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Inferring three-dimensional shapes from two-dimensional
silhouettes
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Although an infinity of three-dimensional (3-D) objects could generate any given silhouette, we usually infer only
one 3-D object from its two-dimensional (2-D) projection. What are the constraints that restrict this infinity of
choices? We identify three mathematical properties of smooth surfaces plus one simple viewing constraint that
seem to drive our preferred interpretation of 3-D shape from 2-D contour. The constraint is an extension of the
notion of general position. Taken together, our interpretation rules predict that "dents" in a 3-D surface should
never be inferred from a smooth 2-D silhouette.

INTRODUCTION

Our aim is to understand how unique three-dimensional
(3-D) interpretations can be made from two-dimensional
(2-D) silhouettes. For example, outline P3 of Fig. 2 below
looks like a dumbbell, whereas T3 of Fig. 3 looks like a
croissant, and T4 looks like a pear. Yet each of these silhou-
ettes has an infinity of 3-D interpretations, considering that
we are given no information about the bumps and dents on
either the back or the front side of the surface. Why, then,
do we tend to pick only one or two 3-D shapes? Clearly,
some powerful constraints must be imposed on our interpre-
tations. One of these, to be elaborated below, is that we do
not propose protrusions or indentations of a surface without
evidence for such. However, this rule by itself is not suffi-
cient to drive unique 3-D interpretations of these silhou-
ettes. To this end, we identify some intrinsic properties of
smooth surfaces that are implicitly understood when 3-D
shape interpretations are made.

Before embarking on our analysis of inferring 3-D shape
from 2-D silhouettes, we first introduce a method for enu-
merating all possible silhouettes. Without such an enumer-
ation scheme, our selection of outlines might be rather ad
hoc and arbitrary. We choose a representation of plane
curves that is based on curvature. In this way we can cap-
ture the general form of all types of invaginations and pro-
trusions but not at the expense of carrying scale and metrical
information. For our purposes, our choice of using extrema
or singularities of curvature has perceptual relevance, be-
cause these extrema make explicit the parts of an outline.
Arguments for this choice are presented elsewhere, includ-
ing in the companion paper.'-3 The most primitive parts of
a 2-D shape are called codons and are illustrated in Fig. 1.
This set provides a complete basis for describing any wiggly

curve, such as a silhouette, and hence can be used to enumer-
ate a class of silhouettes. The representation has the fur-
ther advantage of making explicit certain features of an
outline that permit 3-D interpretations, such as the Gauss-
ian curvature.

THE CODON REPRESENTATION

The codon shape primitives are defined in terms of the
relations between the maxima, minima, and zeros of curva-
ture encountered as one traverses a plane curve.1' 2 To speci-
fy a codon type, one first must assign a direction to the curve,
in essence defining which side of the curve corresponds to a
figure. Our convention is to keep the figure to the left of the
direction of traversal. Clockwise rotation of the curve now
corresponds to negative curvature, and counterclockwise ro-
tation is positive curvature. Minima of curvature are then
used to break the curve into segments, whereas maxima and
zeros are used to describe the shape of each segment. With
this scheme, there are only five basic types of segments, or
codons, which are shown in Fig. 1. Referring to the figure, a
codon type is specified by the presence or absence of an
inflection (zero of curvature) and by whether the positive
extremum of curvature(i.e., the maximum of curvature) oc-
curs before or after the inflection, when present. For exam-
ple, a type 2 codon has two inflections, and a 1+ has only one
inflection that follows the positive extremum of curvature,
whereas for a 1- codon the inflection precedes the positive
extremum. There are also two codon types without inflec-
tions. The 0+ and 0- differ in that in the first case (0+) the
codon boundary is a positive minimum of curvature, whereas
in the second (0-) the boundary is negative extrema. The
set of primitives shown in Fig. 1 provides a complete descrip-
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Fig. 1. The primitive codon types. Zeros of curvature are indicat-
ed by dots; minima are indicated by slashes. The straight line (-) is
a degenerate case included for completeness, although it is not
treated in the text.

tion of a curve in terms of the singularities of curvature
(maxima, minima, and zeros).

Our procedure for enumerating all possible silhouettes is
simply to build closed codon strings of increasing length.
Without constraint, we can expect 5N possible sequences of
length N. However, silhouettes are closed outlines that are
not self-intersecting. If we also impose the constraint that
the silhouette be smooth (i.e., without cusps), then the num-
ber of possible sequences is reduced to roughly 3 X 2N-2.
For example, of the 3125 combinations of codon strings of
length 5, only 25 will satisfy the smooth-silhouette con-
straint. 4 -6 Allowing a single cusp raises the number to 457.
In order to keep our silhouettes manageable, therefore, we
consider only smooth silhouettes of codon length 4 or less.
All these possibilities are shown in Figs. 2-4, and they in-
clude hints of animallike shapes such as Q12. Their con-
struction is discussed elsewhere.4-6 These figures thus rep-
resent the silhouettes that we wish to analyze. Although
this set may appear limited, it will be shown that our tech-
niques can be readily generalized.

tion, which requires that the view of an object is not a special
one and is stable under perturbation. For our purposes the
restriction states that a slight shift in viewpoint should not
change the topology of the viewed structure, such as by
suddenly revealing a bump or dent in the surface that was
previously hidden by occlusion. We define such views of a
surface as being generic. Our interpretation rule thus im-
plicitly assumes that the observer's view is generic. It also
implies that all the undulations of the surface that are need-
ed to infer a plausible 3-D shape are visible. The view of the
silhouette is thus assumed to be a special generic view,
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Fig. 2. Legal, smooth, closed codon pairs. Part boundaries are
indicated by the slashes; inflections are indicated by dots.
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Fig. 3. Legal, smooth, closed codon triples. The tick marks indi-
cate the extrema of negative curvature, which are generally the part
boundaries, whereas the dots show the inflections.

THE CANONICAL VIEW

We begin by examining the simple outlines of Fig. 2, the
ellipse, the peanut, and the dumbbell, for the analysis of
these simple silhouettes provides us with the tools needed to
interpret the more complex shapes of Figs. 3 and 4. The
simplest of these three outlines is the ellipse, which we natu-
rally interpret as the silhouette of an ellipsoid, or egg. But
why? If the outline is a special view of an object, such as the
end-on view of the dumbbell or peanut, we could be fooled.
Our interpretation thus assumes that our view is such that
none of the bumps or dents of the object is occluded or
invisible. To capture this notion, we propose our first inter-
pretation rule:

(Ri) Do not propose undulations of the 3-D surface
without evidence for such.

The above rule is an extension of the general position restric-
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Fig. 4. Legal, smooth, closed codon quadruples. The tick marks
indicate the extrema of negative curvature. The dots show inflec-
tions through which the flexional loci must pass.
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namely, one that might be called prototypic. As more infor-
mation is added about the 3-D surface, it might be expected
that the inferred shape will evolve in a graceful manner.
This captures the notion expressed by Marr in his principle
(f least commitment.7 Thus, in the case of the ellipse out-
line of Fig. 2, the most plausible 3-D interpretation accord-
ing to the rule is an ellipsoid.

GAUSSIAN CURVATURE

The ellipse is a special outline because it has no undulations
and hence its sign of curvature everywhere is the same,
namely, positive. The peanut and the dumbbell are more
complex, however, with bumps and dents. Clearly, we need
a means of describing undulations on 3-D surfaces so that we
can enumerate all possible 3-D interpretations of the 2-D
outlines. We choose for this purpose an intrinsic property
of 3-D surfaces, namely, the Gaussian curvature.

At any point on a smooth (nonplanar) surface, there is a
direction where the surface curves the most and another
direction where the surface curves the least. These two
directions are the directions of principal curvature, and they
are always perpendicular.8 The Gaussian curvature is sim-
ply the product of these two curvatures. Of interest to us is
the sign of the Gaussian curvature, which permits a qualita-
tive description of the topology of a surface. When the
directions of both principal curvatures are identical, such as
on an ellipse, the Gaussian curvature is positive; when the
principal curvatures are in opposite directions, such as on a
saddle, the Gaussian curvature is negative. If one of the
principal curvatures is zero, such as on a cylinder, then the
Gaussian curvature will be zero also. Any point on a surface
will thus have positive, negative, or zero Gaussian curvature,
depending on whether it is locally elliptical, hyperbolic (sad-
dle), or cylindrical. A 3-D dumbbell may now be defined as
a single hyperbolic region of negative Gaussian curvature
(the neck) joining two protrusions of positive Gaussian cur-
vature (the two ovoids). A 3-D peanut is a hyperbolic region
(saddle) lying within an ellipsoid of positive Gaussian curva-
ture.

In addition to providing the basis for a taxonomy of 3-D
shapes, Gaussian curvature has another distinct advantage
for our purposes. Consider a point on the 3-D surface that
projects into the 2-D silhouette. The following is then true:

(Cl) The sign of the Gaussian curvature of points on the
3-D surface that project into the silhouette is the same as
the sign of curvature of those projections.

This theorem by Koenderink and van Doorn9 thus assures us
that the Gaussian curvature of the 3-D shape is positive at
points on the surface that project into regions of positive
curvature on the silhouette. Thus both the peanut and the
dumbbell outlines of Fig. 2 require that the corresponding
3-D shapes have hyperbolic (saddle) regions of negative
Gaussian curvature within a region (or two) of positive
Gaussian curvature. Note that this theorem also implies
that dents, which have positive Gaussian curvature but are
concavities in the surface, will never appear in the generic
silhouette.

At this point, one might be misled to the false conclusion
that our problem is essentially solved. However, as is shown

in Table 1 of the companion paper by Beusmans et al.,
3 for

even the simple rabbit-head silhouette Q7 there are 15 possi-
ble 3-D interpretations if the embedding of regions of posi-
tive and negative Gaussian curvature is unconstrained. For
the jack shape Q5 there are 105 possibilities. Yet we see
both of these 2-D shapes in only one or two ways as three-
dimensional objects. Clearly, the constraints and rules that
we invoke must be quite powerful. In the next section we
introduce one important mathematical constraint, also elab-
orated in the companion paper,3 and subsequently add an-
other interpretation rule to constrain the 3-D possibilities
further.

TYPES OF SURFACE UNDULATIONS

Consider a surface of hills and valleys with perhaps also a
depression that might collect water after a rainfall. The hill,
being a bump on an elliptic surface, will have positive Gauss-
ian curvature (such as the most probable interpretation of
T4), but so will its inverted shape that creates the dent or
depression, for the product of two negative principal curva-
tures will be positive. The positive sign of Gaussian curva-
ture thus does not tell us whether the surface is convex or
concave.10 Similarly, there will be two kinds of regions
associated with negative (hyperbolic) Gaussian curvature,
which we will call furrows and ridges (these regions may also
be called saddles and humps). A furrow (or saddle) is a
region of negative Gaussian curvature within an elliptical
region, whereas a ridge (or hump) is an elliptic region within
a hyperbolic one. Shapes T2 and Q8 tend to be given these
two interpretations. We thus have four types of surface
undulations: bumps, dents, furrows (saddles), and ridges
(humps). Together, they form a complete qualitative de-
scription of any smooth surface.1- 4

We next need a simple scheme for representing the rela-
tions between the four types of surface undulations. For
this we choose the Gaussian sphere. Out intent is to project
the silhouette onto the Gaussian sphere and to use this
projection, together with the topology of the silhouette, to
constrain the possibilities of 3-D shapes.

The Gaussian sphere is simply a parallel mapping of all
the surface normals into the unit sphere, with the tail of each
normal placed at the center.8 Each point on the surface of
this sphere thus corresponds to a particular orientation (see
Ref. 15 for an extended discussion). In the case of a convex
object with positive Gaussian curvature everywhere, no two
points on the surface will have the same projection onto the
sphere. However, for objects with concavities, the same
point on the Gaussian sphere may represent two or more
points on the object's surface.

Consider now the mapping of a silhouette, such as that of
the peanut, onto the Gaussian sphere. Assume for the mo-
ment parallel projection; then each visual ray that gives rise
to the silhouette must strike the surface in such a way to be
perpendicular to the surface normal at the point of contact.
All surface normals on the surface contours that give rise to
the silhouette must therefore lie in the frontal plane, parallel
to the image plane. This plane, when mapped into the
Gaussian sphere, will pass through the origin of the sphere.
Hence the locus of any silhouette seen under parallel projec-
tion will be a great circle on the Gaussian sphere (Fig. 5).

Let us now trace the surface normals A-E of the silhouette
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Fig. 5. The outline of a 3-D shape seen under parallel projection maps onto a great circle on the Gaussian sphere. (A) A peanut-shaped outline
with two inflections will have two folds on the Gaussian map, as shown by the dashed line. The extremities of these folds must lie on flexional
lines of zero Gaussian curvature, as suggested in the 3-D rendition of the silhouette (top left). (B) There are only two possible ways of closing
the two flexional loci that intersect the folds on the great circle.6 The lower example with two loops is not appropriate for the silhouette of the
peanut, which has only two inflections. Thus the upper example correctly describes the Gaussian map of the peanut. We indicate the triple
covering of the Gaussian map within the flexional lines by the 4(3) notation.

of the peanut onto the appropriate great circle of the Gauss-
ian sphere. Starting at A, we move through the vertical to
position B, which is one of the two inflections. Passing
through this point to the second inflection at D requires that
we traverse a position on the silhouette with a vertical nor-
mal C. The surface normal at the bottom of the well at C
thus has the same direction as the normal to the two bumps
at the top of the peanut. Thus this point C on the Gaussian
sphere actually corresponds to three points on the object's
surface. In Fig. 5, the dashed contours on the Gaussian
spheres represent the locus of the silhouette of the peanut.
The ends of the two folds on these lines are the inflection
points (dots) on the silhouette (B and D) where the direction
of rotation of the surface normals changes as one moves
along the contour. Of necessity, the end of any such fold is a
point of zero Gaussian curvature, where the outline (or sur-
face) goes from a region of positive to negative Gaussian
curvature. Between the folds the Gaussian map is said to be
triply covered in this case because each point on the sphere
corresponds to three points on the surface.

For the class of generic surfaces that we are considering, it
is not possible to have an isolated point of zero Gaussian
curvature. Rather, all points of zero Gaussian curvature
must lie on closed lines.14 We call these lines the flexional
lines of a surface, for they are the boundaries between re-
gions of positive and negative Gaussian curvature and pro-
duce an inflection on the surface (or silhouette). (Flexional

lines are also called parabolic lines in some texts.) Koender-
ink and van Doorn13,14 have proven the following important
property of flexional lines:

(C2) For generic surfaces, the flexional (parabolic) lines
are closed and nonintersecting.

Thus we now know that on the Gaussian sphere the flexional
lines must also be closed.

Returning to our peanut example in Fig. 5, this means that
the ends of the two folds on the Gaussian sphere must lie on
closed curves. As shown by Whitney16 and others,14"17 there
are only two ways that we can close flexional curves on the
Gaussian map: either we can join the ends in a smooth loop
or we can create a cusp. If the flexional curve is closed with a
cusp on the Gaussian map, as illustrated in the upper exam-
ple of Fig. 5(B), then this specifies a wrinkle on the surface
(i.e., a furrow or ridge), and there must be a cusp on the
opposite (invisible) side of the great circle locus of the sil-
houette (dashed lines). We call this a pleat. If the flexional
curves are closed by simple loops, as illustrated in the lower
example of Fig. 5(B), then we now are left with only the
possibility of joining the folds on the Gaussian map with two
loops.16 However, two loops on the Gaussian map indicate
four folds because each loop will cross the great circle of the
silhouette twice. Hence the remaining possibility of two
loops is also excluded because four folds on the Gaussian

(B)
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map require four inflections on the silhouette and the pea-
nut has only two. The peanut silhouette thus must corre-
spond to an ovoid of positive Gaussian curvature with a
single furrow (saddle) of negative Gaussian curvature, which
is the 3-D peanut.18

Notice that a dent in an ellipsoid is not included in our
interpretations of the peanut-shaped outline. If a dent is to
appear on the smooth silhouette, then its hyperbolic lip
must be visible. However, this would require two visible
flexional lines on the silhouette in the region of the dent-an
impossibility. Hence the following constraint appears for
interpreting smooth silhouettes:

(C3) A region of negative curvature on a silhouette is
always interpreted in three dimensions as a furrow (or
neck), never as a dent.

Inspection of the shapes illustrated in Figs. 2-4 shows that
this is the case. Note that this constraint follows directly
from rule (RI) and constraint (Cl).

THE DUMBBELL (OR PEAR)

The analysis of the dumbbell silhouette now follows quite
simply. Its Gaussian map is shown in Fig. 6. There are two
pairs of folds, each pair corresponding to the upper and
lower views of the bar of the dumbbell. The flexional lines
through the extremities of these folds may be closed in two
ways, as illustrated: either we can fuse the pairs as we did
previously with the peanut to create an egg with either one or
two furrows or we can form two rings or loops to create a 3-D
dumbbell. These are the only two possibilities, given our
interpretation rule (Ri) that no undulations of the surface
should be proposed without evidence for such. But of these
two possibilities, which do we pick? Again, we invoke a
natural extension to our interpretation rule. To show two
furrows, the 3-D object must be oriented more carefully with
respect to the viewer than in the case of the dumbbell. For
example, if the furrows were on the front and back faces of
the shape, then the silhouette could be an ellipse. The
dumbbell shape is thus a more general position interpreta-
tion and should be preferred. A corollary to our interpreta-
tion rule is thus

+~~~~~~~

Fig. 6. The dumbbell outline has two pairs of folds when mapped
onto the Gaussian sphere (dashed lines). Closed nonintersecting
flexional lines can thus be created in three ways: by fusing the folds
on each side of the sphere, creating two pleats with two cusps each
(right); by creating two loops and no cusps (left); or by fusing the
cusps on one side of the great circle, leaving a gap in the fused
contours to create one big pleat with two cusps. The fusing versions
are like an ellipsoid with one or two separate furrows, whereas the
loop version is the true dumbbell. Again, as in Fig. 5, the +(3)
regions are triply covered.

(R2) Pick the most general position 3-D interpretation,
namely, that 3-D shape that preserves the signs of the
curvature of the silhouette over the widest range of view-
points.

This corollary to our interpretation rule now excludes the
egg with one or two furrows, for such an interpretation re-
quires that the egg be viewed in a somewhat restricted man-
ner. Thus the preferred 3-D interpretation for the dumb-
bell outline should be the dumbbell.

LOOPS AND PLEATS

A strategy for enumerating the legal 3-D shapes now
emerges. When the silhouette is mapped onto the Gaussian
sphere, the inflections of the silhouette map into folds on the
Gaussian map. These points on the folds occur in pairs and
delimit a region of either positive or negative Gaussian cur-
vature. (The silhouette gives us the sign of curvature of the
region.) We have two ways of joining the flexional loci that
intersect the extremity of these folds: by forming either
loops or pleats that create cusps on the Gaussian map. The
loop choice will correspond either to a bump or dent on the
surface or to a neck or knuckle in the 3-D shape; the latter
cases require an inflection to appear at (roughly) opposite
sides of the parts of the silhouette. The second (pleat)
scheme corresponds to either a ridge or a furrow on one side
of the 3-D shape. Whether the region between the flexional
loci on the Gaussian map is a ridge, furrow, etc. is given by
the sign of curvature of the silhouette [constraint (C2)]. In
total, our parts of a surface will be a bump, a ridge, or a
knuckle or one of their complements, a dent, a furrow, or a
neck.' 9

If we have only two inflections, as in the peanut, then there
is only one possibility. This is the pair of cusps or pleat on
the Gaussian map (i.e., furrow or saddle in the 3-D shape)
because the loops would create two more inflections on the
silhouette that are not seen and hence are inferred not to be
present. Referring to Figs. 3 and 4, the same argument
applies to the codon triples T2 and T3 (croissant) or the
three quadruples Q2 (bib), Q3, and Q4 (apron).

If we have four inflections positioned in the silhouette as
in shapes T4, T6, Q6, Q9, and Q1O, we still have only the loop
and pleat possibilities to consider, as we did before with the
dumbbell. The preferred choice is loops on the Gaussian
map rather than two pleats, because the first solution yields
a surface of revolution whose canonical silhouette will al-
ways be the same. The argument is identical to that given
previously for the dumbbell, although in this case shape T4
would be a pear with the indentations corresponding to a
neck.

Figure 7 summarizes the interpretations given to the sil-
houettes. Rather than showing all silhouettes, we have il-
lustrated only the major classes. For example, the dumbbell
shapes T6, Q7, Q9, and Q1O are topologically identical to P3;
therefore only P3 is shown. Likewise T2, T3, Q2, Q3, and Q4
are similar to the simple peanut P2. The remaining outlines
to be interpreted thus fall into the class containing T4, T5,
Q7, Q8, and Q12.

Shape T4 is now trivial. The Gaussian mapping of its
flexional loci is the same as for the dumbbell. Hence the
preferred interpretation will be a pear as indicated. For
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Fig. 7. Different classes of the outlines to be interpreted.
alternative interpretations.
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Q8
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Q12

Dashed lines are the preferred flexional (parabolic) loci. Primes indicate
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±(5)

+3(
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T4'

Fig. 8. Three possible interpretations of the silhouette Q8. The flexional (parabolic) lines on the surface are illustrated in the top row.
Beneath each of these possibilities is sketched the shape of the flexional loci on the Gaussian map. The numbers in parentheses indicate the co-
verings. The first case is two furrows (A), the second case is a single furrow (B), and the third case is a ridge in a furrow (C).

similar reasons, the jack silhouette T5 should also be inter-
preted as having three fingers, as illustrated. However, Q7
can be similarly interpreted as a body with two limbs, for its
Gaussian mapping is similar to that of T5. Hence we are left
with only two remaining silhouettes, Q8 and Q12.

Our present constraints are not powerful enough to find a
preferred interpretation for shape Q8. Unlike with shapes
Q6 and T4, which also have four inflections, there is no

symmetry axis about which the silhouette Q8 can be rotated
to produce the same 3-D outline. Thus the two indentations
of Q8 can not correspond to a neck in a surface of revolution.
Instead, because all four inflections are on one side of the
outline, we will have a region on the Gaussian map that will
be five times covered (rather than the triple-covering char-
acteristic of the neck in Fig. 6). After reviewing the possible
pairings once more and excluding dents by constraint (C3),
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we have on the Gaussian map the following three possibili-
ties, as illustrated in Fig. 8: two adjacent pleated contours
(furrows), as in Fig. 8A; a single pleat (a furrow), as in Fig.
8B; and a pleat enclosed by a pleat (a ridge in a furrow) as in
Fig. 8C. Unfortunately, our present interpretation rules do
not force a unique choice among the three options illustrated
in Fig. 8. Although there may be a preference for a ridge in a
furrow [Fig. 8(C)], our general position rule (R2) is not suffi-
ciently formulated to exclude those shown in Figs. 8(A) and
8(B). Underlying our choice of the ridge in a furrow seems
to be the notion that the probability of two furrows' being
aligned with the viewer as in Figs. 8(A) and 8(B) is less than
if one single furrow is so aligned as in Fig. 8(C). A similar
argument applies to shape Q12.

DISCUSSION

Effect of Constraints
Our four interpretation rules and constraints have allowed
us to assign one preferred 3-D interpretation to each of the
silhouettes shown in Figs. 2-4. These silhouettes are all the
possibilities for smooth codon strings of length 4 or less.
Without constraints, these are 625 different sequences of
four codons, or 625 possible 2-D outlines that are generically
different (i.e., have different sequences of the extrema of
curvature). Closure and smoothness reduce this number to
the 12 outlines shown in Fig. 4. In a similar manner we can
ask, given a single outline of Fig. 4: How many different 3-D
shapes are possible? Clearly, there is a very large number,
which increases as smaller and smaller undulations are toler-
ated.

If we now introduce the simple mathematical constraint
that the flexional loci can not intersect on the surface [con-
straint (C2)], the possibilities are markedly reduced but still
substantial, for example, for eight inflection points. Koen-
derink's rule reduces the number of pairings that must be
considered from 105 to 14, as discussed by Beusmans et al.

3

However, when our viewing constraint is added, together
with the stipulation that loops be given preference over
pleats, provided that constraint (C3) is not violated, our
preferred interpretations become almost unique, at least for
the 2-D outlines examined. Therefore two simple interpre-
tation rules plus two mathematical theorems provide power-
ful constraints on the interpretation of silhouettes.

Instant Psychophysics
Of course, the 2-D outlines of Fig. 7 may not always give a
unique interpretation. Our constraining rules are not rigid.
For example, the spade outline Q8, by our rules, should be
seen as a ridge (hump) in a shallow furrow (saddle). Howev-
er, it is easy to imagine Q8 as a convex blob with two furrows,
an image that corresponds to two pleats on the Gaussian
map, although this is not our constrained solution. The
outlines given in the lower panel of Fig. 7 illustrate such less-
preferred interpretations. Similarly, outlines T5 and Q7
have the alternative 3-D interpretation of a furrow in the
base of a necked shape. Instead of all loops, the alternate
choice would then be two loops and a pleat on the Gaussian
map. Because these are viable alternatives, we conclude
that our preference rules are tentative and seek verification
from shading, stereopsis, etc. Also it is clear that, at some

level, the metrics of the outline, its orientation, and the
familiarity of the shape come into play in our judgment. At
present, we are only proposing interpretation rules, given no
information other than the general topology of the Gaussian
map.20

CONCLUSIONS

We invoke four simple constraints for interpreting smooth
2-D outlines as 3-D shapes. Three are simply mathematical
properties of smooth surfaces, namely, (1) that the sign of
curvature of the silhouette reflects the sign of Gaussian
curvature, (2) that the flexional loci are closed and noninter-
secting, and (3) that these loci form either loops or pleats on
the Gaussian map. The fourth constraint is an interpreta-
tion rule, stating (4) that undulations not seen in the 2-D
outline are not present in three dimensions. This rule is an
extension of the notion of general position. A corollary to
this interpretation rule is that necks on the surface, which
correspond to loops on the Gaussian map, are preferred over
furrows, which in turn are preferred over dents.
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