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Abstract. Marr proposed that human vision constructs “a true description of what
is there.” He argued that to understand human vision one must discover the features
of the world it recovers and the constraints it uses in the process. Bayesian decision
theory (BDT) is used in modern vision research as a probabilistic framework for
understanding human vision along the lines laid out by Marr. Marr’s contribution to

vision research is substantial and justly influential. We propose, however, that
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evolution by natural selection does not, in general, favor perceptions that are true
descriptions of the objective world. Instead, research with evolutionary games
shows that perceptual systems tuned solely to fitness routinely outcompete those
tuned to truth. Fitness functions depend not just on the true state of the world, but
also on the organism, its state, and the type of action. Thus fitness and truth are
distinct. Natural selection depends only on expected fitness. It shapes perceptual
systems to guide fitter behavior, not to estimate truth. To study perception in an
evolutionary context, we introduce the framework of Computational Evolutionary
Perception (CEP). We show that CEP subsumes BDT, and reinterprets BDT as

evaluating expected fitness rather than estimating truth.



1 Human Vision

What is vision, and what is it for? David Marr answered that “Vision is a process that
produces from images of the external world a description that is useful to the viewer
and not cluttered with irrelevant information" (Marr 1982, p 31).

According to Marr the descriptions produced by human vision make explicit
the true shapes and positions of objects, along with such properties as their colors
and textures. This is, Marr thought, “... the quintessential fact of human vision—that
it tells about shape and space and spatial arrangement ... it also tells about the
illumination and about the reflectances of the surfaces that make the shapes ... and
about their motion.” (p 36).

The fact that vision is able to produce true descriptions of shapes and their
spatial relations is, Marr proposed, a consequence of evolution by natural selection:
“We ... very definitely do compute explicit properties of the real visible surfaces out
there, and one interesting aspect of the evolution of visual systems is the gradual
movement toward the difficult task of representing progressively more objective
aspects of the visual world” (p 340).

Marr admitted that human vision falls prey now and then to illusion. A stick,
for instance, protruding from water looks bent due to refraction of light by water.
But Marr was confident that the occasional illusion does not contradict his claim
that human vision produces, in general, true descriptions of the objective world: “...

usually our perceptual processing does run correctly (it delivers a true description



of what is there), but although evolution has seen to it that our processing allows for
many changes (like inconstant illumination), the perturbation due to the refraction
of light by water is not one of them" (p 30).

This was no small point for Marr. His claim that human vision evolved to
construct true descriptions of the physical world is, he thought, key to
understanding how the scientific study of human vision must proceed: “... the visual
system tries to deal only with physical things, using rules based on constraints
supplied by the physical structure of the world to build up other descriptions that
again have physical meaning. This means that extreme care is required in the
formulation of theories because nature seems to have been very careful and exact in
evolving our visual systems" (p 75).

Why has natural selection shaped human vision to see objective properties of
the world? Marr did not address this point at length, but gave this hint: “The payoff
is more flexibility; the price, the complexity of the analysis and hence the time and
size of brain required for it” (p 340). Marr’s idea is that we benefit by having a large
repertoire of behaviors that allow us to act adaptively in many situations, but this
repertoire needs visual descriptions that can guide, in each situation, the proper
choice of behavior. Thus the utility of flexible behavior is, Marr proposed, a selection
pressure that shaped human vision to produce, as he put it, “a true description of
what is there.”

The hypothesis that human vision constructs, for the most part, a true
description of what is there is now, almost universally, accepted among vision

scientists. For instance, Palmer (1999) in his textbook Vision Science argues that



“Evolutionarily speaking, visual perception is useful only if it is reasonably accurate
... Indeed, vision is useful precisely because it is so accurate. By and large, what you
see is what you get. When this is true, we have what is called veridical perception ...
This is almost always the case with vision ...” (Palmer 1999, p. 6). Knill et al. (1996,
p. 6) say, “Visual perception ... involves the evolution of an organism’s visual system
to match the structure of the world and the coding scheme provided by nature.” Noé
and Regan (2002) propose that “Perceivers are right to take themselves to have
access to environmental detail and to learn that the environment is detailed” (p.
576) and that “the environmental detail is present, lodged, as it is, right there before
individuals and that they therefore have access to that detail by the mere movement
of their eyes or bodies” (p. 578). Geisler and Diehl (2003) say, “In general,
(perceptual) estimates that are nearer the truth have greater utility than those that

are wide of the mark."

2 Bayesian Decision Theory

The idea that perception is a process of inference that estimates descriptions
of the world has a long intellectual history, going back at least to the Optics of the
Islamic scholar Alhazen (965-1039; see Sabra, 1978), through the work of
Helmholtz (1910), and more recently of Gregory (1966; 1970; 1974) and Marr. The
modern framework for modeling human vision along these lines is Bayesian
Decision Theory (BDT; Geisler & Kersten, 2002; Glimcher, 2003; Jaynes, 2003;
Kersten, Mamassian & Yuille, 2003; Knill & Richards, 1996; Maloney & Zhang, 2010;

Mamassian, Landy & Maloney, 2002). BDT provides a probabilistic analysis of vision



at what Marr called the “computational level”, i.e., an analysis of the formal problem
that the visual system faces—the “outputs” it must compute given the retinal inputs,
the constraints it brings to bear in doing so, etc.—considered independently of the
specific algorithm that it might use, and of details of the neural implementation.

The essential feature of problems in perception is that they are highly
inductive in nature. Any image on the retina is consistent with a large number of
possible scene interpretations. The only way the visual system can resolve the
ambiguity is by bringing to bear additional constraints or “biases” based on its prior
experience (phylogenetic and ontogenetic), and comparing the relative probabilities
of different interpretations. Formally, the visual system is given an image (or set of
images) io, and it must determine the “best” scene interpretation for that image. In
probabilistic terms, it must compute the conditional, posterior, probability p(s| io)
for different possible scene interpretations s. To do so, it has available two sources
of information. The first is the likelihood function, or the conditional probability p(io
| 5), viewed as a function of s (recall that io is fixed). The likelihood is high for those
scene interpretations s that are consistent with the given image ip—i.e., those scenes
that could have generated the image iy, and hence can “explain” it. Given the highly
inductive nature of vision, however, there will typically be a large number of scene
interpretations that are consistent with the image ip. So the likelihood by itself will
typically not suffice to resolve the ambiguity. The other source of information
available to the visual system is the prior probability of different scenes p(s). Certain
scenes and states of the world are more likely than others—e.g., light is more likely

to come from above than below—and such statistical regularities have presumably



been “internalized” and embodied in visual processing (e.g., Feldman, 2012; Geisler,
2008; Jepson, Richards & Knill, 1996; Shepard, 1994).

Given the two probabilistic sources of information—the prior p(s) and the
likelihood p(io | s)—Bayes’ formula provides a provably optimal way to combine

them (Jaynes, 2003):

p(s| io) = p(io| ) p(s) / p(io)-

In other words, the posterior is proportional to the product of the likelihood and the
prior. In practice, the term p(ip) in the denominator plays no significant role when
comparing the posterior for different scenes, because it involves no dependence on
s.I Moreover, given that p(s | ig) is a probability distribution, it must integrate to 1
over all possible s; this constraint effectively turns p(iy) into a normalizing constant.

Application of Bayes’ formula yields a probability distribution—the posterior
distribution—on the space of scene interpretations. But in visual perception we
don’t see an entire distribution of possible visual scenes, we usually see just one
scene. In order to pick a single “best” interpretation from this distribution, one must
take into account the consequences of making errors. If, for instance, one is walking
on a path by a cliff, misjudging distances on one side of the path can be fatal, but on
the other side innocuous. The consequences of such errors are represented

mathematically via the loss (or gain) function, which assigns for each possible error,

1 When one compares two scene interpretations s1 and s, by taking their posterior ratio p(s1| io)/
p(sz| i0), the term p(io) simply cancels out.



or deviation from the “true” but unknown interpretation, a loss (or gain) value.2
Different choices of loss functions lead to different ways of picking a single “best”
scene interpretation from the posterior distribution (see, e.g., Brainard & Freeman,
1997; Geisler & Kersten, 2002; Glimcher, 2003; Mamassian, Landy & Maloney,
2002). One’s final estimate is therefore a function of three factors: (i) the extent to
which different interpretations can explain the image data (the likelihood); (ii) the
“internal” biases or constraints the visual system has concerning various
interpretations (the prior); and (iii) the penalties associated with deviations from
the “true”—but unknown—interpretation (the loss function).

A BDT observer can certainly be prone to misperceptions or “illusions.” For
instance, if the assumptions embodied in its prior happen to be invalid in the
present context (say, if it makes an assumption that light comes from above, but in
the current scene light happens to come from below), then the estimate of the BDT
observer will deviate systematically from the actual state of affairs. Thus BDT
observers do not always see the truth. (Indeed, the above example makes it clear
that they could not always see the truth: No matter what assumption a BDT observer
might make, it would always be possible to place the observer in a context where
that assumption is violated.) Hence, in this particular sense, BDT allows that one
might not see the truth.

There is, however, a more fundamental sense in which BDT embodies the
common assumption that vision has evolved to estimate the truth. Specifically, BDT

assumes that the language of scenes, X, over which the posterior distribution is

2 Losses are simply negative gains.



computed, does contain somewhere within it a true description of the world. One’s
estimate might miss this true description; but the truth is in X somewhere, even if
the BDT observer happens to miss it in any given instance. It is in this way that the
framework of BDT embodies the assumption that vision has evolved to see the
truth. Our perceptual estimates are not always correct, but they are performed over
a set of options that, somewhere within it, contains the truth.

This conceptualization is deeply linked to the historical roots of Bayesian
methods—namely, as a means of computing “inverse probability.” A context first
considered by Laplace (1774) was that of computing the “probabilities of causes”
from an observed event E. Here, one is interested in the probability p(C;j| E) for each
of various possible causes Cj, given the observation E. The probabilities one actually
knows, however, are p(E | (;), namely, the conditional probability of observing the
event E if the true cause were C;. The problem is therefore one of “inverting” the
conditional probabilities. Precisely the same applies to the BDT observer, of course,
which knows p(ip | s) for different possible scenes, but whose goal is to compute p(s]|
ig). Since the mapping from 3D scenes to retinal images corresponds to “optics”
(indeed, the likelihood function in vision applications is generally referred to as
either the “projective mapping” or the “rendering function”), the goal of vision
according to BDT is to invert the optical mapping. Vision therefore essentially
becomes “inverse optics” (e.g., Adelson & Pentland 1996, Pizlo 2001).

An important implication of this “inverse probability” approach is that, in
BDT, the space of perceptual interpretations is assumed to be identical with the

space of objective world scenes (or world states). In the description above, the same



set X played both roles—that of the objective world as well as the space of
perceptual interpretations. This assumption is standard in BDT approaches to

vision, and will become important for us later.

3 Primitive Vision

Marr proposed that human vision constructs a true description of what is there. But
he proposed a different, and less influential, account of primitive, or simpler, visual
systems. He maintained that, for such systems, it is still the case that vision provides
useful descriptions, but he thought that they accomplish this in a manner quite
different from that of human vision.

He illustrated his idea with the house fly. Reichardt and Poggio (1979) found
that images from the eyes of a fly are processed with a few distinct computations
that provide just the information needed to control flight. One computation, for
instance, analyzes the rate of visual-field expansion, and prompts the fly to land if
this rate is large. Other computations analyze the angular direction and velocity of
blobs of a certain angular size, and control the in-flight tracking of the fly. Each
computation is fast, and focused on producing a description that is useful for some
aspect of flight control.

Marr noted that these descriptions, in addition to being useful, are also not
cluttered with irrelevant information: “... it is extremely unlikely that the fly has any
explicit representation of the visual world around him—no true conception of a
surface, for example, but just a few triggers and some specifically fly-centered

parameters ...” (p 34). Marr cited other such examples: bug detectors in frog vision,
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hawk detectors in rabbit vision, and a detector of red V’s in the vision of jumping
spiders that alerts them to the possible presence of a mate. In the discussion at the
end of his book, Marr developed this point: “In a true sense, for example, the frog
does not detect flies—it detects small, moving, black spots of about the right size.
Similarly, the housefly does not really represent the visual world about it—it merely
computes a couple of parameters ... which it inserts into a fast torque generator and
which cause it to chase its mate with sufficient frequent success” (p 340).

Marr summarized these examples with the observation that “Visual systems
like the fly’s serve adequately and with speed and precision the needs of their
owners, but they are not very complicated; very little objective information about
the world is obtained. The information is all very subjective ...” (p 34).

Marr assumed that properties perceived by humans, such as shape and
spatial relations, correspond to objective physical properties that exist
independently of any observer. He proposed however that simpler visual systems,
such as those of flies, frogs, and spiders, do not, in general, produce descriptions of
objective properties of the world; instead they produce descriptions that are
subjective, but useful (and sometimes complex; see Prete, 2004). Thus, according to
Marr, the visual world of a fly gives it little, if any, insight into the true nature of the
physical world around it. It inhabits instead in a world of subjective visual
descriptions.

Why should this be? Marr answers that “One reason for this simplicity must
be that these facts provide the fly with sufficient information for it to survive. Of

course, the information is not optimal and from time to time the fly will fritter away
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its energy chasing a falling leaf or an elephant a long way away ...” (p 34). Marr’s
point is that vision evolves by natural selection. A visual process will pass from one
generation to the next only if it confers enough fitness, i.e., “sufficient information
for it to survive.” Visual processes in the fly that construct subjective descriptions
confer enough fitness to be retained by natural selection. As a result, the fly need see
no objective truths to survive. Subjective descriptions suffice.

Marr offered another reason for subjective descriptions in the fly. “Another
reason is certainly that translating these rather subjective measurements into more
objective qualities involves much more computation” (p 35). This is again an
argument based on fitness: Objective description requires more computation, which
usually requires more time and energy, and thus detracts from fitness, since
computations that are faster and cheaper are, ceteris paribus, fitter. Extra calories
spent on computation are extra calories that must be found and consumed. Extra
milliseconds spent on computation are extra milliseconds that predators can use to

attack, or prey can use to escape.

4 Subjective and Yet Useful

Marr claimed that perceptions of primitive visual systems might be subjective and
yet useful. He contended that “...it is extremely unlikely that the fly has any explicit
representation of the visual world around him—no true conception of a surface, for
example, but just a few triggers and some specifically fly-centered parameters...”

and yet he concluded that “Visual systems like the fly’s serve adequately and with
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speed and precision the needs of their owners...” It is natural to ask how this is
possible. How can a visual system fail to see any objective properties of the world
and yet succeed at serving its owner adequately? How is it possible to survive if one
never sees the objective world?

The answer is that it’s possible because fitness is not the same thing as the
objective world, and evolution by natural selection favors perceptual strategies that,
ceteris paribus, glean more information about fitness.

Fitness is distinct from the objective world because fitness depends not only
on the objective world, but also on an organism, its current state, and type of action.
Suppose, for instance, that the objective world contains a T-bone steak. For a hungry
tiger looking to eat, that steak enhances fitness. For a sated tiger looking to mate it
contributes no fitness. For a cow, in any state, it contributes no fitness. In this sense,
fitness is not the same as the objective world.

Now consider two representational strategies for a visual system. A
subjective strategy, that guides adaptive behavior but computes no objective
descriptions of the world—such as Marr attributes to the fly—describes the
expansion in the visual field; whereas an objective strategy describes the true shape
of any nearby surface and the true time of arrival at that surface. Which description,
subjective or objective, confers greater fitness? The answer, as we have just seen,
depends on the organism, its state, and its action. For a fly in flight wanting to land,
the subjective description is in fact computed. Thus we conclude that, in the niche in
which flies evolved, the subjective description probably confers greater fitness than

the objective.
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Natural selection thus makes possible the evolution of an organism that is
ignorant of the objective world, or, as Marr put it, that “does not really represent the
visual world about it.” For such an organism, subjective descriptions are fitter than
objective. Evolution can fashion organisms that are ignorant of the objective world
because natural selection depends only on fitness and not, a priori, on seeing truth.
Marr proposed that, for flies, frogs, spiders and many other organisms with simpler
vision, ignorance of the objective world is not just possible, it is actual. They inhabit
subjective visual worlds, ignorant of the objective world around them. And they

survive—even thrive.

5 Perceptual Strategies

Marr argued that evolution shaped human vision to construct “a true description of
what is there,” but shaped primitive vision, such as that of the fly, so that it “does not
really represent the visual world about it”. These are substantial claims about the
evolution of perception.

They can be explored and tested using evolutionary game theory (e.g.,
Hofbauer & Sigmund, 1998; Jameson & Komarova, 2009; Maynard-Smith, 1982;
Nowak 2006; Samuelson, 1997; Sandholm, 2007). An objective perceptual strategy
that constructs “a true description of what is there” can be modeled precisely and
allowed to compete against a subjective strategy that provides “just a few triggers
and some specifically fly-centered parameters.” One can study the fitness of these

strategies in various worlds. One can ask, “Which worlds favor true perceptions, and

14



which drive such perceptions to extinction?” Hunches about the effectiveness of
perceptual strategies can be replaced with rigorous understanding.

To do this, we construct a mathematical framework that we call
Computational Evolutionary Perception (CEP). This framework defines and classifies
perceptual strategies, and studies their evolution.

Let the set W represent the objective world and the set X represent certain
perceptions of an organism. We know nothing a priori about W, but assume we can
talk sensibly about probabilities of events in W, governed by a probability measure

. (We note that W might have other structures on it, such as orders, groups,

metrics or vector spaces.)

A perceptual strategy is a random variable (more generally, a measurable
function) P:W — X from the world W to the space of representations X. We will
find it useful to think of perceptual strategies as communication channels between
the objective world and the organism, that allow information to flow from the
objective world to the organism.

There are four classes of perceptual strategies (Mark et al,, 2010). A naive
realist strategy assumes that X =W, i.e, that one’s perceptions correspond to and
are exhaustive of the objective world, and requires that P preserves all structures in
W, i.e., that the structures of one’s perceptions correspond to the objective
structures in the world. Intuitively, and in brief, a naive realist strategy sees the
truth, the whole truth, and nothing but the truth. A strong critical realist strategy
assumes X c W, i.e,, that one’s perceptions correspond to part but not necessarily

all of the objective world, and requires that P projects all structures in W onto X, i.e.,
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that the structures of one’s perceptions correspond to the objective structures in the
world. Intuitively, a strong critical realist sees part of the truth, but not necessarily
the whole truth. A weak critical realist strategy allows that X ¢ W, i.e,, that one’s
perceptions need not correspond to any part of the objective world, and requires
that P projects all structures in W onto X. Intuitively, a weak critical realist need not
see the truth, but what it does see faithfully preserves relationships between
elements of the truth. An interface strategy allows that X ¢ W, i.e,, that one’s
perceptions need not correspond to any part of the objective world, and does not
require that P project all structures in W onto X. Intuitively, an interface strategy
need not see the truth, and what it does see need not preserve relationships
between elements of the truth (Hoffman 2009, Koenderink 2011). Nevertheless
such perceptions can guide adaptive behaviors, just as the desktop of a computer
guides adaptive behaviors of the user, while hiding the complexity of the hardware
and software of the computer (Hoffman 2000).

When we say that weak critical realist and interface strategies “need not see
the truth,” we do not simply mean that these strategies can make mistakes, such as
seeing a 3D shape that is not quite accurate or perceiving a stick in water as being
bent. Instead we mean that the very language in which these strategies express the
possible range of perceptions may be the wrong language for describing any aspect
of the objective world. For instance, to claim, in this sense, that when we perceive
objects and surfaces we “need not see the truth,” means that the objective world
may ultimately contain no “objects” as we intuitively think of them. (Consider, for

instance, that even in modern theories of Physics, there is nothing that directly
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corresponds to our intuitive notion of objects and surfaces, such as tables and
tabletops. Einstein, in his Physics and Reality, refers to the object concept as a “free
creation of the human (or animal) mind”; see Einstein, 1936.) In other words, these
perceptual strategies allow for the possibility that, not just some detail here or there
is off, but rather that the entire framework may be off.

It is critical that CEP includes the study of perceptual strategies that, in this
more dramatic sense, need not see the truth. We want to ask if natural selection has
shaped our perceptions to report true properties of the objective world, or whether
instead it has shaped our perceptions to be entirely “subjective,” as Marr claims is
the case for the fly. In order to address this question rigorously, we must define and
study perceptual strategies that result entirely in subjective perceptions, and ask
how well they compete in evolutionary games against strategies that have objective
perceptions.

To this end, CEP must canvas all possible perceptual strategies, which is why
we just defined the four basic classes of strategies. These four classes of perceptual

strategies form a nested hierarchy, the Hierarchy of Perceptual Strategies:

Naive realist c Strong critical realist € Weak critical realist  Interface

That is, all naive realist strategies are strong critical realist strategies, but not vice
versa; all strong critical realist strategies are weak critical realist strategies, but not
vice versa; all weak critical realist strategies are interface strategies, but not vice

versa. This is illustrated in Figure 1.
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Interface

Weak Critical Realist

Strong Critical Realist

Naive Realist

Figure 1. Venn diagram showing the inclusion relationship between the four classes

of perceptual strategies.

Marr proposed that evolution shaped human vision to construct “a true
description of what is there,” but shaped simpler visual systems, such as that of the
fly, so that it “does not really represent the visual world about it.” His proposal can
be restated in the language of this hierarchy: Human vision includes strong critical
realist strategies, whereas the fly has interface strategies but no strong critical

realist strategies.

6 Darwinian Ideal Observers
We wish to study proposals such as Marr’s. To this end we must understand how

natural selection shapes perceptual strategies. In competitions between strategies,
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selection favors the fitter strategy. Thus we require a notion of fitness for perceptual
strategies.

We can think of organisms as gathering “fitness points” by interacting with
the world. As mentioned earlier, fitness points depend on the organism, its state,
and its action class. A hungry lion looking to eat would gain many fitness points
from a gazelle, but a sated lion looking to mate would not. Natural selection favors
perceptual strategies that guide an organism toward actions that reap more fitness
points.

We formalize this by defining a global fitness function f:W XOXxS§x A — R,
where W denotes the unknown objective world, O a set of organisms, S a set of
possible states of organisms, and A a set of action classes. Once we specify a fixed

organism o, € O, state s; €S, and action classa, € A, then the fitness function
o5, describes the fitness points that will be obtained for each w e W'. For
instance, if the organism o, is alion, its state s ; is hunger, the action class q, is
eating, then the fitness function f, |, describes the fitness points that will accrue

from eating particular things (say, a gazelle). We call f, a specific fitness

function. Specific fitness functions guide evolution by natural selection.

A Darwinian Ideal Observer (X,P) for a specific fitness function f,

iS5 dk
consists of (i) a set of perceptual representations X, and (ii) a perceptual strategy, or

channel, P from the world Wto X, i.e.,, P:W — X, that allows the organism to
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maximize its channel capacity for expected fitness.3 Such an observer is called ideal
because natural selection does not, in general, produce perceptual strategies that
maximize capacity for expected fitness. Satisficing solutions, not optimizing
solutions, are the norm for natural selection. A perceptual strategy that has been
shaped by natural selection as a satisficing solution for a specific fitness function

1.5« @nd set of perceptual representations X is a Darwinian Observer.
LA

To illustrate a Darwinian observer, consider a simple world with different
territories, each territory containing just one resource that varies in quantity from 0
to 100, with each quantity having equal probability. In this simple setup, each value
between 0 and 100 corresponds to a different “world state.” Suppose that the
specific fitness function guiding natural selection is bimodal, as illustrated in Figure

2a.

3 The capacity of a channel corresponds to the amount of information that can be transmitted over it.
So a high-capacity channel for expected fitness means that the output of the channel—the
representation in X—is (on average) highly informative about the fitness associated with different
elements of W.
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(a)

0 50 100

(b)

Fitness

50 100

(c)

0 50 100
World State

Figure 2. (a) A specific fitness function on a world having one resource that varies in
quantity from 0 to 100. Worlds with resource quantities 25 or 75 confer highest
fitness, and those with quantities 0, 50 or 100 confer least fitness. Fitness varies
smoothly between these values according to the bell curves shown in the figure. (b)
A perceptual strategy that estimates truth. High resource states are seen as green,
low resource states as red, and intermediate resource states as either blue or yellow.
(c) A Darwinian observer. High fitness states are seen as green, low fitness states as

red, and intermediate fitness states as either blue or yellow.
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Suppose the organism has four possible percepts—say red, yellow, blue and

green (or R, Y, B, G for short). In this case a perceptual strategy is a function from the
interval W= [0, 100] to the set X={R, Y, B, G}.

A critical-realist strategy that is a Bayesian Ideal Observer for estimating
truth is illustrated in Figure 2b. The world states [0, 25) are mapped to R, the states
[25,50) to Y, the states [50, 75) to B, and the states [75, 100] to G. Then the best
formal estimate for the percept Ris 12.5, for Y is 37.5, for B is 62.5, and for G is
87.5.4 If we assume that the perceptions are ordered G > B >Y > R, then this
perceptual strategy is critical realist because it preserves the order relation on the
world states, i.e., all states that are seen as green are greater in quantity than all
states that are seen as blue, and so on.

Although this perceptual strategy is ideal for estimating the true state of the
world, it is useless for guiding adaptive behavior: The expected fitness of all states
that are seen as red is identical to the expected fitness of all states seen as yellow,
blue, or green. To see why this is so, look again at Figure 2b. The resource states
between 0 and 25 are seen as red. Over these states, the bell-shaped fitness curve
goes from O fitness at resource state 0 to maximum fitness at resource state 25. The
expected fitness for the states seen as red is therefore the total area under the bell
curve from 0 to 25, divided by 25. Similarly, the expected fitness of the states seen as

yellow, i.e., the states from 25 to 50, is the total area under the bell curve from 25 to

4 This assumes a so-called quadratic loss function.
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50, again divided by 25. But because of the symmetry of the bell curve, the area
under the curve for states seen as yellow is identical to the area under the curve for
states seen as red. Thus the expected fitness for the states seen as yellow is identical
to the expected fitness of the states seen as red. Similar arguments hold for the
expected fitness of states seen as blue and states seen as green.

Suppose, then, that the organism with the perceptual strategy of Figure 2b is

given a choice between two territories, one that has a resource quantity of 48—and
therefore, as can be seen from the bell curves in Figure 2b, has low fitness—and one
that has a resource quantity of 71—and therefore, according to the same bell curve,

has high fitness. The organism will see the first territory as yellow and the second as
blue. Since the expected fitness of yellow is identical to that of blue, the organism
must choose randomly between them. Its perceptions, although ideal for estimating
truth, are useless for guiding adaptive behavior. Natural selection would deal
harshly with such a perceptual strategy. In the language of information and
communication theory (Cover & Thomas, 2006), this Bayesian Ideal Observer is a
communication channel with high channel capacity for messages about truth, but
low capacity for messages about fitness.

An interface perceptual strategy that is a Darwinian observer is illustrated in
Figure 2c. World states with highest fitness (i.e., where the bell curves in the figure
are highest) are mapped to green, states with moderately high fitness to blue, states
with moderately low fitness to yellow, and states with lowest fitness to red. If the
organism is given the same choice between two territories, one that has a resource

quantity of 48, and one that has a resource quantity of 71, it will see the first
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territory as red and the second as green. Since the expected fitness of green is
greater than that of red, the organism can successfully choose the territory offering
greater fitness.

Although this strategy is effective for guiding adaptive choices, it is useless
for estimating the true state of the world. If the organism sees red, then the
corresponding world state could be near 0, near 50, or near 100. If it sees yellow,
then the state could be near 10, 40, 60, or 90. For a loss function that is quadratic,
the Bayesian estimate of the world state is exactly 50, no matter which color the
organism sees. Thus this Darwinian observer is useless for discriminating the true
state of the world. In the language of information theory, this Darwinian observer is
a communication channel with high capacity for messages about fitness but low
capacity for messages about truth.

The Darwinian observer and the Bayesian Ideal Observer each have the same
set of perceptions: red, yellow, blue, green. Moreover, the perceptions of each
observer are a function of the world state, i.e., of the number of resources in the
world. But the functions are different. For the Bayesian Ideal Observer this function
makes the perceptions informative about the true number of resources in the world,
but not informative about the fitness of those resources. For the Darwinian observer
this function makes the perceptions informative about the fitness of the resources,
but not about the true number of resources. The perceptions of the Darwinian
observer can help it to glean more fitness points, whereas the perceptions of the
Bayesian Ideal Observer cannot. The Darwinian observer looks at the world through

a lens that reveals fitness, the Bayesian Ideal Observer through a lens that reveals
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truth. Natural selection favors a lens that reveals fitness.

For ease of exposition, this example uses a discrete world (and discrete
perceptions). However, nothing essential depends on the discreteness, and the same
conclusion follows with continuous spaces. The example can also be readily
extended to noisy perceptions (where the mapping from W to X is noisy) with the
same result that the Darwinian observer gleans more fitness than the Bayesian Ideal
Observer, and therefore is favored by natural selection.

In these examples, the Bayesian Ideal Observer is a critical-realist strategy
whereas the Darwinian observer is an interface strategy that is not critical-realist (a
strict interface strategy). One naturally wonders whether this is generally the case.

That is, a central question for computational evolutionary perception is this:

Where, within the Hierarchy of Perceptual Strategies, do Darwinian Observers

typically reside?

One would expect that most Darwinian Observers—even Darwinian Ideal
Observers—are strict interface strategies. The argument for this is as follows.
Unless there is a very special relation between the structures of the world and those
of the specific fitness function, optimizing a perceptual strategy for fitness will yield
a solution no worse than that obtained by optimizing for fitness subject to the
constraint that the perceptual strategy must project all structures of the world onto
the set of perceptions (i.e., be a homomorphism). The only structure that a strict

interface strategy must respect is the structure of probabilistic events; this is
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necessary for a perceptual strategy to be a random variable (or a measurable
function). Requiring a perceptual strategy to respect additional structures should in
general yield poorer solutions. Research by Mark et al. (2010) using evolutionary
game theory finds that Darwinian Ideal Observers that are strict interface strategies
outcompete naive realist and critical realist strategies in a variety of worlds.
However the general question must still be considered open, and further research is

required.

7 Darwin and Bayes

Bayesian decision theory and Bayesian Ideal Observers are widely used in the study
of human vision. Their application to vision typically assumes that human vision
estimates the true state of the objective world or, as Marr put it, “a true description
of what is there.” How is standard Bayesian decision theory (BDT) related to the
framework of computational evolutionary perception (CEP) described here? In
brief, CEP subsumes BDT and reinterprets it in evolutionary terms. Less briefly,

their relationship is shown in the commuting diagram of Figure 3.5

5 To say that the diagram is commuting simply means that whenever there are two (or more) ways of
getting from one place to another in the diagram, the two routes yield identical results.
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X “scene
interpretations”

-

“objective world” W

Posterior
pooyljayry

y “images”

_____________________

Bayesian inference

Figure 3. A commuting diagram showing the relationship between
computational evolutionary perception and Bayesian decision theory. The BDT
framework corresponds to the portion of the diagram that lies within the boxed
region on the right. By contrast, CEP does not assume that the interpretation space X
corresponds to the objective world W. Hence in the CEP framework, the objective

world W lies outside of the Bayesian inferential apparatus.

On the left, W denotes the unknown objective world. The set Y denotes one
set of perceptual representations, e.g., some of the image representations that Marr
incorporated in his primal sketch. The set X denotes another set of perceptual
representations, e.g., some three-dimensional scenes.

The perceptual strategy P,:W — Y is a Darwinian observer for the

perceptual space Y. The perceptual strategy P, :W — X is a Darwinian observer for
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the perceptual space X.

The framework of BDT, as applied to perception, is the portion of Figure 3
within the dashed box. The set X is interpreted within BDT as possible states of the
external world. However in CEP the set X is not assumed to represent possible states
of the objective external world; that role is played by W. CEP simply assumes that X
is a set of perceptual representations that has been shaped by natural selection to
guide adaptive behaviors. The representations in X need not resemble true states of
the objective world W. Instead they are simply the outputs of a Darwinian observer.

The set Yis interpreted within BDT as the possible perceptual inputs from
which estimates in X are to be computed. In CEP, Y is simply a set of perceptual
representations that are the outputs of a particular Darwinian observer. It might be
that Y evolved before X (e.g,, it is likely that representations of image structure, such
as Marr’s primal-sketch, evolved before surface-based representations, such as
Marr’s 2% -D sketch), and that X evolved because Darwinian observers with the
perceptual representations in X had substantially greater fitness than those that had
only Y. This does not necessarily mean that X is closer to the truth W than is Y, only
that X allows greater fitness.

Within BDT, the map from X to Y'is the likelihood function, and the map from
Y to X specifies the posterior distribution for any given element of Y.

The loss/gain function in BDT is a function that assumes there is an unknown

true state x, € X of the objective world, and it assigns losses or gains to various
interpretations x € X as a function of their deviation (“error”) from x, (e.g., a Dirac

function for MAP estimates, or quadratic function for mean estimates). The
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loss/gain function of BDT is not a fitness function that guides the evolution of
perception by natural selection. That role is played by the specific fitness functions

fo, s..q, - Confusion on this point has led some vision researchers to conclude that
P29

perceptions that deviate from the truth necessarily have less evolutionary utility.

The perceptual strategies A, :W — Y and P, :W — X can be thought of as

communication channels between the objective world, W, and perceptual
representations of the organism. Natural selection tunes these channels to the only
signal that matters for evolution, namely expected fitness. This tuning can be
thought of as hill-climbing towards increasing channel capacity for expected

fitness.6

8 Using the CEP framework to model perceptual evolution

A natural question is what can one do with the CEP framework that would not be
possible with—or at least very difficult to accommodate within—BDT? As we noted
earlier, consistent with the “inverse probability” conceptualization, BDT models of
vision typically assume that the space of perceptual interpretations is identical with

the objective world; and hence that the language of perceptual interpretations is the

6 “Increasing channel capacity for expected fitness” means increasing the mutual information
between the expected fitness signal and the output messages of the perceptual channel. In other
words, the representation in X on average carries more and more information about the fitness
associated with elements of W.
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correct language for describing objective reality. Hence, BDT may be viewed as a
special case of CEP in which X = W (see Figure 3).

In other words, CEP subsumes BDT because it allows for the possibility that
the space of perceptual representations X that has been evolved by natural selection
may not correspond to the objective truth. It is relatively easy to appreciate this in
the context of primitive visual systems (such as the house fly we considered earlier).
Perceptual representations can confer a great deal of fitness—allowing organisms to
not only survive but thrive in their respective ecological niches—and yet have little
to do with objective truth. Our framework allows for the possibility that the same
may be true of human vision as well.

Below, we pose a number of questions on the evolution of perceptual
systems that can be articulated quite naturally within the CEP framework, but
would be difficult, perhaps even impossible, to capture within a standard BDT

framework.

A. Evolution of perceptual strategies or channels
In Section 6, we considered a simple example where the space of perceptual
representations X = {R, Y, B, G} was fixed, and the fitness function was fixed (shown
in Figure 2a). We then considered two different perceptual strategies or channels—

the truth strategy and the Darwinian strategy—illustrated in Figures 2b and c,
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respectively. In the context of this example, the first strategy had essentially zero
capacity for the fitness signal, whereas the second had high capacity.

This example motivates the following general question: Given a fixed space of
perceptual representations Y, and a specific fitness function f, how can selection
pressures shape the perceptual strategy, i.e., the channel P, to maximize its
capacity—or at least hill-climb towards greater capacity—for the expected fitness
signal? (Note that this question would not be meaningful if one were to assume that

the mapping from W to Y is fixed, as is the likelihood function in BDT.)

B. Evolution of perceptual representations

In the evolution of biological perceptual systems, it is clear that perceptual
representations themselves evolve (not just perceptual strategies for fixed
representations). Whereas the visual systems of “lower” species compute relatively
simple representations of image structure, advanced visual systems tend to
compute more complex representations as well, e.g., involving some three-
dimensional structure. Although it is fairly standard to take this as evidence that the
more advanced visual systems are better tuned to objective world structure, this
does not actually follow. What drives evolution is fitness, not truth, and selection
pressures depend in potentially complicated ways on the combination of world
structure and the fitness function f.

In the commuting diagram in Figure 3, we considered two perceptual
representations X and Y, such that Y—the more “primitive” representation—

evolved first, and selection pressures subsequently pushed in the direction of
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evolving representation X. How can such selection pressures to evolve more
complex perceptual representations be modeled? Note that this is qualitatively
different from a situation in which the value of a parameter within a fixed
representational format (say, the peak of a spectral sensitivity function) is nudged
by evolutionary pressures. The question we are posing here concerns more
dramatic changes that alter the very structure or format of a perceptual
representation.

Within the framework of CEP, we can articulate the question precisely as
follows: Given an objective world W, and a specific fitness function (i.e., for a fixed

organism, state, and action class), under what conditions will a Darwinian

observer? (Y,Pl> evolve by altering the space of perceptual representations Y itself

(rather than simply tuning the perceptual channel P; to the fixed space Y) to
increase the channel’s capacity for expected fitness? The key factor as always is
expected fitness: Going to a different representational space X (with its own
perceptual strategy or channel P;) should result in a substantial increase in the
(new) channel’s capacity for expected fitness, relative to, say, simply tuning P; to
increase its capacity given the fixed representational space Y.

Of course, X and Y are just two out of many possible perceptual
representational spaces. In studying the evolution of perceptual representations,
one must therefore consider evolutionary sequences of representational spaces

X, = X, — X, — ... Asequence such as this can of course branch out: Two or more

7 Recall that a Darwinian observer is the combination of perceptual representational space Y, plus a
perceptual channel P from the world Wto Y.
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perceptual representations may evolve in parallel from a single “primitive” one—
perhaps emphasizing different properties of the more primitive representation
(such as shape, color, and motion). But one can nevertheless consider linear
sequences obtained by following any ascending path through the lattice of evolving
representational spaces.

One may then ask: Are there conditions under which such sequences would
converge to the objective world structure? Given our arguments so far, we suspect
that this will happen under only a highly restricted set of circumstances. In the

generic case, it seems unlikely that a sequence of Darwinian observers
<X0 ,PO> - <Xl ,P1> - <X2 ,P2> — ... with monotonically increasing capacity of channel
P,:W — X, for the expected fitness signal will automatically result in

monotonically increasing channel capacity for the “truth” signal.

C. Evolution of dedicated vs. general-purpose representations
We can conceive of the evolution of perceptual systems from “primitive” to
“advanced” in a somewhat different way than above. In both options A and B

considered above, the specific fitness function f, :W — R was taken to be fixed.

This meant that not only the organism o and its state s, but also the action class g,
was assumed fixed. Both options above therefore considered the evolution of

perceptual systems—either of the perceptual strategy P, or of the representation
space X—for a specific fitness function associated with a fixed type of action (say,

eating).
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As organisms get more complex, however, their repertoire of action classes
gets larger, and thus the number of specific fitness functions increases
correspondingly. Evolution can deal with this increase in two possible ways. The
first is that, as the number of action classes increases, the organism can evolve
distinct representational spaces—one dedicated to each action class—in the sense
of maximizing (or satisficing) the channel capacity for the expected fitness signal
associated with that action class. There is certainly evidence that this happens in
evolution; more advanced species tend to have a greater variety of perceptual
representations, and many of these are highly dedicated to specific types of actions.
It is likely, however, that at some point maintaining this strategy becomes
infeasible; the number of distinct representations required may simply become too
large.

The other possibility is for the organism to evolve representations that can
subserve multiple types of actions at once. The perceptual strategy associated with
such a—more general-purpose—representation will generally not maximize the
channel capacity simultaneously for all of the expected fitness signals (one for each
action class). However it could achieve a high enough capacity for each expected
fitness signal to make this general-purpose strategy worthwhile—especially since
doing so obviates the need for multiple representational spaces.

Within this context, one can ask more specific questions:

i.  Under what conditions do selection pressures push in favor of one or the
other solution: dedicated vs. general purpose representations? Clearly

the two are not mutually exclusive; indeed a single general-purpose
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representation that can subserve all action classes is extremely unlikely.
A more realistic possibility is to have a small number of representational
spaces, each of which subserves a cluster of action classes with
somewhat similar fitness functions. The mathematics of how this would
work in detail needs to be fleshed out (but see Shoval et al 2012 for a
possible direction).

ii.  Consider a situation where a single representational space subserves an
increasing number of action classes—hence an increasing number of
fitness functions. Let Xk denote the evolving representational space that

“accommodates” k fitness functions f, f,....,f, (hence k different action
classes, in the sense discussed above), and let P :W — X, be the evolving
perceptual channel corresponding to space Xi.8 As the number of fitness
functions k increases, it would appear that the evolving Darwinian
observer (X,,P,) is tied less and less to any specific fitness function.
Does increasing k therefore mean that Pi’s capacity for the “truth” signal
U would also increase? In other words, are more “advanced” general-

purpose representations more likely to capture objective world
structure? Again, we suspect that this will not typically be the case; the

general-purpose perceptual strategy will be a best-fit type solution

relative to the given set of fitness functions {fl,fz,. ..,j}(} (e.g., similar to a

8 In other words, the representational space X; accommodates two fitness functions {f1 ,fz}
corresponding to two different action classes, the representational space X3accommodates three

fitness functions {fl oo fs } corresponding to three different action classes, etc.
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least-squares regression line that passes as close as possible to a given
set of data points). There is no principled reason why maximizing the
channel capacity for the best-fit fitness signal should automatically
maximize channel capacity for the truth signal. However this must
remain an open question until detailed mathematical models of this

process are developed and studied.

9 General Discussion

Marr’s book Vision laid out an impressive and highly influential program of research
in human vision—one that continues to motivate empirical research and theoretical
models today. Indeed, the currently dominant BDT framework for vision may be
viewed as a probabilistic approach to vision problems along essentially the lines laid
out by Marr. BDT models vision at what Marr called the computational level—
namely, an analysis of vision problems expressed in formal inferential terms,
independently of how those inferences might be achieved by specific algorithms, or
instantiated in neural hardware.

In his treatment of vision, Marr seemed to make a principled distinction
between human (or “advanced”) vision and primitive vision. Specifically, he claimed
that human vision generally computes objective properties of the world, whereas
primitive visual systems compute only simple subjective properties—that
nevertheless allow their owners to engage in specific, evolutionarily significant,

behaviors. So whereas evolution shaped human vision to construct “a true
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description of what is there,” it shaped primitive vision, such as that of the fly, so
that it “does not really represent the visual world about it”.

In the context of primitive vision, therefore, Marr granted that a visual
system can fail to see any objective properties of the world and yet succeed at
serving its owner adequately for the purposes of survival. In evolution, after all,
what matters is fitness, not objective truth. But Marr also thought that as primitive
visual systems evolve and become more complex, they move more and more
towards computing objective properties of the world. Hence, with humans, he felt he
could safely assume that the properties human vision computes are almost entirely
objective.

BDT models of human vision share the assumption that human vision by and
large sees the truth. Although they allow for misperceptions—in that the estimated
value of a parameter might not match the “true” value—they assume, more
fundamentally, that our language of perceptual representations is the right one for
describing objective reality. Specifically, BDT assumes that the space of
interpretations over which the posterior distribution is computed does contain
somewhere within it a true description of the world. This assumption is closely tied
to the historical roots of Bayesian approaches—namely, as a means of computing
“inverse probability.” In BDT applications to vision, this generally translates to
treating vision as “inverse optics”—i.e., viewing the goal of vision as essentially
“undoing” the effects of optics and “recovering” the scene that generated the
projected image(s). It is in this more basic sense that BDT assumes that human

vision sees the truth.
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We have argued that in order to model human vision and its evolution, one
must have a framework that is broad enough to allow for the possibility that we do
not perceive the truth—not merely in the sense of missing the true estimate within
the correct interpretation space, but in the more fundamental sense of not having
the right language or representational framework for objective truth. Selection
pressures in evolution are driven by fitness, not objective truth. Fitness is clearly
distinct from truth because it depends not only on the objective world, but also on
the organism, its state, and the action class in question. It is evident to us as humans
that “lower” organisms such as flies and frogs do not have the capacity to represent
objective truth—despite the fact that their evolved perceptual systems endow them
with sufficient fitness to survive, even thrive. One’s framework must allow for the
possibility that the same is true of Homo sapiens—namely, that our evolved
perceptual and cognitive representations do not provide us with the right language
to understand objective truth (although they certainly provide an adequate
representation for performing evolutionarily significant actions).

We outlined a framework, Computational Evolution Perception (CEP), that
subsumes BDT and reinterprets it in evolutionary terms. CEP allows probabilistic
inference much like BDT does; however the perceptual inferences it draws are
entirely between representational spaces (say, from a 2D representation of image
structure to a surface representation that contains partial 3D information). The
objective world W in CEP is unknown; we simply cannot assume that any of our
perceptual inferences are being drawn in W. Whatever the nature of W, however,

we do assume that: (i) it has some unknown probability distribution on it; and (ii) it
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has fitness functions defined on it. For a given organism o, state s, and action class a,
specific fitness functions assign a fitness value to each element of W. Given a
representational space X, evolution must tune the perceptual strategy or channel
P:W — X to maximize—more correctly, satisfice—the capacity of the channel for
the expected fitness signal. There is no mathematical reason to expect that
increasing the channel capacity for the expected fitness signal will automatically
result in increased capacity for the truth signal. The CEP framework also allows us
to consider the evolution of representational spaces themselves, such that going
from a simpler representational space (e.g., lower-dimensional or with less
structure) to a more complex one (e.g., higher-dimensional or with more structure)
confers substantially greater fitness. And CEP allows us to consider the evolution
from primitive to advanced vision involving situations where, as the number of
specific fitness functions increases (corresponding to an increase in relevant action
classes), selection pressures may drive the evolution of more general-purpose
representations that can subserve multiple types of actions. In each of these
contexts, the CEP framework allows us to pose, and we hope eventually answer in
formal terms, the question: Under what conditions, if any, do selection pressures
drive perceptual systems to represent objective reality?

An overarching implication of the CEP framework is that the way we
perceive the world reflects not objective reality, but the fitness functions that
shaped natural selection (or, more accurately, it reflects a complex combination of
objective reality and various fitness functions). Objects and surfaces, for example,

feature prominently in the way that we perceive, and think about, the world. But
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there is nothing in modern Physics that corresponds directly to things like tables
and chairs. The fact that we evolved to represent the world in terms of objects and
surfaces suggests, however, that this representational format probably made
possible a high-capacity channel for expected fitness. Thus, according to the CEP
framework: (i) objects are perceptual (and conceptual) representations, not entities
that exist in objective reality (at least not in the way we intuitively think of them),
and (ii) the reason why our perceptual representations of the world are organized
in terms of objects is because such representations provided an effective coding
scheme for expected fitness. Thus, ultimately, objects are essentially an effective code
for expected fitness. The same applies to space itself: Objects are perceived not in
isolation but as embedded in space, and with specific spatial relations between
them. Our perceptual representations of space strongly emphasize such spatial
relations. As with objects, it is likely that what we intuitively conceive of as space is
another effective code for expected fitness.

We are not, of course, forever restricted to our perceptual representations.
For example, our visual systems use stereo, motion, and other cues to estimate the
depths of various objects. In this case, our perceptual scene interpretations are cast
in a language involving 3D descriptions. However, our perceptions of 3D are clearly
limited. When we look at the night sky, for instance, the stars look far away, but they
all look roughly equally far away. From the depth perceptions of our visual system
alone, we have no hint that two nearby stars could actually differ in depth from us

by billions of miles.
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The basic CEP framework in Figure 3 showed only perceptual
representations. In addition to these, we also have what we might call the
“measured world,” M—cognitive representations obtained as a result of applying
scientific measurement procedures. When vision scientists say, for instance, that an
observer underestimated the depth of an object, or misperceived its aspect ratio,
they of course mean with respect to spatial measurements taken in the physical (or a
simulated) environment. The measured world M thus clearly goes beyond our
perceptual representations. At the same time, there is an important sense in which it
is really an extension of our perceptual representations. For, although scientific
procedures allow us to arrive at measurements that we could not possibly have
arrived at from perception alone, the formal structure within which these
measurements are placed is often dictated by the way we perceive the world, e.g., as
having a three-dimensional structure. More precisely, we extend our 3D perceptions
to a more adequate framework, M, often by making certain symmetry assumptions.
For instance, if we assume that our 3D framework must be invariant under
translations and rotations, then we might extend our perceptual representations of
space to a Euclidean framework, as in Newtonian physics.

In this context it is natural to ask, “If our perceptions, and their extensions to
the measured world, are not veridical, then how can we establish what the nature of
the objective world really is?” The answer is to do normal science: Propose theories
of the objective world, extract their empirical predictions, and test these predictions
with experiments and simulations. One theory is that our perceptions of the

objective world are normally veridical and that therefore the objective world
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resembles, in part, our perceptions. On evolutionary grounds, we doubt this theory.
To reject it is not, however, to halt science. There are countless other theories to be
explored and tested. Rejecting a false theory is genuine progress.

In sum, the proposed CEP framework captures the basic inferential structure
of vision, subsumes BDT, and reinterprets it as evaluating expected fitness rather
than estimating truth. It allows us to pose questions about the evolution of
perceptual systems that would be difficult, if not impossible, to model within BDT.
And it makes it relatively straightforward to incorporate higher-level conceptual
representations, such as those based on scientific measurement, into the
framework. The last point raises the intriguing possibility that many concepts in
Physics might be interpretable in terms of: (i) the evolution of perceptual
representations based on maximizing—rather, satisficing—the channel capacity for
the expected fitness signal; and (ii) using scientific measurements and symmetry
assumptions to arrive at scientific concepts that extend our “raw” perception in

various ways.
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10 Mathematical Appendix
For ease of reading we have kept mathematics to a minimum in the body of this
paper. Here we fill in some details.

We assume that the objective world can be represented as a probability space

(W, W, ), where W is a set representing possible states of the objective world, W
is a o -algebra of events on W, and i is a probability measure. We assume that

perceptions of an organism can also be represented as a probability space

(X, X, u,), where Xis a set of perceptions, X isa o -algebra of events on X, and u,

is a probability measure.

In the dispersion-free case, a perceptual strategy is a measurable function
P:W — X. This means that VAe X, P'(A)e W, i.e, that the pullback of any
perceptual eventin X is a world event in V. In this case, the probability measure
U, on perceptions is related to the probability measure u on the objective world as
follows: VAe X, u,(A)=u(P'(A)).

In the general case with dispersion, a perceptual strategy for a specific fitness

function fis a markovian kernel from Wto X, i.e., a function P:W x X —[0,1], such
that (1) VAe X, P(-,A) is a measurable function on W, and (2) Vwe W, P(w,-) isa
probability measure on X. In this case, the probability measure u, on perceptions is

related to the probability measure u on the objective world as follows: VAe X,

Uy (A)=uP(A)= IW u(dw)P(w, A). The projection of the specific fitness function f

onto X is the function f, given by f,(x)= Pf(x) = jw P(w,dx)f(w).
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A perceptual strategy with dispersion, P, will not in general preserve

structures on W. If, for instance, there is an order relation = on W and, for some
w,,w, € W, it happens that w, 2w, , then P will not in general map the indicator

functions 1, and 1, to indicator functions of points in X, and thus will not preserve

the order relation >. In this case one can develop a theory of the degree to which a

structure is preserved, rather than insist that a structure be strictly preserved. In

the special but interesting case in which P is an integral kernel of the form

P(w,A)= L n(c(w),x)A(dx),

where Ae X, c:W — R is a perceptual strategy without dispersion, n: XXX - R
is a measurable function, and A:X —[0,1] is a measure, then one can study which
structures are strictly preserved by ¢ and quantify in terms of n the degree to which
those structures are preserved by P.

One structure that is always preserved by any perceptual strategy P is the

Lebesgue order on the set M, of all probability measures on (W,W), (Bennett et al.

1993).
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