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Abstract. We show that three distinct orthographic 
views of three points in a rigid configuration are 
compatible with at most 64 interpretations of the 
three-dimensional structure and motion of the points. 
If, in addition, one assumes that the three points spin 
about a fixed axis over the three views, then with 
probability one there is a unique three-dimensional 
interpretation (plus a reflection). Moreover the proba- 
bility of false targets is zero. In the special case that the 
axis of rotation is parallel to the image plane three 
views of the three points are sufficient to obtain at most 
two interpretations (plus reflections) - unless one 
assumes the angular velocity about the axis is constant, 
in which case three views of two points are sufficient to 
determine a unique interpretation. Closed form so- 
lutions are obtained for each of these cases. The 
systems of equations studied here are in each case 
overconstraining (i.e. there are more independent 
equations than unknowns) and are amenable to so- 
lution by nonlinear programming. These two pro- 
perties make possible the construction of noise insensi- 
tive algorithms for computer vision systems. Our 
uniqueness proofs employ the principle of upper semi- 
continuity, a principle which underlies a general math- 
ematical framework for the analysis of solutions to 
overconstraining systems of equations. 

1 Introduction 

Valuable information is lost in the projection from the 
visible environment onto the human retina. For in- 
stance, all points in the environment along a line of 
sight project to a single point on the retina. In 
consequence the retinal image is but two-dimensional 
whereas the visible environment is three-dimensional. 
Yet most observers perceive the world as three- 
dimensional, unaware that the dimension of depth is 
unavailable to the eye and therefore must be 
reconstructed. 

Motion is one means used by the visual system for 
the reconstruction (Braunstein 1976; Gibson 1950; 
Helmholtz 1925). Psychophysical experiments show 
that one can perceive the three-dimensional structure 
of an object from its changing retinal projections even 
when the structure is unfamiliar and a static view of the 
object gives no perception of depth (Wallach and 
O'Connell 1953). 

Retinal motion is, however, insufficient by itself to 
determine uniquely the three-dimensional structure of 
the environment. In fact an infinite number of three- 
dimensional interpretations are always equally com- 
patible with the changing retinal image because mo- 
tion along the line of sight is lost in the retinal 
projection. As a result, to make possible a unique 
three-dimensional interpretation from retinal motion, 
certain regularities in the visual world must be ex- 
ploited by the visual system. These regularities are 
roughly of two types: structural and dispositional. 
Structural regularities are regularities in the motion of 
the points of an object relative to each other. Dispo- 
sitional regularities are regularities in the motions of 
the points of an object relative to an external frame of 
reference (e.g., the frame of reference of an observer). 

One plausible structural regularity is rigidity: all 
points of a rigid object move relative to each other so as 
to maintain a constant distance (Gibson and Gibson 
1957; Green 1961; Hay 1966; Hoffman 1983; Jo- 
hansson 1975; Reuman and Hoffman 1986; Ullman 
1979; Wallach and O'Connell 1953). Ullman (1979) 
proved that using this regularity alone one can in 
principle recover three-dimensional structure and mo- 
tion from three orthographic (parallel) projections of 
four or more points. Longuet-Higgins and Prazdny 
(1980) proved that the first and second spatial deriva- 
tives of the perspectively projected velocity field of a 
rigid object determine the surface normal at each point 
and the relative motion. Hoffman (1982) showed that if 
the motion field is viewed under orthographic projec- 
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tion (rather than perspective) then the spatial deriva- 
tives of the acceleration field are also required in order 
to recover the structure of rigid objects. 

Because many visual objects are not rigid (Jo- 
hansson 1975), structural regularities other than rigid- 
ity must be explored. Bennett and Hoffman (1985) 
investigated a common axis regularity: the points of a 
common axis object move in parallel circles having 
collinear centers, but do so at independent angular 
velocities. They found that four orthographic views of 
two points or three orthographic views of four points 
are compatible with at most one three dimensional 
interpretation (plus its reflection). 

Dispositional regularities are lawful properties of 
the motion of an object relative to an external observer. 
For instance, one frequently observes fixed-axis mo- 
tion (Webb and Aggarwa11982): the points of an object 
spin about an axis whose orientation does not change 
with respect to the observer. One common case, 
discussed in Sect. 4, occurs when an observer is 
translating in a straight line through a static environ- 
ment. If the observer foveates a point in the environ- 
ment as he translates then all points in the environment 
undergo an induced fixed-axis motion about an axis 
that is orthogonal to the observer's line of sight and 
direction of motion. Bobick (1983) has shown that if 
one uses the fixed-axis regularity then two views of 
three points together with velocity direction vectors at 
each point are compatible with at most one three- 
dimensional interpretation (plus an orthographic re- 
flection). Hoffman and Flinchbaugh (1982) have shown 
that if one uses the more restrictive assumption of 
planar motion then three views of two points or two 
views of three points are compatible with at most one 
three-dimensional interpretation (plus reflection). 

It appears that regularities of structure and dispo- 
sition are both used by the human visual system. If, for 
example, rigidity alone were used by the visual system 
then one would expect that observers could perceive 
the structure of rigid objects whose motion was quite 
jerky. In fact such displays give poor impressions of 
depth. Again, if rigidity alone were used one would 
expect that observers could not perceive three- 
dimensional structure in displays having fewer than 
three views or four rigid points (as Ullman's result 
requires). However observers can see the three- 
dimensional structure in many such displays, for 
instance in the biological motion displays of Jo- 
hansson (1975). 

In this paper we determine conditions under which 
one can recover the three-dimensional structure of 
objects using the structural regularity of rigidity in 
combination with the dispositional regularity of fixed- 
axis motion. In Sect. 2 we show that three ortho- 
graphic views of three points in a rigid configuration 

are compatible with at most two interpretations of the 
three-dimensional structure (plus reflections) for the 
first view. However there are sixty four possible 
motions for the structures over the three views. We give 
simple closed form solutions for the interpretations. In 
Sect. 3 we show that by adding a fixed-axis constraint 
one eliminates all but one of the global solutions 
obtained in Sect. 2 (plus a reflection). In addition one 
eliminates "false targets", points in three dimensions 
not undergoing rigid fixed-axis motion but whose 
projections appear consistent with such motion. The 
proofs of uniqueness and no false targets use semi- 
continuity theorems from algebraic geometry, 
theorems that allow proof of uniqueness and no false 
targets by a single concrete example in each case. 

A degenerate case for the analysis of Sect. 3 occurs 
when the axis of rotation is parallel to the image plane. 
In Sect. 4 we show that this is an important special 
case. A translating observer who foveates a point 
induces a rotary motion of the environment about a 
fixed axis that is always parallel to the image plane. In 
Sect. 5 we provide closed form solutions for the special 
case when the axis is parallel to the image plane and the 
points move at constant angular velocity about the 
axis. In this case three views of two points are sufficient 
for a unique interpretation, and the probability of false 
targets is zero. In Sect. 6 we provide closed form 
solutions for the case when the angular velocity is not 
necessarily constant. Three views of three points are 
compatible with at most two interpretations in this 
analysis, and again the probability of false targets is 
zero. 

Pilot studies by Braunstein (personal communi- 
cation) indicate that human observers can in fact 
recover the three-dimensional structure of rigid 
bodies in fixed-axis motion from as few as three views 
of three points. 

2 Rigid Structures 

In this section we prove the following result: 

Theorem 2.0. Given three generic orthographic views of 
three points in a rigid configuration, there are two 
interpretations of the three-dimensional structure (plus 
orthographic reflections) for the first view. There are 
sixteen possible motions for each structure, giving a 
total of sixty four motions. 

The system of equations studied in this section is 
not overconstraining. In fact, the number of indepen- 
dent equations is equal to the number of unknowns (six). 
The next section (Sect. 3) adds two overconstraining 
equations which arise from the constraint of fixed-axis 



motion. Section 3 also discusses a general mathemat- 
ical framework for analyzing the solutions to over- 
constrained systems of equations. 

Proof. Call the three points O, A,, and A 2. Let a~j be the 
vector (in three dimensions) between O and point A~ in 
viewj (j = 1,2, 3) as shown in Fig. 1. Because the three 
points are in a rigid configuration we expect that the 
length of the vector from O to Ax remains constant 
over all three views. Similarly we expect that the length 
of the vector from 0 to A= remains constant over all 
three views. Consequently we can write 

a~ 1" aa 1 ~ - -  aa2" aa2, (2.1a) 

a l ~ . a l a = a a 3 . a a 3 ,  (2.1b) 

a21 .  a21 = a2 2 .  a22 , (2.1c) 

a2a" a21 = a23" a23. (2.1d) 

In addition we expect that the angle between the vector 
OAa and vector OA2 remains constant over all three 
views. Thus we can write 

a l l  . a2a  = a 1 2  �9 a22 , (2.2a) 

a l l  "a21 = a13 �9 a23 . (2.2b) 

To solve these six equations it is useful to express the 
a~j's in terms of components. Let a~j= (x~j, y~j, z~). 
Assume that the line of sight lies along the z-axis. Then 
the x~j's and y~a's are known directly from the views. 
The six z~Ss are unknown and must be solved for. 

Equation (2.1) may be expressed in terms of 
components as 

z 2 + q = 0  (2.3a) Zla --Z12 

2 2 + c 2 =  0 (2.3b) Zll  --Za3 

Z]l -- Z]2 + C 3 : 0 ,  (2.3C) 

2 2 z2 a - z23 + c, = 0. (2.3d) 

Equation (2.2) may be expressed in terms of 
components as 

Z1 aZ2 a - -  z12z22 + c5 = O, (2.4a) 

ZlaZ2a -z13z23 + c  6 = 0 ,  (2.4b) 

where 

ca = x2a +y2a 2 z (2.5a) --X12 - -Y12 ,  

c2 =x~l  2 2 2 (2.5b) + Y l a - - x a 3 - - Y a 3 ,  

2 2 2 2 (2.5c) C3 "-~ X21 + 2 2 1  --X22 - -Y22 ,  

C4 ~_X] l 2 2 2 (2.5d) +Y21 --X23 - -Y23 ,  

c5 = xl  lx2 a + Yl lY21 - x,2x22 - Y12Y22, (2.5e) 

c6 = xlax2a +Yl lY21 -xaax23 -Y13Y23. (2.5f) 

For the convenience of the reader we describe one way 
to solve these equations: Use (2.3a) and (2.3c) to 
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Fig. l. Geometryunderlying the computation ofstructurefrom 
three orthographic views ofthree points in a rigid configuration 

eliminate z12 and z22 , respectively, from (2.4a). Use 
(2.3b) and (2.3d) to eliminate z 13 and z23, respectively, 
from (2.4b): 

ZlxZ2a +_]/(z21+cl)(z21+c3)+c5=O, (2.6a) 

ZxaZ21+_]/-(z21+c2)(z21+c4)+c6=O. (2.6b) 

The _+ before the radicals in (2.6) indicates that these 
equations may be rewritten as 

(za Zza +l/(zh + cO (zL + c3)+ c5) 
(zxlz2a-]/(zZa +cx)(Z21+e3) +c5)=O,  (2.7a) 

(Za,Z21 +l/(zh + c9 (zL +q)+  c6) 
( zaaz2a-] / ( z21+c2) ( z21+q)  +c6)=O. (2.7b) 

Expand and simplify (2.7): 

caz21+clz22a-2cszaxZ21+qc3-c2=O,  (2.8a) 

C4Z21+C2Z]I--Zc6ZllZ21+C2C4--c2=O. (2.8b) 

[Note that the fourth degree terms cancel to make 
(2.8a) and (2.8b) of only second degree.] Let c v =CxC 3 
- c 2 and c a -- c2c, - c 2. Multiply (2.8a) by c8. Multiply 
(2.8b) by c7. Subtract (2.8b) from (2.8a) and simplify to 
obtain 

(c3cs -  c,*c7) z21 + 2(c6c7- CsCs)Za lZ2a 

+ (qc8 - c2c7)z22t = 0. (2.9) 

Let ~=Zlx/Z2a, a = c 3 c s - q e 7 ,  b=2(c6cT-cscs) ,  and 
c = q c 8 - c 2 c 7 .  Divide (2.9) by z221 to get 

a~2 +b~ + c = O .  (2.10) 

The quantity a is in general not zero as may be verified 
directly from the definition of the c[s. Thus, since we 
assume generic views, we may solve (2.10) for ~: 

~= - b + ~ z a  (2.11) 

Rewrite (2.8a) using ~: 

c3~2zZ2 a +c,z22~ -2cs~z21 +c  7 = 0 .  (2.12) 
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Solve (2.12) for z21: 

c - c 7  (2.13) 
z21 = + 3C2_5~c5C + c l  �9 

Now it is an easy matter to obtain all the remaining 
zu's. Find zll using the relation Zll =z21~. Find z~2 
using (2.3a), z13 using (2.3b), Z2a using (2.3c), and z23 
using (2.3d). The genericity hypothesis in the statement 
of (2.0) corresponds to the data {(xu, Yij)} satisfying 
both a4:0 and C3~2--2C5~+Cl ~0. 

Observe that we have shown there are but two 
interpretations (plus reflections) for the structure in the 
first frame, and sixty four possible motions for the 
structures. In the first frame, for example, (2.13) gives at 
most four solutions for zzl, two solutions of opposite 
sign for each of the two values of (. To each z2 ~ there is 
associated a unique value of ztl by the equation 
z~=~Zza. Consequently there are a total of two 
interpretations (plus reflections) for the first frame. For 
the second frame, (2.3a) gives four solutions for z12 and 
(2.3c) gives four solutions for z22, again two solutions 
of opposite sign for each of the two values of ~. Note 
that the choice of sign for z~ ~ does not determine the 
choice of sign for za2, since (2.3a) is an equation 
involving only the squares of these two variables. 
Similarly, the choice of sign for z2~ does not determine 
the choice of sign for z22. The same is true for z~3 and 
z23 in the third frame. The result is that there are two 
structures plus reflections, each having 42 (sixteen) 
possible motions over the three frames (the different 
motions arising because the choice of reflection in one 
frame does not determine the choice in succeeding 
frames). This gives a total of sixty four motions. 

3 Fixed-Axis Motion: Generic Case 

In Sect. 2 we conclude that three views of three points 
in a rigid configuration does not, in general, allow a 
unique three-dimensional interpretation, but does re- 
duce the possible interpretations to two structures in a 
total of sixty four motions. We should also note that 
there are no more equations than unknowns so that 
the probability of false targets (nonrigid objects giving 
rise to projections compatible with a rigid interpreta- 
tion) is greater than zero. 

There are at least three ways to take the result of 
Sect. 2 one step further to eliminate false targets and 
extra interpretations. One could add a fourth point or 
add a fourth view or add a dispositional constraint. 
Adding a fourth point leads to Ullman's (1979) result 
that three views of four points give a unique interpre- 
tation. In this section we add instead the dispositional 
constraint of fixed-axis motion and prove the 
following: 

Theorem 3.0 (i) Given three orthographic projections of 
three points spinning rigidly about a fixed axis, the 
probability is one that the three-dimensional structure 
and motion of the points is uniquely determined (up to a 
reflection about the image plane). Moreover (ii) the 
probability is zero that a randomly chosen set of image 
data permits such a determination. 

To prove this we first introduce two linear equa- 
tions that express the fixed-axis constraint. These 
equations, together with (2.3) and (2.4), will give us 
eight equations in six unknown zu's, whose coefficients 
depend on six pairs of image coordinates (xij, Yu)" We 
will prove that this system of equations has no 
solutions for generic choices of (xi> Yu), thus demon- 
strating that the probability of false targets is zero - the 
second assertion of Theorem 3.0 above. We will also 
show that among those (xu, Yu) for which the equations 
admit at least one solution, the condition that the 
solution is unique (up to reflection) is generic - the first 
assertion of Theorem 3.0. 

One means of expressing the fixed-axis motion 
constraint is illustrated in Fig. 2. As can be seen from 
the figure, fixed-axis motion implies that the difference 
vectors between the different positions of the first point 
must be coplanar with the difference vectors between 
the different positions of the second point. We can 
write that the scalar triple product of three of these 
difference vectors is zero: 

(a11-a12)" [ (a l l -a13)  x (a21 - a2z)] =0 ,  (3.1a) 

(all --a12 ) �9 [ ( a l l - - a t 3  ) • ( a 2 1 -  a23)] = 0 .  (3.1b) 

Expanding (3.1) in terms of components gives 

atzl 1 At- azzl 2 + a3za a + a4zz 1 + asz22 = 0,  (3.2a) 

a6zll +a7Zlz +asZla Wa4zz1+a5z23=O, (3.2b) 

A13 

11 0 

A22 
Fig. 2. Fixed axis motion implies coplanarity of the indicated 
difference vectors 
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a l  =- (X12 -- x13) (Y21 -- Y22) --  (X21 --  X22) (Yl 2 --  Yl 3), 

a2 = (x21 - -x22)  (Yll - - Y 1 3 ) - - ( X I l - - X 1 3 )  (Y21 --Y22) ,  

a3 = (x11 - -x12)  (Y21 - -Y22) - - (x21  - -x22)  (Yll - -Y12) ,  

a4 = (Xll  --  X12) (Yl 1 --  Yl 3) --  (Xl l  - -  Xl 3) ( Y l t  - -  Yl 2), 

a5 = - a,,, (3.3) 

a6 = (xl~ -x13)  (Y21 - - Y 2 3 ) -  (X21 --X23) (Y12 --Y13),  

aT- - - - (x21- -X23) (Y11- -Yla ) - - (Xl l  - -X13)(Y21--Y23) ,  

a8 = (Xll  --X12) (Y21 --Y23)--(X21 - -x23)  (Yll - -Y12) '  

We summarize: Let {(xij, Yij, zij)}i=l,2 be the 
j=1,2,3 

coordinates in 9t 3 of three successive positions 
( j=  1,2, 3) of each of two points (i= 1,2). These 
positions are compatible with an interpretation that the 
points are spinning rigidly about a fixed axis through the 
origin if and only if the coordinates satisfy the eight 
equations 

z21 - z~2 + c l = 0, (3.4a) 

z21 - z ~ 3 + c 2 = 0 ,  (3.4b) 

zZ~l-z~2 + c 3 = 0 ,  (3.4c) 

z~l - -z~3+c4=O,  (3.4d) 

ZllZ21 --Z12Z22-~-C5 = 0 ,  (3.4e) 

zl lz21 - z13z23 + c6 = 0, (3.4f) 

alz11 + a2zlz + a3z13 + a4z21 +asz22 = 0, (3.4g) 

a6ztl +avz12 +asz13 +agz21+asz23=O, (3.4h) 

where the coefficients el, ..., c 6 and a 1 . . . . .  a 8 are the 
polynomials in xij, Yij defined in (2.5) and (3.3). The (xij, 
y~j)'s, and hence these coefficients, are accessible to an 
orthographic viewer whose line of sight is along the 
z-axis. Thus: three orthographic views {(xij, Yii)} of two 
points are compatible with an interpretation of rigid 
motion about a fixed axis through the origin in 913 if and 
only if the equations (3.4) (in which c 1 . . . . .  c 6 and 
a 1 . . . .  , a s are obtained from the particular viewing data 
{(xiJ, YO} ) have a solution in the zij; each such solution 
corresponds to one possible interpretation. 

The techniques that we use to prove Theorem 3.0 
require that we work temporarily with complex num- 
bers, so that we will assume for the moment that the 
{(xij, Yij)} can be complex. Thus {(xij, Yij, 
zO}i=l.2;j=l.2. 3 is a point of r  and {(Xij , 
Yij)}i=l,2;j=l,2,3 is a point of 11; 12. Let q be the 
projection from r 1 8 to r ~ 2, defined by q({(x,j, y,j, zij)}) 
= {(x~j, y~j)}. Note that if P = {(x~, y~j)} is a point of 

12 1 r , then q-  (P) (the inverse image of P by q) is a copy 
of r 6 with coordinates z~j. We can interpret the 
solutions in the z~j of the set of equations (3.4) (whose 
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coefficients al, ..., a8 and c x . . . .  , c 6 are determined by 
the given P) as lying in that particular copy o f r  6. For 
each P, let N(P) denote the number of  such solutions, 
counted with multiplicity; N(P) may be infinity. For 
each integer m > 0, define 

T, ,={P@r 

Clearly 

r  ToD T2 D... D TmD Tm+ l D . . . .  

We can express things geometrically as follows: 
Remembering that Cl . . . .  , c6, al . . . .  , as are polynomials 
in the xij and yij, we view (3.4) as a system of 8 
equations in 18 complex variables. The solutions of 
this system are therefore a locus W in r 18. Then for 
p ~ r  N(P) is the number of points (counted with 
multiplicities) in q-l(P)c~ W, i.e. the number of points 
of W which lie over P, with respect to the projection 
q :r162 In particular q(W) (the image of W in 
r by q) is the same as T1. We will also use the letter V 
to denote this set. 

r W 

> + 
r  1 

An inspection of the equations (3.4) reveals that for 
any values of c l, ..., c6, al, ..., a8 -i.e. for any P ~ r 12 _ 
if (z 0 is a solution then so is (-zi j) ;  this sign change 
corresponds to a "reflection about the image plane". 
Thus V = T 1 = T 2, T 3 = T 4, etc. 

We are ultimately interested only in points with 
real number coordinates. Let 91~2 and 911s denote the 
subsets of 1I; 12 and r t s consisting of those points with 
real coordinates. Then we define 

W(91) = Wc~9112 

T,,(91) = {P ~ Tmc~911Z[q- l ( p )~  W(91) 

contains at least m points}. 

In particular, we have 

9112 = T0(91) D T2(91) = V(91) D T4(91), 

etc. Note that in general a point P in T,,c~!R 12 may not 
be in T,,(91), since a priori some of the points in 
W n q -  x(p) may not be in W(91), i.e. some solutions (zi~) 
involving complex coordinates may contribute to the 
number N(P) even though P itself is real. 

We may now state succinctly the assertions of 
Theorem 3.0. 

(3.5) (i) T4(91 ) has measure zero in Tz(91 ) = V(91) with 
respect to any "unbiased" measure on V(91). (ii) T2(91) 
has measure zero in 9112. 

Our technique of proof for both (i) and (ii) is based 
on the principle of upper semicontinuity which may be 
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stated for our purposes as follows: Let S be a system of 
algebraic equations in projective space of arbitrary 
dimension over the complex numbers. Suppose that 
the coefficients of the equations in S depend algebrai- 
cally (i.e. are polynomials) in some parameters which 
vary in 112". Then the function which assigns to each 
point P in I13" (i.e. to each choice of parameter values) 
the number of solutions counted with multiplicities to 
the system S, is upper semicontinuous in the Zariski 
topology on IE". 

Now in the Zariski topology, by definition, the 
closed sets are closed algebraic varieties, i.e. solution 
sets to polynomial equations. Recall moreover that a 
function is upper semicontinuous if the locus of points 
where its value is greater than or equal to some given 
number is a closed set. Thus the upper semicontinuity 
principle translates into the following: Given any 
integer m, the set of parameter values in IE" for which 
the system admits at least m solutions is itself the 
solution set of a family of polynomial equations in rE". 
The interest for us here is that such a set is of strictly 
smaller dimension than rE" so that it has Lebesgue 
measure 0 in ~", or it is equal to 112" (in the case when 
the polynomials defining it are identically 0). 

We will first prove assertion (ii) of (3.5). We would 
like to apply the upper semicontinuity principle direct- 
ly to our system (3.4), to deduce that the function N(P) 
defined above is upper semicontinuous on IE 1 2. Unfor- 
tunately we cannot do this directly because the prin- 
ciple only applies to systems of equations in complex 
projective space, whereas (3.4) is a system in complex 
affine space C 6 (for any parameter choice P in II; 1 2). We 
can remedy this defect by canonically extending the 
system (3.4) into a system in complex projective space 
IP 6 as follows: 

Set z u = Zij/W where Z~j and W are homogeneous 
coordinates o n  ~ 6  (seven coordinates in all). We then 
obtain the extended system by multiplying by W 2. 

2 2 2 Z l l - Z 1 2 + c l W  = 0 ,  (3.6a) 

Z ~ - Z 2 3 + c 2 W 2 = O ,  (3.6b) 
2 2 2 Z21 - Z 2 2 + c 3 W  = 0 ,  (3.6c) 

Z~I-Z23+c4W2=O,  (3.6d) 

Z l l Z 2 1  - Z 1 2 Z 2 2 - ~ r  (3.6e) 

Z11Z21-Z13Z23-Jt-c6W2=O, (3.6f) 

alZll +azZlzq-a3Z13+a4Zzl +asZ22=O, (3.6g) 
a6Zll-t-aTZlz +asZ1a-k-a4Zz1+asZ23=O, (3.6h) 

The locus W =  0 in ]p6 corresponds to the points 
added "at infinity" to 11; 6 in order to form IP 6. Thus the 
solutions to (3.6) which do not correspond to solutions 
of (3.4) are those nontrivial solutions for which W = 0. 
Now if W= 0, the first four equations of (3.6) yield Z12 

~- -}-Zl l ,  Z 1 3 =  @ Z l l  , Z12 = -q-Z21 , Z 2 3 =  -q-Z21. 
When we substitute these values in the last two 
equations we will get several systems of two homoge- 
neous equations in Z l l  and Z: I  which will have a 
nontrivial solution if and only if the two equations are 
dependent. The condition for this dependence is that 
certain 2 x 2 determinants built out of al, ..., as vanish. 
Since these may be expressed as polynomials in 
{(xij, y,j)} we find: There is a Zariski closed set C in ~12  

such that for P ~ 1 2  __ C the extended system (3.6) has 
no more solutions than (3.4), i.e. (3.6) has no solutions 
"at infinity". 

Now let us apply the upper semicontinuity prin- 
ciple to the system (3.6). It tells us in particular that the 
set B in ~ 1 2  where the number of solutions to (3.6) is at 
least 1 is Zariski closed. Since every solution to (3.4) is 
also a solution to (3.6) it is clear that VCB. Thus if we 
can show B is a proper Zariski closed subset of(~ 12 (i.e. 
B + 112 12) it follows that it has Lebesgue measure zero in 
I13 ~ 2. In other words, because of the upper semicontinu- 
ity principle, to show B has measure zero it suffices to 
find one point of I~ 12 not in it. As the authors have 
done, the reader may select a value at random for the 
point P = {(x~s, Yis)} e 11212, and verify that the resulting 
equations (3.6) have no solution. We remark that 
solutions to (3.6) are of two types, namely those which 
are solutions to (3.4), and those which are not, the latter 
being the nontrivial solutions to (3.6) with W =  0, i.e. 
the solutions "at infinity". This corresponds to the fact 
that B-- Vu C. 

Since VC B, it follows that V also has measure zero 
in 11212 . However this is not yet our desired conclusion; 
we want to show that V(91) (=  T1(91)= T2(91)) has 
measure zero in 9112. Since V(91) C Vc~9112 CBn9112, it 
suffices to show that Bc~9112 has measure zero in 9t 12. 
Indeed we note that any proper closed algebraic 
subvariety B of 112" intersects 91" in a measure zero 
subset. To see this, first observe that by hypothesis on 
B, there is a non-zero polynomial f (p l ,  ..., p,) which 

vanishes on B where p~ = r~ + ]/-2~qz are the complex 
coordinates on C". Since 91" is the subset of ll;" where 
the q~'s vanish, Bc~91" is the solution set in 91" of the 
polynomial f ( r l  . . . .  , r,), which is a polynomial in the n 
real variables rl,  ..., r,, but which has nonzero complex 
coefficients. By decomposing the coefficients into their 
real and complex parts, we can write f ( r l ,  ..., r,) 

=g(rl,...,r,)+]SSlh(rl,...,r,) where now g and h 
are real polynomials, at least one of which has non- 
zero coefficients, i.e. is not identically zero on 9t". These 
polynomials must both vanish on Bc~91". Now suppose 
that Bc~ 91" did not have measure zero in 91". Then there 
would be an open set U of 91n in which Bc~91" is dense. 
Since g and h vanish on B, and since polynomials are 
continuous functions, they vanish on all of U. 



77 

Moreover, since polynomials are (real) analytic func- 
tions on 9t" they are completely determined by their 
value on any open set of 91". Hence both 9 and h are 
identically zero on 91", a contradiction. This completes 
the proof of (3.5), (ii). 

We now proceed to the proof of (3.5 (i). We can 
produce a point of V(91) which is not in T4 (see below). 
By the upper semicontinuity principle, it will follow 
that T4 is a proper closed algebraic subvariety of 
V= T2. We cannot conclude directly in this case, 
however, that T4 has measure zero in T2 = V (or what is 
more, that T4(91) has measure zero in V(9t), which is 
our goal). The reason is that here it is a priori possible 
that V may be reducible, i.e. it may consist of several 
components, say of equal dimension, one or more (but 
not all) of which constitute T 4. Then T 4 is still a proper 
algebraic subvariety of V, but in no unbiased sense does 
it have measure zero in V. This problem did not arise in 
the proof of (ii), for there we were showing that T2 has 
measure zero in To, and To =112 12 is irreducible. 

The approach which we take here will avoid 
confrontation with the question of the irreducibility of 
V itself; we will work directly with V(91), which is of 
course our real interest for the purposes of this paper. 
The first step is to prove the following: 

(3.7) There exists a measure zero subvariety D of V(91) 
and a smooth, connected algebraic manifold M which 
admits a surjective algebraic map ~ onto V(91)-D 

: M ~  V(91)- D. 

Before we give the proof of(3.7), we will show how it 
leads to the desired result. The argument is a general- 
ization of that of the last paragraph of the proof of (3.5) 
(ii) above. Assume that T4(91 ) has measure greater than 
zero in V(91). Then there is some non-empty open set U 
of V(91) in which T4(91) is dense. Since D has measure 
zero in V(91), we may assume U does not meet D. On 
the other hand, by upper semi continuity T4 is an 
algebraic subvariety of V, and is a proper subvariety 
because of the point P ~ V(91)- T4(91 ) which we will 
produce below. We will also show that the point P is 
not in D. Therefore T 4 is contained in the zero set of a 
polynomial f o n  C 12 with complex coefficients, and 
this polynomial is not uniformly zero on V(91)-D. 

Fig. 3. Geometry underlying the proof of uniqueness using upper 
semi continuity 

W(e) W 
Q 

!118 ~ r 

12 = 12 

V(R) 

g, x~ 

Fig. 4. The relationships among W(9t), V(9t), W, and V 

As above, if we restrict to 9112 we can write the 

complex polynomial f in the form g + ~ - l h ,  where g 
and h are real polynomials not both of which are 
identically zero. For f to vanish at a point in V(91) (or 
indeed at any point of 9112), both g and h must vanish 
there. Thus the zero sets of the real polynomials g and h 
must be dense in U so that both g and h vanish 
identically on U. 

It follows that the zero sets of the composite 
functions g o c~ and f o e  vanish in the non-empty open 
set e- l (U).  Since g, h, and c~ are algebraic maps 
they are afort iori  real-analytic, so that g o e and h o c~ 
are real analytic functions on M. Since M is smooth 
and connected, g o e and h o e must therefore be identi- 
cally zero on M. Hence g and h are identically zero on 
V(91)-D, so also f is identically zero on V(91)-D, a 
contradiction. 

We now turn to the proof of (3.7). Recall that the set 
of points W(91) of W which have real coordinates may 
be interpreted as the set of all possible choices of three 
positions which can be occupied by a rigid configura- 
tion consisting of two arbitrary points and the origin, 
as it rotates about some fixed axis through the origin in 
913. In fact the eighteen coordinates of the point of 
W(91) are the (x, y, z) coordinates of the three succes- 
sive positions of each of the two points. As before we will 
let q:ll;ls~(12 12 be the projection onto the X and Y 
components, i.e. q({Xij, Y~, Zij}) = {(xij, YO}" It is clear 
that q(W) = V, and q(W(91))= V(91). 

The eighteen coordinates of a point A in W(91) are 
the coordinates in 9t 3 of the points A11, A21, A12, A22, 
Ala  , A23 , where Aij denotes the position of Ai (i = 1,2) 
in each of the three views (j = 1,2, 3). We will make the 
identification A=(A11, A12, ...,Ax3, A23). Let S de- 
note the subset of SO(3, R)x  SO(3, R) consisting of 
those pairs (o-, 7) such that o-~ = z~r. It is well known that 
o-, z commute if and only if they are rotations about the 
same axis in 913 (which includes the case where either 
one of them is the identity). Thus the set S corresponds 
to all possible sequences of two rigid motions of 913 
which can be interpreted as successive rotations about 
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the same axis; one or both of these rotations may be 
trivial, corresponding to the cases where one or both of 
a, ~ are the identity. 

We can then see that there is a natural map 

: 913 x 913 x S ~  W(91) 

defined by zc(vl, v z, a, ~) = (Vl, re, avl, avz, "CVx, zv2), i.e. 
re(v1, v2, a, z) is the point A of W(91) with Al1 =vl ,  A21 
=1)2, A~2=ffvl, A22=0- / )2 ,  A13= 'c / )1 ,  A23='L'I)2 . 7"C is 
continuous since nearby rotations yield nearby points, 
and is surjective in view of the geometric description of 
W(91). Note moreover that the map rc is algebraic, since 
rc(v~, v2, o-, r) can be computed explicitly in terms of 
polynomials in the coordinates of vl, v2 and the entries 
of the matrices which represent o- and z. Since q : W(91) 

V(91) is also algebraic and surjective, we get: 

q o ~ : 913 x 913 x S--* V(91) 

is a surjective algebraic map. 
The dimension of S is four, since we have a varying 

in SO(3, R) whose dimension is three, and for each a 
(other than the identity) we have one dimension of 
freedom for z, i.e. an angle of rotation about the same 
axis as a. When a = identity, z can be any element of 
SO(3,R), but this contributes a three-dimensional 
subspace of S, so the overall dimension of four is 
unaffected. The dimension of 913 x 913 x S is therefore 
ten. 

Let E denote the set of points (v~, v2) in 913 x 913 
which are linearly dependent. E is a four-dimensional 
algebraic variety in 913 x 913 and in particular E x S has 
dimension eight in 913 x 913 x S. Notice that outside of 
E x S, rc is an isomorphism onto W(91)- rc(E x S). In 
fact, ifv~, vz are linearly independent, any rotations 0-, z 
are uniquely determined by their effect on vx and Va. 
Therefore the dimension of W(91) is also ten, since the 
dimension of rc(Ex S) is at most eight, and z is 
surjective. The point is that rc : 913 x 913 x S ~  W(91) is a 
surjective algebraic map between algebraic varieties of 
the same dimension. Now q:W(91)~V(91) is also 
surjective. Moreover there is at least one point P of 
V(91) for which q-~(P) is a finite set (for example the 
point P we will produce below). Hence, by a straight- 
forward application of the upper semi continuity prin- 
ciple, there is a nonempty open set of V(91) over which q 
is finite-to-one. It follows that the dimension of V(91) is 
the same as W(91), i.e. dimV(91)=dimW(91)=10. 
[-Note it is a priori possible that V(91) has components 
of lower dimension.] Thus: 

q o ~:913 x 913 x S--*V(91) 

is a surjective algebraic map between algebraic 
varieties of the same dimension. 

Now let D] = {(a, z) s Sleither a or z is the identity} 
and let D '=  9l 3 x 913 x D]. D] is three-dimensional; it 
has two three-dimensional components SO(3,91) 
x {identity} and {identity} x SO(3, 91). Hence the di- 

mension of D' is nine. Let D = q o rc(D3. The dimension 
of D is at most nine, so since dim(V(91)) is ten D has 
measure zero in V(91). Let M = 913 x 913 x S -  D' = 913 
x 913 x ( S -  D]), and let ~ denote the restriction of q o zc 

to M, ~ : M - , V ( 9 1 ) - D .  c~ is surjective and algebraic, 
and D has measure zero in V(91). To satisfy the 
hypothesis of (3.7), it remains to show that M is 
a smooth, connected manifold. 

For this, it is obviously sufficient to show that 
S - D ]  is a smooth connected manifold. Consider the 
map p : ( S -  D~)--*SO(3, R ) -  {identity}, defined by 
p(o-, z) = a. p is surjective, and SO(3, R ) -  {identity} is a 
smooth, connected manifold. For any a eSO(3,R) 
-{identity}, p- l (a )  may be identified with the open 
interval (0, 2~) in R, i.e. the set of all nontrivial 
rotations about the same axis as a. It follows that 
S -  D] is a fibre bundle over SO(3, R) with fibre (0, 2re), 
so it is also a smooth connected manifold. 

This almost concludes the proof of (3.7); the final 
order of business is to produce the point P in 
V(91) - T4. For this consider P e 9112 with coordinates: 

(xl 1, Yl 1) = (2.71076, 2.57115), 

(x12, Ya2) = (2.57398, 1.99999), 

(xl 3, Y~3) = (2.47320, 1.36808), 

(x21, Yza) = (5.48447, - 1.92836), 

(x22, Y22) = (5.58706, - 1.49999), 

(x23, Y23) = (5.66265, - 1.02606). 

We note immediately that P r D, for otherwise, by 
definition of D, either the second or third line in the 
above list of coordinates would be equal to the first 
line. Next one checks that the resulting system (3.6) has 
no solutions at infinity, i.e. when W = 0. Next, we can 
verify that the only solutions to (3.4) are (z11, z21, z12, 
z22, z13, z23)=(-4.2473, 0.44941, -4.6231, 0.73127, 
-4.9000, 0.93895) and (z11, z21, z12, z22, z~3, z23) 
=(4.2473, -0.44941, 4.6231, -0.73127, 4.9000, 
-0.93895). One way to do this is first to generate the 
64 solutions to the first six equations of (3.4) by the 
method of Sect. 2, and then test each of these solutions 
on the equations (3.4g and h). Thus P r T4, provided 
that the solutions _+ (zl 1, ..., z23) above have multiplic- 
ity one. To eliminate the possibility of higher multiplic- 
ities, observe that any solution of multiplicity greater 
than one corresponds to a singular point of the 
solution set to (2.3) and (2.4) (for the given values of the 
parameters). Thus a multiple solution (z11,...,z23) 
corresponds to a degeneracy in the Jacobian matrix 



(with respect to the z-coordinates) of these six equa- 
tions. This matrix is 

2z~1 - 2 z 1 2  

2zll 0 
0 0 

J =  
0 0 

221 --222 

221 0 

0 0 0 0 \ 

--2213 0 0 0 

0 2z21 -2z22 0 

0 2z21 0 --222 
o 0 Z l l  --Z12 

--223 Z l l  0 --213 / 

which has determinant: 

d e t ( J )  = (z 1 lz22 - z12221 ) (z 11223 - z 13221) 

�9 ( z 1 2 2 2 3 - z . z 2 2 ) .  

We simply observe that the solutions correspond- 
ing to our point P above yield a non-zero value for 
det(J). This concludes the proof of (3.7), and hence of 
our Theorem 3.0. 

Remark. The reader may ask whether it would not be 
better to compute explicitly the locus T4(91), and 
observe directly its geometry in V(91). The answer is 
certainly yes, provided that the computation can be 
effectively carried out in a manner which yields a 
geometrically interpretable result. While one has the 
feeling that this is possible, we have been unable to find 
such a direct approach which would be feasible for 
presentation. 

4 Induced  F i x e d - A x i s  M o t i o n  

The analysis of fixed-axis motion in Sect. 3 assumes 
that the axis of rotation is in a generic orientation with 
respect to the observer: the axis is neither parallel to 
the observer's line of sight nor is it perpendicular. 
From a purely mathematical point of view this would 
seem a quite weak assumption since the probability of 
these special orientations is zero. However, because 
one often translates along straight paths in environ- 
ments that are largely static, one frequently observes 
fixed-axis motion where the axis lies orthogonal to the 
line of sight. The position of the axis depends upon 
which point of the visible environment one foveates. 

In this section we investigate briefly the fixed-axis 
motion induced by a translating observer, showing 
that the axis of rotation is indeed orthogonal to the line 
of sight and giving a simple expression for the angular 
velocity induced by straight line translations. In Sect. 5 
we consider the recovery of three-dimensional struc- 
ture from fixed-axis motion in this special case, with 
the added restriction that the induced angular velocity 
is constant. We conclude that only three views of two 
points are needed. In Sect. 6 we eliminate the angular 
velocity constraint and provide a closed form solution 
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Fig. 5. Geometry underlying the derivation of the fixed-axis 
motion induced by a translating observer who foveates a fixed 
point 

for the three-dimensional structure given three views 
of three points. 

Consider an observer traveling along a straight 
path, P(t), given in 9t 3 by P(t)= Po + tv. The observer 
foveates some point 0 as he translates. Erect a 
coordinate system that translates with the observer 
such that the plane defined by P(t) and O is the 
xz-plane. Figure 3 gives a top view of this plane�9 
Further, choose the coordinate system so that the effect 
of foveating 0 is to make O's x coordinate zero (O's y 
coordinate is also zero since 0 lies in the xz-plane.) 
Consider the effect of the observer's translation on 
some vector a from 0 to some point A. The effect is 
simply to translate the tail of the vector along the z-axis 
of the observer's moving coordinate system and then to 
rotate the vector about the y-axis. Any translation of 
the vector parallel to the observer's image plane is 
nullified by foveation. And, assuming orthographic 
viewing, any translation of the vector along the z-axis 
has no visible effect. The net result is that the vector 
undergoes a rotation about a fixed axis, in fact about 
the y-axis, which is orthogonal to the observer's line of 
sight (the z-axis). This holds true for vectors that lie in 
the xz-plane, as shown in the figure, as well as for those 
that do not. 

Let Po be the point along P(t) of minimum distance 
from the foveated point. Then the induced angular 
velocity at time t depends upon the magnitude of P(t) 
- P 0  (say p(t)), the observer's velocity p'(t), and the 
minimum distance, d, from his path to the foveated 
point. From Fig. 5 one sees that the angle between the 
observer's z-axis and P(t) is O(t)=tan-l(d/p(t)). The 
change in this angle is precisely the amount that the 
vector a rotates. Thus the induced angular velocity is 

-dp'( t)  
O'(t) - d2 + p2(t) (4.1) 
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and the induced angular acceleration is 

O"(t) = 2@(0 (P/(t))2 
(d2+p2(t)) 2 

which is zero only if 

2p(t) (p'(t)) 2 
p"(t) = dZ+pZ(t) 

dp"(t) 
d 2 +p2(t)' (4.2) 

(4.3) 

If the observer travels at a constant velocity, say 
p'(t) = c, then the induced angular acceleration is not 
zero, but is 

2dcZp(t) 
O"(t) = (d 2 +p2( t ) )2 .  (4.4) 

5 Fixed-Axis Motion: No Angular Acceleration 

In this section we prove the following: 

Theorem 5.0 Given three orthographic projections of 
two points spinning rigidly and at a constant angular 
velocity about a f ixed axis that is parallel to the image 
plane, the three-dimensional structure and motion of the 
points is uniquely determined up to a reflection about the 
image plane. 

As discussed in the previous section, the motivation 
for examining this special case is that the axis of 
rotation induced by a translating observer is ortho- 

y 
Xlo ,,x2 x,3 t 0 

Side View 

Top View 

@ 
lz x 

x 1 x 2 x 3 

Fig. 6. Geometry underlying the computation of structure from 
three orthographic views of two points that spin at a constant 
angular velocity about an axis parallel to the image plane 

gonal to his line of sight. However, as indicated by (4.2), 
the induced angular velocity is not likely to be 
constant. We consider the case of constant angular 
velocity anyway because it leads to a particularly 
simple solution and because the induced angular 
acceleration is small when the observer is distant from 
his point of nearest approach to the foveated point. 

We assume, without loss of generality, that the 
observer is foveating one of the two points and that the 
successive positions of the other point over the three 
views lies on a line parallel to the x-axis of the 
observer's coordinate system. A top view and a side 
view of this geometry are shown in Fig. 6. Let xj be the 
x coordinate of the point in view j, where j = 1, 2, 3. Let 
r be the radius of the circular path traced out by the 
point. Let 0 be the angle between the image plane and 
the vector from the origin to the point in the first view. 
Let 6 be the (constant) angular rotation between views. 
Then we can write: 

xl  = r cos(0), 

x2 = r  cos (0+  6), (5.1) 

x3 = r cos(0 + 26). 

Using the double angle formulae for sines and cosines, 
(5.1) becomes: 

xl = r cos(0), (5.2a) 

x2 = r [cos (0) cos (6 ) -  sin (0) sin (6)], (5.2b) 

x3 = r [cos (0) cos z ( 6 ) -  cos (0) sin z (6) 

- 2 sin(0) sin(a) cos(6)]. (5.2c) 

Dividing (5.2a) into (5.2b) and (5.2c) gives the two 
equations 

x2 = cos (6) - tan (0) sin (6), (5.3a) 
x1 

x3 = cos2 (6 ) -  sin 2 (6 ) -  2 tan(0) sin (a) cos(a). (5.3b) 
xl 

Equation (5.3a) can be solved for tan(0), 

cos(,~)- xJxl 
tan(0) = , (5.4) 

sin(a) 

and substituted into (5.3b) to give 

x3 _ 2x2 cos (a ) -  sin2(6)-cos2(6). (5.5) 
x1 x1 

Solving (5.5) for cos(a) gives 

cos(a) = x3 + xl (5.6) 
2x2 

Once ~ is known from (5.6), one can determine 0 from 
(5.4) and finally r from (5.2a). Consequently the three- 



dimensional interpretation is unique up to a reflection. 
The reflective ambiguity arises from (5.6) because 
knowing the cosine of an angle only specifies the angle 
up to a sign. 

The probability of false targets in this analysis is the 
probability that six randomly chosen points lie on two 
parallel lines - which is zero. 

6 Fixed-Axis Motion: Angular Acceleration 

In this section we prove the following: 

Theorem 6.0. Given three orthographic views of three 
points spinning rigidly about a f ixed axis that is parallel 
to the image plane, there are at most two interpretations 
(plus reflections) for the three-dimensional structure 
and motion of the points. In particular, constant angular 
velocity need not be assumed. 

The geometry for this proof is shown in Fig. 7. We 
again assume, without loss of generality, that one of the 
three points is foveated by the observer and that the 
other points move along lines parallel to the x-axis of 
the observer's coordinate system. Let xij be the x 
coordinate of point i in view j, where i=  1,2 and 
j = 1, 2, 3. Let Oj be the angle between the image plane 
and the vector from the origin to the first point in view 
j. Let fli be the angle made by the vector from the origin 
to the first point with the vector from the origin to 
point i. (Note that fi~ = 0). Finally, let r i be the radius of 
the circular path traced out by point i. Then we can 
write the six equations 
xij=ricos(Oj+fli), i = 1 , 2 ;  j = 1 , 2 , 3 .  (6.1) 

Let 

si= 1/ri, 

zj=cos(0), 
wj = sin (O j), (6.2) 

u,= cos(/~), 

vi = sin(fli) �9 

Then from the first view we have (using the double- 
angle formula for cosines) 

X 11S1 = Z l ,  (6.3a) 

X 21S2 = ZIH 2 - -  WlV 2 . (6.3b) 

From the second view we have 

XlzSl = z2, (6.4a) 

X22S2 = ZzU 2 - -  W2V 2 . (6.4b) 

From the third view we have 

Xl3Sl = z3, (6.5a) 

x23s2 = z3u2-  Way2. (6.5b) 
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@ Top View 

x11x21 

Fig. 7. Geometry underlying the computation of structure from 
three orthographic views of three points that spin with arbitrary 
angular accelerations about an axis parallel to the image plane 

Dividing (6.4a) by (6.3a), and (6.4b) by (6.3b)0 gives, 
respectively, 

X 12 Z 1 = Z2, (6.6a) 
X l l  

X22 (Z1/A 2 - -  WlV2) = (Z2U 2 - -  W2V2) . (6.6b) 
X21 

Dividing (6.5a), by (6.3a), and (6.5b) by (6.3b) gives, 
respectively, 

X13 
Z 1 ~-Z 3 , 

X l l  

X23 (ZxU 2 _  WlV2) = (Z3U 2 -  W3V2). 
X21 

Eliminate z2 from (6.6b) using (6.6a): 

X21 X l l )  1 2 \X21  

Eliminate z 3 from (6.7b) using (6.7a): 

(x2  
X21 X l l )  1 2 \X21  fl �9 

(6.7a) 

(6.7b) 

(6.8) 

(6.9) 

Multiply (6.8) by X 2 3 / X 2 1 -  X 13/x11; multiply (6.9) by 
Xaz/Xz~-Xlz /Xlr  Subtract (6.9) from (6.8) and 
simplify: 

(X12X23--  X13X22)W 1 ~-(X13X2I --  X 2 3 X l l ) W  2 

"~ (X22X11 - -  X21X12)W3 = 0 .  (6.10) 

(Interestingly, this can be written as [(X~l, x~2, x~3) 
x (x2~, x22, x23)]" (wl, wz, w3) = 0.) Recalling that z 2 
+w~ = 1, we can rewrite (6.6a) and (6.7a) as 

( x ~ 2  ~ 2 ( 1 - w  2) = 1 - w ~ ,  (6.11a) 
X l l / /  

( X1~3~2 (1--W~) --- I--W~. (6.1Xb) 
X l l J  
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(6.10) and (6.11) give us three equations in three of the 
unknowns wl ,  wz,  w3. We will use them to derive a 
closed form solution for these unknowns. 

Multiply (6.1 l a) by x 2 a/x~l  - 1. Multiply (6.1 l b) by 
2 2 x 12/x 11 - 1. Subtract (6.1 lb) from (6.11 a) and simplify: 

2 2 2 2 2 2 
( X 1 3 - - X 1 2 ) W  1 " q - ( X 1 1 - - X 1 3 ) W 2  

2 2 2 
J - ( N 1 2 - -  X l l ) W  3 = 0 .  (6.12) 

Solve (6.10) for wl to get 

W 1 = -- a -  l (bw2 + CW3) , (6.13) 

where 

a = x 2 3 x l z  - -  X a 2 X 1 3  , (6.14a) 

b ~ x 1 3 x 2 1  - - x 2 3 x l  1 ~ (6.14b) 

C = X 22  X 11 - -  X 1 2 X 2 1 "  (6.14C) 

Substitute (6.13) into (6.12) to give 

�9 (X23  - -  X22)  (bw 2 + c w 3 )  2 + a2(x21 --  xZ3)w  2 

2 2 2 2 + a  ( X l z - X l O w 3 = O ,  (6.15) 

which may be simplified further to 

c~w~ + flWzW3 + 7w 2 = 0, (6.16) 

where 

 =a2(x2 2 -  2 2 2 X l 0 + C  (x13-x12),  (6.17a) 

= 2bc(x23 - x22), (6.17b) 

7 = a 2 ( x 2  x23) z 2 2 + b (x13-  x12). (6.17c) 

Divide (6.16) by w 2 and solve for W3/W 2 using the 
quadratic formula: 

(_ w3 _ - f l + ~  (6.18) 
w2 2~ 

Having a value for the ratio of w 3 and w2, we can 
return to (6.11) to get w 2 and w3 explicitly. Multiply 
(6.11a) by 2 2 x12/x11. Sub- x13/x11.  Multiply (6.11b) by 2 2 
tract (6.11b) from (6.1 la): 

2 . 2  . 2 . 2  2 2 
X12W 3 - -  ~ 1 3 W 2 - ~ X 1 3  - - X 1 2  = 0 .  (6.19) 

Equation (6.19) can be reexpressed in terms of ~, (i.e., 
w3/wj, 
.~2 r2  . 2 2 2 2 2 

12~ w 2 - -  X13W2 J - X 1 3 - -  X12 = 0  , (6.20) 
and solved for w2: 

2 2 - -  
1/  x l z - x 1 3  (6.21) 

W 2 :  J -  - ~ .  
- -Xl  

Having w2, we can solve for w a using (6.19), and then 
solve for w, using (6.10). Then using the fact that z f 
+ w  2 = 1, we can find z,, z2, and z3. 

To find u z and/)2, multiply (6.3b) by xz2 and (6.4b) 
by x21. Subtract (6.4b) from (6.3b), and solve for u2 in 
terms of/)2: 

u2 =/)2 (X22Wl  - X21w2 ] . (6.22) 
/ x X z 2 Z  1 - - X 2 1 2 2  / 

Use the fact that u2+/ )  2 = 1 to solve for u z and/)2: 

- 1/2 
v 2 = + _ ( ( X 2 z W t - X z l W z ~ 2 + l  , (6.23a) 

kx\  X22Z1 - - N 2 1 Z  2 / /  

u2 = _+ (1 - v 2)- 1/2. (6.23b) 

Finally, from (6.3) we can find the radii of the circular 
paths, r 1 and r 2. 

The probability of false targets in this analysis is the 
probability that nine randomly chosen points in the 
plane lie on three parallel straight lines - which is zero. 

7 Conclusion 

The principal results discussed in this paper are the 
following. Three views of three points in a rigid 
configuration lead to two interpretations of the three- 
dimensional structure (plus orthographic reflections). 
Each of these four structures has sixteen possible 
motions, leading to a total of sixty four interpretations 
of structure and motion. Adding a fourth point, as 
Ullman (1979) has shown, leads to a unique interpre- 
tation. Assuming fixed-axis motion also leads to a 
unique interpretation for three views of three points if 
the axis is in a generic orientation. If the axis is parallel 
to the image plane then three views of the three points 
are compatible with at most two interpretations - 
unless one assumes the angular velocity is constant, in 
which case only two points are needed and one obtains 
a unique interpretation. Closed form solutions are 
obtained for each result. 

The equations studied here are amenable to so- 
lution by the techniques of nonlinear programming, 
making possible the design of noise insensitive al- 
gorithms for machine vision systems. The closed form 
solutions presented in the paper are, of course, unsuit- 
able as machine vision algorithms - they are presented 
only to prove that in fact the equations have a unique 
solution. However the equations themselves can be 
combined into an objective function which is mini- 
mized using any of several nonlinear optimization 
techniques. An example of this is given by Reuman and 
Hoffman (1986), who devise noise insensitive algo- 
rithms for the equations studied by Hoffman and 
Flinchbaugh (1982). 

It may seem natural to ask whether it is possible for 
the human visual system to employ the type of 
processor described in this paper, and in conclusion we 
will briefly address this question. The first question is 



whether humans are capable of detecting a structure 
rotating rigidly about  a fixed axis given three views of 
three points on it. Let us assume the answer is 
affirmative (as the evidence from Braunstein's pilot 
studies indicates). This means that the visual system 
computes the variety WOt) given V(9t); in fact the 
perception of the structure consists in knowing the 
z-coordinates given the x- and y-coordinates, and this 
is exactly the information encoded by the varieties W 
and V and the projection from W to V. Secondly, since 
V and W are algebraic varieties, knowledge of them is 
exactly equivalent to knowledge of the set of poly- 
nomials which vanish on them (i.e. of their largest "ideal" 
of definition). In our  case it is not hard to show that this 
set of polynomials is generated irredundantly by our 
equations (2.3), (2.4), and (3.2). The point is then that 
the ability to perceive fixed-axis mot ion from three 
views of three points is informationally equivalent to 
the solution of these equations, or of some equivalent 
set of equations related to these by a change of 
coordinates. This is true a priori (i.e. this truth is 
algorithm independent). One may ask for example 
about  the way in which these equations are solved in 
some system capable of this type of perception. But the 
react that the equations are solved is precisely equiva- 
lent to the capability. F rom this point of view we can 
see that the most  natural  rhetorical question is whether 
it is possible for the human visual system not to employ 
the processor discussed above. And we are suggesting 
that the natural  answer to this question is no. 
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