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5 Abstract

Networks of “conscious agents” (CAs) as defined by Hoffman and Prakash (Fron-
tiers in Psychology 5, 577, 2014) are shown to provide a robust and intuitive represen-
tation of perceptual and cognitive processes in the context of the Interface Theory of
Perception (Hoffman, Singh and Prakash, Psychonomic Bulletin €& Review 22, 1480-
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10 1506, 2015). The behavior of the simplest CA networks is analyzed exhaustively.
1 The construction of short- and long-term memories and the implementation of atten-
12 tion, categorization and case-based planning are demonstrated. These results show
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that robust perception and cognition can be modelled independently of any ontolog-
ical assumptions about the world in which an agent is embedded. Any agent-world
interaction can, in particular, also be represented as an agent-agent interaction.

Keywords: Active inference; Complex networks; Computation; Learning; Memory; Plan-
ning; Predictive coding; Self representation; Reference frame; Turing completeness

1 Introduction

It is a natural and near-universal assumption that the world objectively has the properties
and causal structure that we perceive it to have; to paraphrase Einstein’s famous remark
(c¢f. Mermin, 1985), we naturally assume that the moon is there whether anyone looks at it
or not. Both theoretical and empirical considerations, however, increasingly indicate that
this assumption is not correct. Beginning with the now-classic work of Aspect, Dalibard
and Roger (1982), numerous experiments by physicists have shown that neither photon
polarization nor electron spin obey local causal constraints; within the past year, all rec-
ognized loopholes in previous experiments along these lines have been closed (Hensen et
al., 2015; Shalm et al., 2015; Giustina et al., 2015). The trajectories followed by either
light (Jacques et al., 2007) or Helium atoms (Manning, Khakimov, Dall and Truscott,
2015) through an experimental apparatus have been shown to depend on choices made
by random-number generators after the particle has fully completed its transit of the ap-
paratus. Optical experiments have been performed in which the causal order of events
within the experimental apparatus is demonstrably indeterminate (Rubino et al., 2016).
As both the positions and momenta of large organic molecules have now been shown to ex-
hibit quantum superposition (Eibenberger et al., 2013), there is no longer any justification
for believing that the seemingly counter-intuitive behavior observed in these experiments
characterizes only atomic-scale phenomena. These and other results have increasingly led
physicists to conclude that the classical notion of an observer-independent “objective” real-
ity comprising spatially-bounded, time-persistent “ordinary objects” and well-defined local
causal processes must simply be abandoned (e.g. Jennings and Leifer, 2015; Wiseman,
2015).

These results in physics are complemented within perceptual psychology by computational
experiments using evolutionary game theory, which consistently show that organisms that
perceive and act in accord with the true causal structure of their environments will be
out-competed by organisms that perceive and act only in accord with arbitrarily-imposed,
organism-specific fitness functions (Mark, Marion and Hoffman, 2010; reviewed by Hoff-
man, Singh and Prakash, 2015). These results, together with theorems showing that an
organism’s perceptions and actions can display symmetries that the structure of the en-
vironment does not respect (Hoffman, Singh and Prakash, 2015; Prakash and Hoffman,
in review) and that organisms responsive only to fitness will out-complete organisms that
perceive the true structure of the environment in all but a measure-zero subset of environ-
ments (Prakash, Stephens, Hoffman, Singh and Fields, in review), motivate the interface
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theory of perception (ITP), the claim that perceptual systems, in general, provide only an
organism-specific “user interface” to the world, not a veridical representation of its struc-
ture (Hoffman, Singh and Prakash, 2015; Hoffman, 2016). According to ITP, the perceived
world, with its space-time structure, objects and causal relations, is a virtual machine im-
plemented by the coupled dynamics of an organism and its environment. Like any other
virtual machine, the perceived world is merely an interpretative or semantic construct; its
structure and dynamics bear no law-like relation to the structure and dynamics of its im-
plementation (e.g. Cummins, 1977). In software systems, the absence of any requirement
for a law-like relation between the structure and dynamics of a virtual machine and the
structure and dynamics of its implementation allows hardware and often operating system
independence; essentially all contemporary software systems are implemented by hierar-
chies of virtual machines for this reason (e.g. Goldberg, 1974; Tanenbaum, 1976; Smith
and Nair, 2005). The ontological neutrality with which ITP regards the true structure of the
environment is, therefore, analogous to the ontological neutrality of a software application
that can run on any underlying hardware.

The evolutionary game simulations and theorems supporting I'TP directly challenge the
widely-held belief that perception, and particularly human perception is veridical, i.e. that
it reveals the observer-independent objects, properties and causal structure of the world.
While this belief has been challenged before in the literature (e.g. by Koenderink, 2015), it
remains the dominate view by far among perceptual scientists. Marr (1982), for example,
held that humans “very definitely do compute explicit properties of the real visible surfaces
out there, and one interesting aspect of the evolution of visual systems is the gradual move-
ment toward the difficult task of representing progressively more objective aspects of the
visual world” (p. 340). Palmer (1999) similarly states, “vision is useful precisely because it
is so accurate ... we have what is called veridical perception ... perception that is consistent
with the actual state of affairs in the environment” (p. 6). Geisler and Diehl (2003) claim
that “much of human perception is veridical under natural conditions” (p. 397). Trivers
(2011) agrees that “our sensory systems are organized to give us a detailed and accurate
view of reality, exactly as we would expect if truth about the outside world helps us to
navigate it more effectively” (p. xxvi). Pizlo, Sawada and Steinman (2014) emphasize
that “veridicality is an essential characteristic of perception and cognition. It is absolutely
essential. Perception and cognition without veridicality would be like physics without the
conservation laws.” (p. 227; emphasis in original). The claim of ITP is, in contrast, that
objects, properties and causal structure as normally conceived are observer-dependent rep-
resentations that, like virtual-machine states in general, may bear no straightforward or
law-like relation to the actual structure or dynamics of the world. Evidence that specific
aspects of human perception are non-veridical, e.g. the narrowing and flattening of the
visual field observed by Koenderink, van Doorn and Todd (2009), the distortions of per-
spective observed by Pont et al. (2012), or the inferences of three-dimensional shapes from
motion patterns projectively inconsistent with such shapes observed by He, Feldman and
Singh (2015) provide prima facie evidence for ITP.

The implication of either ITP or quantum theory that the objects, properties and causal
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relations that organisms perceive do not objectively exist as such raises an obvious challenge
for models of perception as an information-transfer process: the naive-realist assumption
that perceptions of an object, property or causal process X are, in ordinary circumstances,
results of causal interactions with X cannot be sustained. Hoffman and Prakash (2014)
proposed to meet this challenge by developing a minimal, implementation-independent for-
mal framework for modelling perception and action analogous to Turing’s (1936) formal
model of computation. This “conscious agent” (CA) framework posits entities or systems
aware of their environments and acting in accordance with that awareness as its funda-
mental ontological assumption. The CA framework is a minimal refinement of previous
formal models of perception and perception-action cycles (Bennett, Hoffman and Prakash,
1989). Following Turing’s lead, the CA framework is intended not as a scientific or even
philosophical theory of conscious awareness, but rather as a minimal, universally-applicable
formal model of conscious perception and action. The universality claim made by Hoffman
and Prakash (2014) is analogous to the Church-Turing thesis of universality for the Turing
machine. Hoffman and Prakash (2014) showed that CAs may be combined to form larger,
more complex CAs and that the CA framework is Turing-equivalent and therefore univer-
sal as a representation of computation; this result is significantly elaborated upon in what
follows.

The present paper extends the work of Hoffman and Prakash (2014) by showing that the
CA framework provides a robust and intuitive representation of perceptual and cognitive
processes in the context of I'TP. Anticipation, expectations and generative models of the
environment, in particular, emerge naturally in all but the simplest CA networks, providing
support for the claimed universality of the CA framework as a model of agent - world
interactions. We first define CAs and distinguish the extrinsic (external or “3rd person”)
perspective of a theorist describing a CA or network of CAs from the intrinsic (internal
or “lst person”) perspective of a particular CA. Consistency between these perspectives
is required by ITP; a CA cannot, in particular, be described as differentially responding
to structure in its environment that ITP forbids it from detecting. Such consistency can
be achieved by the “conscious realism” assumption (Hoffman and Prakash, 2014) that
the world in which CAs are embedded is composed entirely of CAs. We show that the
CA framework allows the incorporation of Bayesian inference from “images” to “scene
interpretations” as described by Hoffman and Singh (2012) and show that a CA can be
regarded as incorporating a “Markov blanket” as employed by Friston (2013) when this
is done. We analyze the behavior of the simplest networks of CAs in detail from the
extrinsic perspective, and discuss the formal structure and construction of larger, more
complex networks. We show that a concept of “fitness” for CAs emerges naturally within
the formalism, and that this concept corresponds to concepts of “centrality” already defined
within social-network theory. We then consider the fundamental question posed by I'TP:
that of how non-veridical perception can be useful. We show that CAs can be constructed
that implement short- and long-term memory, categorization, active inference, goal-directed
attention, and case-based planning. Such complex CAs represent their world to themselves
as composed of “objects” that recur in their experience, and are capable of rational actions
with respect to such objects. This construction shows that specific ontological assumptions



137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

about the world in which a cognitive agent is embedded, including the imposition of a priori
fitness functions, are unnecessary for the theoretical modelling of useful cognition. The non-
veridicality of perception implied by ITP need not, therefore, be regarded as negatively
impacting the behavior of an intelligent system in a complex, changing environment.

2 Conscious agents: Definition and interpretation

2.1 Definition of a CA

As noted, the CA framework is motivated by the hypothesis that agents of interest to
psychology are aware of the environments in which they act, even if this awareness is rudi-
mentary by typical human standards (Hoffman and Prakash, 2014). Our goal here is to
develop a minimal and fully-general formal model of perception, decision and action that
is applicable to any agent satisfying this hypothesis. Minimality and generality can be
achieved using a formalism based on measurable sets and Markovian kernels as described
below. This formalism allows us to explore the dynamics of multi-agent interactions (§3)
and the internal structures and dynamics, particularly of memory and attention systems,
that enable complex cognition (§4) constructively. We accordingly impose no a priori as-
sumptions regarding behavioral reportability or other criteria for inferring, from the outside,
that an agent is conscious per se or is aware of any particular stimulus; nor do we impose
any a priori distinction between conscious and unconscious states. Considering results such
as those reviewed by Boly, Sanders, Mashour and Laureys (2013), we indeed regard such
criteria and distinctions, at least as applied to living humans, as conceptually untrustwor-
thy and possibly incoherent. We thus treat awareness or consciousness as fundamental and
irreducible properties of agents, and ask, setting aside more philosophical concerns (but
see Hoffman and Prakash, 2014 for extensive discussion), what structural and dynamic
properties such agents can be expected to have.

We begin by defining the fundamental mathematical notions on which the CA framework
is based; we then interpret these notions in terms of perception, decision and action.

Definition 1. Let <B, B> and <C,C> be measurable spaces. Equip the unit interval [0, 1]
with its Borel o-algebra. We say that a function K:B x C — [0,1] is a Markovian kernel
from B to C if:

(i) For each measurable set E € C, the function K (-, E) : B — [0, 1] enacted by b — K (b, E)
is a measurable function; and

(ii) For each b € B, the function K(b,-) enacted by F — K(b, F'), F € C is a probability
measure on C.

Less formally, if K is a Markovian kernel from B to C| then for any measurable D C B, the
function enacted by x — K(z, D) € [0, 1] assigns to each z in B a probability distribution
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on C. When the spaces involved are finite, the Markov kernel can be represented as a
matrix whose rows sum to unity.

Let <W,W> <X, X> and <G,G> be measurable spaces. Hoffman and Prakash (2014)
defined a CA, given the measurable space <W,W>_ as a 6-tuple [(X, X), (G,G), P, D, A,
where P: W x X — [0, 1], D: X xG — [0, 1] and A : G x W — [0, 1] are Markovian
kernels and t is a positive integer parameter. Here we explicitly include <W, W> in the
definition of a CA. Following Hoffman, Singh and Prakash (2015) and Prakash and Hoffman
(in review), we also explicitly allow the P, D, and A kernels to depend on the elements
of their respective target sets. Informally, for z € X and g € G, for example, and any
measurable H C G, the function enacted by (z,g) — K(z,g, H) is real-valued and can
be considered to be the regular conditional probability distribution Prob(H |z, g) under
appropriate conditions on the spaces involved (Parthasarathy, 2005). We have:

Definition 2. Let <W, W>, <X, X> and <G,G> be measurable spaces. Let P be a
Markovian kernel P : W x X — X, D be a Markovian kernel D : X x G — G, and
A be a Markovian kernel A : G x W — W. A conscious agent (CA) is a 7-tuple
(X, X),(G,G), (W,W), P,D, A, t|, where t is a positive integer parameter.

The difference in representational power between the more general, target-set dependent
kernels specified here and the original, here termed “forgetful,” kernels of Hoffman and
Prakash (2014) is discussed below. We represent a CA as a labelled directed graph as
shown in Fig. 1. This graph implies the development of a cyclic process, in which we can
think of, e.g. the kernel D : X x G — G as follows: for each instantiation gy of G in the
immediately previous cycle, and the current instantiation of x € X, D(x,go;-) gives the
probability distribution of the g € G instantiated at the next step. The other kernels A

and P are interpreted similarly.
w
P A
t
D
X — G

Fig. 1: Representation of a CA as a labelled directed graph. W, X and G
and measurable sets, P, D, and A are Markovian kernels, and ¢ is an integer
parameter.

We interpret elements of W as representing states of the “world,” making no particular
ontological assumption about the elements or states of this world. We interpret elements of
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X and G as representing possible conscious experiences and actions (strictly speaking, they
consist of formal tokens of possible conscious experiences and actions), respectively. The
kernels P, D and A represent perception, decision and action operators, where “perception”
includes any operation that changes the state of X, “decision” is any operation that changes
the state of G and “action” is any operation that changes the state of W. The set X is, in
particular, taken to represent all experiences regardless of modality; hence P incorporates
all perceptual modalities. The set G and kernel A are similarly regarded as multi-modal.
With this interpretation, perception can be viewed as an action performed by the world;
how these “actions” can be unpacked into the familiar bottom-up and top-down components
of perceptual experience is explored in detail in §4 below. The kernels P, D and A are taken
to act whenever the states of W, X or G, respectively, change. Both the decisions D and
the actions A of the CA are regarded as “freely chosen” in a way consistent with the
probabilities specified by D and A, as are the actions “by the world” represented by P;
these operators are treated as stochastic in the general case to capture this freedom from
determination. The parameter ¢ is a CA-specific proper time; t is regarded as “ticking”
and hence incrementing concurrently with the action of D, i.e. immediately following each
change in the state of X. No specific assumption is made about the contents of X; in
particular, it is not assumed that X includes tokens representing the values of either t or
any elements of G. A CA need not, in other words, in general experience either time or its
own actions; explicitly enabling such experiences for a CA is discussed in §4.1 below.

It will be assumed in what follows that the contents of X and G can be considered to be
representations encoded by finite numbers of bits; for simplicity, all representations in X
or GG will be assumed to be encoded, respectively, by the same numbers of bits. Hence X
and G can both be assigned a “resolution” with which they encode, respectively, inputs
from and outputs to W. It is, in this case, natural to regard D as operating in discrete
steps; for each previous instantiation of G, D maps one complete, fully-encoded element of
X to one complete, fully-encoded element of G. As the minimal size of a representation in
either X or G is one bit, the minimal action of D is a mapping of one bit to one bit. While
the CA framework as a whole is purely formal, we envision finite CAs to be amenable to
physical implementation. If any such physical implementation is assumed to be constrained
by currently accepted physics and the action of D is regarded as physically (as opposed
to logically) irreversible, the minimal energetic cost of executing D is given by Landauer’s
(1961; 1999) principle as In2 kT, where k is Boltzmann’s constant and 7" is temperature in
degrees Kelvin. In this case, the minimal unit of ¢ is given by ¢ = h/(In2 kT), where h
is Planck’s constant. At T" ~ 310K, physiological temperature, this value is t ~ 100 fs,
roughly the response time of rhodopsin and other photoreceptors (Wang et al., 1994). At
even the 50 ms timescale of visual short-term memory (Vogel, Woodman and Luck, 2006),
this minimal discrete time would appear continuous. As elaborated further below, however,
no general assumption about the coding capacities in bits of X or G are built into the CA
framework. What is to count, in a specific model, as an execution of D and hence an
incrementing of ¢ is therefore left open, as it is in other general information-processing
paradigms such as the Turing machine.
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Hoffman and Prakash (2014) explicitly proposed the “Conscious agent thesis: Every prop-
erty of consciousness can be represented by some property of a dynamical system of con-
scious agents” (p. 10), where the term “conscious agent” here refers to a CA as defined
above. As CAs are explicitly formal models of real conscious agents such as human be-
ings, the “properties of consciousness” with which this thesis is concerned are the formal
or computational properties of consciousness, e.g. the formal or computational properties
of recall or the control of attention, not their phenomenal properties. The conscious agent
thesis is intended as an empirical claim analogous to the Church-Turing thesis. Just as the
demonstration of a computational process not representable as a Turing machine computa-
tion would falsify the Church-Turing thesis, the demonstration of a conscious process, e.g.
a process of conscious recognition, inference or choice, not representable by the action of
a Markov kernel would falsify the conscious agent thesis. We offer in what follows both
theoretically-motivated reasons and empirical evidence to support the conscious agent the-
sis as an hypothesis. Whether the actual implementations of conscious processes in human
beings or other organisms can in fact be fully captured by a representation based on Markov
kernels remains an open question.

2.2 Extrinsic and intrinsic perspectives

A central claim of ITP is that perceptual systems do not, in general, provide a veridical
representation of the structure of the world; in particular, “objects” and “causal relations”
appearing as experiences in X are in general not in any sense homomorphic to elements or
relationships between elements in W. This claim is, clearly, formulated from the extrinsic
perspective of a theorist able to examine the behavior of a CA “from the outside” and to
determine whether the kernel P is a homomorphism of W or not. The evolutionary game
theory experiments reported by Mark, Marion and Hoffman (2010) were conducted from
this perspective. As is widely but not always explicitly recognized, the extrinsic perspective
is of necessity an “as if” conceit; a theorist can at best construct a formal representation
of a CA and ask how the interaction represented by the P — D — A cycle would unfold if it
had particular formal properties (e.g. Koenderink, 2014). The extrinsic perspective is, in
other words, a perspective of stipulation; it is not the perspective of any observer. For the
present purposes, the extrinsic perspective is simply the perspective from which the kernels
P, D and A may be formally specified.

The extrinsic perspective of the stipulating theorist contrasts with another relevant perspec-
tive, the intrinsic perspective of the CA itself. That every CA has an intrinsic perspective
is a consequence of the intended interpretation of CAs as conscious agents that experience
their worlds. Hence every CA is an observer, and the intrinsic perspective is the observer’s
perspective. The intrinsic perspective of a CA is most clearly formulated using the concept
of a “reduced CA” (RCA), a 4-tuple [(X, X), (G, G), D, t]. The RCA, together with a choice
of extrinsic elements W, A and P, is then what we have defined above as a CA. An RCA
can be viewed as both embedded in and interacting with the world represented by W. The
RCA freely chooses the action(s) to take - the element(s) of G to select - in response to
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any experience x € X; this choice is represented by the kernel D. The action A on W
that the RCA is capable of taking is determined, in part, by the structure of WW. Similarly,
the action P with which W can affect the RCA is determined, in part, by the structure
of the RCA. With this terminology, the central claim of ITP is that an RCA’s possible
knowledge of W is completely specified by X; the element(s) of X that are selected by P
at any given t constitute the RCA’s entire experience of W at t. The structure and content
of X completely specify, therefore, the intrinsic perspective of the RCA. In particular, I'TP
allows the RCA no independent access to the ontology of W; consistency between intrinsic
and extrinsic perspectives requires that no such access is attributed to any RCA from the
latter perspective. An RCA does not, in particular, have access to the definitions of its
own P, D or A kernels; hence an RCA has no way to determine whether any of them are
homomorphisms. Similarly, an RCA has no access to the definitions of any other RCA’s P,
D or A kernels, or to any other RCA’s X or G. An RCA “knows” what currently appears
as an experience in its own X but nothing else; as discussed in §4.1 below, for an RCA
even to know what actions it has available or what actions it has taken in the past, these
must be represented explicitly in X. Any structure attributed to W from the intrinsic
perspective of an RCA is hypothetical in principle; such attributions of structure to W can
be disconfirmed by continued observation, i.e. additional input to X, but can never be
confirmed. In this sense, any RCA is in the epistemic position regarding W that Popper
(1963) claims characterizes all of science.

From the intrinsic perspective, an immediate consequence of the ontological neutrality of
ITP is that an RCA cannot determine, by observation, that the internal dynamics of its
associated W is non-Markovian; hence it cannot distinguish W, as a source of experiences
and a recipient of actions, from a second RCA. The RCA [(X, X), (G, G), D, t], in partic-
ular, cannot distinguish the interaction with W shown in Fig. 1 from an interaction with
a second RCA [(X', X"),(G',G"), D', t'] as shown in Fig. 2. From the extrinsic perspective
of a theorist, Fig. 2 can be obtained from Fig. 1 by interpreting the perception kernel P
as representing actions by W on the RCA [(X, X), (G, G), D, t] embedded within it. Each
such action P(w,-) generates a probability distribution of experiences = in X. If an agent’s
perceptions are to be regarded as actions on the agent by its world W, however, nothing
prevents similarly regarding the agent’s actions on W as “perceptions” of W. If W both per-
ceives and acts, it can itself be regarded as an agent, i.e. an RCA [(X', &"), (G, G"), D', t'],
where the kernel D’ represents W’s internal dynamics. This symmetric interpretation of
action and perception from the extrinsic perspective, with its concomitant interpretation
of W as itself an RCA, is consistent with the postulate of “conscious realism” introduced
by Hoffman and Prakash (2014), who employ RCAs in their discussion of multi-agent com-
binations without introducing this specific terminology. More explicitly, conscious realism
is the ontological claim that the “world” is composed entirely of reduced conscious agents,
and hence can be represented as a network of interacting RCAs as discussed in more detail
in §3.2 below. Conscious realism is effectively, once again, a requirement that the intrinsic
and extrinsic perspectives be mutually consistent: since no RCA can determine that the
internal dynamics of its associated W are non-Markovian from its own intrinsic perspective,
no theoretical, extrinsic-perspective stipulation that its W has non-Markovian dynamics is
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allowable. Every occurrence of the symbol W can, therefore, be replaced, as in Fig. 2,
by an RCA. When this is done, all actions - all kernels A - act directly on the experience
spaces X of other RCAs as shown in Fig. 2. If it is possible to consider any arbitrary
system - any directed subgraph comprising sets and kernels - as composing a CA from the
extrinsic perspective, then it is also possible, from the intrinsic perspective of any one of
the RCAs involved, to consider the rest of the network as composing a single RCA with
which it interacts.

Dl
Gl< X'

Lt

X > G

Fig. 2: Representation of an interaction between two RCAs as a labelled di-
rected graph (c¢f. Hoffman and Prakash, 2014, Fig. 2). Note that consistency
requires that the actions A possible to the lower RCA must be the same as the
perceptions P possible for the upper RCA and vice-versa.

2.3 Bayesian inference and the Markov blanket

As emphasized above, the set X represents the set of possible experiences of a conscious
agent within the CA framework. In the case of human beings, including even neonates
(e.g. Rochat, 2012; see also §4 below), such experiences invariably involve interpretation
of raw sensory input, e.g. of photoreceptor or hair-cell excitations. It is standard to model
interpretative inferences from raw sensory input or “images” in some modality to expe-
rienced “scene interpretations” (to use visual language) using Bayesian Decision Theory
(BDT; reviewed e.g. by Maloney and Zhang, 2010). In recognition of the fact that such
inferences are executed by the perceiving organism and are hence subject to the constraints
of an evolutionary history, Hoffman and Singh (2012) introduced the framework of Com-
putational Evolutionary Perception (CEP) shown in Fig. 3b. This framework differs from
many formulations of BDT by emphasizing that both posterior probability distributions
and likelihood functions are generated within the organism. The posterior distributions,
in particular, are not generated directly by the world W (see also Hoffman, Singh and
Prakash, 2015).

10



Likelihood

—

“Markov
Blanket”

“Markov
Blanket”

Fig. 3: Relation between the current CA framework and the “Markov blanket”
formalism of Friston (2013). a) The canonical CA, ¢f. Fig. 1. b) The “Compu-
tational Evolutionary Perception” (CEP) extension of Bayesian decision theory
developed by Hoffman and Singh (2012). Here the set Y is interpreted as a set of
“images” and the set X is interpreted as a set of “scene interpretations,” consis-
tent with the interpretation of X in the CA framework. The map P, : W +— X

11



358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

is induced by the composition of the “raw” input map P; with the posterior-
map - likelihood-map loop. ¢) Identifying P in the CA framework with P in
the CEP formalism replaces the canonical CA with a four-node graph. Here the
sets Y and G jointly constitute a Markov blanket as defined by Friston (2013).
d) Both W and X can be regarded as interacting bi-directionally with just their
proximate “surfaces” of the Markov blanket comprising Y and G. The blan-
ket thus isolates them from interaction with each other, effectively acting as an
interface in the sense defined by ITP.

The CEP framework effectively decomposes the kernel P of a CA (Fig. 3a) into the com-
position of a mapping P; from W to a space Y of “raw” perceptual images with a map
(labelled B in Hoffman, Singh and Prakash, 2015, Fig. 4) corresponding to the construc-
tion of a posterior probability distribution on X. The state of the image space Y depends,
in turn, on the state of X via the feedback of a Bayesian likelihood function; hence the
embedded posterior - likelihood loop provides the information exchange between prior and
posterior distributions needed to implement Bayesian inference. The Bayesian likelihood
serves, in effect, as the perceiving agent’s implicit “model” of the world as it is seen via the
image space Y.

As shown by Pearl (1988), any set of states that separates two other sets of states from each
other in a Bayesian network can be considered a “Markov blanket” between the separated
sets of states (cf. Friston (2013)). The disjoint union Y LI G of Y and G separates the
sets W and X in Fig. 3b in this way; hence Y U G constitutes a Markov blanket between
W and X (c¢f. Friston, 2013, Fig. 1). Each of W and X can be regarded as interacting
bidirectionally, via Markov processes, with a “surface” of the Markov blanket, as shown in
Fig. 3d. The blanket therefore serves as an “interface” in the sense required by I'TP: it
provides an indirect representation of W to X that is constructed by processes to which X
has no independent access. Consistent with the assumption of conscious realism above, this
situation is completely symmetrical: the blanket also provides an indirect representation of
X to W that is constructed by processes to which W has no independent access. The role
of the Markov blanket in Fig. 3d is, therefore, exactly analogous to the role of the second
agent in Fig. 2. The composed Markov kernel D’A in Fig. 2 represents, in this case, the
internal dynamics of the blanket.

Friston (2013) argues that any random ergodic system comprising two subsystems separated
by a Markov blanket can be interpreted as minimizing a variational free energy that can, in
turn, be interpreted in Bayesian terms as a measure of expectation violation or “surprise.”
This Bayesian interpretation of “inference” through a Markov blanket is fully consistent
with the model of perceptual inference provided by the CEP framework. Conscious agents as
described here can, therefore, be regarded as free-energy minimizers as described by Friston
(2010). This formal as well as interpretational congruence between the CA framework and
the free-energy principle (FEP) framework of Friston (2010) is explored further below,
particularly in §3.3 and §4.3.
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2.4 Effective propagator and master equation

From the intrinsic perspective of a particular CA, experience consists of a sequence of
states of X, each of which is followed by an action of D and a “tick” of the internal
counter t. The sequence of transitions between successive states of X can be regarded as
generated by an effective propagator Tog : M x(t) — Mx(t + 1), where .#x(t) is the
collection of probability measures on X at each “time” t defined by the internal counter.
This propagator satisfies, by definition, a master equation that, in the discrete t case, is
the Chapman-Kolmogorov equation: If yu; is the probability distribution at time ¢, then
per1 = Togpie-

The propagator T,g cannot, however, be characterized from the intrinsic perspective: all
that is available from the intrinsic perspective is the current state X(¢), including, as
discussed in §4 below, the current states of any memories contained in X(¢). From the
extrinsic perspective, the structure of T.g depends on the structure of the world W. Here
again, the assumption of conscious realism and hence the ability to represent any W as a
second agent as shown in Fig. 2 is critical. In this case, T, = PD’AD, where in the general
case the actions of each of these operators at each t depend on the initial, £ = 0 state of the
network. As discussed above, the P and D kernels within this composition can be regarded
as specifying the interaction between X and a Markov blanket with internal dynamics D' A.
The claim that T,g is a Markov process on X is then just the claim that the composed kernel
PD'AD is Markovian, as kernel composition guarantees it must be. As Friston, Levin,
Sengupta and Pezzulo (2015) point out, the Markov blanket framework “only make(s) one
assumption; namely, that the world can be described as a random dynamical system” (p. 9).
Both the above representation of T, and the Chapman-Kolmogorov equation p;1 = Tegpts
are independent of the structure of the Markov blanket, which as discussed in §3.2 below
can be expanded into an arbitrarily-complex networks of RCAs, provided this condition is
met.

For simplicity, we adopt in what follows the assumption that all relevant Markov kernels,
and therefore the propagator 7.z, are homogeneous and hence independent of ¢ for any
agent under consideration. As discussed further below, this assumption imposes interpre-
tations of both evolution (§3.3) and learning (§4.3) as processes that change the occupation
probabilities of states of X and G but do not change any of the kernels P, D or A. This
interpretation can be contrasted with that of typical machine learning methods, and in
particular, typical artificial neural network methods, in which the outcome of learning is
an altered mapping from input to output. The current interpretation is, however, consis-
tent with Friston’s (2010; 2013) characterization of free-energy minimization as a process
that maintains homeostasis. In the current framework, the maintenance of homeostasis
corresponds to the maintenance of an experience of homeostasis, i.e. to continued high
probabilities of occupation of particular components of the state of X. Both evolution
and learning act to maintain homeostasis and hence maintain these high state-occupation
probabilities. This idea that maintenance of homeostasis is signalled by maintaining an
experience of homeostasis is consistent with the conceptualization of affective state as an
experience-marker of a physiological, and particularly homeostatic state (Damasio, 1999;
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Peil, 2015). As noted earlier, no assumption that such experiences are reportable by any
particular, e.g. verbal behavior are made (see also §3.3, 4.4 below).

3 W from the extrinsic perspective: RCA networks
and dynamic symmetries

3.1 Symmetric interactions

From the extrinsic perspective, a CA is a syntactic construct comprising three distinct sets
of states and three Markovian kernels between them as shown in Fig. 1. We begin here
to analyze the behavior of such constructs, starting below with the simplest CA network
and then generalizing (§3.2) to networks of arbitrary complexity. Familiar concepts from
social-network theory emerge in this setting, and provide (§3.3) a natural characterization
of “fitness” for CAs.

Here and in what follows, we assume that each of the relevant o-algebras contains all
singleton subsets of its respective underlying set. We call a Markovian kernel “punctual,”
i.e. non-dispersive, if the probability measures it assigns are Dirac measures, i.e. measures
concentrated on a singleton subset. In this case, P can be regarded as selecting a single
element = from X, and can therefore be identified with a function from W x X to X.
The punctual kernels between any pair of sets are the extremal elements of the set of
all kernels between those sets provided the relevant o-algebras contain all of the singleton
subsets as assumed above; hence characterizing their behavior in the discrete case implicitly
characterizes the behavior of all kernels in the set. The punctual kernels of a network of
interacting RCAs specify, in particular, the extremal dynamics of the network. Conscious
realism entails the purely syntactic claim that the graphs shown in Figs. 1 and 2 are
interchangable as discussed above; the world W can, therefore, be regarded as an arbitrarily-
complex network of interacting RCAs, subject only to the constraint that the A and P
kernels of the interacting RCAs can be identified (Hoffman and Prakash, 2014).

The simplest CA network is a dyad in which W = X U G, where as above the notation
X UG indicates the disjoint union of X with G, and A = P; it is shown in Fig. 4. This
dyad acts on its own X; its perceptions are its actions. From a purely formal perspective,
this dyad is isomorphic to the X - Y dyad of the CEP framework (Fig. 3b); it is also
isomorphic to the interaction of X with its proximal “surface” of a Markov blanket sepa-
rating it from W (Fig. 3d). Investigating the behavior of this network over time requires
specifying, from the extrinsic perspective, the state spaces and operators. The simplest
case is the symmetric interaction in which the two state spaces are identical. If both X and
G are taken to contain just one bit, the four possible states of the network can be written
as |00),|01),|10) and |11). Here we will represent these states by the orthogonal (column)
vectors (1,0,0,0)7,(0,1,0,0)7,(0,0,1,0)T and (0,0,0,1)7, respectively. The simplest ker-
nels D : X xG — G and A : G x X — X are punctual. Let z(¢) and g(¢) denote the
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state of X and G, respectively, at time t. We slightly abuse the notation and use the letter
D to refer to the operator Iy x D : X(t) x G(t) = X(t+ 1) x G(t + 1), where Ix is the
Identity operator on X. This D leaves the state x of X unchanged but changes the state
of G to g(t+1) = D(x(t), g(t)). Similarly, we will use the letter A to refer to the operator
AxIg: X(t)xG(t) = X(t+1) x G(t+ 1), where I is the identity operator on G. This
A leaves the state g of G unchanged, but changes the state of X to x(t+ 1) = A(g(t), z(t)).
Note that in this representation, D and A are both executed each time the “clock ticks.”

A=P
X = =G
D

Fig. 4: The simplest possible CA network, the dyad in which W = X U G.

To reiterate, the decision operator D acts on the state of G but leaves the state of X
unchanged, i.e. X (¢t + 1) = X (¢). Only four Markovian operators with this behavior exist.
These are the identity operator,

o O O
o O = O
o= OO
_— o O O

the NOT operator,

Np =

o O = O
o O O
_— o O O
O = OO

the controlled-NOT (¢cNOT) operator that flips the G bit when the X bit is 0,

CDO =

o O = O
o O O
o= O O
_— o O O
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and the ¢cNOT operator that flips the GG bit when the X bit is 1,

1000
0100
C’31_0001
0010

The action operator A acts on the state of X but leaves the state of G unchanged, i.e.
G(t+1) = G(t). Again, only four Markovian operators with this behavior exist. These are
the identity operator I defined above, the NOT operator,

Nj =

O = OO
_ o O O
o O O
OO = O

the cNOT operator that flips the X bit when the G bit is 0,

CAO =

O = O O
o O = O
o O O
— O O O

and the cNOT operator that flips the X bit when the G bit is 1,

Ca1 =

o O O
_— o O O
o = O O
o O = O

In principle, distinct CAs with single-bit X and G could be constructed with any one of
the four possible D operators and any one of the four possible A operators. The CA in
which both operators are identities is trivial: it never changes state. The CA in which both
operators are NOT operators is the familiar bistable multivibrator or “flip-flop” circuit. It
is also interesting, however, to consider the abstract entity — referred to as a “participator”
in Bennett, Hoffman and Prakash (1989) — in which X and G are fixed at one bit and all
possible D and A operators can be employed. The dynamics of this entity are generated by
the operator compositions DA and AD. There are 24 distinct compositions of the above
7 operators, which form the Symmetric Group on 4 objects, S4. This group appears in a
number of geometric contexts and is well characterized; the CA dynamics with this group of
transition operators include limit cycles, i.e. cycles that repeatedly revisit the same states,
of lengths 1 (the identity operator I), 2, 3 and 4. Hence there are 24 distinct CAs having
the form of Fig. 3 but with different choices for D and A, with behavior ranging from
constant (D = A = I) to limit cycles of length 4.
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It is important to emphasize that there is no sense in which the 1-bit dyad experiences the
potential complexity of its dynamics, or in which the experience of a 1-bit dyad with one
choice of D and A operators is any different from the experience of a 1-bit dyad with another
choice of operators. Any 1-bit dyad has only two possible experiences, those tokened by |0)
and |1). The addition of memory to a CA in order to enable it to experience a history of
states and hence relations between states from its own intrinsic perspective is discussed in
84 below.

The Identity and NOT operators can be expressed as “forgetful” kernels, i.e. kernels that
do not depend on the state at t of their target spaces, D : X(t) — G(t+ 1) and A :
G(t) — X (t+1) but the cNOT operators cannot be; hence the forgetful kernels introduced
by Hoffman and Prakash (2014) have less representational power than the state-dependent
kernels employed in the current definition of a CA. It is also worth noting that the standard
AND operator taking x(t) and g(t) to z(t + 1) = z(t) and g(t + 1) = x(t) AND ¢(¢) may
be represented as:

ANDg¢ =

o O O
o O O
O = O O
_ o O O

and the corresponding OR operator taking z(¢) and ¢(t) to x(t+1) = z(t) and g(t+1) = z(t)
OR ¢(t) may be represented as:

1000
0100
ORG_OOOO
001 1

The value of G(t) cannot be recovered following the action of either of these operators; they
are therefore logically irreversible. As each of the matrix representations of these operators
has a row of all zeros, they are not Markovian. The logically irreversible, non-Markovian
nature of these operators has, indeed, been a primary basis of criticisms of artificial neu-
ral network and dynamical-system models of cognition; Fodor and Pylyshyn (1988), for
example, criticize such models as unable, in principle, to replicate the compositionality of
Boolean operations in domains such as natural language. The standard AND operator
can, however, be implemented reversibly by adding a single ancillary z bit to X, fixing its
value at 0, and employing the Toffoli gate that maps [x, y, z] to [x, y, (x AND y) XOR
z], where XOR is the standard exclusive OR (Toffoli, 1980). The Toffoli gate preserves the
values of x and y and allows the value of z to be computed from the values of x and y;
hence it is reversible and can, therefore, be represented as a punctual Markovian kernel.
The standard XOR operator employed in the Toffoli gate is equivalent to a cNOT. As any
universal computing formalism must be able to compute AND, the 1-bit dynamics of Fig.
4 is not computationally universal. The Toffoli gate is, however, computationally universal,
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so adding a single ancillary bit set to 0 to each space in Fig. 4 is sufficient to achieve
universality.

Two distinct graphs representing symmetric, punctual CA interactions have 4 bits in total
and hence 16 states: the graph shown in Fig. 2 where each of X, G, X’ and G’ contains one
bit and the graph shown in Fig. 4 in which each of X and G contains 2 bits. These graphs
differ from the intrinsic as well as the extrinsic perspectives: in the former case each agent
experiences only |0) or |1) — i.e. has the same experience as the 1-bit dyad — while in the
latter case the agent has the richer experience |00),|01),]10) or |11). The dynamics of the
participator with the first of these structures has been exhaustively analyzed; it has the
structure of the affine group AGL(4,2). Further analyses of the dynamics of these simple
systems, including explicit consideration of the behavior of the t counters, is currently
underway and will be reported elsewhere.

While the restriction to punctual kernels simplifies analysis, systems in which perception,
decision and action are characterized by dispersion will have non-punctual kernels P, D and
A. Tt is worth noting that from the extrinsic, theorist’s perspective, such dispersion exists
by stipulation: the kernels P, D and A characterizing a particular CA within a particular
situation being modelled are stipulated to be stochastic. The probability distributions on
states of X, G and W that they generate are, from the theorist’s perspective, distributions
of objective probabilities: they are stipulated “from the outside” as fixed components of the
theoretical model. As will be discussed in §4 below, these become subjective probabilities
when viewed from the intrinsic perspective of any observer represented within such a model.
However as noted earlier, ITP forbids any CA from having observational access to its own
P, D, or A kernels; hence no CA can determine by observation that its kernels are non-
punctual.

3.2 Asymmetric interactions and RCA combinations

While symmetric interactions are of formal interest, a “world” containing only two sub-
systems of equal size has little relevance to either biology or psychology. Real organisms
inhabit environments much larger and richer than they are, and are surrounded by other
organisms of comparable size and complexity. The realistic case, and the one of interest
from the standpoint of ITP, is that in which the o-algebra W is much finer than either
X or G. This asymmetrical interaction can be considered effectively bandwidth-limited by
the relatively small encoding capacities of X and G. Representing the two-RCA interaction
shown in Fig. 2 by the shorthand notation RCA1 = RCAZ2, this more realistic situation can
be represented as in Fig. 5, in which no assumptions are made about the relative “sizes”
of the RCAs or the dimensionality of the Markovian kernels involved.
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Fig. 5: a) Nine bidirectionally interacting RCAs, equivalent to a single RCA
interacting with its “world” W and hence to a single CA. b) A network similar
to that in a), except that some interactions are not bidirectional. Here again,
the RCA network is equivalent to a single RCA interacting with a structurally
distinct “world” W’ and hence to a distinct single CA. In general, RCA networks
of either kind are asymmetric for every RCA involved.

When applied to the multi-RCA interaction in Fig. 5, consistency between intrinsic and
extrinsic perspectives requires that when a theorist’s attention is focussed on any single
RCA, the other RCAs together can be considered to be the “world.” If attention is focussed
on RCAL1, for example, it must be possible to regard the subgraph comprising RCA2 - RCA9
as the “world” W (Fig. 5a) and the entire network as specifying a single CA in the canonical
form of Fig. 1. As every RCA interacts bidirectionally with its “world,” any directed path
within an RCA network must be contained within a closed directed path. These paths
do not, however, all have to be bidirectional; the RCA network in Fig. 5b can equally
well be represented in the canonical form of Fig. 1. The “worlds” of Fig. ba and Fig.
5b have distinct structures from the extrinsic perspective. However, I'TP requires that the
interaction between RCA1 and its “world” does not determine the internal structure of
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the “world”; indeed an arbitrarily large number of alternative structures could produce
the same inputs to RCA1 and hence the same sequence of experiences for RCA1. RCA1
cannot, in particular, determine what other RCA(s) it is interacting with at any particular
“time” t as measured by its counter, or determine whether the structure or composition of
the network of RCAs with which it is interacting changes from one value of ¢ to the next.
This lack of transparency renders the “world” of any RCA a “black box” as defined by
classical cybernetics (Ashby, 1956): a system with an internal structure under-determined,
in principle, by finite observations. Even a “good regulator” (Conant and Ashby, 1970) can
only regulate a black box to the extent that the behavior of the box remains within the
bounds for which the regulator was designed; whether a given black box will do so is always
unpredictable even in principle. From the intrinsic perspective of the “world,” the same
reasoning renders RCA1 a black box; hence consistency between perspectives requires that
any RCA - and hence any CA - for which the sets X and G are not explicitly specified be
regarded as potentially having an arbitrarily rich internal structure.

In general, consistency between intrinsic and extrinsic perspectives requires that any ar-
bitrary connected network of RCAs can be considered to be a single canonical-form CA;
for each RCA in the network, all of the other RCAs in the network, regardless of how
they are connected, together form of “world” of that RCA. Non-overlapping boundaries
can, therefore, be drawn arbitrarily in a network of interacting RCAs and the RCAs within
each of the boundaries “combined” to form a smaller network of interacting RCAs, with
a single canonical-form CA or X — G dyad as the limiting case in which all RCAs in
the network have been combined. Connected networks that characterize gene regulation
(Agrawal, 2002), protein interactions (Barabdsi and Oltvai, 2004), neurocognitive archi-
tecture (Bassett and Bullmore, 2006), academic collaborations (Newman, 2001) and many
other phenomena exhibit dynamic patterns including preferential attachment (new connec-
tions are preferentially added to already well-connected nodes; Barabési and Albert, 1999)
and the emergence of small-world structure (short minimal path lengths between nodes
and high clustering; Watts and Strogatz, 1998). Such networks typically exhibit “rich
club” connectivity, in which the most well-connected nodes at one scale form a small-world
network at the next-larger scale (Colizza, Flammini, Serrano and Vespignani, 2006); the
human connectome provides a well-characterized example (van den Heuvel and Sporns,
2011). Networks in which connectivity structure is, on average, independent of scale are
called “scale-free” (Barabdsi, 2009); such networks have the same structure, on average,
“all the way down.” As illustrated in Fig. 6, scale-free structures approximate hierarchies;
“zooming in” to a node in a small-world or rich-club network typically reveals small-world
or rich-club structure within the node. However, these networks allow the “horizontal”
within-scale connections that a strict hierarchical organization would forbid. Given the
prominence of scale-free small-world or rich-club organization in Nature, it is reasonable to
ask whether RCA networks can exhibit such structure. In particular, it is reasonable to ask
whether interactions between “simple” RCAs can lead to the emergence of more complex
RCAs that interact among themselves in an approximately-hierarchical, rich-club network.
We consider this question in one particular case in §4 below.
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Fig. 6: “Zooming in” to a node in a rich-club network typically reveals addi-
tional small-world structure at smaller scales. Here the notation has been further
simplified by eliding nodes altogether and only showing their connections.

Replication followed by functional diversification ubiquitously increases local complexity in
biological and social systems; processes ranging from gene duplication through organismal
reproduction to the proliferation of divisions in corporate organizations exhibit this process.
The simplest case, for an RCA, is to replicate part or all of the experience set X; as
will be shown below (§4.2), this operation is the key to building RCAs with memory.
Let [(Xy, XYy, (G1,G1), Dy, t1] be an RCA interacting with W via A; and P, kernels. Let
(X2, X2), (G, Ga), Do, Ag, ts] be a dyad as shown in Fig. 4. Setting t; = to = t, a new
RCA whose “world” is the Cartesian product W x X5 can be constructed by taking the
Cartesian products of the sets X; and Xy and G; and G5 respectively, as illustrated in
Fig. 7, and defining product o-algebras of X; and X, and G; and G, respectively. If all the
kernels are left fixed, these product operations change nothing; they merely put the the
original RCA and the dyad “side by side” in the new, combined RCA. We can, however,
create an RCA with qualitatively new behavior by redefining one or more of the kernels;
the “combination” process in this case significantly alters the behavior of one or both of the
RCAs being “combined.” For example, we can specify a new punctual kernel D) that acts
on the X; component instead of the X, component of X; x Xy, i.e. D) : X; — Go. Consider,
for example, the RCA that results if D, is replaced by a kernel D), = D¢ that simply copies,
at each t, the current value x; of X; to Go. If the kernel A, is set to the Identity I, the
value x; will be copied, by As, back to X5 on each cycle, as shown in Fig. 7. In this case,
the experience of the “combined” CA at each t has two components: the current value of
x1 and the previous value of z1, now “stored” as the value x5. This “copying” construction
will be used repeatedly in §4 below to construct agents with progressively more complex
memories. Note that for these memories to be useful in the sense of affecting choices of
action, the kernel D; must be replaced by one that also depends on the “memory” X5.
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Fig. 7: A CA as shown in Fig. 1 and a dyad as shown in Fig. 3 can be
“combined” to form a composite CA with a simple, one time-step short-term
memory by replacing the decision kernel D, of the dyad with a kernel D¢ that
“copies” the state x1(t) to g2(t + 1) and setting the action kernel A, of the dyad
to the Identity I. The notation can be simplified by eliding the explicit W x X,
to W and treating the I? operation on G5 as a feedback operation “internal to”
the RCA, as shown in the lower part of the figure. Note that the composite
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CA produced by this “combination” process has qualitatively different behavior
than either of the CAs that were combined to produce it.

The construction shown in Fig. 7 suggests a general feature of RCA networks: asymmetric
kernels characterize the interactions between typical RCAs and W, but also characterize
“internal” interactions that give RCAs additional structure. Such kernels may lose infor-
mation and hence “coarse-grain” experience. If RCA networks are indeed scale-free, one
would expect asymmetric interactions to be the norm: wherever the RCA-of-interest to W
boundary is drawn, the networks on both sides of the boundary would have asymmetric
kernels and complex internal organization. If this is the case, the notion of combining ex-
perienced qualia underlying classic statements of the “combination problem” by William
James, Thomas Nagel and many others (for review, see Hoffman and Prakash, 2014) appears
too limited. There is no reason, in general, to expect “lower-level” experiences to combine
into “higher-level” experiences by Cartesian products. An initially diffuse, geometry-less
experience of “red” and an initially color-less experience of “circle,” for example, can be
combined to an experience of “red circle” only if the combination process forces the diffuse
redness into the boundary defined by the circle. This is not a mere Cartesian product; the
redness and the circularity are not merely overlaid or placed next to each other. While
Cartesian products of experiences allow recovery of the individual component experiences
intact; arbitrary operations on experiences do not. The “combination” operations of inter-
est here instead introduce scale-dependent constraints of the type Polanyi (1968) shows are
ubiquitous in biological systems (cf. Rosen, 1986; Pattee, 2001). Such constraints introduce
qualitative novelty. Once the redness has been forced into the circular boundary, for exam-
ple, its original diffuseness is not recoverable: the red circle is a qualitatively new construct.
Asymmetric kernels, in general, render higher-level agents and their higher-level experiences
irreducible. Human beings, for example, experience edges and faces, but early-visual edge
detectors do not experience edges and “face detectors” in the Fusiform Face Area do not
experience faces. von Uexkiill (1957), Gibson (1979) and the embodied cognition movement
have made this point previously; the present considerations provide a formal basis for it
within the theoretical framework of I'TP.

3.3 Connectivity and fitness

As noted in the Introduction, ITP was originally motivated by evolutionary game simula-
tions showing that model organisms with perceptual systems sensitive only to fitness drove
model organisms with veridical perceptual systems to extinction (Mark, Marion and Hoff-
man, 2010). In these simulations, “fitness” was an arbitrarily-imposed function dependent
on the states of both the model environment and the model organism. The assumption of
conscious realism, however, requires that it be possible to regard the environment of any
organism, i.e. of any agent, as itself an agent and hence itself subject to a fitness function.
From a biological perspective, this is not an unreasonable requirement: the environments of
all organisms are populated by other organisms, and organism - organism interactions, e.g.
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predator - prey or host - pathogen interactions, are key determiners of fitness. In the case
of human beings, the hypothesis that interactions with conspecifics are the primary de-
terminant of fitness motivates the broadly-explanatory “social brain hypothesis” (Adolphs,
2003, 2009; Dunbar, 2003; Dunbar and Shultz, 2007) and much of the field of evolutionary
psychology. If interactions between agents determine fitness, however, it should be possible
to derive a representation of fitness entirely within the CA formalism. As the minimiza-
tion of variational free energy or Bayesian surprise has a natural interpretation in terms of
maintenance of homeostasis (Friston, 2013; Friston, Levin, Sengupta and Pezzulo, 2015),
the congruence between the CA and FEP frameworks discussed above also suggests that
a fully-internal definition of fitness should be possible. Here we show that an intuitively-
reasonable definition of fitness not only emerges naturally within the CA framework, but
also corresponds to well-established notions of centrality in complex networks.

The time parameter ¢ characterizing a CA is, as noted earlier, not an “objective” time but
rather an observer-specific, i.e. CA-specific time. The value of t is, therefore, intimately
related to the fitness of the CA that it characterizes: a CA with a small value of ¢ has not
survived, i.e. not maintained homeostasis for very long by its own internal measure, while
a CA with a large value of ¢ has survived a long time. Hence it is reasonable to regard
the value of t as a prima facie measure of fitness. As t is internal to the CA, this measure
is internal to the CA framework. It is, however, not in general an intrinsic measure of
fitness, as CAs in general do not include an explicit representation of the value of ¢ within
the experience space X. From a formal standpoint, ¢ measures the number of executions
of D. As D by definition executes whenever a new experience is received into X, the value
of t effectively measures the number of inputs that a CA has received. To the extent that
D selects non-null actions, the value of ¢ also measures the number of outputs that a CA
generates.

From the intrinsic perspective, a particular RCA cannot identify the source of any particular
input as discussed above; inputs can equivalently be attributed to one single W or to
a collection of distinct other RCAs, one for each input. The value of ¢ can, therefore,
without loss of generality be regarded as measuring the number of input connections to
other RCAs that an given RCA has. The same is clearly true for outputs: from the
intrinsic perspective, each output may be passed to a distinct RCA, so ¢ provides an upper
bound on output connectivity. From the extrinsic perspective, the connectivity of any RCA
network can be characterized; in this case the number of inputs or outputs passed along
a directed connection can be considered a “connection strength” label. The value of ¢
then corresponds to the sum of input connection strengths and bounds the sum of output
connection strengths.

We propose, therefore, that the “fitness” of an RCA within a fixed RCA network can
simply be identified with its input connectivity viewed quantitatively, i.e. as a sum of
connection-strength labels, from the extrinsic perspective. In this case, a new connection
preserves homeostasis to the extent that it enables or facilitates future connections. A
new connection that inhibits future connectivity, in contrast, disrupts homeostasis. In
the limit, an RCA that ceases to interact altogether is “dead.” If the behavior of the
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network is monitored over an extrinsic time parameter (e.g. a parameter that counts the
total number of messages passed in the network), an RCA that stops sending or receiving
messages is dead. The “fittest” RCAs are, in contrast, those that continue to send and
receive messages, i.e. those that continue to interact with their neighbors, over the longest
extrinsically-measured times. Among these, those RCAs that exchange messages at the
highest frequencies for the longest are the most fit.

For simple graphs, i.e. graphs with at most one edge between each pair of nodes, the
“degree” of a node is the number of incident edges; the input and output degrees are the
number of incoming and outgoing edges in a digraph (e.g. Diestel, 2010 or for specific
applications to network theory, Borner, Sanyal and Vespignani, 2007). A node is “degree
central” or has maximal “degree centrality” within a graph if it has the largest degree;
nodes of lower degree have lower degree centrality. These notions can clearly be extended
to labelled digraphs in which the labels indicate connection strength; here “degree” becomes
the sum of connection strengths and a node is “degree central” if it has the highest total
connection strength. Applying these notions to RCA networks with the above definition of
fitness, the fitness of an RCA scales with its input degree, and hence with its input degree
centrality. Note that a small number of high-strength connections can confer higher degree
centrality and hence higher fitness than a large number of low-strength connections with
these definitions.

In an initially-random network that evolves subject to preferential attachment (Barabési
and Albert, 1999), the connectivity of a node tends to increase in proportion to its existing
connectivity; hence “the rich get richer” (the “Matthew Effect”; see Merton, 1968). As
noted above, this drives the emergence of small-world structure, with the nodes with high-
est total connectivity forming a “rich club” with high mutual connectivity. Nodes within
the rich club clearly have high degree centrality; they also have high betweenness centrality,
i.e. paths between non-rich nodes tend to traverse them (Colizza, Flammini, Serrano and
Vespignani, 2006). The identification of connectivity with fitness is obviously quite natu-
ral in this setting; the negative fitness consequences of isolation are correspondingly well
documented (e.g. Steptoe, Shankar, Demakakos and Wardle, 2013).

The identification of fitness with connectivity provides a straightforward solution to the
“dark room” problem faced by uncertainty-minimization systems (e.g. Friston, Thornton
and Clark, 2012). Dark rooms do not contain opportunities to create or maintain connec-
tions; therefore fitness-optimizing systems can be expected to avoid them. This solution
complements that of Friston, Thornton and Clark (2012), who emphasize the costs to
homeostasis of remaining in a dark room. Here again, interactivity and maintenance of
homeostasis are closely coupled.
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4 W from the intrinsic perspective: Prediction and
effective action

4.1 How can non-veridical perceptions be useful?

The fundamental question posed by the I'TP is that of how non-veridical perceptions can
be informative and hence useful to an organism. As noted in the Introduction, veridical
perception is commonly regarded as “absolutely essential” for utility; non-veridical per-
ceptions are considered to be illusions or errors (e.g. Pizlo, Sawada and Steinman, 2014).
We show in this section that CAs that altogether lack veridical perception can nonetheless
exhibit complex adaptive behavior, an outcome that is once again consonant with that
obtained within the free-energy framework (Friston, 2010; 2013). We show, moreover, that
constructing a CA capable of useful perception and action in a complex environment leads
to predictions about both the organization of long-term memory and the structure of object
representations that accord well with observations.

For any particular RCA, the dynamical symmetries described in §3.1 are manifested by
repeating patterns of states of X. The question of utility can, therefore, be formulated from
the intrinsic perspective as the question of how an RCA can detect, and make decisions
based on, repeating patterns of states of its own X. As the complexities of both the agent
and the world increase, moreover, the probability of a complete experience - a full state
of X - being repeated rapidly approaches zero. For agents such as human beings living in
a human-like world, only particular aspects of experience are repeated. Such agents are
faced with familiar problems, including perceptual figure-ground distinction, the inference
of object persistence and hence object identity over time, correct categorization of objects
and events, and context dependence (“contextuality” in the quantum theory and general
systems literature; see e.g. Kitto, 2014). Our goal in this section is to show that the CA
formalism provides a useful representation for investigating these and related questions. We
show, in particular, that the limited syntax of the CA formalism is sufficient to implement
memory, predictive coding, active inference, attention, categorization and planning. These
functions emerge naturally, moreover, from asking what structure an RCA must have in
order for its perceptions to be useful for guiding action within the constraints imposed by
ITP. We emphasize that by “useful” we mean useful to the RCA from its own intrinsic
perspective, e.g. useful as a guide to actions that lead to experiences that match its prior
expectations (cf. Friston, 2010).

We explicitly assume that the experiences of any RCA are determinate or “classical”: an
RCA experiences just one state of X at each t. From the intrinsic perspective of the RCA,
therefore, P is always apparently punctual regardless of its extrinsic-perspective statistical
structure; from the intrinsic perspective, P specifies what the RCA does experience, not
just what it could experience. The RCA selects, moreover, just one action to take at each
t; hence D is effectively punctual, specifying what the RCA does do as opposed to merely
what it could do, from the intrinsic perspective. This effective or apparent resolution of a
probability distribution into a single chosen or experienced outcome is referred to as the
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“collapse of the wavefunction” in quantum theory (for an accessible and thorough review,
see Landsman, 2007) and is often associated with the operation of free will (reviewed by
Fields, 2013a). We adopt this association of “collapse” with free will here: the RCA renders
P punctual by choosing which of the possibilities offered by W to experience, and renders
D punctual by choosing what to do in response. As is the case in quantum theory (Conway
and Kochen, 2006), consistency between intrinsic and extrinsic perspectives requires that
free will also be attributed to W; hence we regard W, as an RCA, choosing how to respond
to each action A taken by any RCA embedded in or interacting with it. All such choices
are regarded as instantaneous. Consistency between internal and external perspectives
requires, moreover, that all such choices are unpredictable in principle. An RCA with
sufficient cognitive capabilities can, in particular, predict what it would choose, given its
current state, to do in a particular circumstance, but cannot predict what it will do, i.e.
what choice it will actually make, when that circumstance actually arises. This restriction
on predictions is consonant with a recent demonstration that predicting an action requires,
in general, greater computational resources than taking the action (Lloyd, 2012).

4.2 Memory

Repeating patterns of perceptions are only useful if they can be detected, learned from, and
employed to influence action. Within the CA framework, “detecting” something involves
awareness of that something; detecting something is therefore a state change in X. Noticing
that a current perception repeats a past one, either wholly or in part, requires a memory
of past perceptions and a means of comparing the current perception to remembered past
perceptions. Both current and past perceptions are states in X, so it is natural to view
their comparison as an operation on X. Using patterns of repeated perceptions to influence
action requires, in turn, a representation of how perception affects action: an accessible,
internal “model” of the D kernel. Consider, for example, an agent with a 1-bit X that
experiences only “hungry” and “not hungry” and implements the simple operator, “eat if
but only if hungry” as D. This agent has no representation, in X, of the action “eat”; hence
it cannot associate hunger with eating, or eating with the relief of hunger. It has, in fact, no
representation of any action at all, and therefore no knowledge that it has ever acted. There
is no sense in which this agent can learn anything, from its own intrinsic perspective, about
W or about its relationship to W. Learning about its relationship to the world requires, at
minimum, an ability to experience its own actions, i.e. a representation of those actions in
X. This is not possible if X has only one bit.

The construction of a memory associating actions with their immediately-following per-
ceptions is shown in Fig. 8a. Here as before, ¢ increments when D executes. Note that
while each within-row pairing (g(t), z(¢)) provides a sample and hence a partial model of
W’s response to the choice of g(t), i.e. of the action of the composite kernel PA, each
cross-row pairing (g(t), x(t — 1)) provides a sample and hence a partial model of the action
of D. As noted earlier, no specific assumption about the units of ¢ is made within the CA
framework; hence the scope and complexity of the action - perception associations recorded
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s Dy this memory is determined entirely by the definition, within a particular model, of the
ss7 decision kernel D.

a) b)

w
P A ) ]
Actions of D from Actions of PA
D, t t-1tot att

X ——»G
Record x(1) \ Record g(t) x(t-1), g(?) g(t), x(1)
x(t-2), g(t-1) g(t-1), x(t-1)
Cross-row arrows: | X®) | g(® X(t-3), 9(t-2) 9(t-2), x(t-2)
Action of D from / x(t-4), 9(t-3) g(t-3), x(t-3)
110 t X(t-1) : g(t-1)
x(t- 2)/g(t 2)
Within rows: x(t- 3)/v g(t-3)
Action of PA at t. P
U x(t=0), g(t=1) 9(t=1), x(t=1)
g
x(t=0) : g(t—O)
C) Example “counts” d)
of actions of D. w
g |1 0 1 1 p A
9,0 4 0 0 Copy
/Y D, t
g0 1 2 0 X=(XxX (X, xX_)— G
g42031 l|t+t¢ Moy
| 1
M
X Xy Xg X, b
868 Fig. 8: Constructing a memory in X for action - perception associations. a)
869 The values z(t) and g(t) are recorded at each t into a linked list of ordered
870 pairs (g(t),z(t)), in which the links associate values z(t — 1) to ¢(t) (diagonal
871 arrows) and g(t) to x(t) (within rows). Each horizontal ordered pair is an
872 instance of the action of the composed kernel PA, during which ¢ is constant.
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Each diagonally-linked pair is an instance of the action of D, concurrent with
which ¢ increments. b) The linked list in a) can also be represented as two
simple lists of ordered pairs, one representing instances of actions of D and
the other representing instances of actions of PA. c¢) The instance data in
either list from b) can also be represented as a matrix in which each element
counts the number of occurrences of an (x, g) pair. Here we illustrate just four
possible values of x and four possible values of g. The pair (x1, g;) has occurred
once, the pair (zs, g2) has occurred four times, etc. d) An RCA network that
constructs memories X;p and Xrpa that count instances of actions of D and
P A respectively. Here Xp is the space of possible percepts and its state zp is
the current percept. The space Xy is a short-term memory; its state x g is the
immediately-preceding percept. The simplified notation introduced in Fig. 7 is
used to represent the “feedback” kernels Copy, Mp and Mp, as internal to the
composite RCA. The decision kernel D acts on the entire space X. The Mp
and Mp4 kernels are defined in the text.

For the contents of memory to influence action, they must be accessible to D. They must,
therefore, be encoded within X. Meeting this requirement within the constraints of the CA
formalism requires regarding X as comprising three components, X = Xpx Xy x X);, where
X p contains percepts, X g contains a copy of the most recent percept, and X, contains long-
term memories of percept-action and action-percept associations. In this case, P becomes
a Markovian kernel from W x Xp — Xp and a punctual, forgetful Markovian kernel C'opy
is defined to map Xp — Xp as discussed above. The short-term memory Xz allows the
cross-row pairs in Fig. 8a, here written as (zp(t — 1), g(t)) to emphasize that xp(t — 1) is a
percept generated by P, to each be represented as a pair (zg(t), g(t)) at a single time ¢. To
be accessible to D, both these cross-row pairs and the within-row pairs (xp(t), g(t)), together
with their occurrence counts as accumulated over multiple observations (Fig. 8c), must be
represented completely within X. Constructing these representations requires copying the
g(t) components of these pairs from G to X at each ¢, associating the copies with either
xgr(t) or zp(t) respectively, and accumulating the occurrence counts of the associated pairs
as a function of t. We define components X;p and Xj;pa of the long-term memory X, to
store triples (xg, 9o, np(xgr, 9o, T)) and (zp, go, npa(xp, go, T)) respectively, where go(t) is
a copy of g(t) and np(zg, g9c,T) and npa(xp, go,T) are the accumulated occurrence counts
of (g, gc) and (zp, gc), respectively, as of the accumulation time 7. This T is the sum of
the counts stored in Xy;p and X,;pa, which must be identical; the memory components
Xup and Xy pa capture, in other words, the data structure of Fig. 8c completely within
X. To construct these memory components, we define punctual Markovian kernels Mp :
G x XR X XMD — XMD and MPA G x Xp X XMPA — XMPA (Flg 8d) that, at each
t, increment np(xg, go,T) by one if xx and g co-occur at t and increment npa(zp, 9o, T')
by one if xp and g co-occur at t, respectively. A similar procedure for updating “internal”
states on each cycle of interaction with a Markov blanket is employed in Friston (2013).
While we represent these memory-updating kernels as “feedback” operations in Fig. 8d
and in figures to follow, they can equivalently be represented as acting from G to W x X
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as in the middle part of Fig. 7.

The ratios np(zr, 9o, T)/T and npa(zp, gc, T)/T are naturally interpreted as the frequen-
cies with which the pairs (z,g) have occurred as either percept-action or action-percept
associations, respectively, during the time of observation, i.e. between t =0 and t =T. As
these values appear as components of X, they can be considered to generate, through the
action of some further operation depending only on X, “subjective” probabilities at t = T" of
percept-action or action-percept associations, respectively. We will abuse notation and con-
sider the memories X;p and X;p4 to contain not just the occurrence counts np(xg, go, T)
and npa(xp, go, T) but also the derived subjective probability distributions Probp(z, g)|i=r
and Probpa(z, g)|=r respectively. We note that these distributions Probp(z, g)|=r and
Probpa(z, g)|i=r are subjective probabilities for the RCA encoding them, from its own in-
trinsic perspective. We have assumed that the kernels Mp and Mp, are punctual; to the
extent that they are not, these subjective probability distributions are likely to be inaccu-
rate as representations of the agent’s actual past actions and perceptions, respectively.

It is important to emphasize that the memory data structure shown in Fig. 8c does not
represent the value of the time counter ¢ explicitly. A CA implementing this memory does
not, therefore, directly experience the passage of time; such a CA only experiences the cur-
rent values of accumulated frequencies of (z, g) pairs. However, because the current value T
of t appears as the denominator in calculating the subjective probabilities Probp(x, g)|;=7
and Probpa(z, g)|i=r, the extent to which these distributions approximate smoothness pro-
vides an implicit, approximate representation of elapsed time. As we discuss in §4.4 below,
this approximate representation of elapsed time has a natural interpretation in terms of the
“precision” of the memories Mp and Mp4, as this term is employed by Friston (2010, 2013).
The construction of a data structure explicitly representing goal-directed action sequences,
and hence the relative temporal ordering of events within such sequences, within the CA
framework is discussed in §4.5 below. Such a data structure is a minimal requirement for
directly experienced duration in the CA framework.

4.3 Predictive coding, goals and active inference

Merely writing memories is, clearly, not enough: if memories are to be useful, it must also
be possible to read them. Remembering previous percepts is, moreover, only useful if it
is possible to compare them to the current percept. As noted earlier, exact replication
of a previous percept is unlikely; hence utility in most circumstances requires quantitative
comparisons, even if these are low-resolution or approximate. These can be accomplished
by, for example, imposing a metric structure on Xp and all memory components computed
from Xp. This allows asking not just how much but in what way a current percept differs
from a remembered one. For now, we do this by assuming a vector space structure with
a norm ||.|| (and therefore a metric §(z,2’") = ||z — 2’||) on Xp. It is also convenient to
assume a metric vector-space structure on G so that “similarity” between actions can be
discussed.
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A vector-space structure on Xp enables talking about components of experience, which
are naturally interpreted as basis vectors. Given a complete basis {¢;} for Xp, which for
simplicity is taken to be orthonormal, any percept zp can be written as ) . o;&;, where the
coefficients «a; are limited to some finite resolution, and hence the vectors are limited to
approximate normalization, to preserve a finite representation. The distance between two
percepts zp = Y. ;& and yp = Y. ;& can be defined as the distance é(xp, yp).

To construct this vector space structure, it is useful to think of experiences in terms of
“degrees of freedom” in the physicist’s sense (“macroscopic variables” or “order parame-
ters” in other literatures), i.e. in terms of properties of experience that can change in some
detectable way along some one or more particular dimensions. A stationary point of light
in the visual field, for example, may have degrees of freedom including apparent position,
color and brightness. Describing a particular experienced state requires specifying a par-
ticular value for each of these degrees of freedom; in the case of a stationary point of light,
these may include x, y and z values in some spatial coordinate system and intensities I,.q,
Igreen and Iy, in a red-green-blue color space. Describing a sample of experiences requires
specifying the probabilities of each value of each degree of freedom within the sample, e.g.
the probabilities for each possible value of z, y, 2, Iyeq, Igreen and Ipye in a sample of
stationary point-of-light experiences. A vector in the space Xp is then a particular combi-
nation of values of the degrees of freedom that characterize the experiences in X. A basis
vector & of Xp corresponds, therefore, to a particular value of one degree of freedom, e.g.
a particular value x = 1 m or [,.,4 = 0.1 lux. The coefficient «; of a basis vector &; is
naturally interpreted as the “amount” or “extent” to which &; is present in the percept;
again borrowing terminology from physics, we refer to these coefficients as amplitudes. If
«; is the amplitude of the basis vector &; representing a length of 1 m, for example, then the
value of «; represents the extent to which a percept indicates an object having a length of 1
m. It is, moreover, natural to restrict the values of the amplitudes to [0, 1] and to interpret
the amplitude «; of the basis vector &; in the vector representation of a percept xp as the
probability that the component & contributes to xp. This interpretation of basis vectors
as representing values of degrees of freedom and amplitudes as representing probabilities is
the usual interpretation for real Hilbert spaces in physics (the probability is the amplitude
squared in the more typical complex Hilbert spaces).

The basis chosen for Xp determines the bases for X, Xy/p and Xj;pa. It must, moreover,
be assumed that elements of these latter components of X are experientially tagged as such.
An element z in Xi must, for example, be experienced differently from the element xp in
Xp of which it is a copy; without such an experiential difference, previous, i.e. remembered
and current percepts cannot be distinguished as such from the intrinsic perspective. The
existence of such experiential “tags” distinguishing memory components is a prediction of
the current approach, which places all memory components on which decisions implemented
by D can depend within the space X of experiences. Models in which some or all compo-
nents of memory are implicit, e.g. encoded in the structure of a decision operator, require
no such experiential tags for the implicit components. It is interesting in this regard that
humans experientially distinguish between perception and imagination (a memory-driven
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function), that this “reality monitoring” capability appears to be highly but not exclusively
localized to rostral prefrontal cortex, and that disruption of this capability correlates with
psychosis (Simons, Gilbert, Henson and Fletcher, 2008; Burgess and Wu, 2013; Cannon,
2015). Humans also experientially distinguish short-term “working” memories from long-
term memories. We predict that specific monitoring capabilities provide the experiential
distinctions between short- (e.g. Xg) and long-term (e.g. Xy/p and Xy;p4) memories and
distinguish functionally-distinct long-term memory components from each other. From a
formal standpoint, such distinguishing tags can be considered to be additional elements in
each vector in each of the derived vector spaces; while such tags play no explicit role in the
processing described below, their existence will be assumed.

As the memories X,;p and X;p4 and hence the conditional probability distributions
Probp(z(t), g(t)|z(t —1),g(t — 1)) and Probpa(z(t), g(t)|z(t — 1), g(t — 1)) contain informa-
tion about the observer’s entire experience of the world, they enable differential responses
to xr — g or g — xp pairings that evoke different degrees of “surprise” by either confirming
or disconfirming previous associations to different extents. We note that the term ‘surprise’
is being used here in its informal sense of an experienced departure from expectations, not
in the technical sense employed by Friston (2010; 2013; see also Friston et al., 2015; Fris-
ton et al., 2016) to refer to an event that causes or threatens to cause a departure from
homeostasis and hence has negative consequences for fitness. To implement such differen-
tial responses to surprise, it is natural to choose functions for updating these conditional
probability distributions that depend on the vector distance(s) between the percept zg (for
Probp(z(t), g(t)|z(t —1),g(t — 1))) or zp (for Probpa(x(t), g(t)|x(t —1),g(t — 1))) and the
percept(s) previously associated, within X,;p and Xy pa respectively, with ¢g. Functions
can clearly chosen that either enhance or suppress memories of surprising events. This
generalization requires no additional components or elements within X; hence it enhances
function without altering the architecture.

The simplest possible action is no action: the agent merely observes the world. The extremal
outcomes of such observation are on the one hand James’ “blooming, buzzing confusion,” i.e.
a completely random zp(t), and on the other stasis, a fixed and invariant zp(t). Memory is
obviously useless in either case; indeed, the latter corresponds to the “dark room” situation
discussed above. Memory becomes useful if a world on which no action is taken generates
some number of the possible percepts significantly more often than the others. The same
is true in the case of any other constantly-repeated action. It is equivalent to say: any
action which, when repeated indefinitely, is followed by either random or static percepts
is a useless action to take. Such an action has no “epistemic value” in the sense used by
Friston et al. (2015). Randomness and stasis may be useful as components of experience -
indeed as discussed below, stasis is a necessary component of useful experience - but only
when embedded in non-random, non-static contexts. Let us assume, therefore, that RCAs
of interest are embedded in Ws that generate non-random, non-static percepts in response
to all actions. Note that this assumption is consistent with I'TP: it does not require either
P or A to respect the causal structure of W.

In a non-random, non-static world, the memories X,;p and X,;p4 provide a basis for
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predictive coding: the probability assigned to an action g at t+ 1 can depend on the vector
difference between the current percept xp(t) and previous percepts either immediately-
antecedent or immediately-consequence to actions like g. A percept xp(t) can, in this case,
“predict” an action g(t + 1) that is “expected,” on the basis of the probabilities stored
in Xy pa, to result in a subsequent percept zp(t + 1) that is either similar or dissimilar
to zp(t). Assigning high probabilities to actions at ¢ + 1 expected to result in percepts
similar to xp(t) is implicitly “evaluating” xp(t) as in some sense “good” or “desirable,”
while assigning low probabilities to actions at ¢+ 1 expected to result in percepts similar to
xp(t) is implicitly evaluating xp(t) as in some sense bad or undesirable. These operational
senses of “good” and “bad” percepts are consistent with the senses of “good” and “bad”
percepts as enhancing or threatening the maintenance of homeostasis employed by Friston
(2010; 2013). A “bad” experience in this operational sense is a outcome that an agent
did not expect to experience, i.e. a stressor such as being hungry or poor, on the basis
of the implicit “model” of W encoded by the probability distributions contained in the
memories X /p and Xypa. In the limit, a maximally “bad” experience is one that violates
the fundamental expectation that experiences will continue that is encoded by all non-
zero values of the subjective probabilities Probp(z, g)|i=r and Probpa(z, g)|i=r; such an
experience destroys connectivity between the agent in question and the surrounding RCA
network (i.e. the agent’s W), setting the agent’s fitness to zero and corresponding to the
“death” of the agent as discussed in §3.3 above.

This evaluative function can be made explicit by representing it as a distinct operation. To
do this, we add a further memory component Xz to X. To allow for the possibility that
an observer has “innate” biases toward or against particular percepts, we consider Xg to
comprise two probability distributions, Probge.q(zp) and Proby.(xp), with a priori values
fixed at ¢ = 0. Such innate evaluation biases can be considered to be innate “preferences”
or “beliefs” as they often are in the infant-cognition literature (e.g. Baillargeon, 2008;
Watson, Robbins and Best, 2014). We represent the evaluation operation F as having two
components E = (Eypod, Ebaa), where Eyyq is a punctual kernel Xp x Xp x E' — E that
updates Probge.q(zp) at each ¢ and Ep.q is a punctual kernel Xp x X x Xp — Xp that
updates Proby,q(zp) at each ¢. For simplicity, we assume that E,.q increases Probge.q(zp)
by a factor > 1 that approaches unity as Prob,eq(xp) — 1 whenever both Probeeq(xp(t)) >
0 and Probgeeqa(zgr(t)) > 0 and that Ej.g increases Proby.(xp) by a factor with similar
behavior whenever both Proby,(xp(t)) > 0 and Proby,(zg(t)) > 0. This E effectively
implements the heuristic: an experience is remembered as better if it is followed by a good
experience, and remembered as worse if it is followed by a bad experience. Note that while
this heuristic is consistent with the association of “good” and “bad” with maintaining or
not maintaining either homeostasis or connectivity as discussed above, it also allows a
given xp to be both probably good and probably bad, a not-unrealistic situation. This
additional structure on X is summarized in Fig. 9. Extending the evaluative process from
the scalar representation provided by these probabilities to a multidimensional, i.e. vector,
representation costs memory and kernel complexity but does not change the architecture.
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Fig. 9: Adding memories for evaluations of percepts (Xg) and for a current
goal (X¢) to Fig. 7d. Connections to W have been elided for clarity.

Evaluating percepts implicitly evaluates the actions that are followed by those percepts;
this implicit transfer of estimated “good” or “bad” value from percepts to actions is now
implemented by D. A “rational” D, for example, would assign high probabilities to actions
g that are associated in X,;p4 with subsequent percepts that have high valuations in Xg.
If W is such that the relative ranking of percepts by value changes only slowly with ¢,
relatively highly- and lowly-ranked percepts can be considered to be positive and negative
“goals” respectively. As Friston (2010, 2013) has emphasized, goals are effectively long-term
expectations to which an uncertainty-minimizing agent attempts to match perceptions;
Friston and colleagues call acting so as to match perceptions to goals “active inference.”
Within the CA framework, the minimal functional architecture required for active inference
is that shown in Fig. 9. Here a memory component X holds the current goal; it is
populated by a punctual, forgetful kernel SG acting on Xg. While SG can be taken to
choose percepts of high value as goals, its specific action can be left open. Note than in this
architecture, incremental adjustments of the “world model” X,;p4 and “self model” Xp
are made in parallel with active inference: expectations are modified to fit perceptions even
when actions are taken to modify perceptions to fit expectations. Note also that placing
the evaluation and goal memories Xp and X within the experience space X is predicting
that the contents of these memories are both experienced and experienced as distinct, as
they indeed are in neurotypical humans. While the specific mechanisms implementing the
experiential distinction between these memory components remains uncharacterized, the
present framework predicts that such mechanisms exist.

By iteratively constructing representations of the antecedents and consequences of actions,
the kernels Mp and Mp,4 implement a simple kind of learning. The operator E similarly
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implements a simple form of evaluative feedback. The action choices made by D can,
therefore, progressively improve with experience. It is important to emphasize that Mp,
Mpy, E, SG and D are all by assumption homogeneous kernels. What changes as the
system learns is not the choice function D, but the contents of the data structures — the
memories Xy p, Xyrpa, Xg and Xg — that serve as ancillary inputs to D. The “knowledge”
of an RCA with this architecture is, therefore, entirely explicit. This is marked contrast
to typical neural-network models, including recent “deep learning” models (for a recent
review, see Schmidhuber, 2015), in which learning is entirely implicit and the decision rules
learned are notoriously hard to reverse engineer. It is worth noting that standard neural-
network models have no intrinsic perspective; as emphasized earlier, it is the requirement
that an RCA learns about W from its own intrinsic perspective that forces what is learned
to be made explicit in a memory located in X, i.e. in a memory encoding contents that
are experienced - but are not necessarily reportable - by the RCA. While the kernels Mp,
Mpa, E, SG, as well as others to be introduced below, that populate explicit memories
can, together with the decision kernel D be considered to encode implicit memories in the
current model, the assumption that all such kernels are homogeneous implies that these
implicit memories are not loci of learning. The kinds of “practised skill” memories that
are canonically regarded as implicit are most naturally modelled as structures, e.g. fixed
or fully-automatized learned action patterns, within the action space G in the current
framework; an exploration of such structures are developed within G is beyond the present
scope.

It is important to note that whether D is “rational” in the sense of favoring actions that re-
sult in “good” outcomes, and hence the extent to which the choices favored by D “improve”
with experience, is left open within the architecture. If W is such that “good” choices cor-
relate with the acquisition of resources required for survival, a basic orientation or “drive”
toward increasing the average subjective valuation of “good” percepts can be expected to
emerge in a population of agents whenever the required resources are scarce. Friston has
argued that predictability of experience is itself the primary resource that organisms seek
to maximize, and that the drive to pursue and acquire external resources can be under-
stood in terms of maintaining the predictability of experiences that facilitate or enhance
the maintenance of physiological homeostasis (Friston, 2010; 2013; Friston, Thornton and
Clark, 2012). Reducing the uncertainty of experiences from a large environment requires
extensive sampling of the environment’s behaviors and hence active exploration; effective
agents in a large W can, therefore, be expected to display a “curious rationality” that
maintains homeostasis while devoting significant energy to active exploration and learning
(reviewed by Gottlieb, Oudeyer, Lopes and Baranes, 2013). Friston et al. (2015; 2016)
make a similar point: the minimization of expected surprise in the strict sense of departure
from homeostasis (i.e. the minimization of variational free energy) contingent upon remem-
bered action-perception associations can always be expressed as a mixture of “epistemic”
and “pragmatic” value. The pragmatic value is the expected outcome according to prior
preferences, i.e. “good” or “bad” evaluations, while the epistemic value is the utility of the
action for learning, i.e. reducing the potential for uncertainty or surprise in the future. This
resolution of uncertainty through active sampling is at the heart of many active inference
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schemes and arises naturally in any model in which the agent expects to occupy the states
it prefers.

4.4 Reference frames and attention

While defining expectations over percepts can be expected to be useful in some circum-
stances, many aspects of realistic behavior require defining and acting on expectations
defined over individual or small subsets of components of percepts. The memories X;p
and Xjy;pa together provide the data needed to allow individual component - action as-
sociations to be computed; the memory Xpg similarly provides the data needed to allow
individual component valuations to be computed. Let X and Xgo be memories that store
conditional probability distributions and evaluations, respectively, of individual components
of percepts. To define X, note that the zg — g and g — zp associations stored in X,;p and
X pa respectively allow each action g to be viewed as a relation {(zg,zp)} implemented
by PA. Expressing these percepts as vectors zg(t) = Y . 0;(t)& and xp(t) = >, B;(¢)&,
we can view the action of g on the component & at t as gg(t) : a;(t) — Bi(t). Each g
can, in other words, be viewed as increasing or decreasing the amplitude of each percep-
tual component & from one percept to the next. As it is natural to view amplitudes as
probabilities of occurrence as discussed above, each g can be viewed as increasing or de-
creasing the probability of each perceptual component &; from one percept (i.e. value of
t) to the next. The memory X can, therefore, be viewed as storing t-indexed conditional
probabilities Prob,(&;|g, Prob;_1(&;)) of perceptual components given actions. To update
the distribution of Prob,(&;|g, Prob;_1(&;)) as a function of ¢, we define a punctual kernel
C as a map Xyp X Xypa X Xeg — X¢e. Subject to the constraint that all probabilities
remain normalized, this map can in principle implement any arbitrary updating function.

The memory X g¢ containing component valuations may be constructed from Xg in a sim-
ilar fashion, by defining punctual, forgetful kernels ECy,q and ECh,q that map Xp —
Xpc. The kernels EC40q and ECy,q assign, respectively, “good” valuations to components
strongly represented in “good” percepts and “bad” valuations to components strongly rep-
resented in “bad” percepts. A suitable function for each would assign to each component
& the average valuation of percepts xp in which the coefficient «; of &; is greater than
some specified threshold. With additional memory, this mechanism can be extended to
assign values to (finite ranges of) amplitude values of components. Note that component
valuations constructed in this way are in an important sense context-free; representing com-
ponent valuations conditioned on the valuations of other components requires both more
memory and more complex kernels.

The memory components X¢ and Xgo provide the “background knowledge” required for
component-directed as opposed to entire-percept directed actions. What remains to be
constructed is a process of selecting a component on which to act, and a second component
with respect to which the action is taken. Consonant with current usage in physics (e.g.
Bartlett, Rudolph and Spekkens, 2007), we refer to this second, context-setting component
as a reference frame for the action. Specifying a reference frame is specifying what does
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not change when an action is taken; hence reference frames provide the basis for specifying
what does change. Reference frames provide, in other words, the necessary stasis with
respect to which change is perceptible. Measurement devices such as meter sticks provide
the canonical example: a measurement made with a meter stick is only meaningful if one
assumes that the actions involved in making the measurement do not change the length
of a meter stick. More broadly, any context in which observations are made, whether a
particular laboratory set-up or an everyday scene, is meaningful as a context only if it
itself does change as a result of making the observation. A reference frame is, therefore, a
stipulated solution to the frame problem, the problem of specifying what does not change
as a result of an action (McCarthy and Hayes, 1969; reviewed by Fields, 2013b). Such
stipulations are inherently fragile and defeasible: a context that does observably change,
like a “meter stick” with an observably context-dependent length, ceases to be a reference
frame as soon as its variation is detected. Stipulated reference frames are, nonetheless,
useful solutions to the frame problem to the extent that they enable successful behavior in
the niche of the agent employing them. Absent a level of control over the environment that
ITP forbids, they are the only kinds of reference frames available.

While the frame problem has a long history in Al, its impact on cognitive science more
generally has been primarily philosophical (see, e.g. the contributions to Pylyshyn (1987)
and Ford and Pylyshyn (1996)). The question of how human perceivers identify contexts
as opposed to objects or events and how they detect changes in context have received little
direct investigation. The current model predicts that contexts are defined constructively
by the activation of discrete reference frames that impose expectations of constancy and
limit attention to features expected to remain constant. Experimental demonstrations of
change-blindness (reviewed by Simons and Ambinder, 2005) show that such limitations of
attention exist. Virtual reality methods provide opportunities to experimentally manipulate
context identification, and hence to probe the specific reference frames employed to identify
contexts, in ways that remain largely unexplored.

For complex organisms, the most important reference frame is arguably the experienced self,
generally including one or more distinguishable components of the body. This experienced
self reference frame comprises a collection of components of experience that do not change
during some, most or even all actions. The experienced self as a reference frame appears to
be innate in humans (e.g. Rochat, 2012) and may be innate in higher animals generally. It is
with respect to the experienced self as a reference frame that infants learn their capabilities
for actions as bodily motions and for social interactions as communications with others (e.g.
von Hofsten, 2007). Actions of or on the body, e.g. moving a limb, require that other parts
of the experienced self, e.g. the mass and shape of the limb and its point of connection
to the rest of the body, remain fixed to serve as the reference frame for the action. As
the body grows and develops, its representation must be updated to compensate for these
changes if its function as a reference frame is to be preserved. The experienced self reference
frame is readily extensible to tools, vehicles, and fully-virtual avatars in telepresence and
virtual-reality applications, and is readily manipulated in the laboratory. Disruptions of the
experienced self as a reference frame present as pathologies ranging from schizophrenia to
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anosognosia. These latter provide a clinical window into the human implementation of the
bodily and emotive self as a fusion of interoceptive and perceptual inputs (e.g. Craig, 2010;
Seth, 2013) and of the cognitive self as a fusion of memory-access and executive functions
that develops gradually from infancy to early adulthood (e.g. Simons, Henson, Gilbert and
Fletcher, 2008; Metzinger, 2011; Hohwy, 2016).

Selecting a particular component of a percept on which to act and another component
or components, such as the experienced self or the experienced self in some perceived
surroundings, to serve as a fixed context for an action is an act of attention. The selected
components must, moreover, remain subjects of attention throughout the action. Any
agent capable of attending to some component of an ongoing scene must also, however,
be capable of switching attention to a different component if something unexpected and
important happens. Attention requires, therefore, not just a decision about what to attend
to, but also a decision about whether to maintain or switch attentional focus. To meet these
requirements, we introduce an “attentional workspace” X g, a memory that contains a goal-
dependent focus of attention ¢;, a focus-dependent reference frame &; and a time counter
tr that measures the duration of an attentional episode. We also define an attentional
action space Gy containing two actions, ‘switch’ and ‘maintain’ that alter or preserve the
attentional focus, respectively, and a forgetful punctual kernel Dg : Xp x X X Xgp X Xg —
Gr that selects gr = ‘switch’ at t if the valuation of xp(t) differs from that of xg(t) by
some specified threshold and selects gr = ‘maintain’ otherwise. These elements of G
correspond to actions Ap on the workspace Xg, as shown in Fig. 10a. The action Ag,,
selected by gr = ‘maintain’ only increments tr. The action Ag, selected by gp = ‘switch’
selects a new focus of attention &, a new reference frame & and resets tp to zero. We
represent this action as a forgetful punctual kernel Ap, : Xp x X x X X Xep — Xp.
How this attention-switching kernel is defined has a potentially large impact on the behavior
of the RCA whose attentional workspace X it affects. A rational A, could be expected
to select a component & on which to focus that had a relatively large amplitude «; in
both the current percept xp and a high-value goal and a reference frame ¢;, also with a
relatively large amplitude in both xp and the goal, that was affected in the past primarily
by actions that did not affect &. While the valuation of the attentional focus & may be
“bad,” a rational Aps; would select a reference frame §; with a “good” or at least not “bad”
valuation, as this amplitude of this component is meant to be kept fixed in subsequent
interactions with W. A rational D kernel acting on the workspace X would then choose
actions g that, in the past as recorded in X, moved the amplitude of x; in the direction of
its value in the chosen goal state while keeping the amplitude of z; fixed. As X¢, Xpc and
Xr are updated one cycle behind X,,p, Xypa, Xg and Xg and hence two cycles behind
Xp, the kernel D must always work with expectation and valuation information that is
slightly out-of-date.
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Fig. 10: a) Kernels that maintain or switch attentional focus. b) Additions to
Fig. 9 required to support attention. Connections to W are again elided for
clarity.

The structure of and operations within the experiential space X required for an atten-
tional system are summarized in Fig. 10b. Selecting a new component for attention and
maintaining attention on a previously-selected component are competitive processes in this
architecture, as they are in humans (reviewed by Vossel, Geng and Fink, 2014). When
top-down goals and expectations dominate and hence the dorsal attention system controls
perceptual processing, the salience of goal-irrelevant stimuli is reduced; a switch to vigilance
and hence ventral attentional control, in contrast, reduces the salience of goal-relevant stim-
uli. Top-down, dorsal attentional dominance facilitates exploration and information gath-
ering, while bottom-up, ventral attentional dominance facilitates threat avoidance. This
attention switch can be incorporated into predictive coding and active inference models
using the concept of “precision” for both expectations and percepts; high-precision expec-
tations dominate low-precision percepts and vice-versa (Friston, 2010; 2013). Precision is
effectively a measure of reliability based on prior experiences and is hence a second-order
expectation that must be learned by refining an a priori bias as discussed above. Predic-
tive coding networks modulated by estimated precision have been shown to describe the
cellular-scale connection architecture of cortical minicolumns (Bastos et al., 2012) as well
as the modular connection architectures of motor (Shipp, Adams and Friston, 2013) and
visual (Kanai, Komura, Shipp and Friston, 2015) processing (see also Adams, Friston and
Bastos (2015) for an overview of these results). As noted earlier, the smoothness of stored
probability distributions provides a natural estimate of the number of experiences that have
contributed to them and hence their reliability. A rational switching function can be ex-
pected to favor high-reliability expectations and disfavor low-reliability expectations, and
hence to implement a precision-based modulation of attention.

Extending the system shown in Fig. 10b to multiple focus and/or reference components
costs memory and processing complexity, but does not change the architecture. It is inter-
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esting to note that within this architecture, all change is implicitly attributed by the agent
to the action taken; from the agent’s intrinsic perspective, its actions change the state of its
attentional focus with respect to its reference frame. For the system to behave effectively,
the world W must be such that this attribution of observed changes to executed actions is
satisficing in W. The world must not, in other words, surprise the agent so often that the
agent’s sense that actions have predictable consequences becomes impossible to maintain.
The world must not, in other words, exhibit either overall randomness or overall stasis as
noted earlier.

It is worth re-emphasizing, moreover, that in the CA framework X is a space of experi-
ences. Hence the RCA depicted in Fig. 10b is regarded as experiencing each state of its
highly-structured space X, including all those components on which its attention is not
focussed (the formalism leaves open the question of whether these components themselves
have unexperienced internal structure). It may, however, be “unconscious” of unattended
components in the sense in which this term is used in theories that associate consciousness
with relative amplification or attention (e.g. Baars, Franklin and Ramsoy, 2013; Dehaene,
Charles, King and Marti, 2014; Graziano, 2014). In general, how an RCA acts depends
on its attentional focus. Reporting what it is experiencing, e.g. to an investigator in a
laboratory or even to itself via a modality such as inner speech, is a specific kind of ac-
tion that requires a specific attentional focus. Whether the attentional focus required to
support a given form of reporting is achieved in any particular case or is even achievable
by a particular RCA is a matter of architecture, i.e. of how the memory-construction and
attentional-control kernels are defined. Agents that never report particular kinds of experi-
ences, or that never report experiences using a given modality such as inner speech (Heavey
and Hurlburt, 2008), are not only possible but to be expected within the CA framework.
Indeed the CA framework predicts that agents are typically aware of more than they can
report awareness of to an external observer or even to themselves. Agents are, in other
words, typically under-equipped with attentional resources, and hence unable to access some
or even much of their experience for behavioral reporting via any particular modality. Being
under-equipped for reporting experiences post hoc is unsurprising on evolutionary grounds;
indeed why human beings should engage in so much post hoc self-reporting via modalities
such as inner speech remains a mystery (Fields, 2002). As reportability by some observable
behavior remains the “gold standard” in assessments of awareness (e.g. Dehaene, Charles,
King and Marti, 2014), this strong and counter-intuitive prediction of the CA framework
can at present only be tested indirectly, e.g. using phenomena such as blindsight (re-
viewed by Overgaard, 2011). It raises the methodological question of whether “reporting”
of experiences by imaging methods such a fMRI, as employed by Boly, Sanders, Mashour
and Laureys (2013), for example, with otherwise-unresponsive coma patients, should be
regarded as evidence of awareness across the board.
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4.5 Remembering and planning action sequences

The attentional workspace Xr defined above does not explicitly represent the action taken
at each t and so cannot support either memory for “cases” of successful action or plan-
ning. The most recently executed g is, however, available within X,,;p. A fixed-capacity
case memory can be regarded as a subjective probability distribution over possible cases,
where each case is a vector of fixed length [..s., the components of which are quadruples
(&, Bi&, tr, g(tr)) with the percept components &;, &; and the amplitude j; fixed. A case
defined in this way provides a representation of how the amplitude «; of the attentional
focus &; varies relative to the fixed amplitude 3; of the reference frame §; when subjected
to the sequence g(tp = 0)...g(tp = lease) Of actions. This definition formulates in lan-
guage compliant with I'TP the concept of a case employed in the case-based reasoning and
planning literature (Riesbeck and Schank, 1989; Kolodner, 1993). It is also similar in both
role and scope to the concept of an “event file” introduced by Hommel (2004) to repre-
sent the temporal binding of perceptions with context-appropriate actions. Cases or event
files are effectively “snapshots” of active inference that show how a particular perceptual
input is processed given the attentional context in which it is received and the particular
expectations that it activates.

As an example, consider a sequence of actions involved in reaching for and grasping a coffee
cup. The immediate goal of the sequence is to grasp the coffee cup; we will ignore the
question of different grasps being needed for different subsequent actions. The target of
the sequence is a particular coffee cup that is visually identifiable by particular perceived
features, e.g. location, size, shape and color. The cup’s perceived size, shape and color do
not change as a result of the motion; hence their values can serve as the reference frame
that determines the cup’s identity. As the goal of the action sequence is to change the
perceived location of the coffee cup, its location cannot be included in the reference frame;
if it was, the cup would lose its identity when it was moved. The attentional workspace
X, therefore, contains the variable perceived values of the positions of the cup and of the
reaching hand as foci and the fixed perceived values of the size, shape and color of the cup
as the reference frame. The recorded case contains, effectively, a sequence of “snapshots”
of the contents of Xp: a time sequence of cup and hand position values, together with the
actions that produced them, relative to these fixed reference values. A memory M, for
such cases can be constructed using the counter-incrementing methods used to construct
Xup and Xypa above. As action sequences that are worth recording are typically those
that either satisfied goals or led to trouble, it is useful to construct each record in M, as
a 5—tuple [S(Zp(tF = 0),E(($p(tp = 0)),LL’p(tF = lcase),E((xp(tF = lcase)),case(tp)], where
xp(tp =0) and xp(tF = lease) are the full percepts at the beginning and the end of case(tr)
respectively, and E((zp(tp = 0)) and E((zp(tr = lese)) are their evaluations as recorded
in Xg. This representation allows M., to be searched — i.e. kernels acting on M_,s to
depend upon — either the initial state and its evaluation or the final state and its evaluation.
Case memories constructed in this way are clearly combinatorially explosive; hence case-
based planning in systems with limited memory is necessarily heuristic, not exhaustive, a
condition widely recognized in the case-based planning literature.
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It is natural to interpret a set of one or more fixed components of experience, with respect
to which one or more other components of experience change when one or more sequences
of actions is executed as defining an effective or apparent object. Objects defined in this way
are collections of expectations, based on accumulated experience, about the co-occurrence
and co-variation under actions of particular values of particular experiential degrees of
freedom. Objects in this sense are effectively categories defined by fixed (i.e. reference) and
variable features together with sets of expected behaviors, i.e. changes in the amplitudes of
the variable features relative to the fixed features in response to actions. Hence such objects
are more properly considered to be object types as opposed to de re individuals. While
an agent may assume, as a useful heuristic, that an object category has only one member
and act on the basis of this assumption, consistency with ITP requires that nothing in
the agent’s experience can be sufficient to demonstrate that this is the case. Hence object
identity over time is ambiguous in principle in the ITP/CA framework. Objects defined in
this way play the role of “icons” on the ITP interface. As the number of recorded cases
involving actions that change the state of some object increase, its “icon” gains predictable
functionality and hence utility as a locus of behavior.

The present framework leaves open the question of whether any “object”-specifying ref-
erence frames are innate. It predicts, however, that any such reference frames, whether
innately specified or constructed from experience, will have low dimensionality compared
to the perceptual experiences that they help to interpret. Dramatic evidence for low di-
mensionality is provided by studies of two of the earliest-developing and ecologically most
crucial reference frames for humans, those that identify animacy and agency (reviewed by
Scholl and Tremoulet, 2000; Scholl and Gao, 2013; Fields, 2014). Indeed Gao, McCarthy
and Scholl (2010) have shown that a simple oriented “V” shape not only satisfies the typical
human visual criterion for agency detection, but distracts attention sufficiently to disrupt
performance in an object-tracking task. Human face-recognition criteria are similarly rudi-
mentary. Additional evidence for low reference-frame dimensionality is provided by the
kinds of categorization conflicts studied in the quantum cognition literature (reviewed e.g.
by Pothos and Busemeyer, 2013; Bruza, Kitto, Ramm and Sitbon, 2015), for example the
“Linda” problem. Here the “natural” reference frames, i.e. concepts or coherent sets of
expectations, do not exhibit classical compositionality; combining reference frames to repro-
duce the judgements made by subjects requires the use of complex “quantum” probability
amplitudes. Complex probabilities can, however, be represented by classical probabilities
in higher-dimensional spaces (e.g. Fuchs and Schack, 2013; see also Fields, 2016 for a less
formal discussion), consistent with attentional selection of a low-dimensional subspace to
serve as a reference frame. If “object”-specifying reference frames in fact encode fitness
information as I'TP requires, one would expect a general inverse correlation between fitness
consequences and reference frame dimensionality. While both the global and local struc-
ture of the typical human category hierarchy have been investigated (reviewed by Martin,
2007; Keifer and Pulvermdiller, 2012), neither the minimal functional content (i.e. dimen-
sionality) nor the fitness-dimensionality correlation of typical categories have been broadly
investgated.
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The components of the experienced self reference frame, taken together, constitute an
iconic object — the experienced self as a persistent embodied actor — in the above sense.
The features of the experienced self as persistent embodied actor that are employed as
fixed reference features with respect to which other features of the experienced self are
allowed to vary change only slowly and asynchronously as a function of time; it is this slow
and asynchronous change in reference features that allow the approximation of a persistent
experienced self (but see Klein, 2014 for a discussion of the sense of a persistent experienced
self in the presence of conflicting perceptual evidence). The conditions under which non-
self objects are represented as persistent over extended time, in particular across extended
periods of non-observation, have been subjected to surprisingly little direct experimental
investigation and are not well understood (e.g. Scholl, 2007; Fields, 2012). Both the
extensibility of the experienced self reference frame to incorporate otherwise non-self objects
discussed earlier and the sheer variety of pathologies of the experienced self, including
depersonalization syndromes (e.g. Debruyne, Portzky, Van den Eynde and Audenaert,
2009), suggest that the experienced self - non-self distinction is not constant for individual
human subjects and highly variable between subjects. This question cannot, unfortunately,
yet be addressed productively in non-human subjects.

With this concept of an iconic object, the functional difference between a case memory
M. and the event memories X,;p and X;pa becomes clear: M., records sequences of
partial events in which, in each sequence, only the response to actions of the attentional
focus &; and the lack of response to actions of the reference &; are made explicit. Each case
in M. can, therefore, be thought of as imposing an implicit, goal-dependent criterion of
relevance on the actions it records.

Recording object-directed action sequences is useful to an agent because it enables previously-
successful sequences to be repeated and previously-unsuccessful sequences to be avoided.
Selecting a previously-recorded case from memory for execution under some similar cir-
cumstances is the simplest form of planning. Executing the action sequence recorded in a
remembered case requires, however, shortcutting the usual decision process D. Within the
architecture shown in Fig. 10, the simplest way to accomplish this is to associate a working
memory Xy, with the attentional focus Xz, and to include in Xy, a control bit ¢ on which
D depends. If ¢ = 0, D is independent of the contents of Xy, and acts as in Fig. 9. If ¢ = 1,
D selects the action g represented in Xy,. Populating Xy requires two embedded agents,
as shown in Fig. 11. The first agent (Fig. 11a) selects a recorded case based on the current
percept, and sequentially copies the actions specified by that case into Xy,. The “world” of
this agent consists of Xp, M_... and Xy ; its “perception” kernel selects the case from M,
for which the initial state is closest to the current percept zp, its “decision” kernel selects
records from this case in sequence and its “action” kernel writes the action g(t¢r) specified
by the selected case into Xy,. The process executed by this agent requires a time step,
i.e. one increment of ¢. The second agent (Fig. 11b) has a switching function analogous
to the attention-switching dyad in Fig. 10a: it compares the current percept xp(t) to the
currently-selected case record, setting ¢ = 1 when the case is initially selected and setting
¢ = 0 if the distance between the states of either the object or reference components of xp(t)
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and their states as specified by the currently-selected case record exceeds some threshold.
Setting ¢ = 0 in response to such an expectation violation during case execution restores
D to its usual function. Maintaining temporal synchrony requires that the overall counter
t advances only when D executes as discussed above; this requirement can be met if D is
regarded as acting instantaneously when ¢ = 1 and the action g to be selected is specified
by Xw, i.e. when action is performed “automatically.” In this case interrupting execution
of a case must be regarded as requiring one time step, after which no action is selected.

a)
X XW: [c’ gCﬂSE(tJ ]

case P

selected-case —— case-record(t)

b)
case-record(t))

N\

X, 16 g, (t)]

case

Fig. 11: a) Selection of a case and case-record for execution based on the current
percept. This action does not enable case execution. b) Enabling or disabling
case execution by setting or resetting the control bit ¢ based on a comparison
of current and expected percepts during case execution.

The processes illustrated in Fig. 11 only execute a previous case verbatim. Interrupting
execution of a case initiates a search for a new case that is a better fit to the current per-
cept zp(t). A more intelligent case-based planner can be constructed by incorporating an
additional agent capable of modifying the currently-selected case record based on zp(t) and
information about previous component responses stored in X. Such modification creates
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a new case, which is then recorded in M_., A second natural extension would incorporate
a “meta” agent capable of comparing multiple cases to identify shared perception-action
dependencies. A case comparator of this kind is the minimal structure needed to recognize
relationships between events occurring in different orders or with different numbers of in-
tervening events; hence it is the minimal structure needed to implement a “temporal map”
as described by Balsam and Gallistel (2009).

5 Conclusion

We have shown three things in this paper. First, the CA formalism introduced by Hoffman
and Prakash (2014) is both powerful and non-trivial. Even “agents” comprising only a
handful of bits exhibit surprisingly complex behavior. A three-bit agent can implement a
Toffoli gate, so networks of three-bit agents can compute any computable function, and
can even do so reversibly. More intriguing are the hints that networks of simple agents
exhibit dynamical symmetries that also characterize geometry. This result comports well
with current efforts by physicists to derive the familiar geometry of spacetime from the
symmetries of information exchange between simple processing units (e.g. Tegmark, 2015).
We are currently working toward a full description of spacetime constructed entirely within
the CA framework.

We have, second, shown that concept of “fitness” as connectivity emerges naturally when
networks of interacting RCAs are considered. This fitness concept accords well with estab-
lished concepts of centrality developed in the theory of social and other complex networks.
By expressing fitness with the CA framework, we free ITP from any need to rely on an
externally-stipulated fitness function. Computational experiments to characterize the con-
ditions in which preferential attachment and hence high-connectivity individuals emerge in
networks of interacting RCAs are being designed.

Our third result is that networks of RCAs can, at least in principle, implement sophisticated
cognitive processes including attention, categorization and planning. This result fleshes out
the central concepts of I'TP: that experience is an interface onto an ontologically-ambiguous
world, and that “objects” and “causal relations” are patterns of positive and negative cor-
relations between experiences. It highlights the critical role played by aspects of experience
that do not change, and hence serve as “context” or, more formally, reference frames rel-
ative to which aspects of experience that do change can be classified and analyzed. Here
again, our result comports well with recent work in physics, where with the rise of quantum
information theory, the roles of reference frames in defining what can and cannot be known
or communicated about a physical situation have taken on new prominence (e.g. Bartlett,
Rudolph and Spekkens, 2007). A substantial program of simulation development and test-
ing is clearly required to evaluate, in structured and eventually in open environments, the
formal models of memory, attention, categorization and planning developed here. The level
of complexity at which such models can feasibly be implemented remains unclear. We hope,
however, to be able to fully characterize the reference frames required to support relatively
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simple behaviors in relatively simple environments, and to use this information to formulate
predictions testable in more complex systems.

The CA framework is, as we have emphasized, a minimal formal framework for under-
standing cognition and agency. While debates about the structure and content of memory
- and implicitly, experience - have dominated cognitive science for decades (e.g. Gibson,
1979; Fodor and Pylyshyn, 1988; Anderson, 2003), these debates have generally been con-
ducted either informally or in the context of complex, conceptually open-ended modeling
paradigms. Our results, together with those of Friston and colleagues using the predictive
coding and adaptive inference framework, show that cognition and agency can be addressed
in conceptually very simple terms. The primary task of an organism in an environment
is to regulate its interactions with the environment, by behaving appropriately, in order
to maintain an environmental state conducive its own homeostasis. As Conant and Ashby
(1970) showed and Friston (2010; 2013) has significantly elaborated, effective regulation
of the environment requires a statistically well-founded model of the environment. Consis-
tency with I'TP requires that such models treat the environment as open, in which case they
can be at best satisficing. The results obtained here, together with those of Friston (2013)
and Friston, Levin, Sengupta and Pezzulo (2015), offer an outline of how such models may
be constructed in a way that is consistent with ITP, but many details remain to be worked
out. A thorough treatment of both evolutionary and developmental processes from both
extrinsic and intrinsic perspectives is needed to understand the kinds of worlds W in which
complex networks of interdependent RCAs can be expected to appear.

We have largely deferred the question of motivation. As mentioned in §4.3 above, ratio-
nal agents exhibit curiosity and hence explore their environments to discover sources of
“good” experiences, which in a typical W may lie very near sources of “bad” experiences.
As Gottlieb, Oudeyer, Lopes and Baranes (2013) emphasize, however, rational agents do
not exhibit unlimited curiosity, as this can lead to expending all available resources at-
tempting to solve unsolvable problems or learn unlearnable information. Understanding
and modeling motivation requires not only a formal characterization of resources and their
use, but also a formal model of reward, its representation, and its roles in both extrinsic
and intrinsic motivation. The distinction between the “pragmatic” and “epistemic” values
of information (Friston et al., 2015) is useful here; the current framework models the effects
of this distinction in terms of attention switching, but not its origin. Both developmental
robotics (e.g. Cangelosi and Schlesinger, 2015) and the neuroscience of the reward system
(e.g. Berridge, and Kringelbach, 2013) provide empirical avenues to pursue in this regard.

We have also, and more importantly from an architectural perspective, deferred the task
of constructing a full theory of RCA networks and RCA combinations. Developing such
a theory will require addressing such questions as whether RCA networks can in general
be considered locally hierarchical, whether the action spaces G of complex RCAs require
structures, for example to represent fully automatized action patterns, analogous to the
structures in X described here, and how to explicitly define D kernels in complex RCAs. It
will also require understanding how the time counters (i.e. ¢ parameters) of complex RCAs
relate to those of their component RCAs, a question that has been elided here by assuming
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that all processes “inside” X are synchronous. Answering such questions may well depend
on resolving at least some of the issues having to do with fitness and motivation mentioned
above. We expect, however, that their answers will shed light on such questions as whether
complex RCAs can in some cases be regarded as unaware of the experiences - e.g. the
percepts or memories - of their component RCAs and how the actions of complex RCAs
depend, or not, on the actions of their component RCAs.

As CAs and hence RCAs are intended, from the outset, to represent conscious agents, it
is natural to ask what the behavior of networks of RCAs can tell us about consciousness.
Here two results stand out. The first is that an agent cannot, without violating I'TP,
distinguish the world outside of her experience from another conscious agent. While this
follows from the ontological principle of conscious realism of Hoffman and Prakash (2014),
it equally follows from the impossibility, within I'TP, of determining that the “world” has
non-Markovian dynamics. The second is that agents can be expected to be aware of more
than they can report. This seems paradoxical if awareness is equated with reportability,
but makes sense when the attentional resources that would be required to enable reporting
of all experiences are taken into account.

While examining specific cases of successful and unsuccessful behavior in well-defined worlds
requires addressing the issues of motivation and multi-agent combination highlighted above,
two substantial conceptual issues stand out. The first is that the CA formalism, in contrast
to either standard neural network approaches or purely-functional cognitive modelling ap-
proaches, enforces by its structure a focus on what a constructed agent is being modelled
as experiencing. The CA formalism itself requires that the decision kernel D acts on the
space of experiences X; hence whatever D acts on must be in X and therefore must be an
experience. Constructing complex memory structures in X in order to make them available
to D is, given this constraint, proposing the hypothesis that the contents of such struc-
tures are experienced. Experienced by whom? Here the second issue becomes relevant.
As discussed in §3.2, discussions of consciousness have often assumed, explicitly or more
typically implicitly, that “low-level” experiences combine in some straightforward way into
“higher-level” experiences. The phenomenal unity of ordinary, waking human experience
is assumed by many to indicate that there is only one relevant “level” of experience, the
level of the whole organism (or often, just its brain). With this assumption, proper com-
ponents of the human neurocognitive system cannot themselves be experiencers; that this
is the case is treated as axiomatic, for example, in Integrated Information Theory (Tononi
and Koch, 2015; see Cerullo, 2015 for a critique of this assumption in the IIT context).
If complex experiencers are networks of RCAs, however, this assumption cannot be cor-
rect: all RCAs, even the simplest ones, experience something. If complex experiencers are
networks of RCAs, there is also no reason to assume that “higher-level” experiences are in
any straightforward sense combinations of “lower-level” ones. Unless RCA combinations are
simple Cartesian products, high-level experiences will in general not be uniquely predictable
from low-level experiences or vice-versa. If complex experiencers are only approximately
hierarchical rich-club networks of RCAs, the assumption that experiences should in general
be straightforwardly combinatoric is almost certainly wrong.
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That said, it is worth re-emphasizing that the CA framework is not, and is not intended to
be, a theory of consciousness per se. The CA framework says nothing about the nature of
experience. It says nothing about qualia; it simply assumes that qualia exist, that agents
experience them, and that they can be tokened by elements of X. The CA framework is,
instead, a formal framework for modelling conscious agents and their interactions that en-
forces consistency with ITP. By itself, the CA framework is ontologically neutral, as is I'TP.
When equipped with the ontological assumption of conscious realism, the CA framework
becomes at least prima facie consistent with ontological theories that take consciousness to
be an irreducible primitive. The role of the CA framework in expressing the assumptions
or results of such theories can be expected to depend on the details of their ontological
assumptions. Whether the CA framework fully captures the ontological assumptions of
existing theories that take consciousness to be fundamental, e.g. that of Faggin (2015),
remains to be determined.

In summary, the CA framework, and RCA networks in particular, provide both a highly-
constrained formal technology for representing cognition and a way of thinking about cogni-
tion that emphasizes experience and decisions based on experience. It directly implements
the ontological neutrality regarding the external world that is required by I'TP. As results
from physics and other disciplines render naive or even critical realism about perceived
objects and causal relations increasingly hard to sustain, this ability to model experience
and decision making with no supporting ontology will become increasingly critical for psy-
chology and for the biosciences in general.
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