collapses at
the onset. Fortunately, Bezout’s Theorem tells us under what conditions a finite set
of solutions can be found to N equations in N unknowns, and just what the
maximum number of solutions will be (Van der Waerden 1940).

Theorem (Bezout): A set of N independent polynomial equations in N variables will
have a maximum number of generic solutions equal to the product of the degrees of
the equations(!),

The above theorem is critical for our procedure because it states that if the relations
among the N variables can be cast as N independent polynomial equations (perhaps
by a change in the form of the variables), then there will be a finite set of isolated
solution points. Furthermore, we know the upper bound on the number of possible
solutions. (See Appendix II for a brief discussion of a generalization of Bezout’s
Theorem by Sard to include any set of smooth functions on manifolds.) For linear
equations it is clear that the product of the degrees of the equations will always be one,
and only one solution set will be found. For third-order equations, which may include
terms such as xyz, or ¥2z, the number of possible N-tuples of variables that satisfy
the N equations can be quite high. Among these is the physically meaningful solution
that we seek, provided our hypotheses are correct.

3.2 The Jacobian test

Bezout’s Theorem states that, in principle, N polynomial equations of any degree. can
provide a solution to N unknowns, if the equations are independent. In our simple
first example the determinant of the matrix of coefficients of the unknowns

was used to check for independence. More generally, the Jacobian of the set of
equations should be evaluated (Kendig 1977; Guillemin and Pollack 1974). The
Jacobian is formed by taking all N partial derivatives of each of the N equations
(9f,/0x,, 8f2/0x3, ..., 0fn/0x,), and placing these partial derivatives in an N x N

(D By a generic solution we mean that a slight perturbation in the values of the variables will not
alter the solution appreciably (as would be the case if the solution were the special case of two
circles just grazing each other rather than intersecting, for example).
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matrix, where the columns represent each unknown and the rows correspond to the
equations. Clearly, for linear equations, the Jacobian is simply the matrix of the
coefficients of the unknowns of each equation.

Jacobian test (for independence): 1If the determinant of the J acobian of the system
of N equations in NV unknowns is nonzero, then a countable set of isolated solution
points can be found.

This test is simply an application of the Inverse Function Theorem, which gives a
condition for a one-to-one and onto mapping between real variables, Note that if
the determinant of the Jacobian collapses to zero (by a loss of rank), then this is not
a proof that solution points cannot be found. The Jacobian test is therefore a test
for sufficiency, not necessity.

3.3 Summary of procedure

To apply the equation-counting method to the recovery of event descriptions from
limited sensory data we therefore proceed as follows:

(i) Set up polynomial equations describing the mapping of the external (unknown)
variables into the (known) sensory data.

(ii) Embody as many constraints as necessary in the form of additional polynomial
equations relating the variables in order that the total number of equations equals
the number of unknowns that are to be recovered, Whenever possible, choose
‘constraints’ that can be supported by the data. Those that capture a regular or
inconsistent property of the world are the best choice.

(iii) Apply the Jacobian test to demonstrate that the equations are independent.
Bezout’s Theorem then guarantees that there will be a finite number of solution
points. If the Jacobian test fails, try to discover new constraints. (See also section 5.5.)
(iv) Proceed to solve for the variables of interest. (We know of no simple heuristics
for this step.)

(v) Demonstrate that all constraints and conditions are valid. Usually this will involve
taking an extra, independent measurement and verifying that the same solution is
obtained. Some care must be taken with this step, however, as will be seen in the
examples to follow.

(vi) The sensory data may now be given a preliminary interpretation. However, a final
interpretation should await two further tests to be described subsequently. One is the
exclusion of competing interpretations, the other is corroboration by means of an
independent system of equations. (See section 6.)

4 Example 1: recovering structure from motion

The difference in visual impressions between a static scene and a dynamic movie is often
quite striking. Somehow the motion created by viewing a rapid sequence of frames will
transform an ambiguous 2-D shape into a vivid 3-D structure. Perhaps the most common
example of this phenomenon occurs when we walk, run, or drive and immediately know
the spatial configuration of the objects about us, regardless of whether we use two eyes
or one. Although Ullman (1979) has shown how the spatial relations may be recovered
from motion information in the general case, we wish to consider a simpler version of
the same problem that has a more compact solution: namely, given a person in
locomotion, how can he recover the orientation of the surface on which he walks?

Let the surface be covered with markings, or, for convenience, let a short ‘stick’ lie on
the surface patch of particular interest. Then if the observer looks at the center of the
stick as he moves ahead, the image of the stick as seen on his retina will rotate and
change length as shown in frames F1, F2, and F3 of figure 2. Because the stick lies in a
plane of fixed orientation relative to the moving observer, the orientation of the surface
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patch can be specified by the axis of rotation of the stick. The problem then is
equivalent to recovering the axis of rotation of a rotating rod seen by a stationary
observer.

Figure 2 illustrates the general form of this common problem. The stick or rod is
rotating in 3-D and is projected onto a single 2-D retina. Let each of these retinal
images be discrete time samples or frames as in a TV. Given only the three (or more)
ambiguous 2-D image frames F1, F2, F3, how can the axis of rotation of the rod be
recovered? This is a task that is solved easily by the human observer, although no
information other than the 2-D motion of the end-points of the rod is available
(Johansson 1975).

The inset to figure 2 shows the actual three-dimensional relation between the viewer,
the rotating rod, and the axis about which the rod is spinning. Note that the axis of
rotation (which defines the surface plane) can be any stationary vector and need not be
vertical nor parallel to the xy image plane, The problem is to recover the correct axis of
rotation (as well as the length of the rod).

axis of rotation
x, », 2)

A
Y Y
A
/ ‘image’ plane
'\
F1 X X
Y viewer
/ A
A
X
F2
Y

Al A

X
F3

Figure 2. A simple rod rotating in 3-D about its midpoint.

4.1 Rigid rod and rotation in a plane

Let the coordinate system be centered at the projection of the midpoint of the rod.
Then since the distance QA = OA', we need consider the motion of OA only. Let the
three-dimensional coordinates of end A be (x, ¥y, z,) for frame 1 and (x;, y;, z;) for
frame i. Then since the stick is a rigid rod, we have the constraint that the rod length

remains constant for any frame:
xi+yited = xt+yi+adl. (12)

For N frames the relation (12) will yield (N— 1) equations, each in two unknowns,
z, and z; (since x;, y; are observables in the image plane). So far we thus have
(N—1) equations in N unknowns.
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To embody the condition of rotation about a fixed axis, we note that the angle 6
between QA and its axis must remain constant. This can be expressed by forming
the dot product between the rod segment OA with the presumed axis of rotation, N:

OA; *N = cosd, (13a)

where the subscripted OA; indicates the 2-D projection of the 3-D length OA onto
the ith frame.

On letting the end position of the unit axial vector N have the coordinates xq, Yo,
zp, equation (13a) reduces to

Xi*Xotyi yotz;tzo=kcost, (13b)

where k = (x}+y?+z3)%.

But rotation in a plane requires that the angle # between the axis N and OA be
47. Hence, cosd = 0 and the value of k is irrelevant. For N frames relation (13b)
thus gives us N equations in three more unknowns: Xxg, yo, zo. However, because
the length of the rotation axis is irrelevant also, N can be taken as the unit vector
and we obtain the additional equation

x3+yi+zi= 1. (13c)

Altogether we thus have (N— 1)+ N+ 1 equations (E) in N+ 3 unknowns (U):
Z;, X0, Yo, Z29. (Note that all of these equations are polynomial.) The minimum
number of equations can then be determined from the relation £ = U:

IN > N+3, (14)
or

N>3. (15)

4.2 The Jacobian test

The next step is to demonstrate that the equations (12) and (13) form a set of
independent equations. We thus examine the Jacobian for N = 3 to see if its rank

is maintained. It should be recalled that x;, y; for i # O are given in the image plane;
the partial derivatives of z; in equation (12) for { = 2, 3 yield the first two rows of
the following matrix, while the remaining rows come from equations (13b) and

(13c) respectively:

(22, 2z, 0 0 0 O
2z, 0 -2z O 0 0
Zo 0 0 X1 W z,

(16)

0
0 0 Zg X3 Zs
0 0 0 2xy 2y, 2z,

Evaluation of the determinant by MACSYMA shows that it is generally nonzero.
However, certain relations between the variables may cause the Jacobian to drop
rank, Some of these failure conditions can be noted by factoring the determinant.
(Note that such failure conditions provide instances where any perceptual system
that interprets data in accord with the system of equations should also fail. The
factors thus provide example experiments for instant psychophysics.)



Equation counting and the interpretation of sensory data 565

4.3 Bezout’s Theorem and uniqueness

Although the sets of equations (12) and (13) are shown to be ‘independent’ by the
Jacobian test, Bezout’s Theorem tells us that we may have up to 26 = 64 possible
solutions. (This is the product of the degrees of the six equations.) Which of these
solutions do we pick?

- Fortunately, it can be shown by algebraic reduction of the six equations that of
these 64 possible solutions only two have real values—and one of these is simply a
‘reflection’ of the other about the image plane (Hoffman and Flinchbaugh 1982)
Thus, three snapshots or ‘frames’ showing the x, y positions of the end-points of a
rotating rod are sufficient to solve for the rod length and its axis. (The reflection
causes an ambiguity only in the direction of motion and orientation of the rod.) But
since any triplet of x, y positions will yield a solution, how do we know that the
measurements were taken from a rotating rod and not from a random set of points?
Clearly, if the solution is imaginary, that set of triplets can be excluded. Are there then
any real solutions that can arise from arbitrary triplets? If so, these triplets would yield
false solutions. However, the probability of such false solutions can be shown to be
zero (Hoffman and Flinchbaugh 1982). Nevertheless, as will be discussed below,
additional tests still must be performed before accepting an interpretation of the data.

4.4 Corroboration
In addition to the problem of isolating a unique solution point, it is also necessary to
show that the ‘unique’ solution is indeed plausible. (If the unique solution is not
physically realizable, it can be rejected immediately.) In the case of the rod rotating in
a plane about a fixed axis three frames (or snapshots) were sufficient to solve the six
polynomial equations and to obtain a unique solution for the length of the rod and its
axis of rotation. However, are we guaranteed that no other set of conditions could
generate the data? Clearly not, for if the simple rod rotation is simulated in the
laboratory on a TV monitor, then one obvious interpretation is that there are two
points moving on the face of the TV. (In fact, if reflections appear on the screen so
that strong 3-D cues are present, then the illusion of a rod rotating in 3-D is lost.)
Before a final interpretation is made it is therefore prudent to corroborate the
solution to increase the probability of a correct interpretation. This can be
accomplished by analyzing an independent set of data or hypotheses that are based
on entirely distinct physical constraints. (In the case of structure from motion,
stereopsis may be used.) When no corroboration is possible, it seems reasonable to
accept the interpretation that is most favored by the real-world statistics®™,

5 Example 2: interpreting shadows and highlights—hidden dependencies

Quite often when the equation-counting method is used the constraint equations
contain hidden dependencies that cause the Jacobian to drop rank and its determinant
to equal zero. There are two general procedures for handling this situation so that
an interpretation of the data can be made. The first is simply to introduce another
independent constraint, the second is to identify the dependency and to reduce the
number of physical variables accordingly. The disambiguation of shadows and
highlights illustrates these two methods,

) When algebraic reduction is not possible, a useful strategy is to generate data from several
known but arbitrary configurations, and by numerical evaluation determine if the correct solution
is obtained (Ullman, personal communication). Numerical evaluation is recommended in any case
as a further check for the isolation of solution points,

) In the rotating-rod case where the screen or reflections are not visible then, because there is no
contrary 3-D information, the 3-D interpretation will be accepted as most likely.
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Consider the very common situation in vision when two patches of surface A and
B appear superficially different. Do A and B differ because they have different
reflectances (albedos), or is one of the regions a highlight or a shadow on a surface
of uniform reflectance? These two interpretations are different, since when B is a
shadowed region the implication is that there is an object occluding the direct light
of the source, whereas in the highlight case the difference between A and B is due to
the specular properties of the surface and there is no cast shadow™, (If the darker
region around the highlight were to be regarded as shadowed, then 99 per cent of
the world would be interpreted as lying in shade!)

As shown in figure 3, let the observer view the surface from above, and let the
surface be illuminated with at least two sources of illumination—one producing direct
light, as from the sun, while the other source is diffuse, such as that characteristic of
the sky and clouds.

We proceed by noting that the only information available to the viewer is the
image intensities 7, /5 from the two regions A and B. For simple Lambertian
conditions, these image intensities will be the product of the strength of illumination
"and the reflectances of the surface material. Let the reflectance common to A and B
be R, , where the subscript X\ indicates R is a function of wavelength, and let S, be
the incident flux from the direct light of the sun and D, the flux arising from the
diffuse light from the sky, both of which are also functions of wavelength as
indicated by the subscript®. If a region is neither highlighted nor shadowed, then

\l/
T =D _ —
T /l\

sources

-y

A B
viewer
surface
region A region B

N >

I Iy [~=

1

|
lpag == ':' """ ‘ Ip,

[ 1

1 1

b A,

Wavelength

Figure 3. Direct and diffuse light illuminates the surface. Is region A a highlight or is region B in
shadow? Possible image intensities over wavelength are illustrated in the lower pair of graphs,

) Note that for this analysis we are ignoring other distinctive features of a highlight: (i) the
textural aspect of specularity, (if) its directional component which produces a disparity between
the two eyes, and (iii) that highlight edges are convex whereas shadow edges tend to be straight
or concave.

() A planar surface is assumed; the effect of surface orientation on the source illumination can be
considered incorporated into Sy and D,.
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the image intensity I will be given by
I= (S}\'I‘D)‘)R}\ (178.)

Equation (17a) thus describes the image intensity resulting from an unshadowed,
matte surface.

5.1 The highlight case
If region A is the same flat surface as region B, except that it has a highlight, then B
remains matte and I is defined by equation (17a). On the other hand, equation
(17a) will not apply to the highlighted region A, which acts like a partial mirror.
Some fraction f; of the image intensity I, arising from region A will be due to the
mirror-like properties of the surface, whereas the remaining fraction (1—fy) will be
due to the matte component (Evans 1948; Horn 1977).

The matte component of the image intensity of region A, Iy, is found simply by
multiplying the fraction (1 ~f4) by equation (17a) for a matte surface to obtain
(1 = fo)(Sx+D))Ry. The mirror-like or specular component of 7, is a bit harder to
characterize, for the direct source illumination S, will be seen only if the surface is
oriented such that the source light is reflected into the observer’s eye. Otherwise,
only a small component of the diffuse illumination will be seen, namely P, which
corresponds to the intensity of a particular surface patch that lies in the line of sight
as reflected off surface A. The total source illumination of A will thus be the
combination of Sy and P, (if different from S,), causing the mirror-like components
of Iy to be fiy(S\+Py). Therefore, the image intensity we expect from a highlighted
region A will be:

Iia = fu(S+ A)+ (1= )t DR, (17b)

where the first term on the RHS is the mirror or specular component and the second
term is the matte component of the highlight(®,

5.2 The shadow case

If region B is the same surface as A, but B is in shadow, then region B will be
illuminated only by the diffuse light D,. The effect of shadowing is thus to reduce
the illumination from (Sy\+D,) to Dy. Recognizing that shadows often have
penumbrae, we may let f; be the fraction of the direct illumination that contributes
to the shaded region. For shadow, therefore, equation (17a) may be modified as
follows:

Iy = (S DVRy, (18a)
which may be rewritten (for future reference) as
B = fs(F+ DR (1~ f)DARy. (18b)

For complete shade fy = 0 and the image intensity Jg, arising from region B is
described only by the product of the diffuse light times the reflectance. For no
shade fy = 1; and for penumbrae fg lies between O and 1.

5.3 Preliminary equation counting

When we first encounter an intensity difference between two regions in an image, we
have no prior knowledge of what caused this difference. In our simple example it
could be either a shadow or a highlight condition. To decide, one might be tempted
to create a more complex image-intensity equation that combines the effects of all
possible factors—including not only shadows and highlights, but also surface

(6)Note that the equation describing the highlight condition is similar to that used for transparency.
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orientations, transparency, matetial changes, or whatever. We would then proceed to
find enough image samples that would allow us to solve simultaneously for all the
variables in the expression.

Alternatively one might proceed in a more modular fashion, and seek more simple
expressions that characterize each physical process separately. Then fewer image
samples will be needed to solve for the variables. However, this latter, more modular
approach may run into difficulty when several physical processes occur together.

To explore briefly the trade-offs between these two alternatives consider first a
simple version of a more complex image-intensity equation, namely a surface that is
illuminated to create simultaneously both shadows and highlights. By combining
equations (17b) and (18a) we find that the image-intensity equation will have the
following form:

L = fa(fsSat P+ (1= f)(fsSh+ DRy, 19

where the subscript A indicates a wavelength dependency and fi; and fy are respectively
the highlight and shadow fractions, which are unknowns, as are Sy, B, Dy, and R,
Equation (19) thus characterizes a region that is shadowed and/or highlighted to
varying degrees, fg and fy respectively.

If I, fi, fs are now indexed to indicate the spatial region, we can apply the
standard equation-counting procedure to determine the minimum number of
wavelength and spatial samples needed to solve for the physical variables S\, Ry, Da,
fiu and fis in terms of the known [, and then attempt to determine whether the
solution for these physical variables implies a shadow or highlight.

Unfortunately, equation counting fails in this case. The Jacobian collapses (is
singular). The singularity is due to hidden dependencies in the set of equations of
the form (19), such as DR, which always occur together. The possibility of
encountering such dependencies increases as more and more physical effects are
combined together into one equation.

5.4 Eliminating dependencies
If a complex equation containing many variables is to be retained, then the most
obvious strategy for eliminating dependencies among equations is to search for other
independent relations or constraints. Often this may be difficult, and a more desirable
course is to try to reduce the number of unknowns by combining some of the
physical variables which are not critical to the interpretation. For example, if the
pairs fgSh and DR, occur together everywhere, then we must replace each pair by
another single variable, otherwise the Jacobian will always remain singular. (Incidently,
such paired variables should be phenomenally indistinguishable anyway, as in the more
familiar size-distance trade-off.) Such a reduction of variables need not affect the
ability to distinguish a shadow from a highlight.

In effect, by replacing paired variables by a single new variable we are reducing
an intractably complex expression to a simpler form that tests the relations of
interest more directly. This reduction may lead one toward the more modular
approach. For example, note that the shadow equation (18b), the highlight equation
(17b) or the combination (19) all have the same basic form [equation (20), below]
if the wavelength-dependent portions of the two terms of the RHS of the equations
are replaced by the new variables L, and M, (corresponding to the ‘lit’ and ‘matte’
contributions to the image intensity). We shall now show how such simple, more
‘abstract’ characterizations of the variables can still disambiguate shadows from
highlights, using the modular approach together with some simple extra constraints.
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5.5 Solving for the highlights

To allow us to introduce sufficient constraining relations to solve for a shadow or
highlight condition consider the view of two different abutting surfaces as shown in
figure 4. The choice of axes is such that the reflectances of each surface, R, and R,,
differ in the ¥ direction with the intensity gradient due to the shadow or highlight
decreasing in the X direction, as shown by the stippling. Samples of the image
intensities are taken at various positions on each side of the edge, as indicated by the
circles labelled Al, A2, B1, B2, etc. Is the brighter region a highlight on a darker
(unhighlighted, matte) region, or, alternatively, is the brighter region fully lit and the
darker region in shadow? Quite simply, is the change in the image intensity in the
X direction due to a shadow or to a highlight? For this two-dimensional case, the
highlight equation (17b) will assumne the following form:

Ixyan = fxLynt+ (L= fx)Mya, (20)

where Iy, is the image intensity corresponding to one of the regions Al, B1, Cl or
A2, B2, C2, and Ly, and My, are new variables corresponding to (Sy+A) or
(S\+Dy)R,, respectively. Note that, since only two wavelength variables L, and My
are involved along the X axis, these variables need to be indexed by Y only, where
Y corresponds to a surface (1 or 2). The remaining variables have an X index which
will be replaced by a sample position (A, B or C).

By simple equation counting it can be verified that the minimum number of
samples along X or Y and for \ will be respectively either 3,1, 3 or 3, 3, 1. (Note
that ¥ and A appear together and hence can be symmetrically indexed.) A further
reduction can be obtained by noting that region C1 or C2, etc is always matte, and
hence fc is zero. Thus Ioyy = Myx. The minimum for X, Y, A is then 3, 1, 2 or
3, 2, 1, which corresponds to a set of six equations in six unknowns, The determinant
of the Yacobian of either system of equations is still zero, however.

To solve the equations we need to introduce one more constraint or reduce the
number of variables. For highlights an additional constraint can be added by noting
that the spectral composition of the purely specular component is independent of the
underlying reflectance Ry, R,. Thus along ¥, Ly = Ly, The minimum X, Y, A
samples are now X = 2, A = 1, Y = 2 (the symmetry between Y and A has been

Intensity gradient

Y

Figure 4. View of two surfaces with different reflectances R, and R,. The image intensity
decreases gradually in the X direction, as indicated by the stippling. Is the intensity decrease due
to a highlight on the left, or to a shadow on the right? Samples of the image intensities are taken
at various positions on each side of the edge, as indicated by the circles labelled, Al, A2, Bl, B2,

and C1, C2.
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removed by the specularity constraint), leading to the following equations:
Igy = fpLl+ (1 —fp)My:
Iy, = faly+ (1= fa)M,,
Icy = foLy+ (1 —fodMy, (21)
Iey = feLyt (1~ fedM,,
fe=0, Ly = Lo,

where the indexing is for Y only, since there is only a single-wavelength sample.
The Jacobian of the reduced set of the above equations obtained by substituting
Ll = Lz andfc = ( is:

Li~M f (1—-%) O

Li~-M fz O (1-fa) | _ _
0 0 1 0 = fsM, —My),
0 0 0 1

which is nonsingular provided M, # M, and f5 # 0.
Thus solutions can be obtained for f5, M;, M,, and particularly L,, the specular
component of the light reflected off the surface:

Ipaloy— Iy

L,= , 22a

' = Tor-Ion)~ Upr-Tom) (224)
. _Iei—Ip

1-fs —————101_102. (22b)

5.6 Solving for shadows by combining variables

Returning to figure 4, we may now reinterpret the regions Al, A2, B1, B2 in terms
of a shadow gradient in the X direction. (A penumbra will be needed for this
constraint, implying that the minimum number of spatial samples along X is three,
although only two will be used as in the highlight case.)

For shadows the equation (19) then has the same form as the first four equations
21), with L; = (S;+ D;)R; and M; = D;R;, where S and D are, respectively, the source
and diffuse light and R is the reflectance. Since for shadows L, # L, (ie there is no
spectral component superimposed on Al, A2, or B1, B2), an additional constraining
equation must replace this specular constraint. For illustration, we will introduce a
‘gray-world’ assumption, namely that the average of all surface reflectances (albedos)
is spectrally flat or ‘gray’. Hence the diffuse light D; is simply some fraction v of the
source light:

Dy = S, (23a)
and

M; = vSiRy, (23b)

L; = (1+v)S:R;. (23¢c)

Because S and R appear together in two of the above equations, they cannot be
solved for separately, and the Jacobian test will fail when applied to equations (23).
To eliminate this dependency define a new variable $* = SR. The shadow equations
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then become:
Is: = fa(1+y)ST+ (1= falySi = (fa+ 751,
Ips = fa(l+7)S3+ (1= fa)yS; = (fs+7)53,
Ter = ySi(= My),
Iea = 7S5 (= My),

(24)

with the four unknowns fg, v, S7, S2.
Unfortunately, the determinant of the Jacobian of this set of equations is still zero,
suggesting that dependencies are still present:

(fa+m) 0 s st
0 i 8 S
(otm S 5, @5)
Y 0 0 Sl
0 4 0 s

Rather than introduce a new constraint, we shall proceed to determine whether
any of the physical variables can be combined to reduce further the number of
unknowns. The most obvious choices are ratios or products of the entries in the
Jacobian array. These terms are the coefficients of the variables in the original set of
equations, and consequently are the factors that would be used to multiply two of
the equations to eliminate one variable. (In essence, we are exploring various
triangular forms of the matrix of rank one less than the original.) The appropriate
ratios are thus those between the rows in the same columns, because it is these
factors that will be cross-multiplied to eliminate the variable that is indentified with
that column of the Jacobian matrix. Thus the appropriate ratios of the above
Jacobian that should be explored first are (fg+v)/, which appear in columns 1 and
2, and S?%/8%, which appear in columns 3 and 4. Inspection of equations (24) shows
that the solution for these reduced variables is quite simple:

St _ Iy _Ioi _SiRy

L _ SRy 26
A SN (262)

o7y cm_ B (26b)

The extra solution for each paired variable now reveals the dependency -between
the image intensities that caused the rank reduction of the Jacobian of (24), namely the
relation

Inides = Icilma, (260)

which is common to both (26a) and (26b). If the gray-world condition applies and if
C(Y) is a shadow on B(X), then the shadow relation (26¢) will be true.

Unfortunately, there are an unlimited number of image-intensity values that will
satisfy the ‘shadow’ relation (26¢). How are we to be sure that they all correspond
to the shadow condition and not to a reflectance change or even a highlight? To
answer this question, we proceed in two stages. First we shall show that the shadow
solution (26) never will correspond to a highlight, and hence shadows and highlights
are at least disambiguated because their solutions are distinct. Then, we shall
illustrate how the probability of other confounding spectral relations such as different
materials can be set arbitrarily low by independent corroboration of the original
solution.
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6 Distinctness of shadow and highlight solutions (exclusion of competing
interpretations)

Our basic procedure to prove distinctness of the shadow S and highlight H solutions
will be to show that there is at least one relation between the four available image
intensities (Is;, gz, Tc1, Icy) that has different values for the shadow and highlight
conditions. These values will always be different (if the constraints are valid)
because the relation corresponds to two different physical variables (one for shadow,
the other for highlights) that have nonoverlapping values.

To proceed we ask first what highlight conditions satisfy the shadow solution (26).
(Subsequently we shall examine the opposite case—asking which shadow conditions
will ‘look like’ highlights.)™ We thus assume relation (26) holds and solve for one
of the highlight conditions. Consider equation (22a) that specifies the magnitude of
the specular components of the highlight. Note that the numerator is identical to the
shadow equation (26) if the LHS of equation (26) is subtracted from the RHS. In
this case, however, the numerator of (222) will be zero. Hence the shadow condition
requires that Lysecuiar = O and consequently there can be no highlight interpretation.
Thus, given that the shadow condition (26) holds, there will be no highlight
interpretation.

To check for the reverse case, namely under which conditions the image-intensity
relations for the highlight condition will also yield a shadow interpretation, we may
examine the second highlight equation (22b). In particular, we wish to solve for the
physical interpretation of the intensity relations of (22b) given a shadow condition.
This can be accomplished simply by substituting equations (24) into the RHS of
expression (22b). We find that, given the shadow conditions, then

Ipy~ Ipa — fB+7=fg
Ioy—1ca ¥ 0

+1. @27

Figure 5 now shows the possible values of the image-intensity ratio given by the
LHS of (27) for shadows and the RHS of (22b) for highlights.

We note that both f (the fraction of specularity or shadow) and +y (the fraction of
direct light), range between 0 and 1. Hence for highlights 1—7 must lie between 0
and 1, whereas for shadows 1+ f/y will be greater than or equal to 1. The only
common condition is when f = 0, which corresponds to a homogeneous matte area.
Thus highlights and shadows will never be confused from the image intensities
(provided the gray-world assumption is correct), if the calculation given by the LHS
of (27) is made. It is of some interest that this operation on image intensities is
equivalent to examining the output of the double-opponent color cell found in most
biological color vision systems (see Rubin and Richards 1981).

H S

0 a-n 1 Q4+
Figure 5. Solution space for shadow S and highlight H conditions.

6.1 Corroboration

Although the highlight H and shadow $ solutions are unique and distinct, it is still
possible that other properties of surfaces, such as pigment density changes or changes
in reflectances, could satisfy equations (22) or (25) and be misinterpreted as either a
highlight H or shadow S. Thus a shadow or highlight interpretation should not yet
be given to the solutions H and . To exclude all other possibilities is difficult (see
Rubin and Richards 1981, however). Nevertheless, the odds for an incorrect H or S

(M por another example treatment, see Ullman’s (1979) analysis of false targets for his structure-
from-motion theorems.
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interpretation can be reduced by applying an independent test for the validity of the
shadow or highlight equations. We call such a procedure ‘corroboration’.

One simple independent corroborative test is to note whether the equation-
counting procedure suggested more than one minimal condition for solution. In
particular, we noted in section 5.5 that equation (20) had a symmetry in wavelength
(\) and space (Y). We chose as a starting point one spectral sample and two samples
in the ¥ dimension. An independent test would therefore be to use two spectral
samples rather than one, and only one sample in the ¥ dimension. This case
corresponds to examining the gradients of a highlight, or the penumbra of a shadow. 1

A second and more common type of corroborating procedure is simply to take §
another set of measurements independent of the first, and determine whether the ¥
solutions for the physical constants remain the same or not. If they do not, then :

i
!
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the interpretation must be rejected. If they are confirmed, then the odds on a
misinterpretation are reduced. Ideally, the corroboration should be based upon
measurements taken from a physical dimension different from that used in the original
solution. In any case, since we are corroborating the value of a physical parameter,
the corroborating measurements must not be confounded with the dimensions of that ‘
physical parameter. In this respect the relation (27) that tests for the highlight or x
shadow condition is most satisfactory, for the values fy and v are dimensionless and
are not functions of wavelength, for example. For the shadow condition we thus ]
can take a third spectral sample Igs, Ics and substitute these image intensities for i
In,, Ic,. Since the physical constant (fg+v)/v of equation (26b) is not a function of i
wavelength, its value should remain unchanged if the image-intensity changes are ' i
indeed due to a shadow. In effect, we are confirming that the S solution point
remains fixed along the solution ray illustrated in figure 5. If it does, then the
shadow (or highlight) interpretation is reaffirmed and the chance of misinterpretation
is unlikely provided that the competing interpretations are not processes that behave
like shadows. Consequently at least three wavelength samples are required before a
reliable shadow interpretation can be made.

In the case of recovering structure from motion—our earlier example—the
corroboration of the axis of rotation could entail adding additional frames or snapshots
to see if the same axis and rod length are recovered. Clearly this procedure is not
entirely independent because the strategy for solution remains the same and some
possible confounding interpretations may not be excluded (eg the correct interpretation
that the points are on a TV monitor in 2-D).

A more independent corroborative test would be to use stereopsis, for this
computation of the depth relations between the feature points is quite different from
the structure-from-motion analysis. The ideal corroborative procedure should thus
use an entirely different computational analysis, which is based upon relations that
have quite different failure conditions®.

LEE RN
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7 Summary g
Although the equation-counting procedure has been used in the past to give some i
insight into the complexity required to solve problems in many nonlinear variables
(eg Leith et al 1981), researchers in perception have often neglected to recognize
that certain other conditions must be fulfilled before a meaningful solution can be
guaranteed (Meiri 1980). These conditions are summarized in the flow diagram of
figure 6. They include the Jacobian test for the independence of the system of

(8 For biological systems we probably should view ‘corroboration’ as an early step in the perceptual ‘
process—perhaps at the level of Marr’s 2-1/2D sketch (Marr 1976, 1982)—that acts on the output i
of modules analyzing information derived from motion, disparity, color, texture, etc, as well as C
nonvisual information, such as tactile roughness, shape, or even in some cases acoustic information. i
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equations, uniqueness of solution, exclusions of competing interpretations, and two
kinds of cortoboration, If these conditions can be met, then the equation-counting
procedure provides a powerful theoretical tool for understanding how, in principle,
biological systems can make reliable interpretations and assertions from the greatly

impoverished sensory data available to them.

Formalizes the relation
between knowns and unknowns
(polynomial equations)

|

Discover constraints or specify
further conditions on unknowns
(# equations = # unknowns)

:

Apply Jacobijan test
(DET £ 0)

fails }
pass

Seek new
Of | constraints

Prove solution
unique

uniqy

Exclude competing
interpretations fail
(distinctness of

solution)
Pﬂ;\

Corrobozate solution failure . )
(weakly) by anather e | Solution not applicable
sample measurement (abstain or no interpretation)

(same system)

Reduce number
of variables
by combinations

not unique

Solution (interpretation)
highly dependent
upon corroboration

* pass
Corroborate with failure - Solu.t ion may be
: - applicable
independent system (abstain or take
‘best’ interpretation)
pass

Solution ‘correct’
(make strong interpretation)

Figure 6. Outline of steps in equation-counting procedure.
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APPENDIX I: Redundancy

Unfortunately, owing to measurement and sampling errors, real-world data are not
precise. The hardware performing the calculations may also be quite noisy, as is the
case for many neural networks. Without exact data and calculations solution vectors
will not be completely isolated, but rather are more properly represented as a
probability distribution about the exact solution point. To reduce the likelihood of
misinterpretation, several overconstraining equations are often helpful. (By ‘over-
constraining’ we mean the inclusion of equations in addition to those needed to
obtain a unique solution.) Their value will depend in part upon how many variables
(unknowns) are included in the solution point. Intuitively, the more unknowns
there are, the greater the potential noise and the less the contribution of any one
overconstraining equation will be. To capture this property, we suggest the following
measure of the redundancy of a system containing overconstraining equations:

¢
Redundancy = 1— <1—~(17> , (A1)
where C is the number of independent combinations of the equations and U is the
number of unknowns. As U increases, this measure decreases to zero. The effect of
the additional overconstraining equations, on the other hand, is to reduce the
deleterious effect of increasing U in a manner analogous to probability summation,
yet the redundancy measure will never exceed 1 (the ideal). The redundancy measure
has the practical value of providing an estimate of how many extra equations (or data
samples) are needed to isolate a solution point to a certain probability, given known
measurement signal-to-noise ratios.
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APPENDIX II: Sard’s Theorem for nonpolynomial functions
In many cases, the equations relating the unknown variables will not be polynomial
and Bezout’s Theorem will not apply. These exceptions include such common
functions as exponential, logarithmic, or trigonometric functions. Sometimes a
change of variables can be made to recast the nonpolynomial relations in polynomial
form. If this is done, then care must be taken to restrict the range over which the
polynomial form applies.

More generally, if a function is smooth on a manifold, then Sard’s Theorem can be
used (Guillemin and Pollack 1974; Milnor 1978). Suppose that the following system
of independent equations holds:

fl(xl’ “eny xk) =Pt

JalX1, vy XK) = D

This system can then be represented more generally as a mapping from R¥to R™:
F:R¥F—>R",

or
Fxq, v, x2) = {f1(X 1y cons X0y vony [u(X 1y s X0}

By Sard’s Theorem, we know that if F' is a smooth mapping and if F is invertible for
the values p, then the dimension of F™!(p) is (k—n). Since when k = n the
dimension of F~1(p) is zero, there can be at most a countable number of (isolated)
solutions.

Some care must be taken in assuming that Sard’s Theorem guarantees a finite
number of solutions for any system of equations involving differentiable functions.
It does not. For example, consider the simple periodic function sinx. Such a
function is uniquely invertible only over a specified range. Polynomial functions are
thus a ‘safer’ class of functions to use for equation counting, for their appropriate
range is usually more obvious,
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