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Modeling Performance in Observer Theory

BrUCE M. BENNETT, DONALD D. HOFFMAN, AND RAMAKRISHNA KAKARALA

University of California, Irvine

We propose a general framework for the study of perceptual capacities, a framework that
encompasses theories of perceptual competence and models of perceptual performance. A
competence theory of a perceptual capacity (such as stereo vision) describes that capacity in
an idealized, information-processing sense, without regard for noise, limited resolution, or
limited computational power. A performance model, by contrast, describes the effects of noise,
limited resolution, and limited computational power on actual performance as measured in a
{aboratory. Our framework for studying both competence and performance extends the formal
theory of perception known as observer theory. Observer theory provides a canonical form in
which to state competence theories of perceptual capacities. This canonical form is called an
observer. In this paper we link theories of perceptual competence with models of perceptual
performance by constructing an extension to the definition of observer, an extension that we
call a “performance extension.” To illustrate how the petformance extension can aid both the
perceptual theorist and the experimental psychologist, we use the performance extension to
analyze a psychophysical study of surface interpolation. Finally, we explore a connection
between performance extensions and signal detection theory by showing how a signal detec-
tion rule can be derived from the performance extension. © 1993 Academic Press, Inc.

1. INTRODUCTION

Researchers into visual perception, and into perception more generally, have
found it helpful to distinguish between theories of perceptual competence and
models of perceptual performance. A competence theory of a perceptual capacity
(such as stereo vision or auditory localization) is a theory that describes the
capacity as the solution, given appropriate constraints, to an information
processing problem; the competence theory specifies the available sensory data, the
desired perceptual solution, and the constraints used to infer the latter from the
former, but does so without consideration of noise, resolution, or computational
power (Richards, 1988; Ullman, 1986). A performance model, in contrast, describes
the effects of noise, limited resolution, and limited computational power, and,
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ideally, provides a bridge between a competence theory and behavior as measured
in the laboratory.

The following example of a pocket calculator, due to Marr and Poggio (1977),
illustrates clearly the distinction between competence and performance. A com-
petence theory of a pocket calculator describes the calculator as doing arithmetic
on real numbers—adding, multiplying, taking roots, evaluating trigonometric func-
tions, and other similar operations. The theory explains why, for any two entries X
and Y, X+ Y yields the same answer as ¥+ X. It also dictates that (\/—23)2=2.0.
However, in practice, some calculators yield (\/E(S)2 =1.999999999. This departure
from the dictates of the competence theory is one of performance: the calculator has
finite memory and finite-precision numbers and therefore, in practice, can only
approximate the competence theory. We can predict this departure if we know the
calculator’s precision of decimals and its algorithm for computing roots. This
knowledge constitutes part of a model of performance for the calculator.

Competence theories and performance models complement each other. Consider,
for example, how one would explain why cos(tan~!(X)) always yields
approximately 1/\/X*+1. The competence theory shows that it is a simple
trigonometric identity; the performance model accounts for the error due to
truncated Taylor series, memory allocation, and other limiting factors.

For calculators, the differences between performance and the dictates of the
competence theory are so slight that we view calculators as actually performing the
functions of basic mathematics. For perceptual capacities, however, the differences
between performance and the dictates of a competence theory are often much
larger. This raises the question: when is the difference between competence theory
and actual performance great enough to reject the competence theory? To answer
this question, we propose a common framework for analyzing both competence and
performance in perception. Our framework uses the formal theory of perception
known as observer theory (Bennett, Hoffman, and Prakash, 1989). Observer theory
proposes a single structure, called an “observer,” for modeling all perceptual
capacities. An observer model for a perceptual capacity is a competence theory of
that capacity stated in a canonical form. After reviewing the observer formalism, we
propose the notion of a “performance extension” of an observer; it is intended to
model the actual performance—in the presence of noise, limited resolution, or
Jimited computational power—of a perceptual capacity whose competence theory is
the given observer. It is thus possible first to describe a perceptual capacity with a
competence theory, then to state the competence theory as an observer, and
subsequently to investigate performance issues with the performance extension.
In this way, the performance extension provides a bridge between theoretical
predictions and actual behavior as measured in a laboratory.

After giving the general definition of a performance extension, we use the perfor-
mance extension to analyze a specific psychophysical task, viz., a task that explores
the visual interpolation of subjective surfaces in displays of structure from motion
(as reported by Saidpour, Braunstein, and Hoffman, 1991). In this instance, the
analysis shows that the data of Saidpour et al. disconfirm an existing competence
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theory of surface interpolation. We then use the performance analysis to suggest an
alternative theory, one which is consistent with the results of Saidpour et al.

We assume in this paper that the reader is familiar with abstract probability
theory, preferably at the level presented in Billingsley (1986) or Bauer (1981). In
Section 2 we review the concept of an observer; since observer theory is relatively
new, this might serve as an introduction for most readers. In Section 3 we provide
a motivated definition of the performance extension. In that section, we discuss at
length the principles and modeling strategies that lead to our definition, and
provide some predictions for experimental verification. We use the performance
extension in Section 4 to analyze the surface interpolation task mentioned above.
Finally, in Section 5 we explore some connections between this work and statistical
decision theory, showing that a signal detection rule is canonically derivable from
each performance extension.

2. DEFINITION OF OBSERVER

To make this paper self-contained we now review briefly the definition of
observer. More detailed discussions of the definition can be found in Bennett,
Hoffman, and Prakash (1989, 1991).

An observer is a competence theory of a perceptual capacity stated in a canonical
form. Recall that a competence theory, as defined in the Introduction, describes a
perceptual capacity as the solution—under appropriate constraints—to an informa-
tion processing problem: the competence theory specifies the available sensory data,
the desired perceptual solution, and the constraints used to infer the solution from
the sensory data. Any competence theory can in turn be described by an observer,
0, where 0 is a six-tuple O = (X, Y, E, S, ). In this notation, Y is the set of all
possible sensory data, X is the set of all possible perceptual solutions, # is a map
from X to ¥, and E and § are sets that represent the constraint respectively in the
solution space and in the data space. The last component, #, is a probabilistic
representation of the perceptual inference from S to E, ie, from the data that
satisfy the constraint to the solutions that satisfy the constraint.

We introduce the concepts underlying an observer by using Ullman’s (1979)
theory of structure from motion. Ullman analyzes a remarkable ability of the
human visual system: we can perceive the relative three-dimensional (3D) positions
of moving points when viewing a sequence of two-dimensional images of their
motion. Ullman shows how the relative 3D positions of points can be determined
from only three distinct views of the points. In particular, Ullman and Fremlin
prove the following theorem (see Ullman, 1979, p. 146):

Given three distinct orthographic views of four (or more) noncoplanar points in a rigid

configuration, the structure and motion compatible with the three views are uniquely
determined.

As Ullman points out elsewhere, there are actually two solutions, which are mirror
images of each other.

The observer representation of this structure-from-motion theory is as follows.
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Ullman and Fremlin’s theorem states that structure and motion can be recovered
from three views of four points—if the points are noncoplanar, the points move
rigidly, and the views are obtained by orthographic projection. Let us examine the
space of possible sensory data for this task. A single datum contains exactly four
orthographic views of three points. Let us assume, with Ullman, that one of the
four points is “foveated,” ie., always fixed at the origin. Then, if we assign two-
dimensional (2D) coordinates to the image plane projections of the points, we find
that each image datum has 18 degrees of freedom—one degree for each coordinate
not at the origin. Let Y be the set of all such data; then Y= R'". Now let us
examine the solution space. For each sensory datum, the corresponding perceptual
solution specifies the missing depth coordinates that were lost under orthographic
projection. Therefore each solution contains exactly twelve points—three views of
four points—where each point lies in R3. Thus each solution is a set of 27 real num-
bers (one for each coordinate not fixed at the origin). Consequently the space of all
possible solutions, denoted X, is R?. The relationship between the two spaces X
and Y is given by the orthographic projection (x, y, z) (x, p); the induced map
 from X to Y strips off the z coordinates from each element of X.

We now consider the constraints and the inference in Ullman and Fremlin’s
theorem. The constraints are noncoplanarity and rigidity of motion of the points in
space. These constraints define a subset E of the solution space X. Intuitively, each
point of E corresponds to a 3D visual interpretation in which four points move
rigidly together over three instants of time. Now consider the subset S of the
sensory data space Y given by S=n(E). Intuitively, each point of S corresponds
to a visual display (three 2D views of four points) which can be given two rigid
interpretations. To each point of S, Ullman and Fremlin’s theorem assigns exactly
two solutions in E, where the only difference between the solutions is that one is
a mirror reflection of the other. Both solutions are equally valid given the data; the
fact that there are two solutions suggests that displays of structure from motion can
lead to multistable percepts: a viewer may “flip” back and forth between the two
solutions in the same way that a viewer often flips between the different 3D inter-
pretations of a Necker cube. To model multistable percepts, observer theory uses a
markovian kernel denoted #. This kernel can be thought of simply as a collection
of probability measures on the rigid interpretations E. For each element s of S,
y(s, -) is a probability measure on the two points in E that are solutions according
to Ullman and Fremlin’s theorem; these points lie in the set ™ *(s) N E. Intuitively,
the probability assigned to a point of E by the measure n(s, ) indicates the
relative likelihood, given the visual display s, of perceiving the 3D interpretation
represented by that point.

This structure-from-motion example illustrates the ideas behind an observer; the
precise mathematical definition of an observer is as follows.

An observer @ is a collection (X, Y, E, S, , n) with the following properties (see
Fig. 1):

(a) X and Y have measurable structures (X, &) and (Y, %), respectively. The
points of X and Y are measurable.
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(b) Ee% and Se%.
(¢) m:X— Y is a measurable surjective function, such that n(E)=S.

(d) Let & denote the g-algebra on E induced from that of X # is a markovian
kernel on Sx & such that for each s, %(s, -) is a probability measure supported in
n7Y(s)n E.

A preobserver is a collection (X, Y, E, S, 7) satisfying conditions (a)-(c). X is the
configuration space and Y is the premise space of . E is the distinguished configura-
tions and S is the distinguished premises of 0. Finally, n is the perspective and # is
the interpretation kernel of O.

An observer ® “works” as follows. As a result of an interaction with an object of
perception, @ receives a premise y in Y. If y is in S, then @ gives interpretations in
7Y (y)n E with distribution #(yp, -). If y is not in S, then @ gives no interpretations;
ie., it remains inert. In other words, ¢ gives interpretations only for the dis-
tinguished premises (points of §), and the interpretations are given only among the
distinguished configurations (points of E). It is in this sense that E and § represent
the bias of a perceptual capacity.

In addition to the structure-from-motion example presented above, observers
have been formulated for competence theories of stereoscopic vision, light source
detection, and other perceptual capacities (Bennett et al., 1989; pp. 30-41). In fact,
the observer thesis holds that the competence theory of any perceptual capacity is
representable by an observer; this thesis, like the Turing hypothesis in computer
science, is not provable but is subject to disconfirmation by counterexample (loc.
cit. ).

Fi16. 1. An observer. ¥ is the premise space, X is the configuration space, and § and E are
respectively the distinguished premises and configurations. = is the perspective map, 4 is a markovian
kernel on §x &; for each point s of S, (s, -) is supported in n"(_s) N E.
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3, PERFORMANCE OBSERVERS AND PERFORMANCE EXTENSIONS

As we state in the Introduction, our goal is provide a common framework for
analyzing theories of perceptual competence and models of perceptual performance.
The competence part of our framework is the observer defined in Section 2; the
performance part is formulated below as the “performance observer” and the
“performance extension.” For an observer O=(X, Y, E, S, n, 1), a performance
extension is a pair (', R) consisting of a performance observer ' = (X,Y,m,n)
and a “retraction kernel” R (see Fig 2); the pair satisfies certain compatibility
conditions, which we now discuss.

Let O =(X, Y, E, S, m, n) represent an observer, and let ¢ denote a single instan-
tiation of O, e.g., the structure-from-motion capacity of a particular human subject.
Observe that the bias of 0’ need not match that of O, as represented by the sets
E and S. In Uliman’s observer, for example, there are many glements of S which
represent displays that are too small or too large for humans to see. Furthermore,
clements of Y— S that are “very near” S may be indistinguishable from points of
S due to limitations in resolution. Moreover, points of ¥ - still further from S
may be given interpretations as “nearly rigid” conﬁgurations-wconﬁgurations that
are rigid except for a noticeable flaw, e.g., jitter in one of the points. These nearly
rigid configurations necessarily lie in X — E.

To model performance data, we define for ©' the sets S’ and E' as respectively
the maximal set of premises given interpretations, and the maximal set of configura-
tions used as interpretations. We make four comments to clarify this definition.
First, the meaning of “maximal” becomes precise when the interpretation kernel 7’
and the retraction kernel R are defined below. Second, when we say a configuration

Fig. 2. A performance extension. X, Y, E, S, m are the same as in the observer. y' is the inter-
pretation kernel and R is the retraction kernel.
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X is “used as an interpretation,” we mean that x represents mathematically a
berceptual conclusion given to a premise y. Third, S’ and E’ are specific to a
single instantiation. By experimental evaluation, it may be possible to determine
“average” sets S' and E' (ie., average over different subjects), but that is not
required here. Fourth and finally, E' need not contain E as a subset. For example,
£ in the structure-from-motion observer contains configurations consisting of four
noncoplanar points that rotate by an angle too small to detect. These configura-
tions would never be used as interpretations by ¢, and hence would not be in E’.

Let us now consider the inference process for @'. For the competence-observer O,
the inference process is described by a markovian kernel 5, which is defined on
Sx&. A performance counterpart to 7, which we denote #’, should have the
following characteristics. First, the “maximality” criterion in the definitions of S’
and E’ given above requires that »' give interpretations for all points of S, and also
that #’ give these interpretations only in E'. Second, #' should be sufficiently general
to capture such phenomena as multistable interpretations (such as reversals of the
Necker cube) and perceptual learning. A markovian kernel does this effectively: it
is a well-defined entity that for a single premise allows more than one interpreta-
tion, as required for multistability, and it can allow the relative weights given to
different interpretations to change over time, as required for learning.

Should we require the kernel ' to be markovian? Were we to do this, it would
follow that for each sensory premise s'eS’, the measure #'(s’,-) would be a
probability measure on E’. This condition is too restrictive for n’ for the following
reason. Psychophysical studies of perception near absolute threshold indicate that
for premises in 5", it must be possible to give interpretations in E’ only some of the
time. As the sensory stimulus varies in intensity from below threshold to above
threshold a subject’s perceptual response is characterized by a smooth transition
from never giving interpretations to always giving interpretations. For example, in
auditory signal detection tasks, the probability that a subject will identify a stimulus
as “signal” gradually increases from zero to one as the signal’s intensity is raised
from barely audible to perfectly detectable (Green and Swets, 1974). We can
account for this by defining n’ to be a submarkovian kernel on Y x & ; for each
ye¥, n'(y-) is a subprobability measure on (X, ). S' is then precisely the
measurable subset of ¥ where ' gives interpretations with nonzero probability:

8= {y:n'(», X)>0}.

The number 1—-4(y, X) gives, for each y, the probability of no response (or a
negative response). ‘

Let us now examine the difference between E’ and E. Suppose you observe a
motion display in which the points appear to move through space almost, but not
quite, rigidly. Perhaps the points are moving rigidly, but with a little vibration that
makes their motion not strictly rigid. Often, in this case, you have a good idea of
what the rigid motion would be were there no vibration, and you also have a good
idea of what the vibration is that is perturbing the points from this rigid motion.
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Fig. 3. A Necker cube with warped edges.

In the language of observers, your perceptual interpretation corresponds to a point
x that is in X — E; ie., that is not distinguished. However, you have a good idea
which point e in E is “closest” to x, i.e., which rigid motion it is that is being
perturbed by the vibration. As another example, one can easily identify the object
in Fig. 3 as a Necker cube with warped edges; the distinguished part of this percept
can be identified as a perfect cube and the flaws as the warpings of its edges.

We describe this effect by a “retraction” R of E ' to E (see Fig 2): The idea of
the retraction is to associate to each nondistinguished configuration Xo in E' a
probability measure on E which, intuitively, describes the probability that a given
distinguished configuration in E is viewed as the “distinguished part” of x,. In
order to specify R mathematically, we adduce the following considerations. First,
the meaning of E’ is that every configuration in it should have some identifiable
distinguished part, although it may be impossible to identify that part with a
specific element of E. Second, R should be sufficiently general to allow for multi-
stability and learning. Thus we are led to define R to be a submarkovian kernel on
X x &, where & is the o-algebra on E induced from that of X. An additional benefit
of defining R in this way is that now E' can be defined rigorously:

E'={x: R(x, E)>0}.

Finally we note that on the set EnE’, there is no feed for a retraction. Here all
the configurations are distinguished, and therefore the identification of the dis-
tinguished part is trivial; ie., it is the configuration itself. Consequently, for every
xo€ EnE’, we require R(xo, +) to be the Dirac measure Eyl) supported on Xxg.

The kernel product n'R is a submarkovian kernel on Yx &. For each yeS’,
#'R(y, -) represents the distribution of identifications of distinguished parts in E.

Let us now analyze the structure of interpretations given by ©'. Here the “logic”
of the competence observer O proves useful (for more details, see Bennett,
Hoffman, and Murthy, 1993). Recall that for O, the sets E and S enjoy two com-
patibility relations: first, n(E)=S, and second, for every ses, n(s, -) is supported
in the set =~ '(s) N E.
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We expect that n(E’)= S’ for the instantiation ¢’, ie., that the first compatibility
condition is satisfied. This relation states simply that for each atomic interpretation
ee E', the corresponding atomic premise n(e) gives rise to an interpretation, and
thus n(E’)c S’; conversely, the only atomic premises seS’ that are given
interpretations are those compatible with an atomic interpretation e e E’, and thus
n(E")>S'".

The second compatibility relation gives n a fibre structure. (A fibre of a
measurable map n: X — Y is a set n~'(p) for ye ¥.) A consequence of the fibre
structure is that for distinct premises sq, s, €S, the corresponding conclusions
1(so, ) and n(s,,-) are supported in different sets. Should #’ have the corre-
sponding fibre structure? That is, for all ye S’, should n’(y, -) be supported only in
n~!(y)? Since the fibre structure is important in observer theory, we discuss this
question in detail below.

Consider the following motivation for the fibre structure. Perceptual systems, as
a rule, propagate noise from premises to interpretations. In structure from motion,
for example, any noticeable positional jitter in the 2D premise is also evident as
noticeable positional jitter in the 3D interpretation. Similarly, the warped 2D lines
of the object in Fig. 3 appear as warped edges of a 3D Necker cube. In both cases,
noise that corrupts the premises also corrupts the interpretation. This behavior can
be summarized by stating that up to the limit of resolution, an interpretation given
to a distinguished premise s & S should be “perceptually distinct” from that given to
a nondistinguished premise y that is formed by adding noise to s. We express this
mathematically by stating the following condition on #'.

Condition 1, For a distinguished premise y€S5'n.S and a nondistinguished
premise yoe S’ — S, n'(p, -) and n'(y,, -) should be supported in different sets.

Condition 1 would, of course, be true if n' were to have the fibre structure, for
then #'(y, -) and #'(y,, -) would lie respectively on the disjoint fibres =~ '(y) and
7~ Y(y,). We show below that in fact the fibre structure guarantees a much more
general relationship between premises and conclusions.

To introduce this relationship, we require a more general representation for
premises and conclusions. We have thus far treated premises as elements of ¥ and
conclusions as measures on X. A more natural approach would be to use proba-
bility measures for premises as well (Bennett ef al.,, 1989, pp. 29-30).

DEFINITION 2. A sensory premise A is a probability measure on (Y, %).

This representation for sensory premises is especially useful when there is uncer-
tainty, resulting from noise or measurement error, about the “true” premise. For
each A€W, A(A) gives the probability that the true premise is in A, If punctual
premises—premises that are single elements of Y—are available, then they can be
described by Dirac measures ¢,(-) on points ye Y.
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Given a premise 4, the corresponding conclusion given by 1’ is a subprobability
measure v on (X, &), where for Be Z,

WB)=] M), B). (1)

The probability of no response, given the sensory premise A, is 1—v(X). We
henceforth write v =An’ to mean Eq. (1).

We can now make things more rigorous. If two premises p and 4 are mutually
singular as probability measures, then they represent logically mutually exclusive
input propositions to the perceptual inference process: p and 4 have digjoint sup-
ports, and hence the uncertainty associated with y is exclusive of that of A and vice
versa. Now in general we view an inference process (such as a perceptual capacity)
as a mapping from a set of premise propositions to a set of conclusion propositions,
a mapping which respects logical relationships. In particular, mutually exclusive
premises imply mutually exclusive conclusions. Thus we are led to the following
condition on #'.

Condition 3. n' maps mutually singular premises to mutually singular conclu-
sions, i.e., if p L A then un' L An'.

(Note that for the purposes of Condition 3 we are not assuming that all pairs of
premise measures are mutually singular, only that if a pair is mutually singular,
then #' yields conclusion measures that are mutually singular.)

We now establish that for Condition 3 to hold it is sufficient that #’ respect the
fibres of 7.

THEOREM 4. For Condition 3 to hold for all premises i, A, it suffices that for all
ye¥, n'(y, X)=n'(y, n~'(»)), ie., that ' respect the fibre structure.

Proof. Suppose u L A. Then there exists B= Y such that u(B)=A(B°)=0.If n'
has the fibre structure, then

pn' e (B)) = | wldy) (7 (B))
= [ udy) 'ty 2~ (B i)

={ way)n'(yn ()

B

where we derive the inequality by noting that iy ()<t Similarly, we can
prove that In'(n~'(B))=0. Since m: X—Y is surjective, =~'(B) and 7~ Y(B%)
partition X, and hence wn' Lag'. |
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Thus Condition 1 and its mathematical generalization, Condition 3, are satisfied
if #” has the fibre structure. We note that this fibre structure is not necessary for
Condition 3 to hold. However, one of the basic ideas of observer theory is that the
fibre structure is the “universally efficient” way for Condition 3 to hold; this means
that in a situation where Condition 3 holds but the fibre structure fails, the syntax
is somehow inefficient, and modifications of the definitions of X, ¥, =m, 7', etc,
would yield a more efficient representation of the inference in which #’ has the fibre
structure. We do not pursue this idea of “efficiency” further here; however, we
emphasize that the fibres of = are to be viewed as basic syntactic discriminants of
perceptual interpretations.

For these reasons we require that n’ have the fibre structure; ie., we require that
for all ye §’, '(y,-) is supported in n~'(p). That Conditions 1 and 3 hold in
concrete perceptual situations is thus a prediction of our model. In order to test the
fibre structure experimenally, one must choose a response variable that is logically
dependent on the interpretation kernel ', and not on the identification kernel #'R.
In fact, for premises outside of S, 'R mever has the fibre structure, since it is
supported on Ecz™!(S).

We summarize the principles discussed above in the following definition (com-
pare Figs. 1 and 2).

DEFINITION 5. A performance observer 0’ is the collection (X, ¥, 7, ') satisfying
the following conditions:

(a) X and Y have measurable structures (X, &) and (¥, &), respectively. The
points of X and Y are measurable.
(b) =: X — Y is a measurable surjective map.

(c) #:¥Yx%—[0,1] is a submarkovian kernel. #’ respects the fibres of =:
for all ye ¥, n'(y, n =" (»)) =7'(y, X).

DerniTioN 6. Let 0=(X, Y, E S,%n, ) be an observer, with (E, &) the
measurable structure on E. A retraction kernel for @ is a submarkovian kernel R on
X x &, such that for all xe X, R(x, E) is either zero or one,

DermniTION 7. A pair (@', R) consisting of a performance observer ¢ and
a retraction kernel R is a performance extension of a competence observer
O0=(X, 7, E, S, rnn) if the following conditions are satisfied:

(a) The measurable structures (X, &), (¥, %), and the map = are the same
for @' and O.

(b) Compatibility conditions. Let

E'={x:R(x, E)>0}, S'={y:q'(y, X)>0};
then:
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(i) n(E)=S"
(i) VyeY:in'(y, E)=n'(y, X)

(ili) R(x,-)=¢,( ) for xe En E’, where ¢,(-) is the Dirac measure on the
_point x.

(iv) #n'R(s, - )=n(s,-) forseSnS"

3.1. Discussion

We begin with a couple of reminders. First recall that, as discussed earlier, the
performance interpretation kernel 5’ is defined to be submarkovian in order
to allow for a variable probability of giving distinguished interpretations: a
performance observer, given a premise y€Y, may not be confident that y
should be assigned a distinguished interpretation. The number 0 <#'(y, o ly))<1
gives the degree of confidence that the premise should be assigned a distinguished
interpretation.

Second recall that, as discussed above, the retraction kernel R is defined to be
submarkovian in order to distinguish between two kinds of configurations, viz, (1)
those which are given positive measure by »’ and (2) those which are not. For
configurations of type(2), the retraction kernel gives the zero measure. For
configurations e’ of type (1) the retraction kernel gives a probability measure on E,
describing the probability for each ee E that ¢’ is a perturbation of e. We note that
R(e', E) does not take all values between 0 and 1. Why? For a set 48, R(e', A)
is the probability, according to the performance observer, that e’ is a perturbation
of a distinguished configuration e e 4, given that the performance observer accepts
e’ as a perturbation of some distinguished configuration. The number #'(y, {e'}) is,
intuitively, the probability that e’ will be so accepted. (The reason that this state-
ment is only intuitive is that in the non-discrete case, n'(y, {¢'}) might be zero for
all points ¢’ even when #'(y, 7~ '(»))#0.)

In Definition7, @ is a performance extension of O—not the performance
extension of O—because E’, S', ', and R are meant to be specific to a single
instantiation. As discussed earlier, it may be possible to determine experimentally
an “average” E’, S, n’, and R, but that is not required here.

The definition reflects, with a minor addition, the principles discussed earlier in
this section. The addition is condition (b)(iv), which requires that the distribution
n'R(s, -) agree with n(s, ) on SN $'. This condition provides a definition of #’ that
is consistent with that of 5. To see this, recall that the definition of the competence
observer O leaves undetermined the probability distributions (s, -). These distribu-
tions model the relative frequency of interpretations given in E. However, since the
relative frequency varies with the instantiation, n can only be determined from
experimental measurements of n'R(s, ). Condition (b)(iv) then provides a means of
determining 7 from a determination of #'R.
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4. APPLICATIONS OF PERFORMANCE OBSERVERS

Having introduced the formalism of performance observers, it is now appropriate
to examine the usefulness of this formalism in analyzing real perceptual tasks. The
formalism is, after all, somewhat complex and one might wonder if this complexity
is necessary. Is there anything new and useful here that we do not already have in
other theories, such as statistical decision theory, that study performance in the
presence of noise? In short, does the formalism of performance observers give
analytical power to the perceptual theorist, or provide practical tools to the
experimental psychologist?

Indeed it does. The essential difference between observer theory and statistical
decision theory in the context of perception is worth mentioning. In those cases
which typify statistical decision theory all uncertainty is due to corruption of the
sensorial data (e.g, by noise in the generation, transmission, and registration of
sensory information). Hence, assuming a noise-free channel and perfect resolution
at the sensory receptors, the decision to be made is, in principle, trivial. By contrast,
in perception as modeled by observer theory, even when there is no corruption in
the sensorial data there remains nonetheless a fundamental uncertainty and hence
a nontrivial decision to be made. This fundamental uncertainty is due to the fact
that the mapping from the environment onto the sensorium is, in general, infinite-
to-one (e.g., in the visual mapping a 3D environment projects onto a 2D retinal
image). Thus, even when given perfect sensory information, the state of the environ-
ment is infinitely underdetermined (e.g., a perfectly noise free retinal image, if such
were possible, would still have infinitely many 3D interpretations). The raison d’étre
of observer theory is to model the inductive (ie., nondemonstrative) inferences
made by perceptual systems in consequence of this fundamental uncertainty. In
short, the inferences which typify statistical decision theory trivialize in the absence
of noise, whereas those of observer theory do not. The entire competence-observer
structure (X, Y, E, S, m, ) characterizes the perceptual inference that is required in
the absence of all noise. The performance observer then extends this competence-
observer structure to deal with noise and to model tolerances in the process of
making perceptual interpretations.

Statistical decision theory is not a theory of perception. However, it potentially
applies to one aspect of the perceptual process, viz., to decision tasks necessitated
by noise in the data received at a sensorium. The structure of the performance
observer is essential for the modeling and the analysis of perceptual tasks which are
more than simply this kind of decision task.

To see this, it is best to examine a concrete example. We will consider a
psychophysical experiment reported by Saidpour, Braunstein, and Hoffman (1992)
which investigates the perception of subjective surfaces in displays of structure from
motion. The motivation for the experiment derives from a remarkable feature of
certain motion displays, e.g., displays which simulate the motion of dots rigidly
attached to a rotating invisible cylinder. Each frame of such a display consists
of but a few white dots against an otherwise black background. But when the
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display is put in motion, one perceives the dots to be moving in three dimensions,
e.g., as though attached to a cylinder. Moreover, and here is the remarkable
feature, one not only sees the dots in three dimensions, one also sees (perhaps
“hallucinates” is better) a surface, e.g, a cylinder surface, filling the empty space
between the dots. The surface is not real, in the sense that there is no physical
surface passing through the dots, but is instead a subjective surface. Saidpour
et al. investigated the perceived shape of this subjective surface in regions between
visible dots, and used their resuits to evaluate the psychological plausibility of
one theory of surface interpolation, viz., Grimson’s (1981) “quadratic variation”
theory. :

To do this, Saidpour et al. showed subjects displays which simulated the motion
of dots rigidly attached to an invisible cylinder. The cylinder rotated back and forth
through a total angle of 38° about a vertical axis. A narrow vertical strip of the
cylinder (the “gap”) was devoid of dots. A single dot, a so-called structure-from-
motion “probe dot,” was placed in the center of this gap and could be moved by
the subject under joystick control either inward, towards the major axis of the
cylinder, or outward, towards the subject. The subject’s task was to place the dot
as accurately as possible on the perceived subjective surface.

Subjects were quite good at this task, in the sense that if the dot density was
sufficiently high and the gap was not too large, then the standard deviation in their
placements of the probe dot was quite small. The result of the experiment was
unexpected. Apparently subjects perceived a surface that bulged out slightly in the
region of the gap: their mean placement of the probe dot was well outside of an
interpolating cylinder, and also well outside of the position predicted by Grimson’s
quadratic variation functional. The difference between Grimson’s prediction and the
subjects’ performance was statistically significant, leading Saidpour ez al. to suggest
that the quadratic variation functional does not properly model human perception.

Before we analyze this task using performance observers, note that the task
would be nontrivial even if the displays were completely noise free: the central
feature of this task is that subjects are inferring a 3D interpretation from 2D
images, and the fundamental uncertainty inherent in such an inference is in no way
reduced by reducing noise in the 2D images.

An observer-theoretic analysis of this task begins with the construction of two
competence observers. The first observer models an inference whose premise is the
7D motions of the dots and whose conclusion is a 3D interpretation of the
positions and motions of the dots. The second observer models an inference whose
premise is the conclusion of the previous inference, yiz., the 3D positions of the
dots, and whose conclusion is a smooth surface passing through these 3D positions.

For the first observer we can use Ullman’s structure-from-motion observer
discussed in Section 2; the displays used by Saidpour et al. consist of at least three
views of four or more noncoplanar points in rigid motion, so the conditions for
Ullman'’s theorem are satisfied.

To construct the second observer, we use the following theorem proved by
Grimson (1981):
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Given four noncoplanar points in space, there exists a unique surface S= {(x, y, z)|z=
Sf(x, )} (where f'is some function f: R2 > R) which passes through the four points and which
minimizes the quadratic variation functional &(f) defined by

12
o) = m (Pt 2%+ L) d dy}

(where the subscripts indicate partial derivatives),

The premise space Y for this observer consists of all sets of four points in three
space, i.e., Y= R'? The distinguished premises S is that subset of ¥ consisting of all
sets of four noncoplanar points in three space. For each element y € Y, representing
a particular set of four points in three space, denote the set of all smooth surfaces
which pass through those points by the symbol 7~ ({y}). Then the interpretation
space X is X=1{J,. Yn"‘({y}). The perspective map n: X — Y is the map whose
fibres just are the sets n~'({y}). For each se S, Grimson’s theorem assures us that
there is precisely one surface, E,, in n7'({s}) that minimizes the quadratic varia-
tion functional ®. We let the distinguished interpretations E be the subset of X
defined by E=|J,.s E,. Finally, the interpretation kernel # is defined by (s, -) =
&, where ¢, denotes the Dirac measure at the point E,.

These two competence observers model the perceptual inference in the task of
Saidpour et al. under the assumption that there are no corrupting influences such
as noise or discretization errors. The output of the first observer is the input to the
second. The conclusion of Ullman’s observer is a description of the 3D positions of
four noncoplanar points (generalizations to more points are straightforward). This
description of the 3D positions of the four points feeds in as a distinguished premise
to Grimson’s observer. Given such a premise, the conclusion of Grimson’s observer
is a (unique) surface which passes through the four points and minimizes the
quadratic variation functional. For future reference, we will call this surface the
predicted Grimson surface.

Now we allow corrupting influences. In this case the two competence observers
alone do not adequately model the subjects’ perceptual inferences; we must now
consider performance extensions to these observers. In particular, the interpretation
kernel n of Grimson’s observer, which for each distinguished premise s gives a
Dirac measure (i.e., a measure having no dispersion) at the point representing the
predicted Grimson surface E,, must be replaced with a performance interpretation
kernel n' having nonzero dispersion. And we must introduce a retraction kernel R
relating the events charged by n' to the E of Grimson’s competence observer.
(Similar comments hold mutatis mutandis for Ullman’s competence observer as
well.)

Given these changes we can discuss the findings and conclusions of Saidpour
et al. The (expected) finding that there is nontrivial dispersion in the placements of
the probe dot is modeled in the performance observer by the nontrivial dispersions
in the probability measures #'(y, -). (It seems reasonable to assume that the disper-
sion in the subjects’ responses is primarily perceptual, not motor. The motor task
was straightforward, and subjects were given as much time as they needed to place
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the probe dot on the surface they saw.) But here we must be careful. The proba-
bility measure n'(y,-) is by definition a probability measure on interpolating
surfaces, whereas in the experiment each probe point placement gives data on the
fibre ™ '(y) = X for our second observer; ie., it is a probability measure on only
one point of the interpolating surface, viz., the point at the probe dot. However, on
the hypothesis that Grimson’s theory is a valid psychological model, we can take
each probe point placement to represent that surface which minimizes quadratic
variation and interpolates the probe point and all the other visible points; we will
call these surfaces the probe point surfaces. Under this hypothesis we can view
#'(y, -) as a measure on the set of possible probe point placements. Note that there
is a distinct probe point surface for each probe point position. Moreover, only one
possible probe point position lies on the predicted Grimson surface, which then
coincides with the corresponding probe point surface.

Saidpour er al. reject the hypothesis that Grimson’s theory is a valid psychologi-
cal model. Their argument, as we have mentioned, is that the mean probe point
placement is well away from the position predicted by Grimson’s theory, and that
the difference is statistically significant. Here we see an argument which goes from
data on perceptual judgments to a conclusion about a competence theory. Within
the formalism of performance observers, the mathematical structure which relates
perceptual judgments to competence theories is the retraction kernel R: X' x & —
[0, 1]. For distinguished premises y€ S, as in the present case, we must have by
definition of R (see Definition 7) that #'R=17. In particular we may view the experi-
ment of Saidpour et al. as revealing a performance observer with interpretation
kernel #’ which codifies the statistics of the subjects’ probe point placements. To say
that this experiment supports Grimson’s theory is to say, in our language, that this
performance observer is a performance extension of Grimson’s competence
observer. In particular, by definition of a performance extension, if n denotes the
interpretation kernel for Grimson’s competence theory this condition obtains only
if #=n'R for some reasonable retraction kernel R. For our purposes we may con-
sider 5(y, -) to be Dirac measure centered at the unique probe point placement Pg
representing the Grimson surface through the original display points. In the experi-
ment, however, the distribution of probe point placements is centered about a point
well away from P,. For it to be the case that n’R=7 under these conditions, the
retraction kernel R must be biased, i.e., it must map the measure #'(y, -) to a point
well away from its mean. Since the required bias was statistically significant, and
since Saidpour et al. saw no reason that corrupting influences such as noise and
quantization should induce such a bias into their data, they concluded that the E
of Grimson’s competence theory was not plausible. Whatever competence-observer
theory is proposed, they concluded, must incorporate an E which passes much
nearer to the mean of the probe point placements.

In short, using the language of performance observers, Saidpour et al. reject
Grimson’s competence observer because the only way to relate the experimental
data to the E of Grimson's observer is via a biased retraction kernel, and there is
no reason to expect in this experiment that the corrupting influences should intro-
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duce any bias (they should only increase dispersion). Although Saidpour et al. do
not mention this, the same reasoning can be used to reject interpolation models
based on cubic splines; hermite polynomials, and bezier curves. This raises the
question: What interpolation models might still be acceptable?

We mention one, briefly, and only in the two-dimensional case (the extension to
three dimensions is straightforward but Iengthy to describe). Suppose one is given
the visible points P;=(x;, y;), i=1, 2 ,n, ordered so that x,<x; iff i< ). One
computes the dlfference vectors v,=P;,;— P, One then assigns to point P; a
tangent vector t; which is a weighted sum of the difference vectors v,_, and v,, the
shorter of these two difference vectors getting the greater weight, ie., t;=(]|v||/
v, — 1% ¥ o+ (1/]v4]]) v;. One then computes, for all i, the intersection point Q; of
the line P;+at, with the line P;,,+ ft,,.,, where « and f vary in R. The points
Q; are then inserted into the list of points P; and the entire procedure repeated.
One iterates this process to the desired resolution. Alternately, one can stop at any
iteration after the first and interpolate the updated list of points using Grimson’s
‘procedure. '

Returning to the discussion of performance observers, note that our analysis of
the experiment by Saidpour efal cannot be done in the language of statistical
decision theory alone, for the analysis first requires a detailed understanding of
Ullman’s competence theory and Grimson’s competence theory, and both these
theories describe the nontrivial perceptual inferences required to perform the task
when there are no corrupting influences such as noise and quantization. One needs the
language .of competence observers (to describe the perceptual inference in the
absence of noise) and of performance observers (to model the addition of
corrupting factors) to give an adequate analysis of this task.

Note that the theory of performance observers gives only general conditions on
the acceptability of retractions (e.g., they must be representable by submarkovian
kernels). And this is appropriate. The acceptability of a particular retraction
depends on the nature of the corrupting influences that one expects to obtain in a
particular experimental situation. If there is reason to expect that these influences
are systematically biased, as when one wears prism lenses, then there is reason to
find acceptable a correspondingly biased retraction kernel. If, as in the experiment
just discussed, there is no bias expected, then there is no reason to accept a biased
retraction kernel. In this fashion the theory of performance observers provides the
link between psychophysical data and competence-observer theories that allows one
to use such data to confirm or disconfirm competence observers.

5. DECISION STRATEGY

We now explore a connection between the performance extension @' and statisti-
cal decision theory. The connection concerns the following interesting fact: a perfor-
mance extension contains enough information in its components to formulate a
rule—analogous to the well-known likelihood ratio rule—to decide whether or not
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a point premise y is compatible with a distinguished configuration, ie., whether or
not y is compatible with an e in E. The rule that we are about to establish is of the
same form as the likelihood ratio rule, but need not be equivalent to the likelihood
ratio unless @', or some observer “higher up” with respect to @', knows the correct
probability densities. (Observer theory provides a precise definition of how one
observer can be “cognitive,” or higher up, with respect to another, see Bennett et al.
(1989, pp. 41-52).)

Let us first discuss the standard decision problem in the language of statistical
decision theory (Van Trees, 1968). A decision maker receives an observation o in
an observation space Q. From this, it must decide between two hypotheses, denoted
H, and H,, about w. Let p(w|H ,) and p(w| H,) denote respectively the conditional
probability densities of under H, and H,. Furthermore, let P, and P, represent
respectively the a priori probabilities of H, and H,. Finally, let C; represent the
cost associated with deciding H; given that H; actually occurred, Then the decision
rule that minimizes expected cost is to decide H; iff (Van Trees, p.26)

p(le1)>£9K, : @)
plo|Ho) Py
where Kk = (Co— Coo)/ (Coi — C,,) represents a ratio of costs.

If we now replace Q by the premise space 1" of a performance extension ¢’, then
@' has an important detection problem, which is as follows. Given a premise y, ¢
must decide between hypothesis H, that y is compatible with an ee E (the
distinguished configurations), and the null hypothesis H, that y is not compatible
with an e E. The optimal (minimal cost) rule for this problem is given in Eq. (2),
where the relevant probability densities on ¥ are p(y1H,) and p(y| H,). However,
these densities are not explicitly encoded into any of the components in ¢'. In other
words, ©' may not “know” p(y|H,) and p(y| Hy).

For formulating a detection rule, 0’ has available the function a(y)=n'R(y, E).
We call ay) the cathexis for a premise y. It represents the subjective a posteriori
conditional probability that a premise y is compatible with E, ie., the subjective
p(H,| y). The cathexis « need not have any formal relation to the “true” probability
p(H,| y). However, if ¢’ were to synthesize the best possible rule solely from the
information encoded in its components, then it can do no better than to treat its
cathexis a(y) as the real p(H,|y). The optimal detection rule using o takes the
following form.

THEOREM 8. For a performance extension O', the detection rule based on « that
minimizes expected cost is to decide H,, Le., that a premise y is compatible with a
distinguished configuration in E, if and only if

()
—a(y) " <
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Proof. The likelihood ratio rule of Eq. (2) can be written (replacing w by p):

P(}’|H1)P1>K'
p(y|Hg) Py

Let p(y)=p(y|H,) P, + p(y|H,) P, represent the probability density of y. For
detection purposes, we can ignore the set of y where p(y) =0, because this set will
not affect the probabilities of error. Outside of this set, we can divide both top and
bottom of the left-hand side by p(y) to obtain

p(y|Hy) Pi/p(y)

> K,
p(y1Ho) Po/p(y)
or, using Bayes’ rule,

p(H|y)
p(Hyly)

Replacing p(H,| ) by a(y) and p(H,| y) by 1—a(y), we have

> K.

*(y)
=) 1

Theorem 8 shows that the minimal cost rule that @' can synthesize based solely
on its subjective probabilities is Eq. (3). We reiterate that the rule in Eq. (3) need
not have any formal relation to the rule in Eq. (2), simply because the subjective
probabilities need not be related to the “true” probabilities. However, in the special
case that @’ learns the true probabilities, presumably by the result of experience and
feedback, then the rule in Eq. (3) is optimal, because the corresponding likelihood
ratio rule in Eq. (2) is optimal as well.

6. CONCLUSIONS

Let us now review the benefits to both the perceptual theorist and the experimen-
tal psychologist of the performance extension framework. First, the theorist should
find that by using the performance extension, the analysis of performance issues
benefits from the same precision that the observer affords to theories of competence.
The mathematical analysis of noise, for example, is couched almost exclusively in
the language of stochastic processes. Here observer theory and the proposed
performance extension are “at home,” as their mathematical formulation is in
the language of abstract probability theory, and they are well suited for using
probabilistic representations of premises and perceptual conclusions. Second, the
experimentalist should find that the performance extension provides a basis for
principled study of the question of when a competence theory is confirmed or
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disconfirmed by experimental measurements. In our language, the question can be
stated in the following more precise manner: when does a competence observer
have a performance extension that accounts for the experimental data? The
example given in Section 4 of surface interpolation with Grimson’s theory shows
how a competence observer can fail to have a performance extension that accounts
for the experimental data. On the other hand, the alternative competence theory of
surface interpolation proposed in that section does have a performance extension
that accounts for the experimental data. Finally, another interesting feature of
performance extension -analysis is that it incorporates a subjective signal detection
rule that is analogous to the likelihood-ratio rule.

We now consider some issues for future study. The kernels n" and R have not
been formally linked other than by the compatibility conditions of Definition 7. It
is interesting to consider what their relation might be as the cathexis a(y) increases.
As o y) increases, a performance extension @' becomes increasingly “sure” that a
premise y is compatible with a distinguished configuration. We expect that as this
happens, the retraction mapping R becomes increasingly specific about the element
of E that generates the cathexis. Informally, we are claiming that “the more sure
you are that you see something, the more sure you are of what it is exactly that you
see.” We state this as an empirical conjecture: for premises y € I’ and configurations
xen~!(y), as the cathexis a(y) increases, the dispersions of the retraction measures
R(x, -) decreases.

To verify this conjecture, one needs a measure of dispersion that decreases as the
retraction R(x, -) gives higher probability to smaller sets. There are several ways of
determining the dispersion of a probability measure, but each requires assumptions
that may not always hold in abstract spaces such as E. Measures of dispersion can
be constructed from the variance of R(x, -), the entropy of R(x, -), and the L, norm
of the density of R(x,-) with respect to some underlying unbiased measure. These
and other measures need to be tested to determine which, if any, properly encodes
our notation of dispersion.
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