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Lebesgue Logic for Probabilistic Reasoning
and Some Applications to Perception

Bruce M. BENNETT, DONALD D. HorFMAN, AND PARESH MURTHY

University of California, frvine

Reasoning with probabilities is essential to many sciences, such as decision theory, expert
systems, neural networks, pattern recognition, and perception in general. In this paper we
explore a new logic of probabilities, the Lebesgue logic, in which are defined the logical
relations ENTAILS, AND, OR, and NOT on collections of probability measures. In particular,
given any two probability measures u and v, the Lebesgue logic answers questions such as the
following: Does u entail v? What is the conjunction of p and v, ie, what is 4 AND v? What
is the disjunction of p and v, i.e., what is g OR v? What is the negation of u? Several properties
of the Lebesgue logic emerge. Among them are (1) the Lebesgue logic is not boolean, in
general, but is “locally boolean,” (2) the AND of the Lebesgue logic is a generalization ol
Bayes’ rule; (3} one can define probability measures on the Lebesgue logic itsell, thereby per-
miiting the representation of probabilistic knowledge without requiring any commitment to a
particular probability measure; and (4) many probabilistic inferences can be described as
morphisms of the Lebesgue logic, i.e., as maps from one collection of probability measures to
another, respecting the Lebesgue logics on both, We close by discussing a concrete problem
to which the Lebesgue logic may find application: the problem of sensor fusion in vision and
other perceptual modalities.  © 1993 Academic Press, Inc.

1. INTRODUCTION

Reasoning with uncertain information is a well known and central feature
of many sciences. This has led to an extensive literature on the mathematical
foundations of probabilistic inference and related topics (e.g., Adams & Levine,
1975; Beltrametti & Cassinelli, 1981; Dempster, 1968; Gudder, 1988; Nilsson, 1986;
Shafer, 1976; Suppes, 1966a; Varadarajan, 1985; Zadeh, 1975). It has also led to the
application of this mathematical work in many disciplines, such as artificial
intelligence (Duda, Hart, & Nilsson, 1981; Fischler & Firschein, 1987; Pearl, 1988),
group decision making (Grofman & Owen, 1986), and quantum physics
(Beltrametti & Cassinelli, 1981; Gudder, 1988; Varadarajan, 1985).

Our intent here is not to review this literature, but to investigate a recently
discovered logic of probabilities, the Lebesgue logic. We begin with a brief
terminological background. The term “logic” is generally used to refer to a set
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with a partial order’; the elements of the set are the “propositions” and the order
relation is “entailment.” If a and b are two elements in the set then their least upper
bound, denoted a v b, and their greatest lower bound, denoted a A b, correspond
respectively to disjunction and conjunction of propositions. A zero element of the
logic is an element O such that a v 0=g¢ for all a. A unit element is an element 1
such that 4 A 1 =a for all a. If | exists then the “complement” of a, if it exists, is
an element &’ such that @ A ¢'=0 and a v ¢'=1. The complement of 1 is 0. The
basic example is the well-known boolean algebra of subsets of some set. Here the
elements of the logic are the subsets, entailment is inclusion, v and A correspond,
respectively, to union and intersection, and so forth. More generally, there is a class
of logics called the “orthocomplemented modular lattices” which are ordinarily
considered to be the logics of importance, for example, in quantum mechanics,
Briefly, these are logics in which A and v exist (for any two elements), 0 and 1
exist, and the complement a’ of every element a exists, The boolean algebras are in
this class and are essentially characterized therein by having the property that A
is distributive over v . However, the logics in the class are not generally distributive
but have the property of “modularity,” which generalizes distributivity and which
we need not define precisely here (but see Varadarajan, 1985).

When we speak of a “logic of probabilities” we mean a logic in which the
elements are probability measures on some fixed space Y. Thus, we view these
probability measures themselves as expressing propositions. Intuitively, a
probability measure g expresses a proposition of the form “the probability that the
outcome is in event A is u(A), the probability that the outcome is in event B is
#(B), ....” For example, suppose that the points in a probability space correspond
to individual receptors, ie., to rods and cones, on a retina. A probability measure
it on this space might express the probability that at a given subset of receptors and
at a given instant of time, a photon is captured by some receptor in the set. Thus
for each subset 4 of receptors, the number u(A) represents the probability that
some receptor within 4 captures a photon. In this way p can be viewed as
expressing a proposition of the form “the probability that a photon is captured by
some receptor in the collection of receptors 4 is u(A4), the probability that a photon
is captured by some receptor in the collection of receptors B is u(B), ...”

The Lebesgue logic of probabilities follows from a natural partial order on collec-
tions of probability measures, the Lebesgue order. This partial order corresponds to
entailment of the associated propositions, and determines, via the operations of
least upper bound and greatest lower bound, the disjunction and conjunction of
pairs of probability measures. There are many reasons why the Lebesgue order
is a natural order to use in revealing a logical structure on a set of probability
measures. These are discussed below. We will see that the structure of this Lebesgue
logic differs from that of the ordinary “orthocomplemented modular lattices” in
several particulars: Lebesgue logic has a 0, but no | and no complements, and A

! Recall that a partial order on a set is a relation, <, on the set that is reflexive (v < v), antisymmetric
(v<p and < v imphes v=g), and transitive (v<p and p<¢ implies v < o).
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and v are not always defined. However, the Lebesgue logic has the striking
property of “local booleanness,” so that | and complements and distributivity exist
locally.

The Lebesgue logic also gives a natural constraint on probabilistic inferences in
the following way. An inference can often be conceived of as a function, f: P— C,
whose domain P is one set of propositions, called the premises of the inference, and
whose range C is another set of propositions, called the conclusions. By a
probabiiistic inference we mean an inference whose domain P and range C are each
coliections of probability measures. Suppose now that f: P— C is a probabilistic
inference, and denote the Lebesgue order on P by <, and the Lebesgue order on
C by <. Then, as we discuss later, a natural constraint on f'is that f be a morphism
of the Lebesgue order: this means, in part, that for p,,p,e P, if p,<pp, then
) <cf(p2)

In our discussion of the Lebesgue logic we have decided to freely review elemen-
tary but technically significant facts from measure theory when such review is likely
to help the reader. We have also decided to present a concrete application of the
Lebesgue logic, our intent being to aid the reader in understanding the logic and
to make explicit the possible applications of the logic to concrete problems. The
concrete problemn we have chosen is the integration of probabilistic information,
from vision and other perceptual maodalitics, into a coherent perception of the
external world, a problem referred to in the machine perception literature as the
problem of “sensor fusion” and in the perceptual psychology literature as “cue
integration.” Perhaps it goes without saying that we neither intend to nor succeed
in resolving this problem. It nevertheless provides an engaging context in which to
consider the properties of the Lebesgue logic.

We try to give a complete presentation of the clementary propertics of the
Lebesgue logic. To this end we give proofs of lemmas and propositions in full detail.
We give definitions of many mathematical terms in footnotes. OQur goal is to give
the reader—even one not expert in measure theory—the tools needed for a
complete understanding of the elements of the Lebesgue logic.

2. THE LeEBESGUE ORDER

Probability measures serve, we just said, as the premises and as the conclusions
for probabilistic inferences. To understand the logic of probability measures we
begin, in this section, by investigating the logic of a// probability measures on an
arbitrary measurable space. Once this logic is clarified we can then, by restriction,
induce logics on various subcollections of probability measures.

Here, in summary, is what we find. There is a natural definition of entailment
among probability measures, which can be modeled formally by a partial
order—the Lebesgue order—on probability measures. This definition of entailment
by itself completely determines a logic on probability measures—the Lebesgue logic.
The Lebesgue logic is not boolean, in general, but is “locally boolean.” It describes,
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among other things, (1) when one probability measure entails another, (2) when
one can take the AND of two probability measures, (3) what that AND is when it
exists, (4) when one can take the OR, and (5) what it is. For many pairs of
probability measures the ANT exists and is nontrivial in the Lebesgue logic; such
pairs are said to be simultanecusly verifiable. The information from such pairs of
measures can be combined into a single probability measure. However, in the
Lebesgue logic certain pairs of probability measures do not have a nontrivial AND;
such pairs are not simultaneously verifiable and attempts to integrate them must
fail. When this happens in human perception, as we shall see, the information from
the two measures is not integrated into one unified percept, but instead can give
rise to two or more distinct percepts which are perceived one at a time—so-called
multistable percepts.
We begin our study of the Lebesgue order by introducing some notation.

Notation 1. Let ¥ be a set. A collection & of subsets of Y is called a g-algebra
il it contains Y itsell and is closed under countable union and complement. Then
a measurable space is a pair (Y, %) where & is a g-algebra of subsets of Y. The
subsets in % are called events. A measure is a function u: % — [0, co] such that (1}
u()y=0 and (2) u is g-additive, ie., for any countable collection A4, of pairwise
disjoint events, (), A,)=3; u(A;). A probability measure is a measure that assigns
the value 1 to ¥. Then .#(Y), or just .#, denotes the collection of positive finite
measures, together with the null measure 0, on (Y, #). .#(Y), or just .#, denotes
the collection of probability measures, together with the null measure, on (¥, #).
For ve . #, we define |v| =v(Y)=[, v(dy} and, for v#£0, ¥=v/||v].

We will also need the notion of a measure algebra. We recall the following
definition.

DerpmniTion 2, Let (Y, %) be a measurable space and p a measure on Y. We
define an equivalence relation=on % as follows: For A, Be%, A=8 iff
A A BYy=0 (where A is symmetric difference, ie., 4 A B=(A—B)w (B— A))
Let %, denote the set of equivalence classes. It is called the measure algebra
modulo p.

One easily checks that if A= A" and B=B then AUB=A"U R and (4')° = A",
It follows that the notions of |J and (| and complement are well defined for
equivalence classes of =, so that @& inherits the structure of a g-algebra. This
justifies the terminology “measure algebra.” Let [ 4] denote the class of 4. We will
write “[A]<[B]” iff u(4— B)=0, ie, iff 4 =B up to a g-negligible set. It is clear
that this definition is independent of the choice of representative of the equivalence
class. Moreover, one checks that the operations of [ and |J on the equivalence
classes are, respectively, the greatest lower bound and least upper bound for this
relation <.

We want a logic on .#. A principled way to construct such a logic is to define
a relation of entailment among probability measures. Once we have done this the
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entire iogic is fixed; it is a matter of proof, not of further definition, to spell out the
notions of conjunction, disjunction, and negation that all follow from the one
definition of entailment. The key step to the whole enterprise, then, is to define an
appropriate relation of entailment among probability measures. To do this we
introduce the Lebesgue order on measures, and then stipulate that measure g entails
measure v if g is less than v in the Lebesgue order.

Before introducing the Lebesgue order it will be instructive to consider briefly
two other examples of orders on measures. The first is as follows: for v, pe 4(Y),
define that v is less than u iff v is absolutely continuous with respect to p.> The
problematic feature of this definition for our purposes is that it defines a partial
order on measure classes;® for this reason the order is called the class order. This
means that it ignores a lot of information contained in probability measures.
Probability measures assign numerical values to all events in the measurable space,
but the class order cares only about which events are assigned measure zero.
Nevertheless these properties of the class order might make it useful as a first coarse
approximation to a logic of probabilities.

A second order, unsuitable to our purposes, is the following: v is less than u iff
for each event 4e% it happens that the real number v(A4) is less than the real
number p{A). The reason this is unsuitable is that if v and u are probability
measures the order becomes trivial: one probability measure is less than another
only if the two are identical. This order is, of course, nontrivial on the collection
of all finite measures, but for our purposes, for a logic of probabilities, we need a
notion of order that is nontrivial when restricted to the probability measures.

Later we discuss other orders on probability measures (see Remarks 78-81). The
conclusion will be that among naturally defined orders on probability measures the
Lebesgue order seems to be uniquely suited as a logic for perception,

We now consider the Lebesgue order. To state it we must first recall the
Lebesgue decomposition theorem (see, e.g., Royden, 1988) and then introduce some
notation.

LEBESGUE DEecomposITION THEOREM. Given any two measures v, pc 4, the
measure j can be written uniquely as the sum of two measures, one measure
absolutely continuous with respect to v and one singular with respect to v.

The Lebesgue decomposition is conveniently written in the following notation.

Notation 3. For v, pe.#, we denote the Lebesgue decomposition of p with
respect to v by u=p, + p', where u, is absolutely continuous with respect to v and
where p” is singular with respect to v.

2 Recall thatl v is absolutely continuous with respect to p, written v <€ , iff for every 4e® for which
n(A)y="0 it happens that v(A)=0 as well. v and g are mutually singular, written v L y, il there exist
events A, Be® such that ¥=A4 u B and v(d)=p(B)=0.

3 Two measures are in the same measure class if they are mutually absolutely continuous. Measure
classes form a partition of the collection of finite measures on a measurable space. The measure class
associated to a particular measure v is denoted [v].
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Fig. 1. The Lebesgue decomposition of u with respect to v. Part (a) shows the measures g and v,
Part (b) shows u,, viz., the part of x that is absolutely continuous with respect to (roughly, overlaps) v.
Part (b) also shows u*, viz., the part of u that is singular with respect 1o (roughly, does not overlap) v.

The Lebesgue decomposition is illustrated in Fig. 1. One reason for Notation 3 is
given by the following lemma.

LEMMA 4. If A, v, pe # then one can write, withoui ambiguity,
R O ST (5)
Proof. Taking the Lebesgue decomposition of u with respect to 4 we obtain
o=+t
Taking the decomposition of this with respeet to v gives
p= ) ), + )+ ), (6)

Il instead we decompose p first with respect to v and then with respect to 4 we
obtain

= () () + () 4 (1) (7)
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Now, by the uniqueness of the Lebesgue decomposition, the terms in (6) and (7)
that are singular with respect to v must be equal. Thus

(12)" + (1) = (") + (") (8)
Again, by uniqueness of the Lebesgue decomposition, the terms in {8) that are
singular with respect to A must be cqual, as must those that are absolutely
continuous with respect to A. Thus
(w)'=(u"); and  (u*)"=(")" (9)
I we now equate the terms in {6) and (7) that are absolutely continuous with
respect to v we find

(1), + (), = () + (1), {10)

But by the uniqueness of the Lebesgue decomposition, the terms in (10) that are
singuiar with respect to A must be equal, as must those that are absolutely
continuous with respect to A. Therefore

(m)e=11); and  (h),=(u)" (1)
From (9) and (11) we see that we can drop parentheses, and the result follows. ||

This lemma indicates that it doesn’t matter, in many cases, in which order
the Lebesgue decompositions are taken. One useful property of the Lebesgue
decompaosition that we use in the sequel is the following.

PropoSITION 12, Let p, ve L{Y). Then p, and v, are in the same measure class.

Proof. The Lebesgue decomposition of y, with respect to v, is
nu'v = (nuv)(vp] + (#u](\lﬂ,'

But (u,)"” =0 since p’=0. Thus u,<v,. A similar argument shows that
vp<.“\" l

It will also be useful in the sequel to use a refinement of the Lebesgue decomposi-
tion due to Hahn, which we call the Hahn presentation.

HAHN PRESENTATION THEOREM. If y and v are positive finite measures on {X, ¥')
then there is a partition of X into three sets—S,, A=A, ., and S —such that
[“ IA] = [V |A] and ‘r(S_u) = 0 = :u(S\)’

Proof. Let A and B= A" be complementary support sets, respectively, for p,
and u". Let C and D = C° be complementary support sets, respectively, for v, and
v*. By definition of D, v,(D?)=0 and hence g,(D)=0 (by Proposition 12). There-
fore we can replace A by 4 — D and B by 8y D, 1e, we can assume that v{A4)=0,
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and thus that B is a support set for v* and p’. But v* L g so that B itsell can be
decomposed into complementary support sets S, and S, respectively, for p” and v*.
Thus we can express X as a disjoint union of sets 4, S,, and S,, where 4 1s a
support set for the mutually absolutely continuous measures g, and v,, S, is a
support set for v*, and S, is a support set for u”. |

The Lebesgue decomposition and Hahn presentation are related as follows:
p'=ptlg, py=4ptl4, and v =v|g.

Using this notation we now introduce, on spaces of positive finite measures, the
Lebesgue order (so called because its definition depends essentially upon the
Lebesgue decomposition theorem). This is the central definition of the paper.

DerniTion 13, Lebesgue Order, For v, pe #,
vl il p,=av, ax0 (14)
In this case we say that v ENTAILS .

If instead of considering all positive finite measures one restricts attention to the
probability measures, then this definition can be expressed in terms of normalized
restrictions,* as indicated in the following proposition.

PrOPOSITION 15, Suppose v, pe H(Y). Then v< p iff there is an Ae% so that
v(i-)y=pu(-1A). A is uniquely determined up to a u-negligible set.

Proof. Suppose v< u. Then p=av+ p” with p”"Lv. Since the measures p* and v
are singular, we can choose a set 4 so that u'(4)=v(4°)=0. 4 is unique up to a
u'- and v-negligible set, i.e, up to a g-negligible set. Moreover, u| = (av+p')|, =
av| =av, so that v=p], (= pu(-|A4)). Conversely, suppose v=p|,, ie, u|, =ov
for some «>0. Now p=p| + u| ., i€, p=0v+pu| . and it is clear that p| . L v
(=#¢l,) By the uniqueness of the Lebesgue decomposition we conclude that
vsp |

H(Y) with the Lebesgue order will henceforth be denoted L(Y), or sometimes
just L. If instead of considering all probability measures one restricts attention to
any subcollection of probability measures of the form L (Y)={ve L(Y)lv<pu},
then the Lebesgue order has yet a further characterization, as indicated in the
following proposition.

ProposiTiON 16, If %, is the measure algebra of % modulo p then the map
1%, — L, given by [A]—> pu(-| A) is an order isomorphism.

*Let pe.#(Y) and suppose that 4 is any event in & for which pu(A4) >0 (possibly the event ¥ itself).
The restriction of g to the set A, written p| ,, is defined by p|, (\)=pu(-n A), where the dot indicates
an arbitrary event in %, The normalized restriction of g to the set A, written u(-|A), is defined by

H-14)=pe] 1 (-Yr(A).
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Proof. First it is clear that if 4 < B then p(-|4) is the normalized restriction to
A of p{-| B} and therefore, by Proposition 15, p{-| 4)< u(-|B); thus [A] < {B]=
u(-|AY<u(-| B} in the Lebesgue order so that f is an order morphism. Now
suppose that ve L, ie, v<pu Then v=p(.|A) for some 4 (by Proposition [15].
A is well defined up to p-negligible sets, i.e., there exists a well-defined class [ A4 ]
associated to v. In this way we get a map g: L, - %,. It is easy to check that fog

and geof are the respective identity functions on L, and %, which concludes the
proof. ||

Note that if v ENTATTLS g then, intuitively, the support of v is contained in the
support of pu. This comports well with the view that measures describe states of
uncertainty—e.g., the uncertainty of photon captures at the retina (mentioned in
the introduction). According to this view, the measure with the smaller support
embodies, in a qualitative sense, less uncertainty and hence corresponds to a
stronger proposition: it represents information which entails that of the measure
with the larger support. These intuitions about support are made more precise in
the following lemma.

LemMma 17. Let v,pueL{Y). If v<p in the Lebesgue order then v<u. The
converse need not be true.

Proof. If v< pthen v=u(-14) for some A €% (by Proposition 15) so that v < p.
To show that the converse need not be true let v=(p+¢)/2 and p=p/3 + 24/3,
where p and ¢ are distinct probability measures in L{Y). Then v<y (in fact,
[¥1=[x]) but by construction g, #av so that v £ . |}

Two intuitions about the Lebesgue order might be of help. First, if v<{u in the
Lebesgue order then p can be obtained by taking v, rescaling it, and then adding
a piece “outside of” (i.e., singular to) v. Thus, as mentioned above, u has a broader
support than v. Second, recall that a measure v induces an order on events in its
measurable space: event A4 is less than event B if v(A4)<v(B). If v<pu in the
Lebesgue order then g, induces the same order on events as does v.

With these intuitions, we now restrict our attention to probability measures and
study properties of the Lebesgue order. Although we henceforth consider the
Lebesgue order primarily in the context of probability measures, we should
emphasize that the Lebesgue order is based on the linear space structure of the
space of all measures, not on a structure that is intrinsic to the convex space of
probability measures. However, as the next proposition indicates, if we restrict the
Lebesgue order to probability measures it becomes a partial order.

ProposITION 18. The Lebesgue order is a partial order on 4.

Proof. For all ve ., v,=v, so v<v, and <is therefore reflexive. To show
transitivity, suppose 4, v, uc.# and v< A< u Then, by definition of <, u and 2
have the Lebesgue decompositions

w=al+ut, (19)
A=fv+ 1" (20)
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Substituting (20) into (19) gives
p=afv+ad’ +pt (21)

This can be interpreted as the Lebesgue decomposition of g with respect to v, where
po=ofv and p'=ai®4p’ (u* is a term in u* because v< A and p* 1 A imply
p* L v.) Now u,=afv implies v< u. We conclude that v< 4 <y implies v< g, and
< is therefore transitive. Finally, to show antisymmetry, suppose that v< p and
p<v. Since p<v we have

v=au+ vk (22)

But since v < u we have v < g, so v* =0, Hence (22) becomes simply v = au, whence
o =1, since both u and v are probability measures. Thus p=v. |

Note that it is only in the proof of antisymmetry that we use the hypothesis that
v and u are probability measures; the relation < is reflexive and transitive on all of
#. Note also that if we had, in the definition of the Lebesgue order, restricted the
value of « always to lie in the interval (0, 1] then the resulting order would be
antisymmetric on all the finite measures, not just on the probability measures.

We close this section with a description of a natural geometric realization of the
Lebesgue order on a finite measurable space. Consider a discrete measurable space
X with n peints x,, .., x,,. Then we can represent L{X'} {with the 0 measure deleted)
as the #— 1 simpiex "~ in R” consisting of all points (a,, .., a,), @,= 0, such that
2. a;=1; such a point corresponds to the probability measure 3, a;¢,., where &, is
the Dirac measure at x;. For m<n, let 7! be a subsimplex of £"~! determined
by a choice of m of the # coordinates. Let F™~' be the interior of ™~ Then for
each “edge simplex” ™~2 of £™~' there is an “edge projection” mapping
JoFm~' > %72 such that if Z” 2 consists of thase points in £™~! where, say,
a, =0, then f replaces with 0 the kth coordinate of any point in F™ ' and then
normalizes the result so that the sum of the coordinates is one. Note that for the
given F™ ! there are m edge simplices and hence m of these maps £ We can now
define an order on the points of "' as follows: it is the smailest transitive
relation, <, which satisfies p<¢ whenever p=f(g) for some edge projection
mapping f as above. This order then corresponds to the Lebesgue order on L(X)
(via the correspondence between the probability measures on X and £"71).

3. TueE LEBESGUE LoGIC

The Lebesgue order induces a logic on probability measures—the Lebesgue logic.
We now study the notions of AND and CR in the Lebesgue logic.” (Later we apply

# Recall that for any partial order the AND of two elements is their greatest lower bound (when it
exists); the OR is their least upper bound (when it exists). The greatest lower bound of two probability
measures v and L is a probability measure ¢ such that (1) o<v, 4 and (2) il p<v, i is any other
probability measure then p < o. The greatest lower bound of v and 2 is denoted by v A A. The least upper
bound of v and 1 is a probability measure ¢ such that (1) v, A< o and (2} if v, A< p for p any other
probability measure, then o < p. The least upper bound of v and i is denoted by v v A
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these to the problem of sensor fusion in perception.) Two main points emerge.
First, for some pairs of probability measures AND is not defined. Those pairs for
which it is defined and is not 0 are sinudtancously verifiable. Second, for some pairs
of probability measures OR is not defined—even, sometimes, if the AND is defined.
Those pairs for which OR is defined are compatible. Compatibility implies
simultaneous verifiability, but not vice versa. We now consider this in more detail,
beginning first with OR.

PropoSITION 23.  For the Lebesgue order, the OR aof two probability measures p
and v is defined iff 5, =V, +#0. When defined, it is given by

N

p v v #
= + = + .
(70 O R V7M1

(24)

Proof. One checks immediately that the last equality on the right in (24) holds
when 7t,=v,. The GR of two probability measures in the Lebesgue logic is, by
definition, their least upper bound in the Lebesgue order. We first assume that the
least upper bound p v v exists and show that u =v,. This follows from the
following lemma.

LemMa 25, [f there exists i€ L(X) such that v, n <A then ji,=Vv,.

Proof. Since v, u<A we can write A,=av and 2,=fu where o, fe(0,1].
Taking the Lebesgue decomposition of 2, with respect to g, and of 4, with respect
to v, we obtain

A, =av, + o, A, =Bu, + By’ (26)

But we know that these Lebesgue decompositions can also be written

A=Ayt A, A=A+ A (27)

Then by uniqueness of the Lebesgue decomposition we find that A, =av, and
A= Bu,. But by Lemma 4, 2,,=4,,, and the result follows. ||

Continuing with the proof of Proposition 23, we now show that 7, =V, implies
i v v exists. Let

¥

_Hu vy i
hﬂmﬂ+ﬂuh_ﬂmh+ﬂuﬂ'

(28)

We must show that (i) g, v<o and (ii) if g, v<p for p any other probability
measure, then ¢ < p. Observe that it is clear from the first equality in (28) that
o,=ap for some a>0, and from the second equality that o,=f8v for some
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fie(0, 1]. This proves part (i). Now to show (ii), suppose that 4, v<p for p any
probability measure. Then we can write :
p=av+p’, ae{ 1] (29)
=fu+p*,  Be(0 1] (30)
Substituting (30) into (29) we obtain
p=av-t (Bt p")
=ov+ fu’ + p** {31)
=av, 4+ ov¥ + fut + (32}
Similarly, substituting (29) into (30) we obtain
p=pu+(av+p’)
= fu, + B’ +oavi 4+ p™ (33)
Equating (32) and (33}, and recailing from Lemma 4 that p#" = p”*, we find that

av, = fu,
so that

>

x_lal
v,

(34)

)

Substituting (34) into (31) we obtain

p=ﬁﬂmuv+mﬁ+pm
v,

v u
= o 35
P (g g ) )

Now if p*=0 then from (35) and the fact that p and ¢ are both probability
measures it follows that p=o. Il p*' % 0 then since p* L o it follows that 6 <p. |

Another way to think of the OR is as follows. Let u and v be probability measures
on (X, Z'), and let {S,, 4, S,} be a Hahn presentation (see section two). If ¢ and
v admit a common upper bound, and if 4 # &, then u(-| 4)=v(-]4). In this case
i and v have a least upper bound, namely,

where a, 8, y are uniquely determined by the conditions

« _ B v __ B
WS w4y Sy vy

a+f+y=1
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If i and v admit a common upper bound and A = (& then there is a one-parameter
family of minimal upper bounds of the form ap+(t—a)v, O<a<]1 (see
Proposition 56).

If {gty, o th,, -} IS @ collection of mutually singular measures, then every strictly
positive convex combination > % | o, 4, is a minimal upper bound for the collection.

As we have seen, in the Lebesgue logic certain pairs of probability measures are
logically incompatible: the relation OR is not defined for them. If the OR is defined
for a pair of probability measures then af the logical relations are defined and the
two probability measures are in fact part of a boolean sublogic of the Lebesgue
logic. Accordingly, we are led to the following definition.

DerFiNITION 36, Two probability measures u and v are comparible if =¥, #0.
In this case we write g «> v,

Using this definition we can say that u OR v exists iffl s <& v. We can also state
this condition using Renyi’s equivalence of measures (Renyi, 1955, 1956, 1970;
Krauss, 1968). Recall that u and v are Renyi equivalent, written g~ v, iff g=cv
with 0 < ¢ < oo. Thus we can say that if g and v are not singular then u <5 v iff
Hy~V,.

We can state the condition for compatibility of measures in yet another way,
using the Hahn presentation. Recall that the Hahn presentation for g4 and v on
(X, &) is a partition of X into three sets—S,, 4, and §,—such that [u|.]=[v].J]
and v(5,)=0=p(S,). Using this decomposition, we can state that if x4 and v are
not mutually singular then g «> v iff p{-1A)=vi-| A}

Note that the relation of compatibility is not transitive. Furthermore, a collection
{u,} of pairwise mutually compatible measures need not have a common upper
bound except in the case where there is an event B with g (B} >0 for all o. In this
case, if the family is infinite, the upper bound may be forced to be infinite.

The situation for AND is slightly more complicated than that for OR. If g and v
are compatible then their AND is defined. But their AND can be defined even if they
are incompatibie.

ProproSITION 37, The AND of twe probability measures p and v exists iff there
exists at most one real number o with the following property. there exists some event
A of v positive measure such that v|,=ou| 4. If there is no such o, then y AND v is
O (this includes the case where u L v). If there is exactly one such o, then y AND v
is v(-] A) or, equivalently, u(-| A), where

© The symbol dv, /du denotes the Raden-Nikodym derivative of v, with respect to u (see, e.g., Royden,
1988). According to the Radon-Nikodym theorem, given any two o-finite measures p and ¢ with p <o
there exists a real-valued measurable function ¢, unique up to sets of ¢ measure zero, such that for all
events 4, p(4)=1,#(x)}o(dx). The function ¢ is called the Radon-Nikedym derivative and is often
denoted by dp/ds.
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Proof. Suppose there arc numbers « # f§ and sets A and B of positive v measure,
such that v|,=ap|, and v|z=fu| . We have then that v|,<v, v| <y, and also
v|p<v, vz < u Let us assume that v AND u exists; denote it by 4. In view of the
above, v|, <A and v|g< 4, s0 4| 4, 5 #0. This fact, together with the fact that 2< v
implies that there exists ¢ #0 such that A|,_p=cv|, . Similarly, there exists
e#0 such that 4|, z=eu|, 5 In particular cv|,=eul, and cv|z=eul|g. But
these imply, respectively, that « = e/je and 8 =e¢/c, so that « = f§. This contradiction
shows that 1 does not exist.

Now suppose that there is exactly one « such that v|,=ap|, for a set A=
(dv,/du) " (2) of positive v measure. Then v(-|4)< v and v(-| 4) < p. We will show
v(-]|A)=v AND p. For this, suppose p<v and p<u for some p+#0 in L{X). Then
there is a set .S with v{§) > 0 and pu(.5) > (¢ such that p=v(-|5) and also p=pu(-| 5},
ie, p=cvisand p=ep|s for some ¢, ¢ #0. But then v|g= (e/c) i|5 so that S= A
(and efc=a). Thus p < v|,, which gives the result.

Finally, suppose there is no real number a such that for some set A of positive
v measure v|,=au|,. We will show that y AND v 15 the 0 measure. Since the 0
measure is always less than or equal to both v and g, it suffices to show that if p v
and p <y, then p=0. Suppose, then, that p<v and p<p. If p#0 there is a set §
with »(S), u(S)>0, such that p=cv|; and p=ep|s with ¢, ¢#0. Then, letting
a=e/c, we get v|s=aul,, a contradiction. Hence, p=0. |

Another way to think of the AND is as follows. Two measures ¢ and v have a
common lower bound other than 0 iff there is an event A, with u(A4)#0 and
v(A)#£0, such that u(.|4)=v(-14). The measures have a greatest lower bound
{i.e., an AND) iff such events A are closed upon forming finitc unions. In this case
there is a largest such 4, modulo sets both p-neghpible and v-negligible. In this case
purv=p(lA) In general uAav=0iff p Lv or w({f=1})=0 for all r#0 when
v,=f,.

”No;v one can discuss the joint probability of two propositions, ie, the
probability of their “simultaneous occurrence,” if one can form their AND. As we
have just seen, it’s not always possible to do so in the Lebesgue logic. Even when
it is possible, the AND can be 0, indicating that the probability of their simultaneous
occurrence is zero. Thus we are led to the following definition.

DeFmniTioN 38. Two measures g and v are simultaneously verifiable iff their AND
exists and is not 0, ie, iff there exists precisely one real number « such that for
some event 4 of v positive measure, v|,=ou|,. In this case we write u <> v.

Note that compatibility implies simultaneous verifiability but not vice versa, and
that both compatibility and simultaneous verifiability are intransitive relationships.
However, for discrete measurable spaces compatibility and simultaneous
verifiability coincide (i.e., if v A 1 exists and is not 0 then v v u exists). As we shall
discuss later, the existence of probability measures that are not simultancously
verifiable corresponds in perception to the existence of multistable percepts.



LEBESGUE LOGIC 77

17 1‘|

"2 4 n 172 v
113 13+
144 114
1/6 = 16
a b c d a b c d

Fig. 2. Two probability measures, p and v, which are compatible in the Lebesgue logic.

To develbp more intuitions about the Lebesgue logic we now consider two
concrete examples in which we compute the AND and OR of probability measures.

ExamrLE 39. For our examples, the probability space X consists of four points,
say (a, b,c,d), and the algebra of events is the full power set. Consider the
probability measures p= (1, 1, L, 0) and v= (0, 3, £, 1), as shown in Fig. 2. The first
step is to consider the Lebesgue decompositions of each measure with fespect to the
other, For g we find that the absolutely continuous part is g, = (0, 3, 1, 0) and the
singular part is p*=(3, 0, 0, 0). This is illustrated in Fig. 3. For v we find that
v,={0,4, §, 0) and v*=(0,0, 0, §). This is illustrated in Fig. 4. Next we compare
the absolutely continuous parts, since these determine whether or not the measures
are compatible or simultaneously verifiable. We find that 7, = (0, %, 5, 0)=v, so
that u and v are compatible, and therefore also simultaneously verifiable. Their
LMD, then, 1s just jt,, as shown in Fig, 5. (By the way, this method of taking the AND
does not assume that x and v are independent. Consider, for example, that u(b)=1,
v(b)=1%, but that (¢ AND v)(b)= %+ u(b) v(b). This is a clear difference between
the Lebesgue AND and other combination rules, such as the Dempster rule of
Dempster—Shafer theory (Shafer, 1976; Walley, 1987), which assume independence
of the information sources to be combined.) The OR of y and v, from Proposi-
tion 23, is (3, Z, &, 1), as is shown in Fig. 5.

172 - l"l'v 1/2 uv
143 143 -
1/4 o 1/4 o
146 1/6 =
a b c d a b c d

FiG. 3. The Lebesgue decomposition of g with respect to v {for x4 and v as shown in Figure 2},
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11 17

1/2 1/2
vy vH
1/3 13
174 174 -
146 4 16
a b ¢ d a b ¢ d

Fi6. 4. The Lebesgue decompaosition of v with respect to u {for u and v as shown in Fig. 2).

19 17

U AND v B OR V

2/3 -

172

143 143 -

114 4 2/

1/6 1191
a b ¢ d a b ¢ d

FiG. 5. The AND and OR of u and v (for ¢ and v as shown in Fig. 2).

@ ' "

1/2 = “- 1/2 - v
1/3 - 143
1/4 o 1/4 o
1/6 < 1/6 =
c a b C d

a b d
(b} 7 "
= %
213 23 -
1/3 4 /3 o
1/4 H 1/4 -
1/6 - 1/6 <
a b ¢ d a b c d

FIG. 6. An example of measures incompatible in the Lebesgue logic. Part (a) shows the probability
measures g and v. Part (b) shows &, and 7, Since the two measures in (b} are not equal, ¢ and v are
incompatible.
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ExampiE 40. As a second example, let p=(3, L, 1, 0) and v=(0, %, &, 1), as
shown in Fig. 6. Then &, = (0, 1, 2, 0) and ¥, = (0, %, §, 0), as is also shown in Fig. 6.
Since I, # 7V, the two measures are incompatible and therefore have no OR. To see
if the AND exists we must check to see that if there is more than one event 4 of v,
positive measure such that v, (-] 4)=yu,(-|4), then the Radon-Nikodym derivative
du) ,/dv|, does not differ on these events. [t happens that there are two disjoint
events A for which v, (-|4)=pu,(-|A), viz, the events b and c¢. On & we find
dp/dv=0.5 and on ¢ we find du/dv=2. Since these derivatives are not equal the
AND is not defined; the two measures are not simultaneously verifiable.

The AND of the Lebesgue iogic generalizes the bayesian updating of probabilities.
According to Bayes’ rule, if an event H has probability P(#), and subsequently an
event A occurs, then the probability of H becomes P(H|A)= P(A|H) P(H)/P(A4).
To see the relation between this and the Lebesgue AND, suppose one is given
information in the form of a probability measure u, and that later one is given
further information in the form of a probability measure v. To combine these two
sources of information into a single probabilistic statement using the Lebesgue
logic one might, depending on the nature of the information sources, decide to
take their Lebesgue AND, p A v. Now by definition p A v < gt so that, according to
Proposition 15, there is a set A such that g A v(-)=pu(-| A). Thus taking the AND
of 4 with v is equivalent to conditionalizing g on the event A, just as in Bayes™ rule,
The Lebesgue logic provides a coherent framework within which to understand the
role of the bayesian updating of probabilities: it plays the role of the AND of the
Lebesgue logic.

Having discussed AND and OR, we consider NOT, The Lebesgue logic has no
globally defined NOT because it has no global supremum, no “unit.” (It does have
a global infimum, the null measure 0.) It would be natural to let the NOT of a
probability measure v be the “biggest” probability measure p such that v L p. But
the lack of a unit makes the notion of biggest undefined. However, one can pick a
probability measure 4 such that v< 1 and let it be the “unit.” With respect to this
unit one can then define the NCT of v—indeed of any g such that u < 4. Therefore
we recall the following notation introduced in Section 2:

Notation #1. For any ie L(X), we let L;(X)={peL{X) u<i}. We some-
times write just L.

ProposiTiON 42. L, forms a boolean sublogic of the Lebesgue logic.
Proof. This follows immediately from Proposition 16 since 4 is boolean. |
The logical operations of AND and OR, when restricted to such a boolean

sublogic, can be given particularly simple characterizations, as indicated in the
following proposition.

480/37/1-6
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ProrosITION 43. Ifv, pe L;, so that A=av+ A" = Bu+ ¥, then

VORp=av+ A =fu+ii=1_, (44)
VAND u=v,=f,=1,,, (43)
NOT v= 4" (46)

Proof. Via Proposition 15 we can identily each measure v in L, with a support
set S, (modulo 1) in such a way that v=A(-|S,). The formulas above foliow
directly from this correspondence. |1

. The boolean sublogics L, have a geometric interpretation, as the following
example shows.

ExaMpPLE 47 Let X be the measurable space of four points. Then L(X) is a
tetrahedron plus one point for the 0 measure. The center of mass of the tetrahedron
corresponds to the uniform measure, call it 4, on the four points. The measure A is
greater, in the Lebesgue order, than the centers of mass of each of the four faces
of the tetrahedron. The center of mass of a face, in turn, is greater in the Lebesgue
order than the centers of mass of the three edges that border it. And the center of
mass of an edge is greater, in the Lebesgue order, than the two vertices at its ends.
Thus L, consists of 16 measures: one for the center of mass of the tetrahedron
(A itself), four for the centers of mass of the faces, six for the centers of mass of the
edges, four for the vertices, and the 0 measure.

The boolean sublogics allow us to define a notion of complement. We can also
define relative complements. Suppose that 4 and v have an upper bound . Then the
relative complement p—v is defined in the boolean algebra L, by pmiv=p A v
where v’ is the complement of v in L;, ie, v'= 1" (by Proposition 43)}. In fact it is
not hard to see that this definition of relative complement is actually independent
of the choice of 4 (provided that g, v<Ai). Thus the notion of the relative
complement p—v is invariantly defined provided that A exists.

The sublogics L; are boolean and, therefore, satisfy the distributivity laws. For
measures that are not all in a single sublogic, distributivity can fail to hold. We
consider four cases and give examples. (1) Consider the distributive equation

An(pvv)=(AAauv(Aar)

In the Lebesgue logic, the existence of £ A (u v v) does not imply the existence of
(4 A p)v {4 av) For example, suppose we have a discrete measurable space Y
consisting of three points, and consider the measures = (%, §, 0), v={(0, §, %), and
A=(4, 0, 1). Then &, =7,=(0, 1,0), so that u v v exists, and is (%, %, ). We then
compute that A A (puvv)=4 Now 1A p=(10,0) and A Av=(0,0, 1}, so that
A A s singular to A A v. Therefore, according to Proposition 23, (A A g} v (A A V)
does not exist (instead there is a one-parameter family of minimal upper bounds,
as will be shown in Proposition 56). (2} The existence of (A A p) v (A A v) does not
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imply the existence of 2 A (4 v v). For example, let Y consist of four points, and
consider the measures u=(}, &, £, ), v=(3, L, i, 1), and A=(0, %, , 0). (3) Now
consider the distributive equation

Avipav)=(Avu)a(dvw)

In the Lebesgue logic the existence of A v (i A v} does not imply the existence of
(A v puj A (Avv). For example, let Y consist of three peints, and consider the
measures u=(3, §, 4, v=(0,0,1), and i=(}, 3, 1). (4) The existence of
(A v uy A (4vv) does not imply the existence of 4 v (u A v). For example, let ¥
consist of three points and let p=(3, 5, 0), v=(0, , %), and 1=(4, 0, 1).

We now consider the compatibility relation in more detail. Any pair of measures
in a boolean sublogic L; are compatible {and a fortiori simultaneously verifiable).
Indeed, compatibility is intimately linked with the boolean sublogics, as indicated
by the following proposition.

PrROPOSITION 48. Twa probability measures are in a boolean sublogic of the
Lebesgue logic iff they are compatible or singular.

Proof. The case of singular measures is straightforward and left to the reader.
We first show that compatibility of two measures implies that the two are in a
boolean sublogic. Let v,ueL(X), and suppose that v,=p,#0. Then, by
Proposition 23, v v p exists and therefore v, ue L, . Now we show the converse.
Assume that v, pe L, for some pe L(X). Then the Lebesgue decomposition of p
with respect to v and then u is

p=ov+p’ (49)
=av,+av’+p; + p** (50}
and the Lebesgue decomposition of p with respect to u and then v is
p=Ppu+p* (51)
=Bu,+ Bu" + pl + o (52)

By uniqueness of the Lebesgue decomposition the parts of (50) and (52) that are
absolutely continuous with respect to v must be equal. Thus

av, + v = B, + pt. (53)
However, from (49) we have that p,=av so that p# =ov*. Thus (53) becomes

av, +av¥ = Bu, +av¥ (54)
Therefore av, = fu,. |

So we can think of the Lebesgue logic as being comprised, in general, of an
infinite coliection of “local” boolean logics, namely the L,’s, which are pieced
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together so that some are mutually compatible and others are not. We have seen
in Proposition 16 that L, is order isomorphic to the measure algebra . We now
further clarify the structure of the L,’s by showing that they are also isomorphic to
C,(X), viz, the lattice of measure classes consisting of measures absolutely
continuous with respect to g. For this purpose it suffices to prove

ProposiTiON 55. C,(X) is canonically order isomorphic to Z,.

Proof. We let g be the map g:%,—- C, that sends [A] to [u],] (where
brackets indicate equivalence classes). The map g is well defined since if 4 and C
differ by a u-negligible set we have u|,=gl|c. If [4]<[B] in Z,, ie, if 4 is
contained in B up to a p-negligible set, then clearly u|, < uiy so that g is order
preserving. To show that g is surjective, suppose v < u. We then have v=v . SO that
[vl=[v,1=[u.1 by Proposition 12. But u,=pu|, for a suitable set 4. Hence
[vl=1[ul.l, 1e, Lv]=g[4]. To show injectivity we simply note that if x|, = ul,
then A4 and B differ by a p-negligible set. |

We summarize the results of Propositions 16 and 55 on the representations of the
local boolean sublogics L,. For pe L(X) we have order isomorphisms as shown:

LX) = L,(X)

L

fl P:M

T, —=— C,(X)

where: For ve L (X), let A€ be a set such that v=pu(-|4) (by Proposition 15).
Then f(v)=[A4] For [A)e %, g([A])=[u(-|A)]. For ve L(X), #{v)=[v]. Note
that in contrast to k, both f and g are not defined globally (i.e., they are not
restrictions to L,(X) and Z,, respectively, of maps defined on L{X} and &').

We indicated in Proposition 23 that the OR of two probability measures y and v
exists iff 7, =v,#0. H g L v then y,=v,=0 so that y and v have no CR, ie, no
least upper bound. However, in this case they do have a one-parameter family of
minimal upper bounds, as the next proposition indicates.

ProPOSITION 56. If i, ve L and y L v then there is a one-parameter family u, of
minimal, mutuaily incomparable, upper bounds given by u,=tu+ (1 —1t)v, where
0<t< 1. The u, belong to the same measure class. If u, ve L; then there is a unigue
t' such that u, < A

Proof. We first show that each u, is a minimal upper bound of the measures v,
i. Recall that this means that if p e L{X) satisfies v, u < p < u, then u, = p. Suppose
then that there is a pe L(X) such that v, u<p<u,. Then we can write the
Lebesgue decompositions

p=av+p’, ae{0,1) (57)
=bu+ p¥, be(0,1) (58)
u, =cp+ul, ce(0,1]. (59)
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Substituting (58) inte (57}, and recalling that u" =y (since ¢ L v) we obtain
p=av+bu+p™. {60)
But since /" =0 and p < u,, it follows that p** =0. Thus
p=av+hu | (61)

Since g, b >0, it follows that p is in the same measure class as v, and that therefore
u? =0. So from (59) and the fact that u, and p are probability measures it follows
that u,=p.

That the u, are all in the same measure class and are mutually incomparable is
clear. We proceed to show that if u, ve L; then there is a unique ¢ such that u, < 4.
Suppose that p, ve L; so that

A=av+ 1, as(Q, 1) (62}
= bp+ A*, be (0, 1). (63)

Substituting (63) into (62) and recalling that u"= i we obtain

A=av+bu+ A",

Thus
Ay =av+bp. (64)

Now wu,<i iff A,=cu, for some ce(0,1], ie, using (64), iff av+bu=
e{tv+ (1 — 1) p). This implies that t/{1 —1)=a/b, ie., that t=a/(a+b). |

Having discussed the AND and OR of the Lebesgue logic in some detail, we now
consider the “atoms” of the Lebesgue logic. An atom of the Lebesgue logic is a
probability measure that is greater than (ie., entailed by) no other probability
measure in the logic, except for the 0 measure (which is less than all measures).
Understanding the atoms of a logic is central to understanding the structure of the
logic itself. We begin with a definition.

DerINITION 65, Let (X, ') be a measurable space. A Lebesgue indecomposable
measure on X is a measure p e 4 (X) such that for all Te X either u(T) = u(X) or
u(T)=0.

PROPOSITION 66. A measure u is Lebesgue indecomposable iff it has no nontrivial
Lebesgue decompositions, ie., iff there does not exist a measure p such that
wFEp, # u” #0.

Proof. We Nirst show that if u is Lebesgue indecomposable then g has no non-
trivial Lebesgue decompositions. Suppose that u =, + ¢* is a nontrivial Lebesgue
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decomposition of g Since u, L u there exists a measurable set A4 such that
u,(A)=pu?(A4%)=0. Therefore

#X)=p(Ad)+ p(A°%)
=, (A)+ pP(A Y+ p, (A°) + pf(A°)
=u(A) + o, (4°).

We find then that
wA)=p(Ad) = p{X) — p (A°) < p(X}

since p,(A°)#0. (If u,(4°) were equal to 0, then since also p,(A4)=0, it would
follow that u,(4 w A4°)=p,(X)=0. But this contradicts_our assumption that the
Lebesgue decomposition of x with respect to p is nontrivial) Thus p is not
Lebesgue indecomposable. Now we show that if g has no nontrivial Lebesgue
decompositions then p is Lebesgue indecomposable. Suppose u is not Lebesgue
indecomposable, ie., suppose that there is a set Te & such that u(T) < u(X). Let
p =] Then u=p,+ p” is a nontrivial Lebesgue decomposition of u. |l

These Lebesgue indecomposable measures are the atoms of the Lebesgue logic.
Before showing this we first give a precise definition of atom.

DEFINITION 67. An element g of a partially ordered set is an atom iff 0 vy
implies either v=0 or v=p.

Remark 68. For a given measurable space (X, 4), all and only Lebesgue
indecomposable measures are atoms in the Lebesgue logic L(X).

Proof. We first show that ali Lebesgue indecomposable measures are atoms.
Suppose pe L{X), u#0, is a Lebesgue indecomposable measure and that 0<v gy
for some veL(X). Then, by definition of Lebesgue order, u=av+p* is the
Lebesgue decomposition of u with respect to v. v might, of course, be 0. If v # 0 then
since p is Lebesgue indecomposable, u¥ =0, so that g =«v. But g and v are in L(X),
so therefore x =1 and pu=v. Thus i is an atom. We now show that all atoms are
Lebesgue indecomposable measures. Suppose p is not Lebesgue indecomposable.
Then there is a measure p such that g # g, # u” #0. Since 0 < g, < pe but g, #0 and
u, # # we conclude that 4 is not an atom of L(X). |

We close this section with a few technical remarks, mostly aimed at suggesting
some further directions for investigation of the Lebesgue logic.

Remark 69. I (X, %) is a metric space with g-algebra generated by the metric
topology then the only Lebesgue indecomposable measures, and therefore the only
atoms of L(X), are Dirac measures. (A Dirac measure gives a weight of one to a
single point and a weight of zero to all measurable sets not containing that point.)
As an example of a Lebesgue indecomposabie probability measure that is not a
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Dirac measure, consider an uncountable space X with g-algebra generated by (1)
all countable subsets of X and (2) by two uncountabie sets 4 and A° Then a
measure p, that assigns the number | to the set 4 and the number 0 to A" and to
all countable measurable sets, is Lebesgue indecomposable but not Dirac.

Remark 70. The maps pu+— p, and p— p* are linear operations on .#.

Remark 1. 1l p, A, ve s then py, =, and p,=pl.

Remark 72. Suppose v# A Then v L Aiff v, A<y + 4

Remark 73. Suppose p,, p,e L(X) and that y,=v,+ 4, and pu,=v,+ 4, are
decompositions of g, and g, such that v, L A, If g, A p, exists then v, A v,,
v, A Ay, A; A v, and A A A, each exist. (They might be 0.)

Remark 74. Let u, xpu, denote the product measure (i.e., p; X p,(AxB)=
#(A) 2 (B)). Then gy x iy < vy x vy fl ;< v,

Remark 75. Suppose v, A, peL(X)and v L A. Il u A vand u » 4 each exist then
there exist c¢,, c,eR, (positive reals) such that for all re[0,1] we have
(tv+(1—t)A) Ap=civAaputcinp

Remark 76. Let Y,,Y,, and X be measurable spaces with Lebesgue logics,
respectively, L(Y,), L(Y;), and L(X). Let ¢,: L(Y,}— L(X) and ¢,: L(Y,) — L(X)
be logic morphisms. Denote the Lebesgue logic of product measures on ¥, x ¥, by
L{Y))®L(Y,). Then the map ¢, A ¢,: L(Y,)® L(Y,)— L(X) given, where it
is defined, by (¢, A d. W uxvi=¢,(pt) A ¢ (v) is a logic morphism. (Such a
construction might be of interest for the integration of “observers,” discussed later.)

Remark 77, If (X, 4’} is a topological space, then the Lebesgue order can be
completed. In the completed Lebesgue order we define v <y iff (1) p, = av, for ¢ >0,
or (2) v is supported” on a u measure zero subset of the support of u. The com-
pleted Lebesgue order is a completion of the Lebesgue order in the following sense:
If v is supported on a x4 measure zero subset of the support of u then, under suitable
conditions, v is expressible as a limit of sequences of normalized restrictions of p
over a family of sets which contract down to the support of v. In the logic
associated to the completed Lebesgue order g AND v exists iflf (1) ¢ L v, in which
case it is 0, or (2) i, =V,, in which case it is 7.

Remark 78. 1In the view of Marr (1982) and of many other researchers, percep-
tion is best understood as information processing. From this viewpoeint, a natural
condition for probability measures to be relevant to the study of perception, is that
the logic be related nontrivially to the information content of the measures. Specifi-

"In general the support of a measure is not well defined. However, for any probability measure v on
a topological space the suppert is the intersection of all closed sets A for which v{4)}=1. See, e.g.,
Royden (1988).
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cally, this viewpoint suggests that the entailment relation between measures should
respect the information content, or, equivalently, the entropy, of the measures.
Recall that the entropy of a measure v on a finite measurable space (X, 2%) is

Ent(v)= — Y log[v(x)]v(x).

xeX

The Lebesgue order respects entropy: if A<v in the Lebesgue order then
Ent{4) < Ent(v). In addition to respecting the information content of measures in
this quantitative fashion, the Lebesgue order also respects their information content
in a more qualitative fashion, i.e., by respecting the absolute continuity of measures:
if A<v in the Lebesgue order then A<v (but the converse is not true—see
Lemma 17). Intuitively, this means that if 1 entails v in the Lebesgue logic then the
support of A is properly contained in the support of v, and this is one way in which
A can be more informative, in a qualitative sense, than v, There are several
interesting orders on measures that do not respect either the qualitative or
quantitative information content of probability measures and which are therefore of
less relevance to perception. The next three remarks mention three such orders.

Remark 79. The Riesz order on finite measures can be specified by first defining
[uvv](4)=Sup{u(B)+v(C): BuC=4 and Bn C=}, and then stipulating
that u < v iff g v v=v. The Riesz order, restricted to probability measures, becomes
pu<viff u=v, and therefore generates no useful logic on probabilities.

Remark 30. The Gleason parts order on probability measures can be specified
by first defining p<,v ff v=au+ (1 —a) A for some probability measure 1, then
letting s = Sup {a: p <, v}, and finally stipulating that p <v iff p <, v. The Gleason
parts order does not respect entropy.

Remark 81. The collection of finite measures on a compact convex metric space
can be given the Choquet order. In this order, p<v it u(f¥<v(f) for all
continuous convex functions f on X. The Choquet order is not well defined on
discrete measurable spaces. Moreover, the Choquet order does not respect absolute
continuity.

Remark 82. Let P,: L(X)— L(X) be the projection operator u+— o A g Define
the domain of P, to be D(P,)={pe L(X}| ¢ <> ¢}. Given this notation, then (1)
If, for all ue D(P,)~D(P,), it is true that P, Pu=P, P, n#0, then o < p,
Moreover, (2) if o+«> p then for all peD(P,)nD(P,) it is true that
P P,u=P,P,u Thus in the Lebesgue logic, as in quantum logic, compatible
propositions are intimately linked with commuting operators.

Remark 83. Of importance to the structure theory of quantum logics are the
blocks, i.e., maximal boolean sublogics. In the Lebesgue logic, no boolean sublogic
L,(X) is a block if  is infinite, unless Z is isomorphic to 2% with ¥ countable.
In this case we may assume X = N, and we find that for any probability measure
@ strictly positive on 2%, the boolean sublogic L,(X) is a block. If & is not
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isomorphic to 2" and p is an infinite countably additive measure then the Renyi full
conditional probability (Renyi, 1970; see also Fine, 1973) {u(-|A):0<pu(d) <0}
is a family of measures mutually compatible in the Lebesgue logic.

Remark 84. Sometimes probabilistic systems can exhibit periodic behavior;
quasi-compact markov chains are one cxample {Revuz, 1984} This periodic
probabilistic behavior can be conveniently expressed using complex measures
{Revuz, 1984). The Lebesgue decomposition can easily be extended to such
measures: if 4 and v are complex measures, then j=u, + p°, where u, is absolutely
continuous with respect to the total variation of v, and u* is singular to the total
variation of v (see, e.g., Royden, 1988). The Lebesgue order is then simply v < u iff
p,=ov, a>0. (« s real, not complex, otherwise the resulting order would not be
a partial order.) The character of the logic that results, and its application to
periodic probabilistic systems, has yet to be investigated systematically.

Remark 85, If Tp J=[p,] but u, #py, then g, and g, arc not comparable in
the Lebesgue order. However, in general L, n L, # {J.

4, PROBABILISTIC INFERENCES: MORPHISMS OF LEBESGUE LOGICS

A probabilistic inference can often be conceived of as a map from a space of
premises, with its ogic, to a space of conclusions, with its logic. This map should
not be arbitrary. Instead it should map premises to conclusions in a manner that
respects the logics of both: If premise v entails premise p then the conclusion
associated to v should entail the conclusion associated to p. Such a map is called
a morphism. Intuitively, if an inference is modeled by a morphism, then as one
increases the resolution of the premises one correspondingly increases the resolution
of the conclusions. These ideas underhie the following definition.

DeriniTion 86, Let L{Y} and L(X) be the Lebesgue logics of probability
measures on measurable spaces (Y, %) and (X, &) respectively. Then a map
¢ L(Y)— L{X) is a Lebesgue morphism iff for v, uel(Y), (1) v<p implies
¢p(v)<¢(p) and (2) v L p implies g(v) L d(p).

An example of a Lebesgue morphism, and one which shows that such morphisms
need not be linear, is the following, Let ¥={a, #} and X'={c, 4} be measurable
spaces each having just two points. The probability measures on both spaces are
just the Dirac measures and their convex combinations. Consider the map
¢: L(Y)— L(X) given by e, + (1 —a) e, a’e, + (1 —a?}g,, where 0o < 1 and
£, denotes Dirac measure at the point x. The map ¢ is a Lebesgue isomorphism.

We now consider a few properties of Lebesgue morphisms.

ProrosiTION B7. If ¢: (¥}~ A (Z) is a linear map that preserves singularity
of measures then ¢ is a Lebesgue morphism.
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Proof. If v, ue . #(Y) satisfy v< u then we can write y=av 4 u* where v <y,
and p" Lv. Then ¢(p)=ag(v)+ ¢(u"). It follows from this equation that ¢{v)<
¢{u). We also know that ¢(u*) L ¢(v). So by the uniqueness of the Lebesgue
decomposition ${(vI<d(u) §

ProrosiTiON 88. Let 5: Y x % — [0, 1] be a markovian kernel® that preserves
singularity of probability measures. Then # is an injective Lebesgue morphism,

Proof. By Proposition 87, # is a Lebesgue morphism. Assume that 5 is not
injective. Then there exist measures p, ve L(Y) with g+ v but such that uy=wvy,
ie, such that (g —v)n=0. Let p—q be the Jordan decomposition of g —v, ie.,
p,qe#{Y)and p L g Then (p—qin=(u—v)n=0, which implies that

L,F_E_,?
I 210 I gl

But p 1 g, so # does not preserve singularity. |

We return to the subject of Lebesgue morphisms later in our discussions of
observer theory.

5. STATES ON LEBESGUE LOGICS

It might seem to some that the language of probability measures is sufficiently
cautious for dealing with uncertainty. After all, it allows us to avoid bald assertions
to the effect that such and such an event certainly obtained or certainly did not
obtain, and ecncourages instead more circumspect assertions regarding the
probabilities of events. But, one could argue, even this might be overly brash: How
can one know the precise probabilities of the various events? Perhaps committing
to a particular probability measure is itself insufficiently cautious.

It turns out that there is a useful notion, already well developed for the case of
ordinary logics, which bears on this issue: the notion of state. Here we use the term
“ordinary logic” informally to mean one in which v and A exist for all pairs of
elements, in which there is a unit element, and in which, as a consequence, there
is a global notion of complement. For such a logic &, a state 15 defined to be 2
measure on ¥, namely, a function p:a— p(a) for ae ¥ such that (i) p is real
valued and 0 < p(a) <1 for all ae &, (i1} if a countable collection of elements a,€ &
satisfy a; A a;=0 for i#/ then p(V;a,)=%,p(a;). As we have seen there is no
globally defined unit in the Lebesgue logic, and v and A are not defined for all

BRecall that if (X, %) and (¥, %) are measurable spaces, a kermel on ¥x % is a map
n: ¥x& - Ru {0} such that (1) for every ye ¥, the mapping 4 »(y, A) is a measure on X, denoted
oy, ), and (2) for every Ae®, the mapping y+»n{y, A) is a measurable function on Y, denoted
n(-, A). Given a measure ve L{ ¥), the measure vy given by wy(A) = _[r Wdyin({y, 4), A€, is a measure
in L{X). Thus n can be viewed as a map from L{Y) to L(X) given by v vy,
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pairs of measures. Still this definition of state literally makes sense for the Lebesgue
logic, and we formalize it in the following definition.®

DerFiNITION 89. A srate on a Lebesgue logic L(X) is a map S: L(X) - [0, 1]
such that

(i) S(0)=0; t e Range(S);

{(ii) H a countable collection of measures v,e L(X) satisfy v, n v, =0, for i £,
then S(3°, a;v,)=3%, S(v,), where a;,e(0, 1] and },a,=1.

The striking consequence of this definition is that the resulting states are essen-
tially discrete, as indicated in the following proposition (for which we are indebted
to an anonymous reviewer).

ProposiTiON 90, Let S be a state on L(X) in the sense of Definition 89. Then
there is an atomic measure p whose set of atoms is a collection of sets {A;} with
p(A;}=p;, satisfying the following property: For any ke L(X), S(A)=3%,.,, p,, where
Iy=1{j: A, is an atom of 1}.

Proof. If § is a state then according to Definition 89 there is a probability
measure pe L(X) with S(p)=1. If v A u=0 then S{u+v)=5(u)+Sv)=1 so
S(v)=0. H v L u then S{v}=0. As a result, for any ve L{X), S(v)=S8(v,). Write
v,=fip+fop where p{{f,=1};)=0 for all +>0 and f, is a step function
22 a1, (Here I, denotes the indicator function of the set A4,.) Since (fop) »
p#=0 we have S(v,}=S(f u). That is, § is essentially determined by its values on
p-step measures > 72, o,u(-|A4,}). If 4 is not atomic there is an 4, with u{A4,)>0
such that u(-|Ay) is non-atomic. On A, there is a function 0<f<1 with
p({f=tH=0 if O0<er<l. Write p(-|Ag)=fu(-14o)+ (1= ul-|4,). Since
Ju(-|Ag) A p=0=(1—f) u(-|4o) A pt one has S(fu(-| Ao))=S((1 —f) pu(-| 45} =0.
This, together with the hypothesis on f implies that fu(-|4y) A (1 —f)pu(-]|44)=0
so S(u(-[A4,))=90. A, may be chosen so that u(-|Af) is atomic. We have
S(p(-145))=1. Replace u by p(-jA;). Let {A;:ieN} be p-atoms with

2 u(A)=1. Let p,=S8(u(-| 4;)). The proposition now follows directly. |

Definition 89 yields states which assign nonzero values to atomic measures only.
However, we can weaken part (ii) of the definition to allow “generalized states.”
The natural way to do this is to require only that states be additive over convex
combinations of probability measures which are singular, as opposed to requiring
that additivity hold whenever the greatest lower bound is 0. {Recall that in the
Lebesgue logic if v, L v, then v; A v;=0 but not conversely.)

? The notion of a state on the Lebesgue logic is quite similar in spirit to the notion of probability
measure on a g-additive class discussed by Gudder (1988). Gudder, following Suppes (1966b), argues
that ¢-algebras are unnecessarily restrictive structures for the domain of definition of probability
measures. He argues instead for a more general class of structures in which the meet and join of two
arbitrarily chosen members need not exist.
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DerINITION 91. A generalized state on a Lebesgue logic L{X) is a map
S: L(X)— [0, 1] such that

(1) 5(0)=0; 1 eRange (35);
(i) M a countabie collection of measures v,e L(X) satisfy v, L v;, for i#},
then S(3°; a;v,) =3, S(v,), where o,€(0, 1] and >, &, = L.

Here is an important intuition: If we restrict our attention to the local sublogics
L,(X) then the condition that v, Av;=0 and the condition that v, Lv, are
identical. Therefore, we may think of a generalized state as a global object
which “glues together” genuine states of the local boolean logics L,, much as the
Lebesgue logic itself is a generalized boolean logic in that it “glues together” the
boolean logics L.

We now give several examples of ways to generate generalized states; they
correspond to ways of strengthening condition (i1) in Definition 91 by constraining
S(v), for v <y, in terms of some property of the relationship between u and v.

ExampLE 92. Choose u and choose p <pu. We then define S by S(v)=p(4, )
{(where, as usual A4, , is the domain of mutual absolute continuity in the Hahn
presentation—see Section 2). Note that for any 4e % we have S(u(- |4} =p(A).
Since p<p we can view p as a measure on %,, the boolean measure algebra
modulo p (as discussed in section two, &, is canonically isomorphic to C,, the
lattice of measure classes absolutely continuous with respect to u, and is also
canonically isomorphic to L,, the sublattice of the Lebesgue logic consisting of
measures less than g.) Thus we may view this state S as the composition

LX) -2 &, -2 10,17,

where ¢, is the map ¢,(v)=4, .

ExampLE 93. Choose peL(X). Then for any veL(X) consider v(-[A4, ).
Write v(-| A, ,)=v, +v, where v, =3, o,u(-|4;) and v; A 4=0. Then let S(v)=
> S(u(-] A;)). These generalized states are in one-to-one correspondence with pairs
{(u, p), where pe L{(X) and p is a probability measure on %, (ie., p <€ p), via the
composition

Ly -2 2, 2 10,17 (94)

Here y, is the map ¢, (v)= B, , where B, , < 4, , is the set on which v is a “p-step
measure,” i.c., on which dv,/du is locally constant a.e. 4. We have then simply that
S(v)=p(8B, )

We remark that globally the generalized states (Definition 91), as well as the
Lebesgue states themselves (Definition 89), fail to have certain attractive properties
(such as regularity and existence of supports—see, e.g., Beltrametti & Cassinelli,
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1981), but that locally, on the boolean sublogics L,, these properties obtain.
Finally, we remark that the notion of a state, or generalized state, on the Lebesgue
logic corresponds intuitively to a notion of a measure on probability measures.

6. A CONCRETE APFPLICATION. PERCEPTION

Although much remains to be done in developing the formalism and mathe-
matical implications of the Lebesgue logic, we now turn to consider a concrete
application. One would guess that there are many applications since there are mamny
disciplines that require probabilistic reasoning. But we have chosen to consider an
application in the scientific discipline of perception, largely because it was examina-
tion of observer theory, a formal theory of perception, that led to the development
of the Lebesgue logic. We sketch the relationship of the Lebesgue logic to observer
theory, in particular to a formal structure called an “observer,” and then suggest
how the Lebesgue logic might apply to the perceptual problem of sensor fusion. But
first it is appropriate to indicate, at least briefly, why probabilities and probabilistic
reasoning are central to perception. For this we refer to Fig. 7 and the following
principles.

Principle 1. No Perception without Representation. Why do you perceive a cube
when you look at Fig. 77 Quite simply, most perceptual theorists now agree,
because your visual processing of the figure eventuates, at some point, in a
representation of a cube. Such visual processing might also eventuate in other,
unperceived, representations. Thus, although there is no perception without
representation, there might be representation without {conscious) perception.

Principle 2: No Representation without Representations. When you see the cube
you also see less than the cube: you see a flat line drawing. And when you see the
line drawing you also see less than the line drawing: you see an array of light and
dark. (Similarly, mutatis mutandis, for the staircase and other drawings.) But by the
first principle, what you see is what you represent. So you represent the line
drawing and the array of light and dark. You can not, in gencral, have one
representation without entertaining others as well. Perceptual processes generate
many distinct representations.

/7
Y=

Ficg. 7. Some multistable figures (from left to right): the Necker cube, Schroder’s staircase, the devil's
tuning fork, and a notched cube.




92 BENNETT, HOFFMAN, AND MURTHY

Principle 3: No Representations without Inferences. The figure is flat, but cubes
are not. So how do you see a cube when you look at the figure? You infer it. Your
representation of the flat line drawing (discussed in Principle 2) is a premise from
which you infer the representation of the three-dimensional cube as a conclusion.
Special properties of the drawing that are unlikely by accident, such as the precise
coincidence of the tips of dilferent line segments, provide human vision the license
it needs to make the inference. Disrupt these properties, disturb the coincidences,
and the cube disappears. The inference is no longer licensed and the conclusion no
longer drawn, Of course in most cases you are not aware of the inferential process,
only of (some of) its conclusions, Perception, as Helmholtz put it, involves
unconscious inferences.

Principle 4. No Inferences without Risks. When you see the cube you are, in
an obvious sense, wrong. For, as we said, drawings are flat but cubes are not. To
perceive the cube is therefore to misperceive, to hallucinate a shape with depth
when in fact, in the flat figure, there is none. Those special properties of the figure
which normally indicate a proper premise for a legitimate inference of three-
dimensional shape have, in this case, misled the system. Perception does not traffic
in clean deductive inferences, whose only risk is error by inadvertence, but in
inferences whose conclusions typically go well beyond the premises, and whose risk,
therefore, is intrinsic. Perceptual inferences are, by nature, risky business.

Principle 5: No Risks without Probabilities. When you see the cube you see
more than a cube, you see two cubes, and you flip from one to the other. Both are
compatible with the drawing but, since at most one object can be in one place at
one time, at most one cube can be the right interpretation, Therefore accepting
either interpretation entails the risk of being wrong. A rational solution, and one
apparently adopted by human vision, assesses the risks and assigns probabilities of
correctness. For the cube the two interpretations are deemed equally likely and,
accordingly, you see each interpretation about half the time. For the staircase the
two interpretations are not deemed equally likely and, accordingly, you see each
interpretation with differing frequency.'* In these and many other cases, the
conclusion of the inference is not one interpretation, but a probability measure over
possible interpretations. In those cases in which just one interpretation is selected,
the probability measure gives a weight of one to that interpretation. Thus
perceptual conclusions are, in all cases, probability measures. These conclusions,
in turn, are often premises for further perceptual inferences. For this reason {and
because of that ever-present nemesis—noise) perceptual premises are also
probability measures. Perceptual inferences, then, take probabilistic premises to
probabilistic conclusions.

Motivated in part by these principles, Bennett, Hoffman, &Prakash (1987, 1989,
1991) proposed a formalism to mode! the probabilistic inferences typical of

WThe temporal behavior of muitistable percepts is studied in Ditzinger and Haken (1989) and
Mueller and Blake (1989).
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perception. This formalism is called observer theory, and the aspect of this theory
of primary interest here is its definition of an observer. We recall this definition
{schematized in Fig. 8}).

DerINITION 95, An observer is a six-tuple (X, Y, E, S, n, n) where

1. X and ¥ are measurable spaces. E is an event of X § is an event of Y.
Points of X and Y are measurable.

2. nis a measurable map from X onto Y such that n{E)=S5.

3. n:¥Yx% —>[0,1] is a kernel such that, for se S, (s, z " "{(s)nE)=1, and
for ye Y-8, n{y, X)=0.

We illustrate this definition with a concrete example. But first it is appropriate to
note how the six components of an observer model a perceptual inference. X is a
space of “elementary conclusions.” The set of all probability measures on X is the
set of all possible conclusions of the observer’s inference. E is a subset of X
containing the “distinguished” elementary conclusions. It embodies the constraint
used by the observer to interpret ambiguous sensory information. Probability
measures on E are conclusions in accord with this constraint. ¥ is the space of
“elementary premises.” The set of all probability measures on Y is the set of all
possible premises of the observer. 5 is a subset of ¥ containing the “distinguished”

FiG. 8. An illustration of the definition of observer.
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elementary premises. Probability measures on § are premises for which the observer
can reach a conclusion in accord with its constraint. 7 is a function from X to ¥
which specifies, for each elemenrary premise (ie., each point of Y} the set of
compatible elementary conclusions (ie., peints of X). n is the inference map. To
gach probability measure on S (each distinguished premise) # associates a
probability measure on E (a distinguished conclusion).

For a concrete example we turn to Ullman’s (1979) theory of structure from rigid
motion. It is a remarkable capacity of human vision that it often can, by viewing
dynamic two-dimensional images, such as those that appear on a television screen,
perceive the three-dimensional structures and motions which generated the two-
dimensional images. To explain this ability, Ullman proves that a reasonable
inference about 3D structure can be made on the basis of three distinct
orthographic (parallel projected) views of four noncoplanar points. Under such
conditions, Ullman proves, the number of rigid three-dimensional interpretations of
the views is generically at most two (the two being mirror reflections of each other
about the image plane) and the probability of false targests (roughly, the
probability that the views are compatible with a rigid 3D interpretation when in
fact such an interpretation is false} is zero. For this visual inference the observer
structure is as follows. ¥, the elementary premises, is the space of all sets of three
views of four points, ie., ¥=R?* (4 points by 3 views by 2 coordinates per point).
X, the 3D interpretations, is all triples of four points in 3D space, ie, X=R
{4 points by 3 instants of time by 3 coordinates per point). Ec X is the rigid
interpretations. = from X to Y is given by orthographic projection. § < Y are those
three views of four points that are compatible with at least one rigid interpretation.
And to each premise (point) of S the kernel u assigns a probability measure
supported on the two rigid interpretations that are compatible, according to
Ullman’s theorem, with that premise.

This example bears on the relationship between observer theory and standard
information theory, as follows. Ullman’s theory predicts that if one presents a
human subject with an appropriate physical stimulus, the subject will see not just
one rigid interpretation, but two. And in fact this is what happens; the subject sees
first one rigid interpretation, then the other, and then continues to alternate
between them. The subject does not know which of the two interpretations is
correct. Indeed both interpretations may be incorrect, for one can easily show that
the mapping from the external world to the retinal images is infinite to one, and
that therefore the set of possible three-dimensional interpreiations is infinite. Thus the
uncertainty here is of a fundamentally different kind than that treated by the
customary notion of an information channel (as introduced by Shannen, 1948). To
put this somewhat differently, no recoding of the physical situation can eliminate
the equivocation here. The retinal information is intrinsically insufficient, even in
the absence of noise, to allow a nonarbitrary choice from the infinite set of possible
three-dimensional interpretations. This uncertainty is fundamental, an uncertainty
which no improvement in resolution can remove. A crucial task of the perceptual
psychologist, therefore, is to discover what background assumptions a sensory
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system employs in choosing certain interpretations in the presence of this
fundamental uncertainty. It is exacily the structure of these assumptions in the
presence of fundamental uncertainty that is not accessible to classical information-
theoretic analyses and which is the raison detre of observer theory. The fibres of the
map 7, for example, express the fundamental uncertainty, and E, the distinguished
interpretations, express the background assumptions used by the observer to
overcome this uncertainty. By contrast, the role of information theory here would
be to study the manner in which noise “perturbs” =. Strictly speaking, in the
observer formalism one does not consider X to model a source, only a class of
interpretations. The source may be regarded as separate from both X and ¥, and
one may imagine that this source and Y are related by a channel if one wishes.
One may then use information theory to study stochastic properties of stimulus
reception. The interpretive part of the perceptual processing, however, with its
fundamental uncertainty and biases, is encoded in n and #, ie., in the observer
structure,

More concrete examples of observers and further details about observer theory
are given by Bennett es al. {1989, 1991). Qur interest here is to describe the
relationship between Lebesgue morphisms and observers. For this, note that each
observer has a collection of probability measures which serve as its premises, viz.,
the set L{Y) of all probability measures on Y with the Lebesgue order. Moreover,
each observer has a collection of probability measures which serve as its conclu-
sions, viz., the set L(X} of all probability measures on X with the Lebesgue order.
The abserver’s inference is a function, 7, from its Lebesgue logic of premises L(Y)
to its Lebesgue logic of conclusions L(X'}. The inference function # derives from the
observer’s kernel 5 as follows. First, recall that any kernel can be viewed as a linear
operator on measures, v vy, defined by

w(ay=] v(d)n(y, ) (96)

Then
DerFINITION 97. #: L(Y}— L(X) is given by

_ [tvm) if w#0
= {0 it wy=0.

Now for the main point. The key relationship between observers and Lebesgue
morphisms is this: the map #, it happens, respects the Lebesgue logics of premises
and conclosions; it 1s a logic morphism. The proof of the following theorem can be
found in Bennett, Hoffman, and Murthy (1993).

THEOREM 98. Let O=(X, Y, E, 5, n,n} be an observer, and let L(Y) and L(X)
denote the Lebesgue logics of probability measures on Y and X respectively. Then
7: L{Y)— LX) is a Lebesgue morphism.

This theorem indicates that the inferences of observers are morphisms from
Lebesgue logics of premises to Lebesgue logics of conclusions. The question of the
converse naturally arises: If an inference is given by a mapping between Lebesgue

480/37/1-7
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logics, can it be described by a canonically chosen observer? The answer, in many
cases, is yes. We state two theorems which are proved in Bennett, Hoffman, and
Murthy (1993).

THEOREM 99. If (Y, 27) Is a discrete measurable space, (X, &) any measurable
space, and ¢: L(Y) - L(X) an injective morphism of Lebesgue logics, then there
exists @ canonical representation of ¢ by an observer.

THEOREM 100. Let (¥, ¥) and (Z, 2} be metvic spaces with their associated
measurable structures. Let $(Z) denote the positive measures p such that u(Z)y<1,
ie., the “subprobability” measures. Let ¢: L{(Y)—> B(Z) be a convex, vaguely
continuous map. Then there exists a canonical observer representation of ¢.

These theorems point to the centrality of observers for information-processing
theories of perception (and for inductive inferences more generally). If one admits,
as is now generally accepted, that perceptual information processing is
probabilistic, and if one admits, as seems reasonable, that perceptual inferences
should respect the Lebesgue logic of probabilities then, according to these
theorems, for a large class of perceptual inferences there is a canonically associated
observer: the definition of observer provides a normal form of description. (The
“observer thesis” then makes the further assertion that every perceptual inference
can be described by an observer. This is discussed in Bennett et al., 1989.)

Observables

One can use the fact that # is a Lebesgue morphism to give a principled defini-
tion of “observable” in the language of observer theory. This is of interest in its own
right, but we devote attention to it now because it is a necessary step toward
applying the Lebesgue logic to the problem of sensor fusion. Qur discussion of
observables is guided in part by the work of Varadarajan (1985). '

Recall that to each classical mechanical system % there is associated a phase
space % whose points are in one-to-one correspondence with the states of %. The
dynamics of ¥ is specified by a Hamiltonian, a smooth function H:.¥ - R. The
observables of ¥ are described by real valued functions on &. For instance, if ¢ is
a single particle of mass m which moves along a single line under a potential field
, then & is R? and the Hamiltonian H is given by

1
H(x,P)=2—mP2+ Vix), (101)

where x is the position along the line and p the momentum. The function s p*/2m
is the kinetic energy of the particle and the function si— ¥(xj its potential energy.

In general, if g:. % — R describes an observable, then g{s) is the value of that
observable when % is in the state s. An observation results in an observation state-
ment: “the value of g is in the measurable set 4 of R.” The set of all such statements
(for the observable g) is, of course, in one-to-one correspondence with the
measurable sets of R. The inclusion relation among such sets naturally models the
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relation of entailment among the statements. From this it follows that the logic of
the statements is boolean. Now given a statement of the form “the value of g is in
the measurable set 4 of R” one can infer the statement: “the state of the system lies
in the set g~ '(A).” These are the most general empirically verifiable statements that
can be made about %. Since they are in one-to-one correspondence with certain
subsets of & (viz., subsets of the form g '(A4)) their logic is also boolean. If
g: % — R is an observable then the map g~! is easily seen to be a morphism from
the boolean logic of observation statements (i.e., measurable sets of R) into the
boolean logic of empirically verifiable statements about % (i.e., measurable sets of
). The morphism g~ ! is informationally equivalent to g and is therefore also
called an observable. We conclude that the observables of a classical mechanical
system are morphisms from the boolean logic of (measurable seis of) R into a
boolean logic of empirically verifiable statements about the system.

When we consider the observables of a quantum mechanical system the story is
similar except in one important respect: the logic of empirically verifiable
statements about a quanium system is not boolean, The observables are still
morphisms from the boolean logic of R inte a logic of empirically verifiable
statements about the system, but this latter logic is no longer assumed to be
boolean. It is, in fact, assumed to be a nondistributive lattice, the lattice of
subspaces of a Hilbert space. From this assumption about the logic flow the
counterintuitive features of quantum theory.

Taking our lead from these examples we can define, in the language of observer
theory, an observable for a perceptual inference. Denote the Lebesgue logic of
premises for the inference by L(Y) and the Lebesgue logic of conclusions by L(X).
Then an observable for the inference is a morphism from a boolean sublogic of
L(Y) into the logic L{X). Here we have substituted a boolean sublogic of L(Y) for
the boolean logic of measurable sets of R. And we have substituted the Lebesgue
logic L(X) for the logic of empirically verifiable statements. We now make this
more precise using the language of observer theory.

DerFiniTION 102, Let O=(X, Y, E, S, n, 1) be an observer, and let L{Y) and
L(X) denote the Lebesgue logics of probability measures on ¥ and X respectively.
For each ve L(Y) denote by L,(Y) the boolean sublogic associated to v (see
Proposition 42}. Then an observable for O is a logic morphism #,: L (¥)— LX)
obtained by restricting the domain of 7 to L.

Intuitively, an observable is the restriction of a perceptual inference to a “nice”
set of possible premises, viz., premises that are all mutually compatible.

There is clearly a one-to-one correspondence between observables for a percep-
tual inference and elements of L(Y). if we make the natural definition that »,<»n,
iff v < u then we see that the logic of observables is isomorphic to L{¥). This means
that we can talk of compatible observables and simultaneously verifiable
observables, just as we have done for premises and conclusions. It also means that
the observables associated to perceptual inferences are much closer in spirit to the
observables of quantum theory than to those of classical mechanics: the logic of
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observables for perceptual inferences is not boolean and admits observables that are
not simultaneously verifiable {for a discussion of quantum observables see, e.g.,
Wheeler & Zurek (1983)). This suggests that nonboolean logics of observation are
not restricted to the submicroscopic domain. Even in the macroscopic world of
normal perception the logic of observation is not boolean.

Sequential Observables

In the Lebesgue logic not all propositions are simultaneously verifiable. As we
have seen earlier, this property of the logic, when combined with observer theory,
predicts that some pairs of observables are not simultancously observable, even in
normal (i.e., macroscopic) vision. Pairs that are not simultaneously observable are
sequential observables. Sequential observables in human vision are not hard to find.
One example is binocular rivalry. Normally the images falling at the left and right
eyes are quite similar, and human vision uses any small disparities between them
to infer a unified perception of depth. But if the two eyes are shown very dissimilar
images a unified percept becomes impossible, One perceives the two images in
succession; first one for a while, then the other, During a transition one sometimes
sees a composite image, a mosaic of patches from both images. An example is
shown in Fig 9.

Another example of sequential observables can be seen in line drawings of
“impossible objects” such as the “devil’s tuning fork™ of Fig.7. You can either
perceive the horizontal lines as occluding contours of cylinders or as edges of
poivhedra. You do not perceive both interpretations simultaneously; instead you
flip back and forth between them.

Structure from motion provides another example. In many displays of structure
from motion, human subjects perceive, sequentially, two different interpretations of
the 3D structure and motion. (Each interpretation is a mirror reversal, about the
image plane, of the other.} This example differs in an interesting fashion from the
examples of binocular rivalry and impossible objects: whereas the latter examples
can be attributed to premises that are not simultaneously verifiable (incompatible
images in the case of rivalry and incompatible cues to depth and form in the case
of impossible objects) the example of structure from motion cannot: here
multistable percepts arisc even when there is but one premise. Rather, the multistable
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FiGg. 9. An illustration of binocular rivalry. If you cross your eyes so that the large X's fuse, you will
see the horizontal and vertical lines appear sequentially in time. This is an example of sequential
observables in human vision.
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percept is due to the probability measure describing the conclusion. This deserves
brief discussion.

Let us return once again to Ullman’s theory of structure from motion. We said
earlier that according to this thcory each premise compatible with a rigid
interpretation is, in fact, compatible with two (the two being reflections of each
other about the image plane). Accordingly, for each such premise s the associated
conclusion n(s, -} is a probability measure supported on two separate points in X
corresponding to the two interpretations. Now #, according to Theorem 98, is a
morphism between premises and conclusions: to a premise A, the morphism #
assigns a probability measure A7 as the conclusion. But A7 in this case is the sum
of two subprobability measures, say u, and u,, whose supports are mutually
disjoint. Now not all probability measures can be written as a sum of measures
having disjoint supports. A gaussian, for instance, cannot. Cut it however you like
into two measures, the supports of those measures, being closed sets, will not be
disjoint (they wilt overlap on their boundaries). So it is notable when a measure can
be written as the sum of disjoint parts. We will cail such a measure reducible.

Any time a measure is reducible, the (normalized) component measures are
mutuaily singular and therefore not simuitaneously verifiable in the Lebesgue logic
{since the AND of two mutually singular probability measures is 0). In Ullman’s
case, Aff =y, -+ 1, where r; and Ji; are not simultaneously verifiable. So we do not
see the interpretations corresponding to u, and y, simultaneously, but sequentially.
The relative frequencies with which the first and second interpréfations are seen are
given respectively by || i, || and || u, |). This is one role played by the probabilities
in Aq. But, intriguingly, there is a second role as well. The “variance” of u, can,
of course, change without changing |/, ||. And this variance corresponds to the
precision or noisiness of the corresponding interpretation; no variance means a
noise free interpretation, high variance a noisy interpretation. Similarly for || g, |-

So any time a probability measure is reducible, the total weight of each part is
its relative likelihood vis-a-vis the other parts, and the dispersion of each part is a
measure of its noisiness or uncertainty.!' Because the parts are not simultaneously
verifiable in the Lebesgue logic they are seen sequentially.

" This perceptual interpretation of probability measures, in terms of reported frequencies of percepts
and measured variance in subject responses, provides a way to connect the formalism of the Lebesgue
logic with empirical data from psychophysical experiments. Thus the Lebesgue logic has empirical
content for this domain. Nonetheless it is natural to question the need to use probabilities at all for the
representation and calculus of uncertainties. As we noted before, the notion of state on a Lebesgue logic
may allow us to back away from commitment to a particular probability measure. But another direction
can be pursued as well: the use of orders rather than measures. Let (X, &, x) be a measure space, and
let {p) denote the order induced on & by u (For A, Be X, we set A< B in the order (u) if
#{A) < p(B) in the natural order on the real line.) It might be that the representation of uncertainty
used, say, in human vision, is not a measure such as g but an order such as {u). Premises of visual
inferences, as well as conclusions, might be orders, not probability measures. In this case the inferencing
mechanism probably cannot be a kernel » for the following reasons. First {v» = {au} does not in
general imply that {vpd = (un). Second, suppose n: ¥YxZ —[0,1] is a kernel, and let {n)>=
{<n(p, Y2 ye Y} Then (5> = (> does not imply that (vy,> = {vn,>. Thus a different inferencing
mechanism seems to be required, certainly an interesting direction for study.
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Cue Integration

The Lebesgue logic, as we have just seen, predicts failures of integration for cues
that are not simultaneously verifiable. It also provides an algorithm for integration
of cues that are simultaneously verifiable. Formal properties of this algorithm have
already been discussed. Now let us turn to apply the Lebesgue logic to a real exam-
ple of cue integration in vision. Here, since there has been much recent research on
the topic, we have many examples from which to choose. There are empirical
studies of the visual integration of stereo with motion parailax (Graham & Rogers,
1982, Rogers & Collett, 1989), stereo with monocular perspective and other
monocular cues (Holway & Boring, 1941; Stevens & Brookes, 1988; van der Meer,
1979), stereo with specularities (Blake & Biilthoff, 1990), sterco with texture
(Buckley, Frisby, & Mayhew, 1988, 1989), vision with speech (Massaro & Cohen,
1983), and various combinations of size, occlusion, motion parallax, and height in
the picture plane (Bruno & Cutting, 1988; Ono, Rivest, & Ono, 1986). There
are also theoretical studies of cue integration based on multigrid methods
(Terzopoulos, 1986}, markov random fields (Aloimonos & Shulman, 198%; Poggio,
1985, 1987), algebraic models (Anderson, 1974), and probabilistic first order logic
{Nilsson, 1986). We will consider the integration of stereo with structure from
motion, as discussed by Richards {1984),

Richards invites us to recall the ambiguities of 31> interpretation that arise from
stereo and motion when the two are used separately. From stereo one can infer the
3D structure of an object up to a single scale factor which depends on the fixation
distance. Suppose, for instance, that one is iooking at four points, p,, .., p,;, whose
depths relative to the eyes are 4, .., d,. Using small angle approximations, the
horizontal disparity, 8,, between point p, and p, is given by &= (d, — d,)({/d3),
where [ is the interpupil separation between the eyes (or cameras) and where p, is
the point being fixated. To use this equation to compute the d;'s from the §;s
requires knowing the fixation distance 4,. The effect of different choices for 4, is to
scale in depth the 3D structure assigned to the remaining points: the structure
stretches or shrinks in depth as one changes the value assumed for the fixation
distance. Thus the conclusion of a stereo inference can, in this case, be constdered
a probability measure, say v, on the onc-parameter family of possible 3D
interpretations.

Now recall that the ambiguity of interpretation for structure from motion, as in
Ullman’s analysis, is of a very different kind. Here the ambiguity is between a 3D
interpretation and its mirror reflection. Thus the conclusion of a structure-from-
motion inference, as we discussed before, can be considered a reducible measure
M= p+ Ha.

The ambiguities for stereo and structure from motion are different. And here is
Richards’ key point: Of the two interpretations that arise from a motion analysis,
only one of them is, in general, a member of the one-parameter family of interpreta-
tions that arise from stereo. Translating this into the language of probabilities, this
means that v (from stereo) is singular with respect to one component of u {from
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motion), say the component g, but not to the other, viz,, u,. Consequently, if we
try to integrate the cues v and u by taking their Lebesgue AND, u drops out in the
process; the mirror ambiguity of structure from motion is eliminated. Put
differently, p AND v reduces to u, AND v. (This reduction in ambiguity would also
obtain were we to use the AND of the measure class order—discussed in
Section 2—rather than the Lebesgue order.} What further reduction in ambiguity
might occur depends on the precise forms of the measures g, and v. If, for example,
the fixation distance is as likely to be underestimated as overestimated in the case
of stereo, and if the errors in the motion analysis are as likely to stretch 3D
structures as to compress them, then p, and v could have a nontrivial AND,
resulting in a further reduction of ambiguity.

The Lebesgue AND can be used in a precisely analogous fashion to explain the
integration of shading and texture together with relative disparities of specularity.
One can devise displays of surfaces (Blake & Biilthoff, 1990) in which the monocular
shading and texture information leads to a multistable percept: the perceived
surface can be either convex or concave. When one then adds, in stereo, a specular
highlight, subjects choose that interprepation of the surface which is consistent with
the specularity. Here, as in the case of stereo and motion, the Lebesgue AND
eliminates one component of a reducible probability measure. The two ‘components
of the reducible measure, in the present case, represent the multistability {concave
versus convex) that arises from monocular texture and shading. The measure
arising from stereo specularity is singular to one of the components, so that this
component is eliminated in the Lebesgue AND.

7. CONCLUDING REMARKS

Probabilistic reasoning is central to many sciences. A probabilistic inference can
often be viewed as a map from one collection of probability measures to another
collection of probability measures. In this article we have shown that the collection
of all probability measures on a given measurable space has a natural order, the
Lebesgue order, and a concomitant logic, the Lebesgue logic. We have suggested
that a natural condition on a map representing a probabilistic inference is that it
respect this order, ie., that it be a morphism of Lebesgue logics. We have also
shown that there is an intimate relationship between observers—a formalization of
inductive inference introduced by Bennett er al. (1989)—and maps that respect the
Lebesgue logic. Finally, we have sketched a possible application of the Lebesgue
logic to the problem of sensor fusion in perception.
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