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ABSTRACT

One principle the brain uses to construct spatial interpretations of retinal images is
genericity. We describe this principle and illustrate its operation in our perceptions
of line drawings, object parts, and subjective surfaces.

INTRODUCTION

Your visual system reports on your environment: its objects, shapes, colors,
motions, and spatial layout. You might expect from this report the same objec-
tivity you expect from the local Times. A good reporter, you know, never creates
news, but just reports it. Opinions and speculations get labeled as such and
quarantined to their own section. The front page reports objective facts, free of
reporter biases. '

You might expect this objectivity from vision, but you will not get it. What
you get instead resembles an opening statement from the local DA: a carefully
constructed story, part fact, part supposition, clearly biased, sometimes down-
playing or ignoring evidence to the contrary.

Why? Your visual system needs to tell a three-dimensional (3D) story about
objects, shapes, colors, and motions. The only evidence it has to construct this
story are photon catches at receptors laid out in a two-dimensional (2D)) mosaic
on the retina. The gap between the evidence given and the story to be constructed
is enormous, as anyone will testify who has fried to build a working machine
viston system: the evidence at the retina is logically compatible with innumerabie
different stories. Careful detective work is required to bridge the gap.
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The problem is so difficult your brain devotes roughly 10 billion neurons to it.
Wired into these neurons are many procedures and biases for story construction.

We discuss one of them. Visual psychologists and researchers in computer
vision sometimes call it the principle of “genericity” or “nonaccidentalness”
{Biederman, 1985; Binford, 1981; Hoffman & Richards, 1984; Koenderink,
1990; Lowe, 1983; Lowe & Binford, 1981; Ullman, 1979; Witkin & Tenen-
baum, 1983). We discuss how this principle shapes our perceptions of line
drawings, object parts, and subjective surfaces.

GENERICITY AND LINE DRAWINGS

The principle of genericity, in its simplest form, says to reject any 3D interpreta-
tion of the retinal image that would place the eye in an “unstable” viewing
position. One way to define an unstable viewing position is as follows: it is a
viewing position which, if perturbed slightly, would lead to a change in the
topological or first order differential structore of the image. Two examples will
help.

First a topological case. Seppose the image contains an L junction, i.e., two
line segments which meet at a vertex as in the letter L. Consider a 3D interpreta-
tion consisting of two disconnected line segments at different depths in space.
Under this 3D interpretation the reason the image contains an L junction, instead
of two separated line segments, must be that your eye is viewing the line seg-
ments from a special vantage which makes their endpoints look connected. If you
were to move your eye slightly, the image of the L junction would become an
image of two separate line segments. (This separation actually occurs in the
familiar “Ames chair illusion,” in which a set of disconnected sticks in space
look like a chair from only one special viewpoint, and otherwise appear to be
disconnected. See Kilpatrick, 1952.) This introduction of a gap is a topological
change in the structure of the image. Therefore the principle of genericity says to
reject this 3D interpretation.

Now a first-order differential example. Suppose the image contains a single
line segment. Consider a 3D interpretation consisting of two line segments in
space meeting to form a right angle. Under this 3D interpretation the reason the
image contains a single line segment, instead of two line segments meeting to
form an L junction, must be that your eye is viewing the right angle from a
special vantage which hides the vertex. If you were to move your eye slightly, the
image of the line would become an image of two lines meeting at an L junction.
This introduction of a tangent discontinuity is a change in the first-order differen-
tial structure of the image. Therefore the principle of genericity says to reject this
3D interpretation.

The genericity principle has been used by various researchers to justify rules
for interpreting images (see, e.g., Lowe, 1985). Some examples are the follow-
ing:
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FIG. 6.1. The Necker cube first
described by Louis Albert Neck-
er in 1832.

Rule 1. Points collinear in an image are collinear in the world.

Rule 2. Points smoothly connected in an image are smoothly connected in
the world.

Rule 3. Points symmetric in an image are symmetric in the world.

Rule 4. Curves terminating at 2 common point in an image terminate at a
common poiat in the world.

Rule 5. Three or more curves intersecting at a common point in an image
intersect in a common point in the world.

These rules greatly constrain the possible interpretations of line drawings.
Consider, for instance, the Necker cube shown in Figure 6.1. The straight line
segments in this figure must be interpreted as straight lines in space based on
Rules 1 and 2. The reasoning is as follows. According to Rule 2, since the points
in a line segment are smoothly connected in the image they must be smoothly
connected in space. And according to Rule 1, since the points in a line segment
are collinear in the image they must be collinear in space. Therefore they must
form a line in space.

One can cast this reasoning in a Bayesian format, assuming no noise. Consid-
er the conditional probability that a given straight-line segment S in an image
actually arose from the projection of a wiggly curve in space. We can write this
as P(wiggly in world|$ in image) or more simply P(W | ). We wish to show that
P(W | §) is zero. By Bayes’ rule we can write

P(S| W)POW)

PSS 6.1

P(W|S)=

Here P(W) and P(S) are the prior probabilities, respectively, of wiggly curves in
space and of the straight line segment S. For our purposes, we do not need to
estimate P(S). We can estimate the numerator, viz., P(§ | W)HP(W), then set P(S)
to a value which normalizes the numerator to a probability. Consider, then, the
first factor in the numerator, the so-called likelihood P(S | W). P(S | W) is the
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FIG. 6.2. The sphere of view-
ing directions around a wiggly
line, with nongeneric views in-
dicated by dashed lines.

conditional probability that a wiggly curve in space will project to the straight-
line segment §. To determine P(S | W), genericity says to assume that all view-
points are equally likely. The set of viewing directions for a wiggly curve W in
space is illustrated in Figure 6.2 by a sphere surrounding W,. Since the sphere
has finite area, it is possible to place a finite uniform measure on it; in the
language of groups we can say that since SO(3) is a compact group it admits
finite Haar measures. Given this assumption, the measure of a set of viewing
directions is proportional to the area of the set. The set of viewing directions for
which W, projects to § or a scaled version of § is indicated by the dashed great
circle on the sphere. This set is one dimensional; therefore, it has no area and, in
consequence, zero probability. Moreover every wiggly curve W, in space that
can project to the line segment §, or a scaled version of S, can do so only from
viewpoints on this same great circle. One can see this by noting that § and W,
must be entirely coplanar for W, to project to S. Thus, not only is P(S | W =10
for each a, but so alsois [ P(S | WP(W,) dot. Consequently, P(S | W) is zero,
which by (1) implies P(W | §) is also zero. We conclude that genericity entails the
rule: if the prior probability of 3D straight lines is nonzero, interpret any straight
line in an image as straight in 3D. A wiggly 3D interpretation is nongeneric; a
stight movement of the eye would reveal the wiggles.

Now consider Figure 6.3. Your initial impression is probably that this depicts
some sort of pinwheel. You initially see it as flat. With difficulty you might also
be able to see it as another view of the Necker cube, seen from a nongeneric view
i which two vertices of the cube are precisely aligned. Why is it hard to see the
Necker cube? As we have just shown, all line segments in the image must be
interpreted as straight lines in space. Moreover, according to Ruie 5, each of the
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FIG. 6.3. A pinwheel.

three lines that intersect in the center of the figure must be interpreted as inter-
secting at a common point in space. This precludes a Necker cube interpretation.

You might argue that symmetry, not genericity, is the main principle under-
writing a pinwheel interpretation in this figure. This would be the explanation
given by the Gestalt principle of Pragnanz: That interpretation is to be made
which is simplest. The 2D pinwheel is already highly symmetrical in 2D, so
there is no need to go to a 3D interpretation.

But Figure 6.4 suggests that this is not right. Here we see a 3D shape from one
generic and one nongeneric view. The generic view leads to a 3D interpretation.
The nongeneric view usually does not, even though the 2D interpretation that is
seen is much less simple or symmetric. We can explain the differing perceptions
based on the rules derived from genericity, just as we did with the pinwheel. We
cannot explain the difference by appeal to symmetry.

Genericity is not the only principle used by human vision to interpret images,
and in many cases it cannot, by itself, force a unique interpretation. But it is a
powerful principle. We will shortly mention other principles that interact with
genericity in the generation of 3D interpretations. But Figure 6.5 indicates just

FIG. 6.4. One generic and one nongeneric view of a 3D shape (adapted
from Kanizsa, 1975).
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FIG. 8.5. The Penrose triangle.

how committed to genericity we can be. This figure shows the well-known
Penrose triangle. At first glance this looks like a normal 3D mode] of a triangle.
A closer look reveals that what you perceive is physically impossible. No real
triangle could be built which would project to this image. However, there is a
different 3D object which could be built and which would project to this image. It
is a triangle broken at one corner with the two edges twisted away from each
other. This has been constructed by Gregory (1970). However, to get the image
shown in Figure 6.5, one must photograph this 3D model from exactly one
viewpoint. Move the camera slightly and the image of the Penrose triangle is
ruined. Since this physicaily possible 3D interpretation requires a special view-
point, human vision rejects it. We prefer, in this case, to see a 3D interpretation
which is physically impossible but satisfies genericity, rather than to see one
which is physically possible and violates genericity.

The preceding analyses did not take into account the fact that real-world
visual systems have only finite resolution and must tolerate noise. These limita-
tions imply that nongeneric interpretations of images by human vision will have
“small” but not zero probability. For this reason the “rules” of image interpreta-
tion based on genericity are really like cues: they can be overruled, even by a
visual system that is ideal in the sense that it always infers the “most probable”
interpretation of the images presented to it. Image interpretation using cues is
based on a comparision of the collective weight of the cues (evidence) favoring
each interpretation.

Jepson and Richards (1992) have presented counterexamples to the hypothesis
that human vision always interprets images in accordance with the generic view-
point assumption. For example, in Figure 6.6a (due to Jepson and Richards) the
bottom edge of the small block on the left appears to be collinear with the bottom
edge of the large block on the right. However, if the figure is rotated clockwise
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FIG. 6.6. The interaction of genericity with other cues to depth,

by 90° then the interpretation changes, Now those edges are not interpreted as
collinear in space. Instead the small block appears to be closer to the observer
than the large block. The effect is even stronger when the original figure is
rotated counterclockwise by 90°,

A proximity rule of depth assignment seems to be affecting our perception of
this display. According to this rule features that are near each other in an image
should be interpreted as being near each other in space. The proximity rule is
another instance of the principle of genericity (in the sense of “small” proba-
bilities): If two features are widely separated in space, then only a small range of
viewpoints would place them near each other in an image. In Figure 6.6b this
appears to explain the apparent depth of the small circles relative to the edges of
the block.

In Figure 6.6a the bottom edges of the blocks (in the original orientation) are
collinear in the image. However, the features on the blocks that are nearest to
each other in the image are the right rear edge of the small block and the left front
edge of the large block. In the original orientation the bottom edges of the two
blocks are at the same height in the visual field. This supports the interpretation
that they are at the same depth in space using the “height-in-the-field” rule of
depth assignment. This interpretation is also supported by collinearity. The prox-
imity rule, which would predict that the right rear edge of the smail block would
be at approximately same depth as the left front edge of the large block, appears
to have been overruled by the combination of the “height in the field” and
collinearity rujes in this case.

However, when the display is rotated clockwise by 90° the height-in-the-field
rule would be expected fo be inoperative since the observer is looking up at the
blocks rather than down at them from above; the bottom surfaces rather than the
top surfaces of the blocks are now visible. In this case the proximity rule appears
to overrule the collinearity rule. When the original display is rotated counter-
clockwise by 90°; the height-in-the-field rule predicts that the large block should
be seen behind the small biock, in agreement with the proximity rule. The

ke
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combination of these rules strongly overrules collinearity. Thus there appears to
be a good deal of both cooperation and competition among the various
genericity-based rules and other rules of depth assignment.

GENERICITY AND PARTS

Genericity, as we have seen, helps to guide the assignment of 3D structures to 2D
images. To recognize these 3D siructures as objects, further processing is re-
quired. One aspect of this further processing is the decomposition of 3D struc-
tures into simpler subunits, or “parts.”

- Part decompositions aid the recognition process by allowing recognition de-
spite occlusions and despite nonrigid motions of parts, such as legs or arms
{Biederman, 1987; Hoffman & Richards, 1984; Marr & Nishihara, 1978). Ideal-
ly a part decomposition should be (1) easily computed from images, (2) applica-
ble to all classes of objects, and (3) independent of viewing geometry.

Genericity motivates an approach to part decompositions that is close to ideal.
Figure 6.7 illustrates the basic idea. On the left of the figure are two objects. On
the right the two have been generically intersected to form a single composite
object. Since the intersection is generic, the tangent planes to the surfaces of the
two objects are almost never paratlel at the points where the two surfaces meet.
The two surfaces almost everywhere meet in a concave discontinuity. Fhis is
illustrated by the dashed circular contour in Figure 6.7, That surfaces generically
intersect in concave discontinuities follows from a transversality theorem of the
field of differential topology (Guillemin & Pollack, 1974).

This motivates a simple rule for decomposing 3D shapes into parts: Divide
shapes into parts at contours of concave discontinuity (Hoffman & Richards,
1984). ;

An application of this rule is illustrated in Figure 6.8. On the left is the well-
known Schrider staircase. At first this appears to be an ascending staircase, and
the two dots appear to lie on the rise and tread of a single step. Note that all the
steps are bounded by lines of concave discontinuity, as dictated by genericity.
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FIG. 6.8, The Schroder staircase and stacked cubes.

Contours of convex discontinuity separate the rise and tread of a single step, but
do not serve to carve the staircase into steps. Upon further inspection, this
staircase will appear to reverse figure and ground, so that concave discontinuities
become convex, and vice versa. Our rule for part decomposition therefore pre-
dicts a new organization into parts, with part boundaries along the new lines of
concave discontinuity. You can check for yourself that this prediction is fulfilled.
The two dots which appeared to be on the rise and tread of a single step now
appeat to be on two distinct steps. Similar comments hold for the stacked cubes
on the right. The cubes are all separated along contours of concave discontinuity,
with the three dots at first appearing to lie on a single cube. Upon further
inspection, figure and ground reverse and one gets new part boundaries, and new
cubes, as predicted by genericity.

Smoothing contours. of concave discontinuity leads to-extrema of surface
curvature, specifically negative extrema in one of the principal curvatures. (An
extremum of curvature is a negative extremum if it is in a concave region of the
surface.} This suggests that for smooth objects we use negative extrema of the
principal curvatures to delineate parts (Hoffman & Richards, 1984), An example
of the parts given by this rule is shown for the “cosine surface” illustrated in
Figure 6.9. The dashed circular contours indicate the negative extrema of surface
curvature and, therefore, the part boundaries. These boundaries organize the
surface into a succession of ring-shaped hills. If you turn this iliustration upside
down, you will notice that the dashed circular contours no longer work as part
boundaries. Now they appear to lie in the middle of the hills, instead of between
the hills. Your organization of the cosine surface into parts has changed. The
reason is that turning the illustration upside down causes your visual system to
reverse the choice of figure and ground on the cosine surface. (We reverse figure
and ground because, apparently, we prefer to see the surface lying below us
rather than floating above us.) This reversal of figure and ground turns concav-
ities into convexities, and vice versa, Thus, negative extrema of the principal
curvatures become positive extrema, and vice versa. And, since negative ex-
trema determine the part boundaries, these boundaries must move to the new
negative extrema. Consequently we see new parts.
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FiG. 6.89. The cosine surface.

Koenderink (1990} has proposed a theory of object recognition based on the
idea of generic versus accidental views. In this theory the ambient space of
possible viewpoints on a scene is divided into “cells.” The cell that contains a
particular viewpoint is the largest connected region of the ambient space within
which all viewpoints give rise to “qualitatively” equivalent images. The “cell
walls” in this theory define surfaces in space. When an observer crosses a cell
wall, the qualitative structure of the image changes. If we are considering the
case of orthographic projection, then the cells become just patches on the sphere
of viewing directions, and the cell walls are the curves that bound those patches.
Koenderink’s claim is that much of the quantitative, metric information in images
is not used by the visual system and that, for most purposes, object recognition
proceeds using only qualitative information.

GENERICITY AND ILLUSORY CONTOURS

Genericity tums out to have important implications for the perception of sur-
faces, including illusory surfaces. Nakayama and Shimojo (1990, 1992) used it
to explain phenomena in the area of stereoscopic perception of untextured sur-
faces, and Kellman and Shipiey (1991} used it in their “discontinuity” theory of
perceptual unit formation.

When Figure 6.10 (Nakayama & Shimojo, 1990, 1992) is cross-fused (by
crossing one’s eyes so that the left and right figures superimpose in the middle)
most people perceive a horizontal bar overlaying a vertical bar, along with
illusory contours in the central region that complete the boundary of the horizon-
tal bar. In other words, the black region appears to split into two distinct sur-
faces, giving a 3D segmentation. Since the cross in this display is untextured, no
disparity information is available in its inferior. Also, the horizontal edges carry
no disparity information since any point along such an edge in one eye could
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Fi(3. 6.10. Stereo cross {adapt-
ed from Nakayama and Shimo-
o, 1980,

match any point along the corresponding edge in the other eye. (These different
correspondences reflect the fact that a physical edge that projects to a straight
horizontal edge in both eyes could still oscillate in depth in an arbitrary way, as
discussed earlier.) Only the vertical edges carry unambiguous horizontal dis-
parity information.

Nakayama and Shimojo’s explanation for this perception is based on the
generic viewpoint assumption. This assumption predicts the interpretation per
ceived by most people and eliminates others that would be predicted by other
algorithms. Their argument is essentially the following: According to the generic
viewpoint assumption edges that are straight in an image are straight in space,
and edges that are collinear in an image are collinear in space. Since the disparity
information in the image tells the observer that the outer endpoints of the hori-
zontal edges of the horizontal rectangle are at the same depth (because the
vertical edges do carry horizontal disparity information), these rules imply that
the horizontal edges must be frontoplanar.

Nakayama and Shimojo point out that no simple disparity-spreading scheme is
consistent with this perceptual interpretation. The idea here is that if an interpola-
tion algorithm were used to assign depth to the interior of the cross using the
disparity information available at its boundaries, then the horizontal arms should
be smoothly interpolated in depth between the depths the vertical edges of the
horizontal rectangle and the vertical edges of the vertical rectangle (see Figure
6.10). (This assumes that disparity signals generated by the boundaries of a
homogencous connected region can spread freely within that region.)

Kellman and Shipley (1991) have proposed a theory of “perceptual unit for-
mation” using the principle of transversality. The term “perceptual unit forma-
tion” refers to illusory surface and contour formation, as well as occluded {amo-
dal) surface and contour formation. According to their theory a necessary
condition for perceptual unit formation is the presence of tangent discontinuities
in the boundaries of regions in the image. If a pair of contours leading into
distinct tangent discontinuities are “relatable,” meaning that their extensions
beyond the tangent discontinuitites intersect at an angle greater than or equal fo
90°, then interpolation occurs between the contours. In this way perceptual units
are formed.

The justification for the role given to tangent discontinuities in Kellman and
Shipley’s theory is based on the concept of generic occlusion: The transversality
principle implies that tangent discontinuities almost always (in the technical




106 ALBERT AND HOFFMAN

sense) occur when occlusion is present. Essentially, the concept of generic occlu-
sion in terms of transversality clarifies and justifies in a formal way the use of
T junctions to infer interposition.

Later we will present a different proposal about the role of tangent discon-
tinuities in the perception of illusory surfaces. Our proposal will allow for the
fact that some examples of illusory surfaces do not give the impression of being
interposed in front of their inducers. This will help to explain some data obtained
by Shipley and Kellman (1980) that was inconsistent with their theory.

GENERICITY AND ICOs

In this section we will investigate some implications of genericity for the percep-
tion of illusory contours {(iCs). In particular, we will propose necessary condi-
tions for the perception of ICs in which the illusory surface appears to partially
occlude its inducers. We will refer to these as “ICOs,” which is short for “iHlusory
contours that occlude.” It will be shown that the generic viewpoint assumption
places restrictions on the topological and first order differentiable structure of
displays in which ICOs are perceived. However, as mentioned earlier, our an-
alyses will assume infinite resolution and no noise. Human vision, with its finite
resolution and inevitable noise can be expected to treat our “necessary condi-
tions™ as biases rather than strict rules. _

For the case of ICOs induced by “blobs” we will use the principle of transver-
sality. Consider Figure 6.11a, In this display most people see a white square that
stands out from the surrounding white area. The white square appears to be in
front of and partially cccluding black disks. Notice that the principle of transver-
sality, as applied to occlusion, is obeyed here: the tangents of the circles differ
from the tangents of illusory square at the points where the contours meet. The
occlusion is generic. However, in Figure 6.11b we have smoothed out the sharp
convex corners of the “pacmen” in Figure 6.1la. If an ICO were seen in this
display, then the occlusion would not be generic, In fact, most people do see a
weak IC in Figure 6.11b, but they do not describe it as an ICO. Most people
perceive the blobs to be pushed up against the side of the illusory square, as
though the blobs were made of a soft, flexible material that has been deformed to
fit the square’s shape.

Thus, we propose that tangent discontinuities are a necessary condition for
ICOs. But we do not claim that they are necessary for all ICs. Shipley and
Kellman (1990) found in their experiments that subjects do perceive ICs in
displays in which the tangent discontinuities have been removed, although the
ICs were usually rated by subjects as weaker than when discontinuities were
present. However, the IC in Figure 6.12 is rated by most subjects as relatively
strong, although it contains no tangent discontinuities and the short line segments
by themselves do not produce a signficant IC. There is not much brightness
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a ‘ L b
FIG. 6.11. {a)} Tangent discontinuities at the “lips” of the pacmen are
necessary for the perception of an occluding illusory surface. (b)

Smooth the discontinuities at the “lips” of the pacmen and no occlud-
ing itlusory surface is seen.

enhancement in this figure. However we, as well as many other researchers
(e.g., Kennedy, 1988) distinguish ratings of IC strength from ratings of bright-
ness enhancement, since it has been shown that strong iltusions of contour are
not always accompanied by enhanced brightness. Other researchers (Bonaiuto,
Giannini, & Bonaiuto, 1991; Kennedy, 1978; Kennedy, 1988; Purghe, 1991;
Purghe & Katsaras, 1991) have also emphasized the theoretical significance of
the distinction between ICs and ICOs. And from a theoretical point of view, the
arguments for the necessity of tangent discontinuities based on transversality and
generic occlusion only apply to ICOs. _

The concept of generic occlusion can also be applied to the case of ICs
induced by the ends of lines. The rules described earlier for the interpretation of
line drawings are useful in this connection. Consider Figure 6.13a. This is a
typical example of an IC induced by line endings. In this display most people
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FIG. 6.13. (a) An illusory surface induced by line segments. {b} Add-

ing more line segments to form vertices reduces the strength of the
iHusory surface and makes it appear to be nonoccluding.

perceive an illusory white square that is interposed in front of the lines. The lines
appear to continue underneath the illusory square. Now, in Figure 6.13b we
added short line segments to Figure 6.13a to make L junctions at the points
where the inducing line endings occurred in Figure 6.13a. This change has
weakened the IC, but it has also produced a gualitative change in the IC. Its
apparent depth has moved back to approximately the same depth as the L junc-
tions of the inducers. The inducing lines no longer appear to continue underneath
the illusory surface. Instead, the L junctions of the inducers appear to be stuck
into the side of the illusory surface. The ¥C is not an ICO.

We can account for this qualitative change in appearance using the concept of
generic occlusion. The IC in Figure 6.13b passes right through the L junctions of
the inducers. So, including the IC, there is in fact a K junction at each point
where the IC meets an inducer. From Rule 5 for line-drawing interpretation, we
know that if our viewpoint is generic then at a K junction all contours must be at
the same depth. Therefore, the IC cannot be an ICO if genericity is obeyed.

Similarly, comparing Figure 6.14a with Figure 6.14b, most observers per-
ceive an ICO in Figure 6.14a, and no IC or a nonoccluding IC in Figure 6.14b.
Again, this can be explained by the K junctions formed at the intersection points
of the inducers and the potential IC. What is interesting about this example is that
the tangents of the inducing lines agree at the vertices. When attention is re-
stricted to a small area around a vertex, it appears more like a termination of an
isolated line than an L junction. Yet, the IC is strongly affected. This appears to
be inconsistent with the predictions of the line-end-contrast theory of Frisby and
Clatworthy (1975) as well as the neural network theory of Grossberg and Min-
golla (1985).
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FIG. 6.14. {a} An illusory surface induced by semicircles.. (b) Adding
more curves to form vertices reduces the strength of the illusory sur-
face and makes it appear to be nonoccluding.
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WHY OQUTLINES OF BLOBS DO NOT INDUCE 1COs

Genericity also provides an interesting new perspective on the question of why
“blobs,” when drawn only in outline, do not produce significant ICs. This
question has been widely discussed among researchers in IC perception (e.g.,
Kanizsa, 1974; Rock, 1987). For example, consider Figure 6.15a. Most ob-
servers report seeing only a very weak if any IC in this display. However, if the
short line segments in Figure 6.15a are removed, as in Figure 6.15b, then a
strong IC is seen.

We can understand, at least in part, the difference in the way these two
displays are perceived by using genericity: Assume that an illusory surface is
seen in Figure 6.15a. Then the short line segments cannot be viewed as partially
occluded blob-shaped elements since it would be highly improbable that just a
very thin edge of those blobs would be visible (also see Kellman & Shipley,
1991). On the other hand, if they are viewed as unoccluded line segments, then
the fact that they are lying on (or directly next to} the IC means that they must be
at the same depth as the IC. Otherwise it would imply an improbable coincidence
of viewpoint. Now the short line segments coterminate with the circular arcs. So
by Rule 4, the short line segments must also be seen at the same depth as the
circular arcs at the junction points. Therefore, the potential IC must be seen at the
same depth as the circular arcs at the junction points, so it cannot be an ICO. A
similar argument can be used in the case of outlines of pacman inducers.

Intuitively the idea is that if the circular arcs in Figure 6.15a were perceived as
being occluded by an illusory surface, as they are in Figure 6.15b, then the visual
system would have to “wonder” why the short line segments terminate exactly
where the circular arcs pass underneath the Hlusory surface in the image.
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FIG. 6.15. (&) Blob outlines do not induce illusory contours. {b) Re-
moving the short line segments Tn part {a) allows an ICO to emerge.

Kanizsa (1974} has discussed displays very similar to these in comparing his
theory of IC perception with that of Gregory: “According to Gregory the sense
data are used by the brain according to certain strategies, in order to decide which
object has the highest probability of being present. But then, comparing the
perceptual effects of Figures 12.26a and 12.26b [similar to our figures 6.15b and
6.15a, respectively], one should conclude that for the brain [a corner of the type
in Figure 12.26b] is more probable than [a corner of the type in Figure 12.26a], a
conclusion that seems to me rather implausible.”

In our view it is not that the inducers in Figure 6.15a are more probable than
those in Figure 6.15b, but that those in Figure 6.15a would be highly improbable
if there were a surface (the potential iHlusory figure) in front, whereas those in
Figure 6.15b would not. In pther words, given that an ICO occurs in Figure
6.15b our theory helps us to understand why, despite the similarity between
Figures 6.15a and 6.15b, an ICO does not occur in the former. .

Genericity is also helpful in understanding the role of line segments that run
along the length of an IC, as in Figure 6.12 discussed earlier. Consider Figure
6.16, in which the short line segments of Figure 6.15a have been moved away
from the circular arcs. Most observers perceive an IC in this figure that is as
strong or stronger than the ene in Figure 6.15b. Note that the circular arcs appear
to be partially occluded, whereas the line segments that lie along the IC do not.
The line segments appear to be closer than the circular arcs, lying at the same
depth as the IC. This is what would be predicted on the basis of the genericity
arguments given above. The line segments are usually described by observers as
entities of some sort attached to the edge of the illusory surface. Generally, in
displays in which some of the inducers of an illusory figure are consistent with
generic occlusion and some are not, the former are seen as partiatly occluded,

while the latter are seen as unoccluded and are pulled forward to the same depth
as the IC. :
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FIG. 6.18. A modification of C"j —— \D
Figure 6.15a that does induce a
strong 1C.

Kanizsa (1974) has argued that “closure” can explain the perception of 1Cs
with line-end inducers. Supporters of this theory might claim that it can explain
the effects seen in the displays in this section. However, we believe genericity to
be a more satisfactory explanation, since it is a valid ecological constraint. It also
predicts perceived depth relations, which closure does nof.

Genericity can be applied in a similar way to obtain necessary conditions for
the “neon color spreading” spreading effect (see Van Tuijl, 1975). Beginning
with a display that produces neon color spreading using colored lines, more lines
are added that intersect the original lines at their points of color change. The
result is that the color spreading is greatly reduced and the perception of transpar-
ency disappears (see Albert and Hoffman, in press).

CONCLUSION

The reports of our visual systems are not unbiased accounts dictated by the state
of the world. Rather these reports are the result of sophisticated inferences which
have been wired into the billions of neurons which process vision. Many princi-
ples underlie these inferences. One of the most powerful and ubiquitous is the
principle of genericity. As we have seen, genericity is integral to our perceptions
of line drawings, the parts of objects, and subjective surfaces. Further study of
genericity and of its interactions with other principles that shape our perceptions
is a promising direction for research into human vision. ‘
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