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Abstract5

Networks of “conscious agents” (CAs) as defined by Hoffman and Prakash (Fron-6

tiers in Psychology 5, 577, 2014) are shown to provide a robust and intuitive represen-7

tation of perceptual and cognitive processes in the context of the Interface Theory of8

Perception (Hoffman, Singh and Prakash, Psychonomic Bulletin & Review 22, 1480-9

1506, 2015). The behavior of the simplest CA networks is analyzed exhaustively.10

The construction of short- and long-term memories and the implementation of atten-11

tion, categorization and case-based planning are demonstrated. These results show12
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that robust perception and cognition can be modelled independently of any ontolog-13

ical assumptions about the world in which an agent is embedded. Any agent-world14

interaction can, in particular, also be represented as an agent-agent interaction.15

Keywords: Active inference; Complex networks; Computation; Learning; Memory; Plan-16

ning; Predictive coding; Self representation; Reference frame; Turing completeness17

1 Introduction18

It is a natural and near-universal assumption that the world objectively has the properties19

and causal structure that we perceive it to have; to paraphrase Einstein’s famous remark20

(cf. Mermin, 1985), we naturally assume that the moon is there whether anyone looks at it21

or not. Both theoretical and empirical considerations, however, increasingly indicate that22

this assumption is not correct. Beginning with the now-classic work of Aspect, Dalibard23

and Roger (1982), numerous experiments by physicists have shown that neither photon24

polarization nor electron spin obey local causal constraints; within the past year, all rec-25

ognized loopholes in previous experiments along these lines have been closed (Hensen et26

al., 2015; Shalm et al., 2015; Giustina et al., 2015). The trajectories followed by either27

light (Jacques et al., 2007) or Helium atoms (Manning, Khakimov, Dall and Truscott,28

2015) through an experimental apparatus have been shown to depend on choices made29

by random-number generators after the particle has fully completed its transit of the ap-30

paratus. Optical experiments have been performed in which the causal order of events31

within the experimental apparatus is demonstrably indeterminate (Rubino et al., 2016).32

As both the positions and momenta of large organic molecules have now been shown to ex-33

hibit quantum superposition (Eibenberger et al., 2013), there is no longer any justification34

for believing that the seemingly counter-intuitive behavior observed in these experiments35

characterizes only atomic-scale phenomena. These and other results have increasingly led36

physicists to conclude that the classical notion of an observer-independent “objective” real-37

ity comprising spatially-bounded, time-persistent “ordinary objects” and well-defined local38

causal processes must simply be abandoned (e.g. Jennings and Leifer, 2015; Wiseman,39

2015).40

These results in physics are complemented within perceptual psychology by computational41

experiments using evolutionary game theory, which consistently show that organisms that42

perceive and act in accord with the true causal structure of their environments will be43

out-competed by organisms that perceive and act only in accord with arbitrarily-imposed,44

organism-specific fitness functions (Mark, Marion and Hoffman, 2010; reviewed by Hoff-45

man, Singh and Prakash, 2015). These results, together with theorems showing that an46

organism’s perceptions and actions can display symmetries that the structure of the en-47

vironment does not respect (Hoffman, Singh and Prakash, 2015; Prakash and Hoffman,48

in review) and that organisms responsive only to fitness will out-complete organisms that49

perceive the true structure of the environment in all but a measure-zero subset of environ-50

ments (Prakash, Stephens, Hoffman, Singh and Fields, in review), motivate the interface51
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theory of perception (ITP), the claim that perceptual systems, in general, provide only an52

organism-specific “user interface” to the world, not a veridical representation of its struc-53

ture (Hoffman, Singh and Prakash, 2015; Hoffman, 2016). According to ITP, the perceived54

world, with its space-time structure, objects and causal relations, is a virtual machine im-55

plemented by the coupled dynamics of an organism and its environment. Like any other56

virtual machine, the perceived world is merely an interpretative or semantic construct; its57

structure and dynamics bear no law-like relation to the structure and dynamics of its im-58

plementation (e.g. Cummins, 1977). In software systems, the absence of any requirement59

for a law-like relation between the structure and dynamics of a virtual machine and the60

structure and dynamics of its implementation allows hardware and often operating system61

independence; essentially all contemporary software systems are implemented by hierar-62

chies of virtual machines for this reason (e.g. Goldberg, 1974; Tanenbaum, 1976; Smith63

and Nair, 2005). The ontological neutrality with which ITP regards the true structure of the64

environment is, therefore, analogous to the ontological neutrality of a software application65

that can run on any underlying hardware.66

The evolutionary game simulations and theorems supporting ITP directly challenge the67

widely-held belief that perception, and particularly human perception is veridical, i.e. that68

it reveals the observer-independent objects, properties and causal structure of the world.69

While this belief has been challenged before in the literature (e.g. by Koenderink, 2015), it70

remains the dominate view by far among perceptual scientists. Marr (1982), for example,71

held that humans “very definitely do compute explicit properties of the real visible surfaces72

out there, and one interesting aspect of the evolution of visual systems is the gradual move-73

ment toward the difficult task of representing progressively more objective aspects of the74

visual world” (p. 340). Palmer (1999) similarly states, “vision is useful precisely because it75

is so accurate ... we have what is called veridical perception ... perception that is consistent76

with the actual state of affairs in the environment” (p. 6). Geisler and Diehl (2003) claim77

that “much of human perception is veridical under natural conditions” (p. 397). Trivers78

(2011) agrees that “our sensory systems are organized to give us a detailed and accurate79

view of reality, exactly as we would expect if truth about the outside world helps us to80

navigate it more effectively” (p. xxvi). Pizlo, Sawada and Steinman (2014) emphasize81

that “veridicality is an essential characteristic of perception and cognition. It is absolutely82

essential. Perception and cognition without veridicality would be like physics without the83

conservation laws.” (p. 227; emphasis in original). The claim of ITP is, in contrast, that84

objects, properties and causal structure as normally conceived are observer-dependent rep-85

resentations that, like virtual-machine states in general, may bear no straightforward or86

law-like relation to the actual structure or dynamics of the world. Evidence that specific87

aspects of human perception are non-veridical, e.g. the narrowing and flattening of the88

visual field observed by Koenderink, van Doorn and Todd (2009), the distortions of per-89

spective observed by Pont et al. (2012), or the inferences of three-dimensional shapes from90

motion patterns projectively inconsistent with such shapes observed by He, Feldman and91

Singh (2015) provide prima facie evidence for ITP.92

The implication of either ITP or quantum theory that the objects, properties and causal93
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relations that organisms perceive do not objectively exist as such raises an obvious challenge94

for models of perception as an information-transfer process: the näıve-realist assumption95

that perceptions of an object, property or causal process X are, in ordinary circumstances,96

results of causal interactions with X cannot be sustained. Hoffman and Prakash (2014)97

proposed to meet this challenge by developing a minimal, implementation-independent for-98

mal framework for modelling perception and action analogous to Turing’s (1936) formal99

model of computation. This “conscious agent” (CA) framework posits entities or systems100

aware of their environments and acting in accordance with that awareness as its funda-101

mental ontological assumption. The CA framework is a minimal refinement of previous102

formal models of perception and perception-action cycles (Bennett, Hoffman and Prakash,103

1989). Following Turing’s lead, the CA framework is intended not as a scientific or even104

philosophical theory of conscious awareness, but rather as a minimal, universally-applicable105

formal model of conscious perception and action. The universality claim made by Hoffman106

and Prakash (2014) is analogous to the Church-Turing thesis of universality for the Turing107

machine. Hoffman and Prakash (2014) showed that CAs may be combined to form larger,108

more complex CAs and that the CA framework is Turing-equivalent and therefore univer-109

sal as a representation of computation; this result is significantly elaborated upon in what110

follows.111

The present paper extends the work of Hoffman and Prakash (2014) by showing that the112

CA framework provides a robust and intuitive representation of perceptual and cognitive113

processes in the context of ITP. Anticipation, expectations and generative models of the114

environment, in particular, emerge naturally in all but the simplest CA networks, providing115

support for the claimed universality of the CA framework as a model of agent - world116

interactions. We first define CAs and distinguish the extrinsic (external or “3rd person”)117

perspective of a theorist describing a CA or network of CAs from the intrinsic (internal118

or “1st person”) perspective of a particular CA. Consistency between these perspectives119

is required by ITP; a CA cannot, in particular, be described as differentially responding120

to structure in its environment that ITP forbids it from detecting. Such consistency can121

be achieved by the “conscious realism” assumption (Hoffman and Prakash, 2014) that122

the world in which CAs are embedded is composed entirely of CAs. We show that the123

CA framework allows the incorporation of Bayesian inference from “images” to “scene124

interpretations” as described by Hoffman and Singh (2012) and show that a CA can be125

regarded as incorporating a “Markov blanket” as employed by Friston (2013) when this126

is done. We analyze the behavior of the simplest networks of CAs in detail from the127

extrinsic perspective, and discuss the formal structure and construction of larger, more128

complex networks. We show that a concept of “fitness” for CAs emerges naturally within129

the formalism, and that this concept corresponds to concepts of “centrality” already defined130

within social-network theory. We then consider the fundamental question posed by ITP:131

that of how non-veridical perception can be useful. We show that CAs can be constructed132

that implement short- and long-term memory, categorization, active inference, goal-directed133

attention, and case-based planning. Such complex CAs represent their world to themselves134

as composed of “objects” that recur in their experience, and are capable of rational actions135

with respect to such objects. This construction shows that specific ontological assumptions136
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about the world in which a cognitive agent is embedded, including the imposition of a priori137

fitness functions, are unnecessary for the theoretical modelling of useful cognition. The non-138

veridicality of perception implied by ITP need not, therefore, be regarded as negatively139

impacting the behavior of an intelligent system in a complex, changing environment.140

2 Conscious agents: Definition and interpretation141

2.1 Definition of a CA142

As noted, the CA framework is motivated by the hypothesis that agents of interest to143

psychology are aware of the environments in which they act, even if this awareness is rudi-144

mentary by typical human standards (Hoffman and Prakash, 2014). Our goal here is to145

develop a minimal and fully-general formal model of perception, decision and action that146

is applicable to any agent satisfying this hypothesis. Minimality and generality can be147

achieved using a formalism based on measurable sets and Markovian kernels as described148

below. This formalism allows us to explore the dynamics of multi-agent interactions (§3)149

and the internal structures and dynamics, particularly of memory and attention systems,150

that enable complex cognition (§4) constructively. We accordingly impose no a priori as-151

sumptions regarding behavioral reportability or other criteria for inferring, from the outside,152

that an agent is conscious per se or is aware of any particular stimulus; nor do we impose153

any a priori distinction between conscious and unconscious states. Considering results such154

as those reviewed by Boly, Sanders, Mashour and Laureys (2013), we indeed regard such155

criteria and distinctions, at least as applied to living humans, as conceptually untrustwor-156

thy and possibly incoherent. We thus treat awareness or consciousness as fundamental and157

irreducible properties of agents, and ask, setting aside more philosophical concerns (but158

see Hoffman and Prakash, 2014 for extensive discussion), what structural and dynamic159

properties such agents can be expected to have.160

We begin by defining the fundamental mathematical notions on which the CA framework161

is based; we then interpret these notions in terms of perception, decision and action.162

Definition 1. Let <B,B> and <C, C> be measurable spaces. Equip the unit interval [0, 1]163

with its Borel σ-algebra. We say that a function K:B×C → [0, 1] is a Markovian kernel164

from B to C if:165

(i) For each measurable set E ∈ C, the functionK(·, E) : B → [0, 1] enacted by b 7→ K(b, E)166

is a measurable function; and167

(ii) For each b ∈ B, the function K(b, ·) enacted by F 7→ K(b, F ), F ∈ C is a probability168

measure on C.169

Less formally, if K is a Markovian kernel from B to C, then for any measurable D ⊂ B, the170

function enacted by x 7→ K(x,D) ∈ [0, 1] assigns to each x in B a probability distribution171
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on C. When the spaces involved are finite, the Markov kernel can be represented as a172

matrix whose rows sum to unity.173

Let <W,W>, <X,X> and <G,G> be measurable spaces. Hoffman and Prakash (2014)174

defined a CA, given the measurable space <W,W>, as a 6-tuple [(X,X ), (G,G), P,D,A, t]175

where P : W × X → [0, 1], D : X × G → [0, 1] and A : G ×W → [0, 1] are Markovian176

kernels and t is a positive integer parameter. Here we explicitly include <W,W> in the177

definition of a CA. Following Hoffman, Singh and Prakash (2015) and Prakash and Hoffman178

(in review), we also explicitly allow the P , D, and A kernels to depend on the elements179

of their respective target sets. Informally, for x ∈ X and g ∈ G, for example, and any180

measurable H ⊂ G, the function enacted by (x, g) 7→ K(x, g,H) is real-valued and can181

be considered to be the regular conditional probability distribution Prob(H|x, g) under182

appropriate conditions on the spaces involved (Parthasarathy, 2005). We have:183

Definition 2. Let <W,W>, <X,X> and <G,G> be measurable spaces. Let P be a184

Markovian kernel P : W × X → X, D be a Markovian kernel D : X × G → G, and185

A be a Markovian kernel A : G × W → W . A conscious agent (CA) is a 7-tuple186

[(X,X ), (G,G), (W,W), P,D,A, t], where t is a positive integer parameter.187

The difference in representational power between the more general, target-set dependent188

kernels specified here and the original, here termed “forgetful,” kernels of Hoffman and189

Prakash (2014) is discussed below. We represent a CA as a labelled directed graph as190

shown in Fig. 1. This graph implies the development of a cyclic process, in which we can191

think of, e.g. the kernel D : X × G → G as follows: for each instantiation g0 of G in the192

immediately previous cycle, and the current instantiation of x ∈ X , D(x, g0; ·) gives the193

probability distribution of the g ∈ G instantiated at the next step. The other kernels A194

and P are interpreted similarly.195

Fig. 1 : Representation of a CA as a labelled directed graph. W , X and G196

and measurable sets, P , D, and A are Markovian kernels, and t is an integer197

parameter.198

We interpret elements of W as representing states of the “world,” making no particular199

ontological assumption about the elements or states of this world. We interpret elements of200
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X and G as representing possible conscious experiences and actions (strictly speaking, they201

consist of formal tokens of possible conscious experiences and actions), respectively. The202

kernels P,D and A represent perception, decision and action operators, where “perception”203

includes any operation that changes the state ofX , “decision” is any operation that changes204

the state of G and “action” is any operation that changes the state of W . The set X is, in205

particular, taken to represent all experiences regardless of modality; hence P incorporates206

all perceptual modalities. The set G and kernel A are similarly regarded as multi-modal.207

With this interpretation, perception can be viewed as an action performed by the world;208

how these “actions” can be unpacked into the familiar bottom-up and top-down components209

of perceptual experience is explored in detail in §4 below. The kernels P,D and A are taken210

to act whenever the states of W,X or G, respectively, change. Both the decisions D and211

the actions A of the CA are regarded as “freely chosen” in a way consistent with the212

probabilities specified by D and A, as are the actions “by the world” represented by P ;213

these operators are treated as stochastic in the general case to capture this freedom from214

determination. The parameter t is a CA-specific proper time; t is regarded as “ticking”215

and hence incrementing concurrently with the action of D, i.e. immediately following each216

change in the state of X . No specific assumption is made about the contents of X ; in217

particular, it is not assumed that X includes tokens representing the values of either t or218

any elements of G. A CA need not, in other words, in general experience either time or its219

own actions; explicitly enabling such experiences for a CA is discussed in §4.1 below.220

It will be assumed in what follows that the contents of X and G can be considered to be221

representations encoded by finite numbers of bits; for simplicity, all representations in X222

or G will be assumed to be encoded, respectively, by the same numbers of bits. Hence X223

and G can both be assigned a “resolution” with which they encode, respectively, inputs224

from and outputs to W . It is, in this case, natural to regard D as operating in discrete225

steps; for each previous instantiation of G, D maps one complete, fully-encoded element of226

X to one complete, fully-encoded element of G. As the minimal size of a representation in227

either X or G is one bit, the minimal action of D is a mapping of one bit to one bit. While228

the CA framework as a whole is purely formal, we envision finite CAs to be amenable to229

physical implementation. If any such physical implementation is assumed to be constrained230

by currently accepted physics and the action of D is regarded as physically (as opposed231

to logically) irreversible, the minimal energetic cost of executing D is given by Landauer’s232

(1961; 1999) principle as ln2 kT , where k is Boltzmann’s constant and T is temperature in233

degrees Kelvin. In this case, the minimal unit of t is given by t = h/(ln2 kT ), where h234

is Planck’s constant. At T ∼ 310K, physiological temperature, this value is t ∼ 100 fs,235

roughly the response time of rhodopsin and other photoreceptors (Wang et al., 1994). At236

even the 50 ms timescale of visual short-term memory (Vogel, Woodman and Luck, 2006),237

this minimal discrete time would appear continuous. As elaborated further below, however,238

no general assumption about the coding capacities in bits of X or G are built into the CA239

framework. What is to count, in a specific model, as an execution of D and hence an240

incrementing of t is therefore left open, as it is in other general information-processing241

paradigms such as the Turing machine.242

7



Hoffman and Prakash (2014) explicitly proposed the “Conscious agent thesis: Every prop-243

erty of consciousness can be represented by some property of a dynamical system of con-244

scious agents” (p. 10), where the term “conscious agent” here refers to a CA as defined245

above. As CAs are explicitly formal models of real conscious agents such as human be-246

ings, the “properties of consciousness” with which this thesis is concerned are the formal247

or computational properties of consciousness, e.g. the formal or computational properties248

of recall or the control of attention, not their phenomenal properties. The conscious agent249

thesis is intended as an empirical claim analogous to the Church-Turing thesis. Just as the250

demonstration of a computational process not representable as a Turing machine computa-251

tion would falsify the Church-Turing thesis, the demonstration of a conscious process, e.g.252

a process of conscious recognition, inference or choice, not representable by the action of253

a Markov kernel would falsify the conscious agent thesis. We offer in what follows both254

theoretically-motivated reasons and empirical evidence to support the conscious agent the-255

sis as an hypothesis. Whether the actual implementations of conscious processes in human256

beings or other organisms can in fact be fully captured by a representation based on Markov257

kernels remains an open question.258

2.2 Extrinsic and intrinsic perspectives259

A central claim of ITP is that perceptual systems do not, in general, provide a veridical260

representation of the structure of the world; in particular, “objects” and “causal relations”261

appearing as experiences in X are in general not in any sense homomorphic to elements or262

relationships between elements in W . This claim is, clearly, formulated from the extrinsic263

perspective of a theorist able to examine the behavior of a CA “from the outside” and to264

determine whether the kernel P is a homomorphism of W or not. The evolutionary game265

theory experiments reported by Mark, Marion and Hoffman (2010) were conducted from266

this perspective. As is widely but not always explicitly recognized, the extrinsic perspective267

is of necessity an “as if” conceit; a theorist can at best construct a formal representation268

of a CA and ask how the interaction represented by the P −D−A cycle would unfold if it269

had particular formal properties (e.g. Koenderink, 2014). The extrinsic perspective is, in270

other words, a perspective of stipulation; it is not the perspective of any observer. For the271

present purposes, the extrinsic perspective is simply the perspective from which the kernels272

P , D and A may be formally specified.273

The extrinsic perspective of the stipulating theorist contrasts with another relevant perspec-274

tive, the intrinsic perspective of the CA itself. That every CA has an intrinsic perspective275

is a consequence of the intended interpretation of CAs as conscious agents that experience276

their worlds. Hence every CA is an observer, and the intrinsic perspective is the observer’s277

perspective. The intrinsic perspective of a CA is most clearly formulated using the concept278

of a “reduced CA” (RCA), a 4-tuple [(X,X ), (G,G), D, t]. The RCA, together with a choice279

of extrinsic elements W , A and P , is then what we have defined above as a CA. An RCA280

can be viewed as both embedded in and interacting with the world represented by W . The281

RCA freely chooses the action(s) to take - the element(s) of G to select - in response to282
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any experience x ∈ X ; this choice is represented by the kernel D. The action A on W283

that the RCA is capable of taking is determined, in part, by the structure of W . Similarly,284

the action P with which W can affect the RCA is determined, in part, by the structure285

of the RCA. With this terminology, the central claim of ITP is that an RCA’s possible286

knowledge of W is completely specified by X ; the element(s) of X that are selected by P287

at any given t constitute the RCA’s entire experience of W at t. The structure and content288

of X completely specify, therefore, the intrinsic perspective of the RCA. In particular, ITP289

allows the RCA no independent access to the ontology of W ; consistency between intrinsic290

and extrinsic perspectives requires that no such access is attributed to any RCA from the291

latter perspective. An RCA does not, in particular, have access to the definitions of its292

own P , D or A kernels; hence an RCA has no way to determine whether any of them are293

homomorphisms. Similarly, an RCA has no access to the definitions of any other RCA’s P ,294

D or A kernels, or to any other RCA’s X or G. An RCA “knows” what currently appears295

as an experience in its own X but nothing else; as discussed in §4.1 below, for an RCA296

even to know what actions it has available or what actions it has taken in the past, these297

must be represented explicitly in X . Any structure attributed to W from the intrinsic298

perspective of an RCA is hypothetical in principle; such attributions of structure to W can299

be disconfirmed by continued observation, i.e. additional input to X , but can never be300

confirmed. In this sense, any RCA is in the epistemic position regarding W that Popper301

(1963) claims characterizes all of science.302

From the intrinsic perspective, an immediate consequence of the ontological neutrality of303

ITP is that an RCA cannot determine, by observation, that the internal dynamics of its304

associated W is non-Markovian; hence it cannot distinguish W , as a source of experiences305

and a recipient of actions, from a second RCA. The RCA [(X,X ), (G,G), D, t], in partic-306

ular, cannot distinguish the interaction with W shown in Fig. 1 from an interaction with307

a second RCA [(X ′,X ′), (G′,G ′), D′, t′] as shown in Fig. 2. From the extrinsic perspective308

of a theorist, Fig. 2 can be obtained from Fig. 1 by interpreting the perception kernel P309

as representing actions by W on the RCA [(X,X ), (G,G), D, t] embedded within it. Each310

such action P (w, ·) generates a probability distribution of experiences x in X . If an agent’s311

perceptions are to be regarded as actions on the agent by its world W , however, nothing312

prevents similarly regarding the agent’s actions onW as “perceptions” ofW . IfW both per-313

ceives and acts, it can itself be regarded as an agent, i.e. an RCA [(X ′,X ′), (G′,G ′), D′, t′],314

where the kernel D′ represents W ’s internal dynamics. This symmetric interpretation of315

action and perception from the extrinsic perspective, with its concomitant interpretation316

of W as itself an RCA, is consistent with the postulate of “conscious realism” introduced317

by Hoffman and Prakash (2014), who employ RCAs in their discussion of multi-agent com-318

binations without introducing this specific terminology. More explicitly, conscious realism319

is the ontological claim that the “world” is composed entirely of reduced conscious agents,320

and hence can be represented as a network of interacting RCAs as discussed in more detail321

in §3.2 below. Conscious realism is effectively, once again, a requirement that the intrinsic322

and extrinsic perspectives be mutually consistent: since no RCA can determine that the323

internal dynamics of its associated W are non-Markovian from its own intrinsic perspective,324

no theoretical, extrinsic-perspective stipulation that its W has non-Markovian dynamics is325
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allowable. Every occurrence of the symbol W can, therefore, be replaced, as in Fig. 2,326

by an RCA. When this is done, all actions - all kernels A - act directly on the experience327

spaces X of other RCAs as shown in Fig. 2. If it is possible to consider any arbitrary328

system - any directed subgraph comprising sets and kernels - as composing a CA from the329

extrinsic perspective, then it is also possible, from the intrinsic perspective of any one of330

the RCAs involved, to consider the rest of the network as composing a single RCA with331

which it interacts.332

Fig. 2 : Representation of an interaction between two RCAs as a labelled di-333

rected graph (cf. Hoffman and Prakash, 2014, Fig. 2). Note that consistency334

requires that the actions A possible to the lower RCA must be the same as the335

perceptions P possible for the upper RCA and vice-versa.336

2.3 Bayesian inference and the Markov blanket337

As emphasized above, the set X represents the set of possible experiences of a conscious338

agent within the CA framework. In the case of human beings, including even neonates339

(e.g. Rochat, 2012; see also §4 below), such experiences invariably involve interpretation340

of raw sensory input, e.g. of photoreceptor or hair-cell excitations. It is standard to model341

interpretative inferences from raw sensory input or “images” in some modality to expe-342

rienced “scene interpretations” (to use visual language) using Bayesian Decision Theory343

(BDT; reviewed e.g. by Maloney and Zhang, 2010). In recognition of the fact that such344

inferences are executed by the perceiving organism and are hence subject to the constraints345

of an evolutionary history, Hoffman and Singh (2012) introduced the framework of Com-346

putational Evolutionary Perception (CEP) shown in Fig. 3b. This framework differs from347

many formulations of BDT by emphasizing that both posterior probability distributions348

and likelihood functions are generated within the organism. The posterior distributions,349

in particular, are not generated directly by the world W (see also Hoffman, Singh and350

Prakash, 2015).351
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Fig. 3 : Relation between the current CA framework and the “Markov blanket”352

formalism of Friston (2013). a) The canonical CA, cf. Fig. 1. b) The “Compu-353

tational Evolutionary Perception” (CEP) extension of Bayesian decision theory354

developed by Hoffman and Singh (2012). Here the set Y is interpreted as a set of355

“images” and the set X is interpreted as a set of “scene interpretations,” consis-356

tent with the interpretation of X in the CA framework. The map P2 : W 7→ X357
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is induced by the composition of the “raw” input map P1 with the posterior-358

map - likelihood-map loop. c) Identifying P in the CA framework with P2 in359

the CEP formalism replaces the canonical CA with a four-node graph. Here the360

sets Y and G jointly constitute a Markov blanket as defined by Friston (2013).361

d) Both W and X can be regarded as interacting bi-directionally with just their362

proximate “surfaces” of the Markov blanket comprising Y and G. The blan-363

ket thus isolates them from interaction with each other, effectively acting as an364

interface in the sense defined by ITP.365

The CEP framework effectively decomposes the kernel P of a CA (Fig. 3a) into the com-366

position of a mapping P1 from W to a space Y of “raw” perceptual images with a map367

(labelled B in Hoffman, Singh and Prakash, 2015, Fig. 4) corresponding to the construc-368

tion of a posterior probability distribution on X . The state of the image space Y depends,369

in turn, on the state of X via the feedback of a Bayesian likelihood function; hence the370

embedded posterior - likelihood loop provides the information exchange between prior and371

posterior distributions needed to implement Bayesian inference. The Bayesian likelihood372

serves, in effect, as the perceiving agent’s implicit “model” of the world as it is seen via the373

image space Y .374

As shown by Pearl (1988), any set of states that separates two other sets of states from each375

other in a Bayesian network can be considered a “Markov blanket” between the separated376

sets of states (cf. Friston (2013)). The disjoint union Y ⊔ G of Y and G separates the377

sets W and X in Fig. 3b in this way; hence Y ⊔ G constitutes a Markov blanket between378

W and X (cf. Friston, 2013, Fig. 1). Each of W and X can be regarded as interacting379

bidirectionally, via Markov processes, with a “surface” of the Markov blanket, as shown in380

Fig. 3d. The blanket therefore serves as an “interface” in the sense required by ITP: it381

provides an indirect representation of W to X that is constructed by processes to which X382

has no independent access. Consistent with the assumption of conscious realism above, this383

situation is completely symmetrical: the blanket also provides an indirect representation of384

X to W that is constructed by processes to which W has no independent access. The role385

of the Markov blanket in Fig. 3d is, therefore, exactly analogous to the role of the second386

agent in Fig. 2. The composed Markov kernel D′A in Fig. 2 represents, in this case, the387

internal dynamics of the blanket.388

Friston (2013) argues that any random ergodic system comprising two subsystems separated389

by a Markov blanket can be interpreted as minimizing a variational free energy that can, in390

turn, be interpreted in Bayesian terms as a measure of expectation violation or “surprise.”391

This Bayesian interpretation of “inference” through a Markov blanket is fully consistent392

with the model of perceptual inference provided by the CEP framework. Conscious agents as393

described here can, therefore, be regarded as free-energy minimizers as described by Friston394

(2010). This formal as well as interpretational congruence between the CA framework and395

the free-energy principle (FEP) framework of Friston (2010) is explored further below,396

particularly in §3.3 and §4.3.397
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2.4 Effective propagator and master equation398

From the intrinsic perspective of a particular CA, experience consists of a sequence of399

states of X , each of which is followed by an action of D and a “tick” of the internal400

counter t. The sequence of transitions between successive states of X can be regarded as401

generated by an effective propagator Teff : MX(t) −→ MX(t + 1), where MX(t) is the402

collection of probability measures on X at each “time” t defined by the internal counter.403

This propagator satisfies, by definition, a master equation that, in the discrete t case, is404

the Chapman-Kolmogorov equation: If µt is the probability distribution at time t, then405

µt+1 = Teffµt.406

The propagator Teff cannot, however, be characterized from the intrinsic perspective: all407

that is available from the intrinsic perspective is the current state X(t), including, as408

discussed in §4 below, the current states of any memories contained in X(t). From the409

extrinsic perspective, the structure of Teff depends on the structure of the world W . Here410

again, the assumption of conscious realism and hence the ability to represent any W as a411

second agent as shown in Fig. 2 is critical. In this case, Teff = PD′AD, where in the general412

case the actions of each of these operators at each t depend on the initial, t = 0 state of the413

network. As discussed above, the P and D kernels within this composition can be regarded414

as specifying the interaction between X and a Markov blanket with internal dynamics D′A.415

The claim that Teff is a Markov process on X is then just the claim that the composed kernel416

PD′AD is Markovian, as kernel composition guarantees it must be. As Friston, Levin,417

Sengupta and Pezzulo (2015) point out, the Markov blanket framework “only make(s) one418

assumption; namely, that the world can be described as a random dynamical system” (p. 9).419

Both the above representation of Teff and the Chapman-Kolmogorov equation µt+1 = Teffµt420

are independent of the structure of the Markov blanket, which as discussed in §3.2 below421

can be expanded into an arbitrarily-complex networks of RCAs, provided this condition is422

met.423

For simplicity, we adopt in what follows the assumption that all relevant Markov kernels,424

and therefore the propagator Teff , are homogeneous and hence independent of t for any425

agent under consideration. As discussed further below, this assumption imposes interpre-426

tations of both evolution (§3.3) and learning (§4.3) as processes that change the occupation427

probabilities of states of X and G but do not change any of the kernels P , D or A. This428

interpretation can be contrasted with that of typical machine learning methods, and in429

particular, typical artificial neural network methods, in which the outcome of learning is430

an altered mapping from input to output. The current interpretation is, however, consis-431

tent with Friston’s (2010; 2013) characterization of free-energy minimization as a process432

that maintains homeostasis. In the current framework, the maintenance of homeostasis433

corresponds to the maintenance of an experience of homeostasis, i.e. to continued high434

probabilities of occupation of particular components of the state of X . Both evolution435

and learning act to maintain homeostasis and hence maintain these high state-occupation436

probabilities. This idea that maintenance of homeostasis is signalled by maintaining an437

experience of homeostasis is consistent with the conceptualization of affective state as an438

experience-marker of a physiological, and particularly homeostatic state (Damasio, 1999;439
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Peil, 2015). As noted earlier, no assumption that such experiences are reportable by any440

particular, e.g. verbal behavior are made (see also §3.3, 4.4 below).441

3 W from the extrinsic perspective: RCA networks442

and dynamic symmetries443

3.1 Symmetric interactions444

From the extrinsic perspective, a CA is a syntactic construct comprising three distinct sets445

of states and three Markovian kernels between them as shown in Fig. 1. We begin here446

to analyze the behavior of such constructs, starting below with the simplest CA network447

and then generalizing (§3.2) to networks of arbitrary complexity. Familiar concepts from448

social-network theory emerge in this setting, and provide (§3.3) a natural characterization449

of “fitness” for CAs.450

Here and in what follows, we assume that each of the relevant σ-algebras contains all451

singleton subsets of its respective underlying set. We call a Markovian kernel “punctual,”452

i.e. non-dispersive, if the probability measures it assigns are Dirac measures, i.e. measures453

concentrated on a singleton subset. In this case, P can be regarded as selecting a single454

element x from X , and can therefore be identified with a function from W × X to X .455

The punctual kernels between any pair of sets are the extremal elements of the set of456

all kernels between those sets provided the relevant σ-algebras contain all of the singleton457

subsets as assumed above; hence characterizing their behavior in the discrete case implicitly458

characterizes the behavior of all kernels in the set. The punctual kernels of a network of459

interacting RCAs specify, in particular, the extremal dynamics of the network. Conscious460

realism entails the purely syntactic claim that the graphs shown in Figs. 1 and 2 are461

interchangable as discussed above; the worldW can, therefore, be regarded as an arbitrarily-462

complex network of interacting RCAs, subject only to the constraint that the A and P463

kernels of the interacting RCAs can be identified (Hoffman and Prakash, 2014).464

The simplest CA network is a dyad in which W = X ⊔ G, where as above the notation465

X ⊔ G indicates the disjoint union of X with G, and A = P ; it is shown in Fig. 4. This466

dyad acts on its own X ; its perceptions are its actions. From a purely formal perspective,467

this dyad is isomorphic to the X - Y dyad of the CEP framework (Fig. 3b); it is also468

isomorphic to the interaction of X with its proximal “surface” of a Markov blanket sepa-469

rating it from W (Fig. 3d). Investigating the behavior of this network over time requires470

specifying, from the extrinsic perspective, the state spaces and operators. The simplest471

case is the symmetric interaction in which the two state spaces are identical. If both X and472

G are taken to contain just one bit, the four possible states of the network can be written473

as |00〉, |01〉, |10〉 and |11〉. Here we will represent these states by the orthogonal (column)474

vectors (1, 0, 0, 0)T , (0, 1, 0, 0)T , (0, 0, 1, 0)T and (0, 0, 0, 1)T , respectively. The simplest ker-475

nels D : X × G → G and A : G × X → X are punctual. Let x(t) and g(t) denote the476

14



state of X and G, respectively, at time t. We slightly abuse the notation and use the letter477

D to refer to the operator IX × D : X(t) × G(t) → X(t + 1) × G(t + 1), where IX is the478

Identity operator on X . This D leaves the state x of X unchanged but changes the state479

of G to g(t+ 1) = D(x(t), g(t)). Similarly, we will use the letter A to refer to the operator480

A× IG : X(t)×G(t) → X(t+ 1)×G(t+ 1), where IG is the identity operator on G. This481

A leaves the state g of G unchanged, but changes the state of X to x(t+1) = A(g(t), x(t)).482

Note that in this representation, D and A are both executed each time the “clock ticks.”483

Fig. 4 : The simplest possible CA network, the dyad in which W = X ⊔G.484

To reiterate, the decision operator D acts on the state of G but leaves the state of X485

unchanged, i.e. X(t+ 1) = X(t). Only four Markovian operators with this behavior exist.486

These are the identity operator,487

I =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









;

the NOT operator,488

ND =









0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0









;

the controlled-NOT (cNOT) operator that flips the G bit when the X bit is 0,489

CD0 =









0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1









;
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and the cNOT operator that flips the G bit when the X bit is 1,490

CD1 =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









.

The action operator A acts on the state of X but leaves the state of G unchanged, i.e.491

G(t+1) = G(t). Again, only four Markovian operators with this behavior exist. These are492

the identity operator I defined above, the NOT operator,493

NA =









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









;

the cNOT operator that flips the X bit when the G bit is 0,494

CA0 =









0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1









;

and the cNOT operator that flips the X bit when the G bit is 1,495

CA1 =









1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0









.

In principle, distinct CAs with single-bit X and G could be constructed with any one of496

the four possible D operators and any one of the four possible A operators. The CA in497

which both operators are identities is trivial: it never changes state. The CA in which both498

operators are NOT operators is the familiar bistable multivibrator or “flip-flop” circuit. It499

is also interesting, however, to consider the abstract entity – referred to as a “participator”500

in Bennett, Hoffman and Prakash (1989) – in which X and G are fixed at one bit and all501

possible D and A operators can be employed. The dynamics of this entity are generated by502

the operator compositions DA and AD. There are 24 distinct compositions of the above503

7 operators, which form the Symmetric Group on 4 objects, S4. This group appears in a504

number of geometric contexts and is well characterized; the CA dynamics with this group of505

transition operators include limit cycles, i.e. cycles that repeatedly revisit the same states,506

of lengths 1 (the identity operator I), 2, 3 and 4. Hence there are 24 distinct CAs having507

the form of Fig. 3 but with different choices for D and A, with behavior ranging from508

constant (D = A = I) to limit cycles of length 4.509
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It is important to emphasize that there is no sense in which the 1-bit dyad experiences the510

potential complexity of its dynamics, or in which the experience of a 1-bit dyad with one511

choice ofD and A operators is any different from the experience of a 1-bit dyad with another512

choice of operators. Any 1-bit dyad has only two possible experiences, those tokened by |0〉513

and |1〉. The addition of memory to a CA in order to enable it to experience a history of514

states and hence relations between states from its own intrinsic perspective is discussed in515

§4 below.516

The Identity and NOT operators can be expressed as “forgetful” kernels, i.e. kernels that517

do not depend on the state at t of their target spaces, D : X(t) → G(t + 1) and A :518

G(t) → X(t+1) but the cNOT operators cannot be; hence the forgetful kernels introduced519

by Hoffman and Prakash (2014) have less representational power than the state-dependent520

kernels employed in the current definition of a CA. It is also worth noting that the standard521

AND operator taking x(t) and g(t) to x(t + 1) = x(t) and g(t + 1) = x(t) AND g(t) may522

be represented as:523

ANDG =









1 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1









and the corresponding OR operator taking x(t) and g(t) to x(t+1) = x(t) and g(t+1) = x(t)524

OR g(t) may be represented as:525

ORG =









1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 1









.

The value of G(t) cannot be recovered following the action of either of these operators; they526

are therefore logically irreversible. As each of the matrix representations of these operators527

has a row of all zeros, they are not Markovian. The logically irreversible, non-Markovian528

nature of these operators has, indeed, been a primary basis of criticisms of artificial neu-529

ral network and dynamical-system models of cognition; Fodor and Pylyshyn (1988), for530

example, criticize such models as unable, in principle, to replicate the compositionality of531

Boolean operations in domains such as natural language. The standard AND operator532

can, however, be implemented reversibly by adding a single ancillary z bit to X , fixing its533

value at 0, and employing the Toffoli gate that maps [x, y, z] to [x, y, (x AND y) XOR534

z], where XOR is the standard exclusive OR (Toffoli, 1980). The Toffoli gate preserves the535

values of x and y and allows the value of z to be computed from the values of x and y;536

hence it is reversible and can, therefore, be represented as a punctual Markovian kernel.537

The standard XOR operator employed in the Toffoli gate is equivalent to a cNOT. As any538

universal computing formalism must be able to compute AND, the 1-bit dynamics of Fig.539

4 is not computationally universal. The Toffoli gate is, however, computationally universal,540
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so adding a single ancillary bit set to 0 to each space in Fig. 4 is sufficient to achieve541

universality.542

Two distinct graphs representing symmetric, punctual CA interactions have 4 bits in total543

and hence 16 states: the graph shown in Fig. 2 where each of X,G,X ′ and G′ contains one544

bit and the graph shown in Fig. 4 in which each of X and G contains 2 bits. These graphs545

differ from the intrinsic as well as the extrinsic perspectives: in the former case each agent546

experiences only |0〉 or |1〉 – i.e. has the same experience as the 1-bit dyad – while in the547

latter case the agent has the richer experience |00〉, |01〉, |10〉 or |11〉. The dynamics of the548

participator with the first of these structures has been exhaustively analyzed; it has the549

structure of the affine group AGL(4,2). Further analyses of the dynamics of these simple550

systems, including explicit consideration of the behavior of the t counters, is currently551

underway and will be reported elsewhere.552

While the restriction to punctual kernels simplifies analysis, systems in which perception,553

decision and action are characterized by dispersion will have non-punctual kernels P , D and554

A. It is worth noting that from the extrinsic, theorist’s perspective, such dispersion exists555

by stipulation: the kernels P , D and A characterizing a particular CA within a particular556

situation being modelled are stipulated to be stochastic. The probability distributions on557

states of X , G and W that they generate are, from the theorist’s perspective, distributions558

of objective probabilities: they are stipulated “from the outside” as fixed components of the559

theoretical model. As will be discussed in §4 below, these become subjective probabilities560

when viewed from the intrinsic perspective of any observer represented within such a model.561

However as noted earlier, ITP forbids any CA from having observational access to its own562

P , D, or A kernels; hence no CA can determine by observation that its kernels are non-563

punctual.564

3.2 Asymmetric interactions and RCA combinations565

While symmetric interactions are of formal interest, a “world” containing only two sub-566

systems of equal size has little relevance to either biology or psychology. Real organisms567

inhabit environments much larger and richer than they are, and are surrounded by other568

organisms of comparable size and complexity. The realistic case, and the one of interest569

from the standpoint of ITP, is that in which the σ-algebra W is much finer than either570

X or G. This asymmetrical interaction can be considered effectively bandwidth-limited by571

the relatively small encoding capacities of X and G. Representing the two-RCA interaction572

shown in Fig. 2 by the shorthand notation RCA1 ⇆ RCA2, this more realistic situation can573

be represented as in Fig. 5, in which no assumptions are made about the relative “sizes”574

of the RCAs or the dimensionality of the Markovian kernels involved.575
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Fig. 5 : a) Nine bidirectionally interacting RCAs, equivalent to a single RCA576

interacting with its “world” W and hence to a single CA. b) A network similar577

to that in a), except that some interactions are not bidirectional. Here again,578

the RCA network is equivalent to a single RCA interacting with a structurally579

distinct “world” W’ and hence to a distinct single CA. In general, RCA networks580

of either kind are asymmetric for every RCA involved.581

When applied to the multi-RCA interaction in Fig. 5, consistency between intrinsic and582

extrinsic perspectives requires that when a theorist’s attention is focussed on any single583

RCA, the other RCAs together can be considered to be the “world.” If attention is focussed584

on RCA1, for example, it must be possible to regard the subgraph comprising RCA2 - RCA9585

as the “world” W (Fig. 5a) and the entire network as specifying a single CA in the canonical586

form of Fig. 1. As every RCA interacts bidirectionally with its “world,” any directed path587

within an RCA network must be contained within a closed directed path. These paths588

do not, however, all have to be bidirectional; the RCA network in Fig. 5b can equally589

well be represented in the canonical form of Fig. 1. The “worlds” of Fig. 5a and Fig.590

5b have distinct structures from the extrinsic perspective. However, ITP requires that the591

interaction between RCA1 and its “world” does not determine the internal structure of592
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the “world”; indeed an arbitrarily large number of alternative structures could produce593

the same inputs to RCA1 and hence the same sequence of experiences for RCA1. RCA1594

cannot, in particular, determine what other RCA(s) it is interacting with at any particular595

“time” t as measured by its counter, or determine whether the structure or composition of596

the network of RCAs with which it is interacting changes from one value of t to the next.597

This lack of transparency renders the “world” of any RCA a “black box” as defined by598

classical cybernetics (Ashby, 1956): a system with an internal structure under-determined,599

in principle, by finite observations. Even a “good regulator” (Conant and Ashby, 1970) can600

only regulate a black box to the extent that the behavior of the box remains within the601

bounds for which the regulator was designed; whether a given black box will do so is always602

unpredictable even in principle. From the intrinsic perspective of the “world,” the same603

reasoning renders RCA1 a black box; hence consistency between perspectives requires that604

any RCA - and hence any CA - for which the sets X and G are not explicitly specified be605

regarded as potentially having an arbitrarily rich internal structure.606

In general, consistency between intrinsic and extrinsic perspectives requires that any ar-607

bitrary connected network of RCAs can be considered to be a single canonical-form CA;608

for each RCA in the network, all of the other RCAs in the network, regardless of how609

they are connected, together form of “world” of that RCA. Non-overlapping boundaries610

can, therefore, be drawn arbitrarily in a network of interacting RCAs and the RCAs within611

each of the boundaries “combined” to form a smaller network of interacting RCAs, with612

a single canonical-form CA or X − G dyad as the limiting case in which all RCAs in613

the network have been combined. Connected networks that characterize gene regulation614

(Agrawal, 2002), protein interactions (Barabási and Oltvai, 2004), neurocognitive archi-615

tecture (Bassett and Bullmore, 2006), academic collaborations (Newman, 2001) and many616

other phenomena exhibit dynamic patterns including preferential attachment (new connec-617

tions are preferentially added to already well-connected nodes; Barabási and Albert, 1999)618

and the emergence of small-world structure (short minimal path lengths between nodes619

and high clustering; Watts and Strogatz, 1998). Such networks typically exhibit “rich620

club” connectivity, in which the most well-connected nodes at one scale form a small-world621

network at the next-larger scale (Colizza, Flammini, Serrano and Vespignani, 2006); the622

human connectome provides a well-characterized example (van den Heuvel and Sporns,623

2011). Networks in which connectivity structure is, on average, independent of scale are624

called “scale-free” (Barabási, 2009); such networks have the same structure, on average,625

“all the way down.” As illustrated in Fig. 6, scale-free structures approximate hierarchies;626

“zooming in” to a node in a small-world or rich-club network typically reveals small-world627

or rich-club structure within the node. However, these networks allow the “horizontal”628

within-scale connections that a strict hierarchical organization would forbid. Given the629

prominence of scale-free small-world or rich-club organization in Nature, it is reasonable to630

ask whether RCA networks can exhibit such structure. In particular, it is reasonable to ask631

whether interactions between “simple” RCAs can lead to the emergence of more complex632

RCAs that interact among themselves in an approximately-hierarchical, rich-club network.633

We consider this question in one particular case in §4 below.634
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Fig. 6 : “Zooming in” to a node in a rich-club network typically reveals addi-635

tional small-world structure at smaller scales. Here the notation has been further636

simplified by eliding nodes altogether and only showing their connections.637

Replication followed by functional diversification ubiquitously increases local complexity in638

biological and social systems; processes ranging from gene duplication through organismal639

reproduction to the proliferation of divisions in corporate organizations exhibit this process.640

The simplest case, for an RCA, is to replicate part or all of the experience set X ; as641

will be shown below (§4.2), this operation is the key to building RCAs with memory.642

Let [(X1,X1), (G1,G1), D1, t1] be an RCA interacting with W via A1 and P1 kernels. Let643

[(X2,X2), (G2,G2), D2, A2, t2] be a dyad as shown in Fig. 4. Setting t1 = t2 = t, a new644

RCA whose “world” is the Cartesian product W × X2 can be constructed by taking the645

Cartesian products of the sets X1 and X2 and G1 and G2 respectively, as illustrated in646

Fig. 7, and defining product σ-algebras of X1 and X2 and G1 and G2 respectively. If all the647

kernels are left fixed, these product operations change nothing; they merely put the the648

original RCA and the dyad “side by side” in the new, combined RCA. We can, however,649

create an RCA with qualitatively new behavior by redefining one or more of the kernels;650

the “combination” process in this case significantly alters the behavior of one or both of the651

RCAs being “combined.” For example, we can specify a new punctual kernel D′

2 that acts652

on theX1 component instead of theX2 component ofX1×X2, i.e. D
′

2 : X1 → G2. Consider,653

for example, the RCA that results if D2 is replaced by a kernel D′

2 = DC that simply copies,654

at each t, the current value x1 of X1 to G2. If the kernel A2 is set to the Identity I, the655

value x1 will be copied, by A2, back to X2 on each cycle, as shown in Fig. 7. In this case,656

the experience of the “combined” CA at each t has two components: the current value of657

x1 and the previous value of x1, now “stored” as the value x2. This “copying” construction658

will be used repeatedly in §4 below to construct agents with progressively more complex659

memories. Note that for these memories to be useful in the sense of affecting choices of660

action, the kernel D1 must be replaced by one that also depends on the “memory” X2.661
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Fig. 7 : A CA as shown in Fig. 1 and a dyad as shown in Fig. 3 can be662

“combined” to form a composite CA with a simple, one time-step short-term663

memory by replacing the decision kernel D2 of the dyad with a kernel DC that664

“copies” the state x1(t) to g2(t+1) and setting the action kernel A2 of the dyad665

to the Identity I. The notation can be simplified by eliding the explicit W ×X2666

to W and treating the I2 operation on G2 as a feedback operation “internal to”667

the RCA, as shown in the lower part of the figure. Note that the composite668
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CA produced by this “combination” process has qualitatively different behavior669

than either of the CAs that were combined to produce it.670

The construction shown in Fig. 7 suggests a general feature of RCA networks: asymmetric671

kernels characterize the interactions between typical RCAs and W , but also characterize672

“internal” interactions that give RCAs additional structure. Such kernels may lose infor-673

mation and hence “coarse-grain” experience. If RCA networks are indeed scale-free, one674

would expect asymmetric interactions to be the norm: wherever the RCA-of-interest to W675

boundary is drawn, the networks on both sides of the boundary would have asymmetric676

kernels and complex internal organization. If this is the case, the notion of combining ex-677

perienced qualia underlying classic statements of the “combination problem” by William678

James, Thomas Nagel and many others (for review, see Hoffman and Prakash, 2014) appears679

too limited. There is no reason, in general, to expect “lower-level” experiences to combine680

into “higher-level” experiences by Cartesian products. An initially diffuse, geometry-less681

experience of “red” and an initially color-less experience of “circle,” for example, can be682

combined to an experience of “red circle” only if the combination process forces the diffuse683

redness into the boundary defined by the circle. This is not a mere Cartesian product; the684

redness and the circularity are not merely overlaid or placed next to each other. While685

Cartesian products of experiences allow recovery of the individual component experiences686

intact; arbitrary operations on experiences do not. The “combination” operations of inter-687

est here instead introduce scale-dependent constraints of the type Polanyi (1968) shows are688

ubiquitous in biological systems (cf. Rosen, 1986; Pattee, 2001). Such constraints introduce689

qualitative novelty. Once the redness has been forced into the circular boundary, for exam-690

ple, its original diffuseness is not recoverable: the red circle is a qualitatively new construct.691

Asymmetric kernels, in general, render higher-level agents and their higher-level experiences692

irreducible. Human beings, for example, experience edges and faces, but early-visual edge693

detectors do not experience edges and “face detectors” in the Fusiform Face Area do not694

experience faces. von Uexküll (1957), Gibson (1979) and the embodied cognition movement695

have made this point previously; the present considerations provide a formal basis for it696

within the theoretical framework of ITP.697

3.3 Connectivity and fitness698

As noted in the Introduction, ITP was originally motivated by evolutionary game simula-699

tions showing that model organisms with perceptual systems sensitive only to fitness drove700

model organisms with veridical perceptual systems to extinction (Mark, Marion and Hoff-701

man, 2010). In these simulations, “fitness” was an arbitrarily-imposed function dependent702

on the states of both the model environment and the model organism. The assumption of703

conscious realism, however, requires that it be possible to regard the environment of any704

organism, i.e. of any agent, as itself an agent and hence itself subject to a fitness function.705

From a biological perspective, this is not an unreasonable requirement: the environments of706

all organisms are populated by other organisms, and organism - organism interactions, e.g.707
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predator - prey or host - pathogen interactions, are key determiners of fitness. In the case708

of human beings, the hypothesis that interactions with conspecifics are the primary de-709

terminant of fitness motivates the broadly-explanatory “social brain hypothesis” (Adolphs,710

2003, 2009; Dunbar, 2003; Dunbar and Shultz, 2007) and much of the field of evolutionary711

psychology. If interactions between agents determine fitness, however, it should be possible712

to derive a representation of fitness entirely within the CA formalism. As the minimiza-713

tion of variational free energy or Bayesian surprise has a natural interpretation in terms of714

maintenance of homeostasis (Friston, 2013; Friston, Levin, Sengupta and Pezzulo, 2015),715

the congruence between the CA and FEP frameworks discussed above also suggests that716

a fully-internal definition of fitness should be possible. Here we show that an intuitively-717

reasonable definition of fitness not only emerges naturally within the CA framework, but718

also corresponds to well-established notions of centrality in complex networks.719

The time parameter t characterizing a CA is, as noted earlier, not an “objective” time but720

rather an observer-specific, i.e. CA-specific time. The value of t is, therefore, intimately721

related to the fitness of the CA that it characterizes: a CA with a small value of t has not722

survived, i.e. not maintained homeostasis for very long by its own internal measure, while723

a CA with a large value of t has survived a long time. Hence it is reasonable to regard724

the value of t as a prima facie measure of fitness. As t is internal to the CA, this measure725

is internal to the CA framework. It is, however, not in general an intrinsic measure of726

fitness, as CAs in general do not include an explicit representation of the value of t within727

the experience space X . From a formal standpoint, t measures the number of executions728

of D. As D by definition executes whenever a new experience is received into X , the value729

of t effectively measures the number of inputs that a CA has received. To the extent that730

D selects non-null actions, the value of t also measures the number of outputs that a CA731

generates.732

From the intrinsic perspective, a particular RCA cannot identify the source of any particular733

input as discussed above; inputs can equivalently be attributed to one single W or to734

a collection of distinct other RCAs, one for each input. The value of t can, therefore,735

without loss of generality be regarded as measuring the number of input connections to736

other RCAs that an given RCA has. The same is clearly true for outputs: from the737

intrinsic perspective, each output may be passed to a distinct RCA, so t provides an upper738

bound on output connectivity. From the extrinsic perspective, the connectivity of any RCA739

network can be characterized; in this case the number of inputs or outputs passed along740

a directed connection can be considered a “connection strength” label. The value of t741

then corresponds to the sum of input connection strengths and bounds the sum of output742

connection strengths.743

We propose, therefore, that the “fitness” of an RCA within a fixed RCA network can744

simply be identified with its input connectivity viewed quantitatively, i.e. as a sum of745

connection-strength labels, from the extrinsic perspective. In this case, a new connection746

preserves homeostasis to the extent that it enables or facilitates future connections. A747

new connection that inhibits future connectivity, in contrast, disrupts homeostasis. In748

the limit, an RCA that ceases to interact altogether is “dead.” If the behavior of the749
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network is monitored over an extrinsic time parameter (e.g. a parameter that counts the750

total number of messages passed in the network), an RCA that stops sending or receiving751

messages is dead. The “fittest” RCAs are, in contrast, those that continue to send and752

receive messages, i.e. those that continue to interact with their neighbors, over the longest753

extrinsically-measured times. Among these, those RCAs that exchange messages at the754

highest frequencies for the longest are the most fit.755

For simple graphs, i.e. graphs with at most one edge between each pair of nodes, the756

“degree” of a node is the number of incident edges; the input and output degrees are the757

number of incoming and outgoing edges in a digraph (e.g. Diestel, 2010 or for specific758

applications to network theory, Börner, Sanyal and Vespignani, 2007). A node is “degree759

central” or has maximal “degree centrality” within a graph if it has the largest degree;760

nodes of lower degree have lower degree centrality. These notions can clearly be extended761

to labelled digraphs in which the labels indicate connection strength; here “degree” becomes762

the sum of connection strengths and a node is “degree central” if it has the highest total763

connection strength. Applying these notions to RCA networks with the above definition of764

fitness, the fitness of an RCA scales with its input degree, and hence with its input degree765

centrality. Note that a small number of high-strength connections can confer higher degree766

centrality and hence higher fitness than a large number of low-strength connections with767

these definitions.768

In an initially-random network that evolves subject to preferential attachment (Barabási769

and Albert, 1999), the connectivity of a node tends to increase in proportion to its existing770

connectivity; hence “the rich get richer” (the “Matthew Effect”; see Merton, 1968). As771

noted above, this drives the emergence of small-world structure, with the nodes with high-772

est total connectivity forming a “rich club” with high mutual connectivity. Nodes within773

the rich club clearly have high degree centrality; they also have high betweenness centrality,774

i.e. paths between non-rich nodes tend to traverse them (Colizza, Flammini, Serrano and775

Vespignani, 2006). The identification of connectivity with fitness is obviously quite natu-776

ral in this setting; the negative fitness consequences of isolation are correspondingly well777

documented (e.g. Steptoe, Shankar, Demakakos and Wardle, 2013).778

The identification of fitness with connectivity provides a straightforward solution to the779

“dark room” problem faced by uncertainty-minimization systems (e.g. Friston, Thornton780

and Clark, 2012). Dark rooms do not contain opportunities to create or maintain connec-781

tions; therefore fitness-optimizing systems can be expected to avoid them. This solution782

complements that of Friston, Thornton and Clark (2012), who emphasize the costs to783

homeostasis of remaining in a dark room. Here again, interactivity and maintenance of784

homeostasis are closely coupled.785
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4 W from the intrinsic perspective: Prediction and786

effective action787

4.1 How can non-veridical perceptions be useful?788

The fundamental question posed by the ITP is that of how non-veridical perceptions can789

be informative and hence useful to an organism. As noted in the Introduction, veridical790

perception is commonly regarded as “absolutely essential” for utility; non-veridical per-791

ceptions are considered to be illusions or errors (e.g. Pizlo, Sawada and Steinman, 2014).792

We show in this section that CAs that altogether lack veridical perception can nonetheless793

exhibit complex adaptive behavior, an outcome that is once again consonant with that794

obtained within the free-energy framework (Friston, 2010; 2013). We show, moreover, that795

constructing a CA capable of useful perception and action in a complex environment leads796

to predictions about both the organization of long-term memory and the structure of object797

representations that accord well with observations.798

For any particular RCA, the dynamical symmetries described in §3.1 are manifested by799

repeating patterns of states of X . The question of utility can, therefore, be formulated from800

the intrinsic perspective as the question of how an RCA can detect, and make decisions801

based on, repeating patterns of states of its own X . As the complexities of both the agent802

and the world increase, moreover, the probability of a complete experience - a full state803

of X - being repeated rapidly approaches zero. For agents such as human beings living in804

a human-like world, only particular aspects of experience are repeated. Such agents are805

faced with familiar problems, including perceptual figure-ground distinction, the inference806

of object persistence and hence object identity over time, correct categorization of objects807

and events, and context dependence (“contextuality” in the quantum theory and general808

systems literature; see e.g. Kitto, 2014). Our goal in this section is to show that the CA809

formalism provides a useful representation for investigating these and related questions. We810

show, in particular, that the limited syntax of the CA formalism is sufficient to implement811

memory, predictive coding, active inference, attention, categorization and planning. These812

functions emerge naturally, moreover, from asking what structure an RCA must have in813

order for its perceptions to be useful for guiding action within the constraints imposed by814

ITP. We emphasize that by “useful” we mean useful to the RCA from its own intrinsic815

perspective, e.g. useful as a guide to actions that lead to experiences that match its prior816

expectations (cf. Friston, 2010).817

We explicitly assume that the experiences of any RCA are determinate or “classical”: an818

RCA experiences just one state of X at each t. From the intrinsic perspective of the RCA,819

therefore, P is always apparently punctual regardless of its extrinsic-perspective statistical820

structure; from the intrinsic perspective, P specifies what the RCA does experience, not821

just what it could experience. The RCA selects, moreover, just one action to take at each822

t; hence D is effectively punctual, specifying what the RCA does do as opposed to merely823

what it could do, from the intrinsic perspective. This effective or apparent resolution of a824

probability distribution into a single chosen or experienced outcome is referred to as the825
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“collapse of the wavefunction” in quantum theory (for an accessible and thorough review,826

see Landsman, 2007) and is often associated with the operation of free will (reviewed by827

Fields, 2013a). We adopt this association of “collapse” with free will here: the RCA renders828

P punctual by choosing which of the possibilities offered by W to experience, and renders829

D punctual by choosing what to do in response. As is the case in quantum theory (Conway830

and Kochen, 2006), consistency between intrinsic and extrinsic perspectives requires that831

free will also be attributed to W ; hence we regard W , as an RCA, choosing how to respond832

to each action A taken by any RCA embedded in or interacting with it. All such choices833

are regarded as instantaneous. Consistency between internal and external perspectives834

requires, moreover, that all such choices are unpredictable in principle. An RCA with835

sufficient cognitive capabilities can, in particular, predict what it would choose, given its836

current state, to do in a particular circumstance, but cannot predict what it will do, i.e.837

what choice it will actually make, when that circumstance actually arises. This restriction838

on predictions is consonant with a recent demonstration that predicting an action requires,839

in general, greater computational resources than taking the action (Lloyd, 2012).840

4.2 Memory841

Repeating patterns of perceptions are only useful if they can be detected, learned from, and842

employed to influence action. Within the CA framework, “detecting” something involves843

awareness of that something; detecting something is therefore a state change in X . Noticing844

that a current perception repeats a past one, either wholly or in part, requires a memory845

of past perceptions and a means of comparing the current perception to remembered past846

perceptions. Both current and past perceptions are states in X , so it is natural to view847

their comparison as an operation on X . Using patterns of repeated perceptions to influence848

action requires, in turn, a representation of how perception affects action: an accessible,849

internal “model” of the D kernel. Consider, for example, an agent with a 1-bit X that850

experiences only “hungry” and “not hungry” and implements the simple operator, “eat if851

but only if hungry” as D. This agent has no representation, in X , of the action “eat”; hence852

it cannot associate hunger with eating, or eating with the relief of hunger. It has, in fact, no853

representation of any action at all, and therefore no knowledge that it has ever acted. There854

is no sense in which this agent can learn anything, from its own intrinsic perspective, about855

W or about its relationship to W . Learning about its relationship to the world requires, at856

minimum, an ability to experience its own actions, i.e. a representation of those actions in857

X . This is not possible if X has only one bit.858

The construction of a memory associating actions with their immediately-following per-859

ceptions is shown in Fig. 8a. Here as before, t increments when D executes. Note that860

while each within-row pairing (g(t), x(t)) provides a sample and hence a partial model of861

W ’s response to the choice of g(t), i.e. of the action of the composite kernel PA, each862

cross-row pairing (g(t), x(t− 1)) provides a sample and hence a partial model of the action863

of D. As noted earlier, no specific assumption about the units of t is made within the CA864

framework; hence the scope and complexity of the action - perception associations recorded865
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by this memory is determined entirely by the definition, within a particular model, of the866

decision kernel D.867

Fig. 8 : Constructing a memory in X for action - perception associations. a)868

The values x(t) and g(t) are recorded at each t into a linked list of ordered869

pairs (g(t), x(t)), in which the links associate values x(t − 1) to g(t) (diagonal870

arrows) and g(t) to x(t) (within rows). Each horizontal ordered pair is an871

instance of the action of the composed kernel PA, during which t is constant.872
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Each diagonally-linked pair is an instance of the action of D, concurrent with873

which t increments. b) The linked list in a) can also be represented as two874

simple lists of ordered pairs, one representing instances of actions of D and875

the other representing instances of actions of PA. c) The instance data in876

either list from b) can also be represented as a matrix in which each element877

counts the number of occurrences of an (x, g) pair. Here we illustrate just four878

possible values of x and four possible values of g. The pair (x1, g1) has occurred879

once, the pair (x2, g2) has occurred four times, etc. d) An RCA network that880

constructs memories XMD and XMPA that count instances of actions of D and881

PA respectively. Here XP is the space of possible percepts and its state xP is882

the current percept. The space XR is a short-term memory; its state xR is the883

immediately-preceding percept. The simplified notation introduced in Fig. 7 is884

used to represent the “feedback” kernels Copy, MD and MPA as internal to the885

composite RCA. The decision kernel D acts on the entire space X . The MD886

and MPA kernels are defined in the text.887

For the contents of memory to influence action, they must be accessible to D. They must,888

therefore, be encoded within X . Meeting this requirement within the constraints of the CA889

formalism requires regardingX as comprising three components, X = XP×XR×XM , where890

XP contains percepts, XR contains a copy of the most recent percept, andXM contains long-891

term memories of percept-action and action-percept associations. In this case, P becomes892

a Markovian kernel from W ×XP → XP and a punctual, forgetful Markovian kernel Copy893

is defined to map XP → XR as discussed above. The short-term memory XR allows the894

cross-row pairs in Fig. 8a, here written as (xP (t− 1), g(t)) to emphasize that xP (t− 1) is a895

percept generated by P , to each be represented as a pair (xR(t), g(t)) at a single time t. To896

be accessible toD, both these cross-row pairs and the within-row pairs (xP (t), g(t)), together897

with their occurrence counts as accumulated over multiple observations (Fig. 8c), must be898

represented completely within X . Constructing these representations requires copying the899

g(t) components of these pairs from G to X at each t, associating the copies with either900

xR(t) or xP (t) respectively, and accumulating the occurrence counts of the associated pairs901

as a function of t. We define components XMD and XMPA of the long-term memory XM to902

store triples (xR, gC, nD(xR, gC , T )) and (xP , gC, nPA(xP , gC, T )) respectively, where gC(t) is903

a copy of g(t) and nD(xR, gC, T ) and nPA(xP , gC , T ) are the accumulated occurrence counts904

of (xR, gC) and (xP , gC), respectively, as of the accumulation time T . This T is the sum of905

the counts stored in XMD and XMPA, which must be identical; the memory components906

XMD and XMPA capture, in other words, the data structure of Fig. 8c completely within907

X . To construct these memory components, we define punctual Markovian kernels MD :908

G × XR × XMD → XMD and MPA : G × XP × XMPA → XMPA (Fig. 8d) that, at each909

t, increment nD(xR, gC, T ) by one if xR and g co-occur at t and increment nPA(xP , gC , T )910

by one if xP and g co-occur at t, respectively. A similar procedure for updating “internal”911

states on each cycle of interaction with a Markov blanket is employed in Friston (2013).912

While we represent these memory-updating kernels as “feedback” operations in Fig. 8d913

and in figures to follow, they can equivalently be represented as acting from G to W ×X914
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as in the middle part of Fig. 7.915

The ratios nD(xR, gC, T )/T and nPA(xP , gC, T )/T are naturally interpreted as the frequen-916

cies with which the pairs (x, g) have occurred as either percept-action or action-percept917

associations, respectively, during the time of observation, i.e. between t = 0 and t = T . As918

these values appear as components of X , they can be considered to generate, through the919

action of some further operation depending only onX , “subjective” probabilities at t = T of920

percept-action or action-percept associations, respectively. We will abuse notation and con-921

sider the memories XMD and XMPA to contain not just the occurrence counts nD(xR, gC , T )922

and nPA(xP , gC , T ) but also the derived subjective probability distributions ProbD(x, g)|t=T923

and ProbPA(x, g)|t=T respectively. We note that these distributions ProbD(x, g)|t=T and924

ProbPA(x, g)|t=T are subjective probabilities for the RCA encoding them, from its own in-925

trinsic perspective. We have assumed that the kernels MD and MPA are punctual; to the926

extent that they are not, these subjective probability distributions are likely to be inaccu-927

rate as representations of the agent’s actual past actions and perceptions, respectively.928

It is important to emphasize that the memory data structure shown in Fig. 8c does not929

represent the value of the time counter t explicitly. A CA implementing this memory does930

not, therefore, directly experience the passage of time; such a CA only experiences the cur-931

rent values of accumulated frequencies of (x, g) pairs. However, because the current value T932

of t appears as the denominator in calculating the subjective probabilities ProbD(x, g)|t=T933

and ProbPA(x, g)|t=T , the extent to which these distributions approximate smoothness pro-934

vides an implicit, approximate representation of elapsed time. As we discuss in §4.4 below,935

this approximate representation of elapsed time has a natural interpretation in terms of the936

“precision” of the memories MD and MPA, as this term is employed by Friston (2010, 2013).937

The construction of a data structure explicitly representing goal-directed action sequences,938

and hence the relative temporal ordering of events within such sequences, within the CA939

framework is discussed in §4.5 below. Such a data structure is a minimal requirement for940

directly experienced duration in the CA framework.941

4.3 Predictive coding, goals and active inference942

Merely writing memories is, clearly, not enough: if memories are to be useful, it must also943

be possible to read them. Remembering previous percepts is, moreover, only useful if it944

is possible to compare them to the current percept. As noted earlier, exact replication945

of a previous percept is unlikely; hence utility in most circumstances requires quantitative946

comparisons, even if these are low-resolution or approximate. These can be accomplished947

by, for example, imposing a metric structure on XP and all memory components computed948

from XP . This allows asking not just how much but in what way a current percept differs949

from a remembered one. For now, we do this by assuming a vector space structure with950

a norm ||.|| (and therefore a metric δ(x, x′) = ||x − x′||) on XP . It is also convenient to951

assume a metric vector-space structure on G so that “similarity” between actions can be952

discussed.953
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A vector-space structure on XP enables talking about components of experience, which954

are naturally interpreted as basis vectors. Given a complete basis {ξi} for XP , which for955

simplicity is taken to be orthonormal, any percept xP can be written as
∑

i αiξi, where the956

coefficients αi are limited to some finite resolution, and hence the vectors are limited to957

approximate normalization, to preserve a finite representation. The distance between two958

percepts xP =
∑

i αiξi and yP =
∑

i βiξi can be defined as the distance δ(xP , yP ).959

To construct this vector space structure, it is useful to think of experiences in terms of960

“degrees of freedom” in the physicist’s sense (“macroscopic variables” or “order parame-961

ters” in other literatures), i.e. in terms of properties of experience that can change in some962

detectable way along some one or more particular dimensions. A stationary point of light963

in the visual field, for example, may have degrees of freedom including apparent position,964

color and brightness. Describing a particular experienced state requires specifying a par-965

ticular value for each of these degrees of freedom; in the case of a stationary point of light,966

these may include x, y and z values in some spatial coordinate system and intensities Ired,967

Igreen and Iblue in a red-green-blue color space. Describing a sample of experiences requires968

specifying the probabilities of each value of each degree of freedom within the sample, e.g.969

the probabilities for each possible value of x, y, z, Ired, Igreen and Iblue in a sample of970

stationary point-of-light experiences. A vector in the space XP is then a particular combi-971

nation of values of the degrees of freedom that characterize the experiences in X . A basis972

vector ξi of XP corresponds, therefore, to a particular value of one degree of freedom, e.g.973

a particular value x = 1 m or Ired = 0.1 lux. The coefficient αi of a basis vector ξi is974

naturally interpreted as the “amount” or “extent” to which ξi is present in the percept;975

again borrowing terminology from physics, we refer to these coefficients as amplitudes. If976

αi is the amplitude of the basis vector ξi representing a length of 1 m, for example, then the977

value of αi represents the extent to which a percept indicates an object having a length of 1978

m. It is, moreover, natural to restrict the values of the amplitudes to [0, 1] and to interpret979

the amplitude αi of the basis vector ξi in the vector representation of a percept xP as the980

probability that the component ξi contributes to xP . This interpretation of basis vectors981

as representing values of degrees of freedom and amplitudes as representing probabilities is982

the usual interpretation for real Hilbert spaces in physics (the probability is the amplitude983

squared in the more typical complex Hilbert spaces).984

The basis chosen for XP determines the bases for XR, XMD and XMPA. It must, moreover,985

be assumed that elements of these latter components of X are experientially tagged as such.986

An element xR in XR must, for example, be experienced differently from the element xP in987

XP of which it is a copy; without such an experiential difference, previous, i.e. remembered988

and current percepts cannot be distinguished as such from the intrinsic perspective. The989

existence of such experiential “tags” distinguishing memory components is a prediction of990

the current approach, which places all memory components on which decisions implemented991

by D can depend within the space X of experiences. Models in which some or all compo-992

nents of memory are implicit, e.g. encoded in the structure of a decision operator, require993

no such experiential tags for the implicit components. It is interesting in this regard that994

humans experientially distinguish between perception and imagination (a memory-driven995
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function), that this “reality monitoring” capability appears to be highly but not exclusively996

localized to rostral prefrontal cortex, and that disruption of this capability correlates with997

psychosis (Simons, Gilbert, Henson and Fletcher, 2008; Burgess and Wu, 2013; Cannon,998

2015). Humans also experientially distinguish short-term “working” memories from long-999

term memories. We predict that specific monitoring capabilities provide the experiential1000

distinctions between short- (e.g. XR) and long-term (e.g. XMD and XMPA) memories and1001

distinguish functionally-distinct long-term memory components from each other. From a1002

formal standpoint, such distinguishing tags can be considered to be additional elements in1003

each vector in each of the derived vector spaces; while such tags play no explicit role in the1004

processing described below, their existence will be assumed.1005

As the memories XMD and XMPA and hence the conditional probability distributions1006

ProbD(x(t), g(t)|x(t−1), g(t−1)) and ProbPA(x(t), g(t)|x(t−1), g(t−1)) contain informa-1007

tion about the observer’s entire experience of the world, they enable differential responses1008

to xR − g or g− xP pairings that evoke different degrees of “surprise” by either confirming1009

or disconfirming previous associations to different extents. We note that the term ‘surprise’1010

is being used here in its informal sense of an experienced departure from expectations, not1011

in the technical sense employed by Friston (2010; 2013; see also Friston et al., 2015; Fris-1012

ton et al., 2016) to refer to an event that causes or threatens to cause a departure from1013

homeostasis and hence has negative consequences for fitness. To implement such differen-1014

tial responses to surprise, it is natural to choose functions for updating these conditional1015

probability distributions that depend on the vector distance(s) between the percept xR (for1016

ProbD(x(t), g(t)|x(t− 1), g(t− 1))) or xP (for ProbPA(x(t), g(t)|x(t− 1), g(t− 1))) and the1017

percept(s) previously associated, within XMD and XMPA respectively, with g. Functions1018

can clearly chosen that either enhance or suppress memories of surprising events. This1019

generalization requires no additional components or elements within X ; hence it enhances1020

function without altering the architecture.1021

The simplest possible action is no action: the agent merely observes the world. The extremal1022

outcomes of such observation are on the one hand James’ “blooming, buzzing confusion,” i.e.1023

a completely random xP (t), and on the other stasis, a fixed and invariant xP (t). Memory is1024

obviously useless in either case; indeed, the latter corresponds to the “dark room” situation1025

discussed above. Memory becomes useful if a world on which no action is taken generates1026

some number of the possible percepts significantly more often than the others. The same1027

is true in the case of any other constantly-repeated action. It is equivalent to say: any1028

action which, when repeated indefinitely, is followed by either random or static percepts1029

is a useless action to take. Such an action has no “epistemic value” in the sense used by1030

Friston et al. (2015). Randomness and stasis may be useful as components of experience -1031

indeed as discussed below, stasis is a necessary component of useful experience - but only1032

when embedded in non-random, non-static contexts. Let us assume, therefore, that RCAs1033

of interest are embedded in W s that generate non-random, non-static percepts in response1034

to all actions. Note that this assumption is consistent with ITP: it does not require either1035

P or A to respect the causal structure of W .1036

In a non-random, non-static world, the memories XMD and XMPA provide a basis for1037
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predictive coding: the probability assigned to an action g at t+1 can depend on the vector1038

difference between the current percept xP (t) and previous percepts either immediately-1039

antecedent or immediately-consequence to actions like g. A percept xP (t) can, in this case,1040

“predict” an action g(t + 1) that is “expected,” on the basis of the probabilities stored1041

in XMPA, to result in a subsequent percept xP (t + 1) that is either similar or dissimilar1042

to xP (t). Assigning high probabilities to actions at t + 1 expected to result in percepts1043

similar to xP (t) is implicitly “evaluating” xP (t) as in some sense “good” or “desirable,”1044

while assigning low probabilities to actions at t+1 expected to result in percepts similar to1045

xP (t) is implicitly evaluating xP (t) as in some sense bad or undesirable. These operational1046

senses of “good” and “bad” percepts are consistent with the senses of “good” and “bad”1047

percepts as enhancing or threatening the maintenance of homeostasis employed by Friston1048

(2010; 2013). A “bad” experience in this operational sense is a outcome that an agent1049

did not expect to experience, i.e. a stressor such as being hungry or poor, on the basis1050

of the implicit “model” of W encoded by the probability distributions contained in the1051

memories XMD and XMPA. In the limit, a maximally “bad” experience is one that violates1052

the fundamental expectation that experiences will continue that is encoded by all non-1053

zero values of the subjective probabilities ProbD(x, g)|t=T and ProbPA(x, g)|t=T ; such an1054

experience destroys connectivity between the agent in question and the surrounding RCA1055

network (i.e. the agent’s W ), setting the agent’s fitness to zero and corresponding to the1056

“death” of the agent as discussed in §3.3 above.1057

This evaluative function can be made explicit by representing it as a distinct operation. To1058

do this, we add a further memory component XE to X . To allow for the possibility that1059

an observer has “innate” biases toward or against particular percepts, we consider XE to1060

comprise two probability distributions, Probgood(xP ) and Probbad(xP ), with a priori values1061

fixed at t = 0. Such innate evaluation biases can be considered to be innate “preferences”1062

or “beliefs” as they often are in the infant-cognition literature (e.g. Baillargeon, 2008;1063

Watson, Robbins and Best, 2014). We represent the evaluation operation E as having two1064

components E = (Egood, Ebad), where Egood is a punctual kernel XP × XR × E → E that1065

updates Probgood(xP ) at each t and Ebad is a punctual kernel XP × XR × XE → XE that1066

updates Probbad(xP ) at each t. For simplicity, we assume that Egood increases Probgood(xP )1067

by a factor≥ 1 that approaches unity as Probgood(xP ) → 1 whenever both Probgood(xP (t)) >1068

0 and Probgood(xR(t)) > 0 and that Ebad increases Probbad(xP ) by a factor with similar1069

behavior whenever both Probbad(xP (t)) > 0 and Probbad(xR(t)) > 0. This E effectively1070

implements the heuristic: an experience is remembered as better if it is followed by a good1071

experience, and remembered as worse if it is followed by a bad experience. Note that while1072

this heuristic is consistent with the association of “good” and “bad” with maintaining or1073

not maintaining either homeostasis or connectivity as discussed above, it also allows a1074

given xP to be both probably good and probably bad, a not-unrealistic situation. This1075

additional structure on X is summarized in Fig. 9. Extending the evaluative process from1076

the scalar representation provided by these probabilities to a multidimensional, i.e. vector,1077

representation costs memory and kernel complexity but does not change the architecture.1078
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Fig. 9 : Adding memories for evaluations of percepts (XE) and for a current1079

goal (XG) to Fig. 7d. Connections to W have been elided for clarity.1080

Evaluating percepts implicitly evaluates the actions that are followed by those percepts;1081

this implicit transfer of estimated “good” or “bad” value from percepts to actions is now1082

implemented by D. A “rational” D, for example, would assign high probabilities to actions1083

g that are associated in XMPA with subsequent percepts that have high valuations in XE.1084

If W is such that the relative ranking of percepts by value changes only slowly with t,1085

relatively highly- and lowly-ranked percepts can be considered to be positive and negative1086

“goals” respectively. As Friston (2010, 2013) has emphasized, goals are effectively long-term1087

expectations to which an uncertainty-minimizing agent attempts to match perceptions;1088

Friston and colleagues call acting so as to match perceptions to goals “active inference.”1089

Within the CA framework, the minimal functional architecture required for active inference1090

is that shown in Fig. 9. Here a memory component XG holds the current goal; it is1091

populated by a punctual, forgetful kernel SG acting on XE . While SG can be taken to1092

choose percepts of high value as goals, its specific action can be left open. Note than in this1093

architecture, incremental adjustments of the “world model” XMPA and “self model” XD1094

are made in parallel with active inference: expectations are modified to fit perceptions even1095

when actions are taken to modify perceptions to fit expectations. Note also that placing1096

the evaluation and goal memories XE and XG within the experience space X is predicting1097

that the contents of these memories are both experienced and experienced as distinct, as1098

they indeed are in neurotypical humans. While the specific mechanisms implementing the1099

experiential distinction between these memory components remains uncharacterized, the1100

present framework predicts that such mechanisms exist.1101

By iteratively constructing representations of the antecedents and consequences of actions,1102

the kernels MD and MPA implement a simple kind of learning. The operator E similarly1103

34



implements a simple form of evaluative feedback. The action choices made by D can,1104

therefore, progressively improve with experience. It is important to emphasize that MD,1105

MPA, E, SG and D are all by assumption homogeneous kernels. What changes as the1106

system learns is not the choice function D, but the contents of the data structures – the1107

memories XMD, XMPA, XE and XG – that serve as ancillary inputs to D. The “knowledge”1108

of an RCA with this architecture is, therefore, entirely explicit. This is marked contrast1109

to typical neural-network models, including recent “deep learning” models (for a recent1110

review, see Schmidhuber, 2015), in which learning is entirely implicit and the decision rules1111

learned are notoriously hard to reverse engineer. It is worth noting that standard neural-1112

network models have no intrinsic perspective; as emphasized earlier, it is the requirement1113

that an RCA learns about W from its own intrinsic perspective that forces what is learned1114

to be made explicit in a memory located in X , i.e. in a memory encoding contents that1115

are experienced - but are not necessarily reportable - by the RCA. While the kernels MD,1116

MPA, E, SG, as well as others to be introduced below, that populate explicit memories1117

can, together with the decision kernel D be considered to encode implicit memories in the1118

current model, the assumption that all such kernels are homogeneous implies that these1119

implicit memories are not loci of learning. The kinds of “practised skill” memories that1120

are canonically regarded as implicit are most naturally modelled as structures, e.g. fixed1121

or fully-automatized learned action patterns, within the action space G in the current1122

framework; an exploration of such structures are developed within G is beyond the present1123

scope.1124

It is important to note that whether D is “rational” in the sense of favoring actions that re-1125

sult in “good” outcomes, and hence the extent to which the choices favored by D “improve”1126

with experience, is left open within the architecture. If W is such that “good” choices cor-1127

relate with the acquisition of resources required for survival, a basic orientation or “drive”1128

toward increasing the average subjective valuation of “good” percepts can be expected to1129

emerge in a population of agents whenever the required resources are scarce. Friston has1130

argued that predictability of experience is itself the primary resource that organisms seek1131

to maximize, and that the drive to pursue and acquire external resources can be under-1132

stood in terms of maintaining the predictability of experiences that facilitate or enhance1133

the maintenance of physiological homeostasis (Friston, 2010; 2013; Friston, Thornton and1134

Clark, 2012). Reducing the uncertainty of experiences from a large environment requires1135

extensive sampling of the environment’s behaviors and hence active exploration; effective1136

agents in a large W can, therefore, be expected to display a “curious rationality” that1137

maintains homeostasis while devoting significant energy to active exploration and learning1138

(reviewed by Gottlieb, Oudeyer, Lopes and Baranes, 2013). Friston et al. (2015; 2016)1139

make a similar point: the minimization of expected surprise in the strict sense of departure1140

from homeostasis (i.e. the minimization of variational free energy) contingent upon remem-1141

bered action-perception associations can always be expressed as a mixture of “epistemic”1142

and “pragmatic” value. The pragmatic value is the expected outcome according to prior1143

preferences, i.e. “good” or “bad” evaluations, while the epistemic value is the utility of the1144

action for learning, i.e. reducing the potential for uncertainty or surprise in the future. This1145

resolution of uncertainty through active sampling is at the heart of many active inference1146
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schemes and arises naturally in any model in which the agent expects to occupy the states1147

it prefers.1148

4.4 Reference frames and attention1149

While defining expectations over percepts can be expected to be useful in some circum-1150

stances, many aspects of realistic behavior require defining and acting on expectations1151

defined over individual or small subsets of components of percepts. The memories XMD1152

and XMPA together provide the data needed to allow individual component - action as-1153

sociations to be computed; the memory XE similarly provides the data needed to allow1154

individual component valuations to be computed. Let XC and XEC be memories that store1155

conditional probability distributions and evaluations, respectively, of individual components1156

of percepts. To define XC , note that the xR−g and g−xP associations stored in XMD and1157

XMPA respectively allow each action g to be viewed as a relation {(xR, xP )} implemented1158

by PA. Expressing these percepts as vectors xR(t) =
∑

i αi(t)ξi and xP (t) =
∑

i βi(t)ξi,1159

we can view the action of g on the component ξi at t as gξi(t) : αi(t) 7→ βi(t). Each g1160

can, in other words, be viewed as increasing or decreasing the amplitude of each percep-1161

tual component ξi from one percept to the next. As it is natural to view amplitudes as1162

probabilities of occurrence as discussed above, each g can be viewed as increasing or de-1163

creasing the probability of each perceptual component ξi from one percept (i.e. value of1164

t) to the next. The memory XC can, therefore, be viewed as storing t-indexed conditional1165

probabilities Probt(ξi|g, Probt−1(ξi)) of perceptual components given actions. To update1166

the distribution of Probt(ξi|g, Probt−1(ξi)) as a function of t, we define a punctual kernel1167

C as a map XMD × XMPA × XC → XC . Subject to the constraint that all probabilities1168

remain normalized, this map can in principle implement any arbitrary updating function.1169

The memory XEC containing component valuations may be constructed from XE in a sim-1170

ilar fashion, by defining punctual, forgetful kernels ECgood and ECbad that map XE →1171

XEC . The kernels ECgood and ECbad assign, respectively, “good” valuations to components1172

strongly represented in “good” percepts and “bad” valuations to components strongly rep-1173

resented in “bad” percepts. A suitable function for each would assign to each component1174

ξi the average valuation of percepts xP in which the coefficient αi of ξi is greater than1175

some specified threshold. With additional memory, this mechanism can be extended to1176

assign values to (finite ranges of) amplitude values of components. Note that component1177

valuations constructed in this way are in an important sense context-free; representing com-1178

ponent valuations conditioned on the valuations of other components requires both more1179

memory and more complex kernels.1180

The memory components XC and XEC provide the “background knowledge” required for1181

component-directed as opposed to entire-percept directed actions. What remains to be1182

constructed is a process of selecting a component on which to act, and a second component1183

with respect to which the action is taken. Consonant with current usage in physics (e.g.1184

Bartlett, Rudolph and Spekkens, 2007), we refer to this second, context-setting component1185

as a reference frame for the action. Specifying a reference frame is specifying what does1186

36



not change when an action is taken; hence reference frames provide the basis for specifying1187

what does change. Reference frames provide, in other words, the necessary stasis with1188

respect to which change is perceptible. Measurement devices such as meter sticks provide1189

the canonical example: a measurement made with a meter stick is only meaningful if one1190

assumes that the actions involved in making the measurement do not change the length1191

of a meter stick. More broadly, any context in which observations are made, whether a1192

particular laboratory set-up or an everyday scene, is meaningful as a context only if it1193

itself does change as a result of making the observation. A reference frame is, therefore, a1194

stipulated solution to the frame problem, the problem of specifying what does not change1195

as a result of an action (McCarthy and Hayes, 1969; reviewed by Fields, 2013b). Such1196

stipulations are inherently fragile and defeasible: a context that does observably change,1197

like a “meter stick” with an observably context-dependent length, ceases to be a reference1198

frame as soon as its variation is detected. Stipulated reference frames are, nonetheless,1199

useful solutions to the frame problem to the extent that they enable successful behavior in1200

the niche of the agent employing them. Absent a level of control over the environment that1201

ITP forbids, they are the only kinds of reference frames available.1202

While the frame problem has a long history in AI, its impact on cognitive science more1203

generally has been primarily philosophical (see, e.g. the contributions to Pylyshyn (1987)1204

and Ford and Pylyshyn (1996)). The question of how human perceivers identify contexts1205

as opposed to objects or events and how they detect changes in context have received little1206

direct investigation. The current model predicts that contexts are defined constructively1207

by the activation of discrete reference frames that impose expectations of constancy and1208

limit attention to features expected to remain constant. Experimental demonstrations of1209

change-blindness (reviewed by Simons and Ambinder, 2005) show that such limitations of1210

attention exist. Virtual reality methods provide opportunities to experimentally manipulate1211

context identification, and hence to probe the specific reference frames employed to identify1212

contexts, in ways that remain largely unexplored.1213

For complex organisms, the most important reference frame is arguably the experienced self,1214

generally including one or more distinguishable components of the body. This experienced1215

self reference frame comprises a collection of components of experience that do not change1216

during some, most or even all actions. The experienced self as a reference frame appears to1217

be innate in humans (e.g. Rochat, 2012) and may be innate in higher animals generally. It is1218

with respect to the experienced self as a reference frame that infants learn their capabilities1219

for actions as bodily motions and for social interactions as communications with others (e.g.1220

von Hofsten, 2007). Actions of or on the body, e.g. moving a limb, require that other parts1221

of the experienced self, e.g. the mass and shape of the limb and its point of connection1222

to the rest of the body, remain fixed to serve as the reference frame for the action. As1223

the body grows and develops, its representation must be updated to compensate for these1224

changes if its function as a reference frame is to be preserved. The experienced self reference1225

frame is readily extensible to tools, vehicles, and fully-virtual avatars in telepresence and1226

virtual-reality applications, and is readily manipulated in the laboratory. Disruptions of the1227

experienced self as a reference frame present as pathologies ranging from schizophrenia to1228
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anosognosia. These latter provide a clinical window into the human implementation of the1229

bodily and emotive self as a fusion of interoceptive and perceptual inputs (e.g. Craig, 2010;1230

Seth, 2013) and of the cognitive self as a fusion of memory-access and executive functions1231

that develops gradually from infancy to early adulthood (e.g. Simons, Henson, Gilbert and1232

Fletcher, 2008; Metzinger, 2011; Hohwy, 2016).1233

Selecting a particular component of a percept on which to act and another component1234

or components, such as the experienced self or the experienced self in some perceived1235

surroundings, to serve as a fixed context for an action is an act of attention. The selected1236

components must, moreover, remain subjects of attention throughout the action. Any1237

agent capable of attending to some component of an ongoing scene must also, however,1238

be capable of switching attention to a different component if something unexpected and1239

important happens. Attention requires, therefore, not just a decision about what to attend1240

to, but also a decision about whether to maintain or switch attentional focus. To meet these1241

requirements, we introduce an “attentional workspace” XF , a memory that contains a goal-1242

dependent focus of attention ξi, a focus-dependent reference frame ξj and a time counter1243

tF that measures the duration of an attentional episode. We also define an attentional1244

action space GF containing two actions, ‘switch’ and ‘maintain’ that alter or preserve the1245

attentional focus, respectively, and a forgetful punctual kernel DF : XP ×XR×XE×XG →1246

GF that selects gF = ‘switch’ at t if the valuation of xP (t) differs from that of xR(t) by1247

some specified threshold and selects gF = ‘maintain’ otherwise. These elements of GF1248

correspond to actions AF on the workspace XF , as shown in Fig. 10a. The action AFm1249

selected by gF = ‘maintain’ only increments tF . The action AFs selected by gF = ‘switch’1250

selects a new focus of attention ξk, a new reference frame ξl and resets tF to zero. We1251

represent this action as a forgetful punctual kernel AFs : XP × XG × XC × XCE → XF .1252

How this attention-switching kernel is defined has a potentially large impact on the behavior1253

of the RCA whose attentional workspace XF it affects. A rational AFs could be expected1254

to select a component ξi on which to focus that had a relatively large amplitude αi in1255

both the current percept xP and a high-value goal and a reference frame ξj, also with a1256

relatively large amplitude in both xP and the goal, that was affected in the past primarily1257

by actions that did not affect ξi. While the valuation of the attentional focus ξi may be1258

“bad,” a rational AFs would select a reference frame ξj with a “good” or at least not “bad”1259

valuation, as this amplitude of this component is meant to be kept fixed in subsequent1260

interactions with W . A rational D kernel acting on the workspace XF would then choose1261

actions g that, in the past as recorded in XC , moved the amplitude of xi in the direction of1262

its value in the chosen goal state while keeping the amplitude of xj fixed. As XC , XEC and1263

XF are updated one cycle behind XMD, XMPA, XE and XG and hence two cycles behind1264

XP , the kernel D must always work with expectation and valuation information that is1265

slightly out-of-date.1266
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Fig. 10 : a) Kernels that maintain or switch attentional focus. b) Additions to1267

Fig. 9 required to support attention. Connections to W are again elided for1268

clarity.1269

The structure of and operations within the experiential space X required for an atten-1270

tional system are summarized in Fig. 10b. Selecting a new component for attention and1271

maintaining attention on a previously-selected component are competitive processes in this1272

architecture, as they are in humans (reviewed by Vossel, Geng and Fink, 2014). When1273

top-down goals and expectations dominate and hence the dorsal attention system controls1274

perceptual processing, the salience of goal-irrelevant stimuli is reduced; a switch to vigilance1275

and hence ventral attentional control, in contrast, reduces the salience of goal-relevant stim-1276

uli. Top-down, dorsal attentional dominance facilitates exploration and information gath-1277

ering, while bottom-up, ventral attentional dominance facilitates threat avoidance. This1278

attention switch can be incorporated into predictive coding and active inference models1279

using the concept of “precision” for both expectations and percepts; high-precision expec-1280

tations dominate low-precision percepts and vice-versa (Friston, 2010; 2013). Precision is1281

effectively a measure of reliability based on prior experiences and is hence a second-order1282

expectation that must be learned by refining an a priori bias as discussed above. Predic-1283

tive coding networks modulated by estimated precision have been shown to describe the1284

cellular-scale connection architecture of cortical minicolumns (Bastos et al., 2012) as well1285

as the modular connection architectures of motor (Shipp, Adams and Friston, 2013) and1286

visual (Kanai, Komura, Shipp and Friston, 2015) processing (see also Adams, Friston and1287

Bastos (2015) for an overview of these results). As noted earlier, the smoothness of stored1288

probability distributions provides a natural estimate of the number of experiences that have1289

contributed to them and hence their reliability. A rational switching function can be ex-1290

pected to favor high-reliability expectations and disfavor low-reliability expectations, and1291

hence to implement a precision-based modulation of attention.1292

Extending the system shown in Fig. 10b to multiple focus and/or reference components1293

costs memory and processing complexity, but does not change the architecture. It is inter-1294
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esting to note that within this architecture, all change is implicitly attributed by the agent1295

to the action taken; from the agent’s intrinsic perspective, its actions change the state of its1296

attentional focus with respect to its reference frame. For the system to behave effectively,1297

the world W must be such that this attribution of observed changes to executed actions is1298

satisficing in W . The world must not, in other words, surprise the agent so often that the1299

agent’s sense that actions have predictable consequences becomes impossible to maintain.1300

The world must not, in other words, exhibit either overall randomness or overall stasis as1301

noted earlier.1302

It is worth re-emphasizing, moreover, that in the CA framework X is a space of experi-1303

ences. Hence the RCA depicted in Fig. 10b is regarded as experiencing each state of its1304

highly-structured space X , including all those components on which its attention is not1305

focussed (the formalism leaves open the question of whether these components themselves1306

have unexperienced internal structure). It may, however, be “unconscious” of unattended1307

components in the sense in which this term is used in theories that associate consciousness1308

with relative amplification or attention (e.g. Baars, Franklin and Ramsoy, 2013; Dehaene,1309

Charles, King and Marti, 2014; Graziano, 2014). In general, how an RCA acts depends1310

on its attentional focus. Reporting what it is experiencing, e.g. to an investigator in a1311

laboratory or even to itself via a modality such as inner speech, is a specific kind of ac-1312

tion that requires a specific attentional focus. Whether the attentional focus required to1313

support a given form of reporting is achieved in any particular case or is even achievable1314

by a particular RCA is a matter of architecture, i.e. of how the memory-construction and1315

attentional-control kernels are defined. Agents that never report particular kinds of experi-1316

ences, or that never report experiences using a given modality such as inner speech (Heavey1317

and Hurlburt, 2008), are not only possible but to be expected within the CA framework.1318

Indeed the CA framework predicts that agents are typically aware of more than they can1319

report awareness of to an external observer or even to themselves. Agents are, in other1320

words, typically under-equipped with attentional resources, and hence unable to access some1321

or even much of their experience for behavioral reporting via any particular modality. Being1322

under-equipped for reporting experiences post hoc is unsurprising on evolutionary grounds;1323

indeed why human beings should engage in so much post hoc self-reporting via modalities1324

such as inner speech remains a mystery (Fields, 2002). As reportability by some observable1325

behavior remains the “gold standard” in assessments of awareness (e.g. Dehaene, Charles,1326

King and Marti, 2014), this strong and counter-intuitive prediction of the CA framework1327

can at present only be tested indirectly, e.g. using phenomena such as blindsight (re-1328

viewed by Overgaard, 2011). It raises the methodological question of whether “reporting”1329

of experiences by imaging methods such a fMRI, as employed by Boly, Sanders, Mashour1330

and Laureys (2013), for example, with otherwise-unresponsive coma patients, should be1331

regarded as evidence of awareness across the board.1332
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4.5 Remembering and planning action sequences1333

The attentional workspace XF defined above does not explicitly represent the action taken1334

at each t and so cannot support either memory for “cases” of successful action or plan-1335

ning. The most recently executed g is, however, available within XMD. A fixed-capacity1336

case memory can be regarded as a subjective probability distribution over possible cases,1337

where each case is a vector of fixed length lcase, the components of which are quadruples1338

(αiξi, βjξj, tF , g(tF )) with the percept components ξi, ξj and the amplitude βj fixed. A case1339

defined in this way provides a representation of how the amplitude αi of the attentional1340

focus ξi varies relative to the fixed amplitude βj of the reference frame ξj when subjected1341

to the sequence g(tF = 0) . . . g(tF = lcase) of actions. This definition formulates in lan-1342

guage compliant with ITP the concept of a case employed in the case-based reasoning and1343

planning literature (Riesbeck and Schank, 1989; Kolodner, 1993). It is also similar in both1344

role and scope to the concept of an “event file” introduced by Hommel (2004) to repre-1345

sent the temporal binding of perceptions with context-appropriate actions. Cases or event1346

files are effectively “snapshots” of active inference that show how a particular perceptual1347

input is processed given the attentional context in which it is received and the particular1348

expectations that it activates.1349

As an example, consider a sequence of actions involved in reaching for and grasping a coffee1350

cup. The immediate goal of the sequence is to grasp the coffee cup; we will ignore the1351

question of different grasps being needed for different subsequent actions. The target of1352

the sequence is a particular coffee cup that is visually identifiable by particular perceived1353

features, e.g. location, size, shape and color. The cup’s perceived size, shape and color do1354

not change as a result of the motion; hence their values can serve as the reference frame1355

that determines the cup’s identity. As the goal of the action sequence is to change the1356

perceived location of the coffee cup, its location cannot be included in the reference frame;1357

if it was, the cup would lose its identity when it was moved. The attentional workspace1358

XF , therefore, contains the variable perceived values of the positions of the cup and of the1359

reaching hand as foci and the fixed perceived values of the size, shape and color of the cup1360

as the reference frame. The recorded case contains, effectively, a sequence of “snapshots”1361

of the contents of XF : a time sequence of cup and hand position values, together with the1362

actions that produced them, relative to these fixed reference values. A memory Mcase for1363

such cases can be constructed using the counter-incrementing methods used to construct1364

XMD and XMPA above. As action sequences that are worth recording are typically those1365

that either satisfied goals or led to trouble, it is useful to construct each record in Mcase as1366

a 5-tuple [xP (tF = 0), E((xP (tF = 0)), xP (tF = lcase), E((xP (tF = lcase)), case(tF )], where1367

xP (tF = 0) and xP (tF = lcase) are the full percepts at the beginning and the end of case(tF )1368

respectively, and E((xP (tF = 0)) and E((xP (tF = lcase)) are their evaluations as recorded1369

in XE. This representation allows Mcase to be searched – i.e. kernels acting on Mcase to1370

depend upon – either the initial state and its evaluation or the final state and its evaluation.1371

Case memories constructed in this way are clearly combinatorially explosive; hence case-1372

based planning in systems with limited memory is necessarily heuristic, not exhaustive, a1373

condition widely recognized in the case-based planning literature.1374
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It is natural to interpret a set of one or more fixed components of experience, with respect1375

to which one or more other components of experience change when one or more sequences1376

of actions is executed as defining an effective or apparent object. Objects defined in this way1377

are collections of expectations, based on accumulated experience, about the co-occurrence1378

and co-variation under actions of particular values of particular experiential degrees of1379

freedom. Objects in this sense are effectively categories defined by fixed (i.e. reference) and1380

variable features together with sets of expected behaviors, i.e. changes in the amplitudes of1381

the variable features relative to the fixed features in response to actions. Hence such objects1382

are more properly considered to be object types as opposed to de re individuals. While1383

an agent may assume, as a useful heuristic, that an object category has only one member1384

and act on the basis of this assumption, consistency with ITP requires that nothing in1385

the agent’s experience can be sufficient to demonstrate that this is the case. Hence object1386

identity over time is ambiguous in principle in the ITP/CA framework. Objects defined in1387

this way play the role of “icons” on the ITP interface. As the number of recorded cases1388

involving actions that change the state of some object increase, its “icon” gains predictable1389

functionality and hence utility as a locus of behavior.1390

The present framework leaves open the question of whether any “object”-specifying ref-1391

erence frames are innate. It predicts, however, that any such reference frames, whether1392

innately specified or constructed from experience, will have low dimensionality compared1393

to the perceptual experiences that they help to interpret. Dramatic evidence for low di-1394

mensionality is provided by studies of two of the earliest-developing and ecologically most1395

crucial reference frames for humans, those that identify animacy and agency (reviewed by1396

Scholl and Tremoulet, 2000; Scholl and Gao, 2013; Fields, 2014). Indeed Gao, McCarthy1397

and Scholl (2010) have shown that a simple oriented “V” shape not only satisfies the typical1398

human visual criterion for agency detection, but distracts attention sufficiently to disrupt1399

performance in an object-tracking task. Human face-recognition criteria are similarly rudi-1400

mentary. Additional evidence for low reference-frame dimensionality is provided by the1401

kinds of categorization conflicts studied in the quantum cognition literature (reviewed e.g.1402

by Pothos and Busemeyer, 2013; Bruza, Kitto, Ramm and Sitbon, 2015), for example the1403

“Linda” problem. Here the “natural” reference frames, i.e. concepts or coherent sets of1404

expectations, do not exhibit classical compositionality; combining reference frames to repro-1405

duce the judgements made by subjects requires the use of complex “quantum” probability1406

amplitudes. Complex probabilities can, however, be represented by classical probabilities1407

in higher-dimensional spaces (e.g. Fuchs and Schack, 2013; see also Fields, 2016 for a less1408

formal discussion), consistent with attentional selection of a low-dimensional subspace to1409

serve as a reference frame. If “object”-specifying reference frames in fact encode fitness1410

information as ITP requires, one would expect a general inverse correlation between fitness1411

consequences and reference frame dimensionality. While both the global and local struc-1412

ture of the typical human category hierarchy have been investigated (reviewed by Martin,1413

2007; Keifer and Pulvermüller, 2012), neither the minimal functional content (i.e. dimen-1414

sionality) nor the fitness-dimensionality correlation of typical categories have been broadly1415

investgated.1416
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The components of the experienced self reference frame, taken together, constitute an1417

iconic object – the experienced self as a persistent embodied actor – in the above sense.1418

The features of the experienced self as persistent embodied actor that are employed as1419

fixed reference features with respect to which other features of the experienced self are1420

allowed to vary change only slowly and asynchronously as a function of time; it is this slow1421

and asynchronous change in reference features that allow the approximation of a persistent1422

experienced self (but see Klein, 2014 for a discussion of the sense of a persistent experienced1423

self in the presence of conflicting perceptual evidence). The conditions under which non-1424

self objects are represented as persistent over extended time, in particular across extended1425

periods of non-observation, have been subjected to surprisingly little direct experimental1426

investigation and are not well understood (e.g. Scholl, 2007; Fields, 2012). Both the1427

extensibility of the experienced self reference frame to incorporate otherwise non-self objects1428

discussed earlier and the sheer variety of pathologies of the experienced self, including1429

depersonalization syndromes (e.g. Debruyne, Portzky, Van den Eynde and Audenaert,1430

2009), suggest that the experienced self - non-self distinction is not constant for individual1431

human subjects and highly variable between subjects. This question cannot, unfortunately,1432

yet be addressed productively in non-human subjects.1433

With this concept of an iconic object, the functional difference between a case memory1434

Mcase and the event memories XMD and XMPA becomes clear: Mcase records sequences of1435

partial events in which, in each sequence, only the response to actions of the attentional1436

focus ξi and the lack of response to actions of the reference ξj are made explicit. Each case1437

in Mcase can, therefore, be thought of as imposing an implicit, goal-dependent criterion of1438

relevance on the actions it records.1439

Recording object-directed action sequences is useful to an agent because it enables previously-1440

successful sequences to be repeated and previously-unsuccessful sequences to be avoided.1441

Selecting a previously-recorded case from memory for execution under some similar cir-1442

cumstances is the simplest form of planning. Executing the action sequence recorded in a1443

remembered case requires, however, shortcutting the usual decision process D. Within the1444

architecture shown in Fig. 10, the simplest way to accomplish this is to associate a working1445

memory XW with the attentional focus XF , and to include in XW a control bit c on which1446

D depends. If c = 0, D is independent of the contents of XW and acts as in Fig. 9. If c = 1,1447

D selects the action g represented in XW . Populating XW requires two embedded agents,1448

as shown in Fig. 11. The first agent (Fig. 11a) selects a recorded case based on the current1449

percept, and sequentially copies the actions specified by that case into XW . The “world” of1450

this agent consists of XP , Mcase and XW ; its “perception” kernel selects the case from Mcase1451

for which the initial state is closest to the current percept xP , its “decision” kernel selects1452

records from this case in sequence and its “action” kernel writes the action g(tF ) specified1453

by the selected case into XW . The process executed by this agent requires a time step,1454

i.e. one increment of t. The second agent (Fig. 11b) has a switching function analogous1455

to the attention-switching dyad in Fig. 10a: it compares the current percept xP (t) to the1456

currently-selected case record, setting c = 1 when the case is initially selected and setting1457

c = 0 if the distance between the states of either the object or reference components of xP (t)1458
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and their states as specified by the currently-selected case record exceeds some threshold.1459

Setting c = 0 in response to such an expectation violation during case execution restores1460

D to its usual function. Maintaining temporal synchrony requires that the overall counter1461

t advances only when D executes as discussed above; this requirement can be met if D is1462

regarded as acting instantaneously when c = 1 and the action g to be selected is specified1463

by XW , i.e. when action is performed “automatically.” In this case interrupting execution1464

of a case must be regarded as requiring one time step, after which no action is selected.1465

Fig. 11 : a) Selection of a case and case-record for execution based on the current1466

percept. This action does not enable case execution. b) Enabling or disabling1467

case execution by setting or resetting the control bit c based on a comparison1468

of current and expected percepts during case execution.1469

The processes illustrated in Fig. 11 only execute a previous case verbatim. Interrupting1470

execution of a case initiates a search for a new case that is a better fit to the current per-1471

cept xP (t). A more intelligent case-based planner can be constructed by incorporating an1472

additional agent capable of modifying the currently-selected case record based on xP (t) and1473

information about previous component responses stored in XC . Such modification creates1474

44



a new case, which is then recorded in Mcase A second natural extension would incorporate1475

a “meta” agent capable of comparing multiple cases to identify shared perception-action1476

dependencies. A case comparator of this kind is the minimal structure needed to recognize1477

relationships between events occurring in different orders or with different numbers of in-1478

tervening events; hence it is the minimal structure needed to implement a “temporal map”1479

as described by Balsam and Gallistel (2009).1480

5 Conclusion1481

We have shown three things in this paper. First, the CA formalism introduced by Hoffman1482

and Prakash (2014) is both powerful and non-trivial. Even “agents” comprising only a1483

handful of bits exhibit surprisingly complex behavior. A three-bit agent can implement a1484

Toffoli gate, so networks of three-bit agents can compute any computable function, and1485

can even do so reversibly. More intriguing are the hints that networks of simple agents1486

exhibit dynamical symmetries that also characterize geometry. This result comports well1487

with current efforts by physicists to derive the familiar geometry of spacetime from the1488

symmetries of information exchange between simple processing units (e.g. Tegmark, 2015).1489

We are currently working toward a full description of spacetime constructed entirely within1490

the CA framework.1491

We have, second, shown that concept of “fitness” as connectivity emerges naturally when1492

networks of interacting RCAs are considered. This fitness concept accords well with estab-1493

lished concepts of centrality developed in the theory of social and other complex networks.1494

By expressing fitness with the CA framework, we free ITP from any need to rely on an1495

externally-stipulated fitness function. Computational experiments to characterize the con-1496

ditions in which preferential attachment and hence high-connectivity individuals emerge in1497

networks of interacting RCAs are being designed.1498

Our third result is that networks of RCAs can, at least in principle, implement sophisticated1499

cognitive processes including attention, categorization and planning. This result fleshes out1500

the central concepts of ITP: that experience is an interface onto an ontologically-ambiguous1501

world, and that “objects” and “causal relations” are patterns of positive and negative cor-1502

relations between experiences. It highlights the critical role played by aspects of experience1503

that do not change, and hence serve as “context” or, more formally, reference frames rel-1504

ative to which aspects of experience that do change can be classified and analyzed. Here1505

again, our result comports well with recent work in physics, where with the rise of quantum1506

information theory, the roles of reference frames in defining what can and cannot be known1507

or communicated about a physical situation have taken on new prominence (e.g. Bartlett,1508

Rudolph and Spekkens, 2007). A substantial program of simulation development and test-1509

ing is clearly required to evaluate, in structured and eventually in open environments, the1510

formal models of memory, attention, categorization and planning developed here. The level1511

of complexity at which such models can feasibly be implemented remains unclear. We hope,1512

however, to be able to fully characterize the reference frames required to support relatively1513
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simple behaviors in relatively simple environments, and to use this information to formulate1514

predictions testable in more complex systems.1515

The CA framework is, as we have emphasized, a minimal formal framework for under-1516

standing cognition and agency. While debates about the structure and content of memory1517

- and implicitly, experience - have dominated cognitive science for decades (e.g. Gibson,1518

1979; Fodor and Pylyshyn, 1988; Anderson, 2003), these debates have generally been con-1519

ducted either informally or in the context of complex, conceptually open-ended modeling1520

paradigms. Our results, together with those of Friston and colleagues using the predictive1521

coding and adaptive inference framework, show that cognition and agency can be addressed1522

in conceptually very simple terms. The primary task of an organism in an environment1523

is to regulate its interactions with the environment, by behaving appropriately, in order1524

to maintain an environmental state conducive its own homeostasis. As Conant and Ashby1525

(1970) showed and Friston (2010; 2013) has significantly elaborated, effective regulation1526

of the environment requires a statistically well-founded model of the environment. Consis-1527

tency with ITP requires that such models treat the environment as open, in which case they1528

can be at best satisficing. The results obtained here, together with those of Friston (2013)1529

and Friston, Levin, Sengupta and Pezzulo (2015), offer an outline of how such models may1530

be constructed in a way that is consistent with ITP, but many details remain to be worked1531

out. A thorough treatment of both evolutionary and developmental processes from both1532

extrinsic and intrinsic perspectives is needed to understand the kinds of worlds W in which1533

complex networks of interdependent RCAs can be expected to appear.1534

We have largely deferred the question of motivation. As mentioned in §4.3 above, ratio-1535

nal agents exhibit curiosity and hence explore their environments to discover sources of1536

“good” experiences, which in a typical W may lie very near sources of “bad” experiences.1537

As Gottlieb, Oudeyer, Lopes and Baranes (2013) emphasize, however, rational agents do1538

not exhibit unlimited curiosity, as this can lead to expending all available resources at-1539

tempting to solve unsolvable problems or learn unlearnable information. Understanding1540

and modeling motivation requires not only a formal characterization of resources and their1541

use, but also a formal model of reward, its representation, and its roles in both extrinsic1542

and intrinsic motivation. The distinction between the “pragmatic” and “epistemic” values1543

of information (Friston et al., 2015) is useful here; the current framework models the effects1544

of this distinction in terms of attention switching, but not its origin. Both developmental1545

robotics (e.g. Cangelosi and Schlesinger, 2015) and the neuroscience of the reward system1546

(e.g. Berridge, and Kringelbach, 2013) provide empirical avenues to pursue in this regard.1547

We have also, and more importantly from an architectural perspective, deferred the task1548

of constructing a full theory of RCA networks and RCA combinations. Developing such1549

a theory will require addressing such questions as whether RCA networks can in general1550

be considered locally hierarchical, whether the action spaces G of complex RCAs require1551

structures, for example to represent fully automatized action patterns, analogous to the1552

structures in X described here, and how to explicitly define D kernels in complex RCAs. It1553

will also require understanding how the time counters (i.e. t parameters) of complex RCAs1554

relate to those of their component RCAs, a question that has been elided here by assuming1555
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that all processes “inside” X are synchronous. Answering such questions may well depend1556

on resolving at least some of the issues having to do with fitness and motivation mentioned1557

above. We expect, however, that their answers will shed light on such questions as whether1558

complex RCAs can in some cases be regarded as unaware of the experiences - e.g. the1559

percepts or memories - of their component RCAs and how the actions of complex RCAs1560

depend, or not, on the actions of their component RCAs.1561

As CAs and hence RCAs are intended, from the outset, to represent conscious agents, it1562

is natural to ask what the behavior of networks of RCAs can tell us about consciousness.1563

Here two results stand out. The first is that an agent cannot, without violating ITP,1564

distinguish the world outside of her experience from another conscious agent. While this1565

follows from the ontological principle of conscious realism of Hoffman and Prakash (2014),1566

it equally follows from the impossibility, within ITP, of determining that the “world” has1567

non-Markovian dynamics. The second is that agents can be expected to be aware of more1568

than they can report. This seems paradoxical if awareness is equated with reportability,1569

but makes sense when the attentional resources that would be required to enable reporting1570

of all experiences are taken into account.1571

While examining specific cases of successful and unsuccessful behavior in well-defined worlds1572

requires addressing the issues of motivation and multi-agent combination highlighted above,1573

two substantial conceptual issues stand out. The first is that the CA formalism, in contrast1574

to either standard neural network approaches or purely-functional cognitive modelling ap-1575

proaches, enforces by its structure a focus on what a constructed agent is being modelled1576

as experiencing. The CA formalism itself requires that the decision kernel D acts on the1577

space of experiences X ; hence whatever D acts on must be in X and therefore must be an1578

experience. Constructing complex memory structures in X in order to make them available1579

to D is, given this constraint, proposing the hypothesis that the contents of such struc-1580

tures are experienced. Experienced by whom? Here the second issue becomes relevant.1581

As discussed in §3.2, discussions of consciousness have often assumed, explicitly or more1582

typically implicitly, that “low-level” experiences combine in some straightforward way into1583

“higher-level” experiences. The phenomenal unity of ordinary, waking human experience1584

is assumed by many to indicate that there is only one relevant “level” of experience, the1585

level of the whole organism (or often, just its brain). With this assumption, proper com-1586

ponents of the human neurocognitive system cannot themselves be experiencers; that this1587

is the case is treated as axiomatic, for example, in Integrated Information Theory (Tononi1588

and Koch, 2015; see Cerullo, 2015 for a critique of this assumption in the IIT context).1589

If complex experiencers are networks of RCAs, however, this assumption cannot be cor-1590

rect: all RCAs, even the simplest ones, experience something. If complex experiencers are1591

networks of RCAs, there is also no reason to assume that “higher-level” experiences are in1592

any straightforward sense combinations of “lower-level” ones. Unless RCA combinations are1593

simple Cartesian products, high-level experiences will in general not be uniquely predictable1594

from low-level experiences or vice-versa. If complex experiencers are only approximately1595

hierarchical rich-club networks of RCAs, the assumption that experiences should in general1596

be straightforwardly combinatoric is almost certainly wrong.1597
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That said, it is worth re-emphasizing that the CA framework is not, and is not intended to1598

be, a theory of consciousness per se. The CA framework says nothing about the nature of1599

experience. It says nothing about qualia; it simply assumes that qualia exist, that agents1600

experience them, and that they can be tokened by elements of X . The CA framework is,1601

instead, a formal framework for modelling conscious agents and their interactions that en-1602

forces consistency with ITP. By itself, the CA framework is ontologically neutral, as is ITP.1603

When equipped with the ontological assumption of conscious realism, the CA framework1604

becomes at least prima facie consistent with ontological theories that take consciousness to1605

be an irreducible primitive. The role of the CA framework in expressing the assumptions1606

or results of such theories can be expected to depend on the details of their ontological1607

assumptions. Whether the CA framework fully captures the ontological assumptions of1608

existing theories that take consciousness to be fundamental, e.g. that of Faggin (2015),1609

remains to be determined.1610

In summary, the CA framework, and RCA networks in particular, provide both a highly-1611

constrained formal technology for representing cognition and a way of thinking about cogni-1612

tion that emphasizes experience and decisions based on experience. It directly implements1613

the ontological neutrality regarding the external world that is required by ITP. As results1614

from physics and other disciplines render näıve or even critical realism about perceived1615

objects and causal relations increasingly hard to sustain, this ability to model experience1616

and decision making with no supporting ontology will become increasingly critical for psy-1617

chology and for the biosciences in general.1618
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Č. and Walter, P. (2016). Experimental verification of an indefinite causal order. Preprint1840

arxiv:1608.01683v2 [quant-ph].1841

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks1842

61, 85-117.1843

Scholl, B. J. (2007). Object persistence in philosophy and psychology. Mind and Language1844

22, 563-591.1845

Scholl, B. J. and Gao, T. (2013). Perceiving animacy and intentionality: Visual processing1846

or higher-level judgment?. In M. D. Rutherford and V. A. Kuhlmeier (Eds.) Social Per-1847

ception: Detection and Interpretation of Animacy, Agency and Intention. Cambridge, MA:1848

MIT Press (pp. 197-230).1849

54



Scholl, B. J., and Tremoulet, P. (2000). Perceptual causality and animacy. Trends in1850

Cognitive Science 4, 299309.1851

Seth, A. K. (2013). Interoceptive inference, emotion, and the embodied self. Trends in1852

Cognitive Sciences 17, 565-573.1853

Shalm, L. K., Meyer-Scott, E., Christensen, B. G. et al. (2015). A strong loophole-free test1854

of local realism. Physical Review Letters 115, 250402.1855

Shipp, S., Adams, R. A. and Friston, K. J. (2013). Reflections on agranular architecture:1856

Predictive coding in the motor cortex. Trends in Neuroscience 36, 706-716.1857

Simons, D. J. and Ambinder, M. S. (2005). Change blindness: Theory and consequences.1858

Current Directions in Psychological Science 14(1), 44-48.1859

Simons, J. S., Henson, R. N. A., Gilbert, S. J. and Fletcher, P. C. (2008). Separable1860

forms of reality monitoring supported by anterior prefrontal cortex. Journal of Cognitive1861

Neuroscience 20, 447-457.1862

Smith, J. E. and Nair, R. (2005). The architecture of virtual machines. IEEE Computer1863

38(5), 32-38.1864

Steptoe, A., Shankar, A., Demakakos, P. and Wardle, J. (2013). Social isolation, loneliness,1865

and all-cause mortality in older men and women. Proceedings of the National Academy of1866

Sciences USA 110, 5797-5801.1867

Tanenbaum, A. S. (1976). Structured Computer Organization. Upper Saddle River, NJ:1868

Prentice Hall.1869

Tegmark, M. (2015). Consciousness as a state of matter. Chaos, Solitons & Fractals 76,1870

238-270.1871

Toffoli, T. (1980). Reversible computing. In: J. W. de Bakker and J. van Leeuwen (Eds)1872

Automata, Languages and Programming: Lecture Notes in Computer Science, Vol. 85.1873

Berlin: Springer. pp. 632644.1874

Tononi, G. and Koch, C. (2015). Consciousness: Here, there and everywhere? Philosophical1875

Transactions of the Royal Society B 370, 20140167.1876

Trivers, R. L. (2011). The Folly of Fools. New York: Basic Books.1877

Turing, A. R. (1936). On computable numbers, with an application to the Entschei-1878

dungsproblem. Proceedings of the London Mathematical Society, Series 2 442, 230-265.1879

van den Heuvel, M. P. and Sporns, O. (2011). Rich-club organization of the human con-1880

nectome. Journal of Neuroscience 31, 15775-15786.1881

Vogel, E. K., Woodman, G. F. and Luck, S. J. (2006). The time course of consolidation1882

in visual working memory. Journal of Experimental Psychology: Human Perception and1883

Performance 32, 1436-1451.1884

von Hofsten, C. (2007). Action in development. Developmental Science 10, 54-60.1885

55
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