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ABSTRACT

Theoretical investigations of the inference of three-
dimensional structure from image motion often result
in systems of coupled nonlinear equations which must
be solved to infer the third dimension. If closed form
solutions cannot be obtained then various search pro-
cedures, such as simulated annealing, are often used.
In this paper we discuss a relatively new approach to
solving coupled nonlinear systems of equations, an
approach based on the so-called “homotopy princi-
ple.” We discuss this approach in the context of devel-
oping an algorithm for inferring structure from motion
using an assumption of rigid fixed-axis motion. We
also discuss this approach in the more general context
of observer theory, a mathematical framework for the
field of perception.

INTRODUCTION

Every act of perception is a process of inference; itis a

process whereby conclusions are drawn from premises.

In the typical case, the conclusions are not deductive
consequences of the premises, so that the inference
involves an informational leap on the part of the per-
ceiving system.

An exceptionally clear example is a vision sys-
tem that infers a 3-D structure for an object from a se-
quence of 2-D images of its movement. In such a case
the sequence of 2-D images is the premise of the infer-
ence and the perceived 3-D structure is the conclusion.
This conclusion is not a deductive consequence of the

premise: no principle of logic requires any particular

3-D interpretation. Therefore principles in addition to
those of logic must guide this inference.

Several principles have been proposed and stud-
ied. In this paper we focus on one, the principle of
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rigid fixed-axis (RFA) motion [1-4]. An object un-
dergoes RFA motion just in case it moves rigidly in
three dimensions and rotates about a single fixed axis.
The RFA principle states that if a sequence of 2-D
images is compatible with RFA 3-D interpretations
then these interpretations should be assigned a high
degree of inductive strength, i.e., they should be re-
garded as plausible. The RFA principle need not be
construed as excluding other principles; rather, it can
be coordinated with other principles to create power-
ful inferential strategies. The RFA principle is useful
if two properties obtain for the image sequences used
as premises.

1. Minimal false targets: Almost all of the se-
quences of 2-D images that are used as premises
are incompatible with any RFA interpretation.

2. Minimal interpretations: Of those sequences
of 2-D images that are compatible with at least
one RFA interpretation, almost all are compatible
with but few RFA interpretations.

The first property is desirable because it reduces
the probability of false conclusions (section five ex-
plains this further using observer theory). The second
is desirable because it makes the conclusions more in-
formative. These considerations have led researchers
to seek precise conditions under which one or both
of these properties obtain. We mention two results
of this research, one using the rigidity principle and
one using the RFA principle. We then consider the
RFA theory in more detail, designing a homotopy al-
gorithm that constructs the RFA interpretations spec-
ified by the theory.

Ullman [5] first proved conditions for which both
properties hold in the case where one uses a princi- -
ple of rigid motion (to be distinguished from the RFA



principle, which requires rigidity of motion and mo-
tion about a single fixed axis). (For more on rigidity
and related principles see also [6-17].) He found that
if one is given three orthographic views of four points
moving arbitrarily in 3-D then, almost surely, there
is no rigid interpretation compatible with the views.
This addresses the first property. Then he found that
if one is given three orthographic views of four non-
coplanar points that are moving rigidly then, almost
surely, there are two rigid interpretations compatible
with the views. The two interpretations are mirror
reflections of each other. This addresses the second

property.

Hoffman and Bennett [1] gave conditions for which

both properties hold in the case where one uses the
RFA principle. They found that if one is given three
orthographic views of three points moving arbitrarily
in 3-D then, almost surely, there is no RFA interpre-
tation compatible with the views. This addresses the
first property. Then they found that if one is given
three orthographic views of three points that undergo
RFA motion then, almost surely, there are just two
RFA interpretations compatible with the views. Again,
the two interpretations are mirror reflection of each
other. This addresses the second property.

The RFA result proved by Hoffman and Bennett
requires that one solve a system of coupled nonlinear
equations to arrive at the RFA interpretations compat-
ible with the given image data. Solving coupled non-
linear equations is not always easy, and can be compu-
tationally intensive. The purpose of this paper is two-
fold. First we discuss a class of algorithms for solving
coupled nonlinear equations, using the RFA result of
Hoffman and Bennett for a concrete example. To this
end, section two develops the RFA result, culminating
in the coupled system that must be solved. Section
three introduces the class of algorithms, all exploit-
ing the so-called “homotopy principle.” And section
four applies the homotopy approach to the equations
of section two to develop an algorithm for inferring
RFA interpretations. The second purpose of this pa-
per is to provide a concrete example in support of a
mathematical framework for the field of perception, a
framework called “observer theory.” To this end, sec-
tion five briefly reviews the definition of an observer
and exhibits the RFA algorithm as a particular exam-
ple of this more general structure.
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THE EQUATIONS

In this section we develop the equations that will be
solved, via a homotopy algorithm, to construct the RFA
interpretations for three orthographic views of three
points.

As in reference 1, let the three points be denoted
O, A,, and A,. Without loss of generality, we take
O 1o be the origin of a cartesian coordinate system.
Let a;; denote the three-dimensional vector between
O and A; in view j (j = 1,2,3). Let the cartesian
coordinates of a;; with respect to O be denoted by (z;;,
yij» zi;) and assume that the viewer’s line of sight is
directed along the positive z-axis. If the motion from
view to view is rigid, we expect that the lengths of
the vectors apy, a1z, a3 should be identical, as should
be the lengths of the vectors aj;, az, a3. We can
therefore write

ayp -ap = ap -an, (D
ap -ap = a3 - as, (2)
ay - ag) = ayp - ay, (3)
ay - ag = a3 - ayg. (4)

Moreover, we expect that the angle between the vec-
tors OA; and OA;, should remain constant over all
three views. We can therefore write

(5)
(6)

In terms of components these six equations become

ay -4az; = ap -an,
aj; -az; = a3 - ax3.

2 2
21— 212t a =O,
2 2
211 —zl3+cz =0,

- +e=0,

n
2 2
z -z +a=0,
‘znzy —ziaz2 +¢5 =0,
znza — 2323 +c6 =0,
where
_ .2 2 2 2
a=zntyn — I — iz,
_ .2 2 2 2
@ =zt yn — T3 -V
_ .2 2 2 2
3 =13 Y5 — T — Y, (8)

_ .2 2 2 2
Cs =3y + Y3 — T3 — Y,



Cs = T11Z21 + yny21 — 112722 — Y1292,
Cé =TT + yny2 — T13723 — Y13y23.

Equations 7 express the rigidity aspect of the RFA
principle. To express that the motion must also be
about a fixed axis, we observe that for fixed-axis mo-
tion the plane defined by the three positions of point
A is parallel to the plane defined by the three posi-
tions of point A;. Thus we can write

(ap —ap) -[(an —a;3) x (a1 —ax)] =0,
(an —ap) -[(an —a;3) x (a1 —ax3)]=0.

9
In terms of components, equations 9 become ®
a1z + a2212 + a3213 + a4z21 + as2 = 0,
a6z + 67212 + ag213 + as221 + 5223 = 0,
(10)
where
a1 =(z12 — 713) (y21 — ¥22)
— (221 — 322) (Y12 — ¥13),
az =(z21 — 222)(yn — ¥13)
— (zn — 213)(y21 — y22),
a3 =(zn — z12)(v21 — ¥22)
— (z21 — 222) (ynn — ¥12),
as =(zn — z12)(yn — y13)
—(zn —z13)(yn — ¥12), (11)
as = — a4,
as =(z12 — 713) (y21 — ¥23)

— (221 — 223) (Y12 — ¥13),
a7 =(z21 — 223) (yn1 — ¥13)

—(zn — z13)(y21 — y23),
ag =(z11 — z12) (y21 — v23)

— (721 — 223) (yn1 — ¥12).

Hoffman and Bennett {1] find that equations 7 have,
in general, 64 solutions. Furthermore, they find that
equations 10 eliminate, generically, all but two of these
64 solutions. Therefore, to find the RFA interpreta-
tions appropriate to a given set of image data we can
solve equations 7 and then eliminate all but two inter-
pretations using equations 10. Or we can solve equa-
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tions 7 and 10 together as a system. A convenient
method for solving either system is provided by the
homotopy principle.

THE HOMOTOPY PRINCIPLE

The method we use to obtain all solutions to a system
of nonlinear equations is called the “homotopy” or
“path-following” method [18-20]. In this section we

summarize the main ideas and results of this method
as it pertains to solving equations 7, or 7 and 10. For
a comprehensive survey of path-following methods,
we refer the reader to the book by Garcia and Zang-
will [18].

The idea behind the homotopy method is this.
Suppose we wish to solve the system of equations

F(z)=0,

where £ € R™ and F: R™ — R™. Suppose there is
a “simpler” system, G(z) = 0, whose solutions we
have already obtained. Suppose z; is such a solution,
ie., G(zo) = 0. We contrive a path 7(t) € R™,
t € [0, 1], which starts at z¢ and ends at a solution
of F(z) = 0. We do this by enlisting yet another
function, the “homotopy” H: R™! — R™, such that

H(z,0) = G(x) and H(z,1) = F(z).
(12)
We then stipulate that, at each ¢, the path z(t) be a
solution to the system H(-,t) = 0:
H(z(1),t) =0,

vt € [0,1]. (13)

Colloquially, as ¢ increases from O to 1, the simple
system G(z) = 0 is “bent” into the desired system
F(z) = 0, and z(t) is a path of solutions to pro-
gressively changing systems of equations. Hence the
terms “homotopy” and “path following.” If we can
specify G and H so that the paths Z(t) may be com-
puted, then we can solve the desired system. The ho-
motopies discussed in Garcia and Zangwill are of the
form

H(z,t) = (1 —t)G(z) +tF(x). (14)

This convex combination of G and F, also called “lin-
ear” homotopy, is the one we shall use.



In order to put this idea into practice, we need to
investigate certain questions, such as:
(i). Under what conditions does the set of all solu-
tions (z,t) to H(z,t) = O consist of a union of
smooth paths?

(ii). How may we compute the paths?

(iii). How can we ensure that the paths in (i) will end
at a solution to F(x) =07?

(iv). For which F can all solutions to F(z) = O be

obtained by a judicious choice of G?

As our purpose is utilitarian rather than expos-
itory, we refer the reader to the book by Garcia and
Zangwill for general answers to these questions (as
well as a host of applications to nonlinear problems).
Here we will restrict ourselves to the instance of F' =
(Fy)%, being composed of functions Fi which are
polynomials on R™.

It turns out that in order to obtain all solutions,
we will need to complexify, as in [21]. That is, we
will think of our functions F, G as being defined not
on R™ but on C™, by replacing the variables z; € R
(z = (Zj);:]) by z; € C. We accordingly think of
our paths as lying in C™. Notice that in doing so the
coefficients of the polynomials F; remain real.

It is convenient, for computational purposes, to
make the following replacements into real and imagi-
nary parts:

(152) C™ — R®™ by z; = upj_1 + fup;. Write u =
(uz),i'}“, z= (z,-)j’:l, and n=2m.

(15b) If He(2) = sz.q(u,t) + if_fzk(u,t), where
Hyk_1, Hyy are real and imaginary parts respec-
tively, replace H(z) by H(u,t), where

H:R*™ — R?>™,

We call this return to real numbers the “expan-
sion” of the complex-variable case. The two are com-
pletely equivalent for the sake of path following be-
cause H(z,t) = 0 if and only if, for the u correspond-
ingto z, H(u,t) = 0.

Assuming, then, that we have complexified, we
may give precise answers to the questions (i) through
(iv) above.

Theorem 1. Let F: C™ — C™, such that its com-

241

ponent Fy is a polynomial on C™ of degree d with
real coefficients, 1 < k < m. Let the components of
G:C™ - C™be

Gk(Z) = zdg+l —1.

Let H be as in equation (14) and let D = [];_,(de +
1).
(i). The set of all ( z,t) satisfying H{z,t) = 0 may
be sorted into exactly D smooth paths.
(ii). Every path z(t) in (i) will either satisfy
(a) F(3(1)) = 0,i.e., 2(1) is the desired solu-
tion, or
() 2(t) is finite for0 <t < 1 and 2(t) — oo
ast — 1.
(iii). If F(z) = O has a finite number of solutions,
every solution to F(z) = 0 will be obtained as
the endpoint of some path in (i).

(16)

This theorem is a corollary to results stated in
chapters 1, 2, 3, 18, and 22 of Garcia and Zangwill.
Part (iii) indicates one reason why homotopy meth-
ods might, for certain purposes, be preferable to some
other global optimization methods such as annealing:
homotopy methods provide a systematic way to find
all solutions to one’s equations. Note that the the-
orem says nothing about the infinite solutions case.
However in the particular case of RFA motion, thanks
to the result of Hoffman and Bennett [1], we know
that the theorem in its entirety applies to the system
of equations 7 we wish to solve. Moreover, it answers
all the questions we asked above, except for the com-
putational one, to which we now turn.

We will express the equations governing the paths
in the notation of the replacements (15), i.e., in terms
of the expanded system. That is, imagine that we have
n = 2m polynomials H;, each in the n variables u;,
eem Up. Weputt = up,, i€., we treat ¢ as yet an-
other variable. We imagine, moreover, that each path
is parametrized by some new real variable p. Define
the Jacobian H' of H = (H;)2, tobe the nx (n+1)
matrix

1<j<n 1<k<n+l. (17)

If we differentiate the equation H(%) =0, where i =
(u,t), with respect to the parameter p we find, using
the chain rule, that every path must satisfy



=, _ dug
H(3)— =0

or, in matrix notation,

E'(a)d—“=o. (18)
dp

The following is then proved in Garcia and Zangwill,

chapter 2:

Theorem 2. For every path in R” of the homotopy
H, there is a parametrization p — @(p) of that path
such that equation (18) is equivalent to

diy

dp 1<j<n+1,

. ) (19)
where H ; is the matrix H' with its jth column deleted.

= (=1)/ det[ ' ;()],

Equation (19) is called the Basic Differential Equa-
tion (BDE) and forms the basis for computation. That
is, we set, at p = 0, u2£-1(0) + u24(0) to be some
(dy + 1)th root of unity. We set 1,1 (0) = t(0) = 0.
Then u(0) = (u;(0))7%, is a solution to H(,0) =
0. The path issuing from this point is then computed
from the BDE, equation (19), until ¢ = 1. Theorem
1 guarantees that this will happen, or that the solution
will blow up. We then repeat this process for all pos-
sible starting points u(0).

THE RIGIDITY ALGORITHM

In this section we use the homotopy methods just de-
scribed to develop an algorithm for the solution of
equations 7 and thereby for the construction of the
. appropriate rigid interpretations. Under the assump-
tion that the correspondence between points in the two
frames is known, we describe the algorithm step by
step.

STEP 1.

Take as inputs the image coordinates, z; ; and y; ;, i =
1,2,3,7=1,2,3, of the three views of three points.
(The goal is to infer the 2;;’s.)
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STEP 2.

Choose one of the three points as the origin, and com-
pute the coordinates z; jand y; j,5=1,2,7 = 1,2,3,
of the remaining two points relative to this origin.

STEP 3.
Starting at the 729 solutions to the simple equations
3 —1=0,
7 —1=0,
zf3 -1=0,
% -1=0,
232 -1=0,
73— 1=0,

apply the homotopy method described in the previous
section to the homotopy equations

(1=t)(z} —D+t(zh 2 +c1) =0,
(1 -t)(z — D +t(zh — 25 + 2) =0,
(1—t)(z}y — 1) + 823 — 25 + c3) =0,
(1—t)(2 — D)+ t(2} — 25 +cs) =0,
(1-1)(23, — 1) + t(z11221 — 21222 + ¢5) =0,
(1 —t)(233 — 1) + t(znza — 213223 + c) = 0.

As described before, these equations must be decom-
posed into real and imaginary parts for use by the ho-
motopy algorithm. The result of step 3 is a set of 64
solutions, some possibly complex, to the equations 7.
(This step could be accomplished more quickly were
729 processors to work in parallel, each following its
own path.)

STEP 4.
Eliminate all extra solutions obtained at step 3 which
do not satisfy equations 10.

STEP 5.

Return the two interpretations that survive from step
4.

In Step 3 we pick z3; = O as the starting point
of our homotopy because (1) we know the solutions
to these equations and (2) these equations have the
lowest degree that guarantees that we will find all so-
lutions to the equations 7 (see Theorem 1). Had we



used, say, z5; = O as our starting point we would not
obtain all solutions to equations 7; had we used, say,
2§, = 0 as our starting point we would obtain all so-
lutions to equations 7, but would have to follow many
more paths to do so (49, i.e., 4096, instead of 3, i.e.,
729). In this latter case, following more paths need
not require more time, since the paths can be followed
in parallel, but it would then require more hardware to
implement the following of the extra paths.

In the case of dynamic images having more than
three points in motion, the above algorithm could be
applied to each subset of three points. Those subsets
discovered to have identical axes of rotation and iden-
tical angular velocities could be identified as moving
together rigidly. In this way the “local” analyses could
be combined to give a more “global” RFA interpreta-
tion.

CONCLUSION

We conclude with a discussion of the abstract struc-
ture of the inference carried out by this algorithm. The
possible premises for this inference are all possible
sets of data (z;;,y:;),1=1,2,j = 1,2,3. (Here s
only goes to 2 since one of the points is taken to be the
origin in R®.) Thus the space of all possible premises
is R'2. We denote this space by Y. The possible in-
terpretations for this inference are all possible sets of
data(z;d-,y;J,z;,j), 1=1,2,7=1,2,3. Thus the
space of all possible interpretations is R™®. We de-
note this space by X. X and Y are related by a map
m: X — Y induced by the orthographic projection
(z,y,2z) — (z,y). Only a small subset of the inter-
pretations in X are distinguished in the sense of being
RFA interpretations; this subset is defined by equa-
tions 7. We denote these distinguished interpretations
by E. Similarly, only a small subset of the premises in
Y are distinguished in the sense of being compatible
with RFA interpretations; this subset is w( E'). We de-
note these distinguished premises by S. Finally, there
are, generically, just two RFA interpretations compat-
ible with each premise in the subset S. Without infor-
mation to the contrary, these two interpretations are
equally likely. Thus the conclusion of the inference
for any premise in S is a probability measure (which,
for example, gives weight of one half to each of the
two interpretations). We denote the collection of all

such probability measures, one for each point of S,
by 7.

Put simply, then, the abstract structure of this in-
ference is a six-tuple (X, Y, E, S, w, 1), where the
members of the six-tuple are as just defined.

This structure is a special case of a formal entity
called an observer[22-25]. An observer is a six-tuple,
((X,X),(Y,)), E, S, m, n), satisfying the follow-
ing conditions:

1. (X,X) and (Y, ) are measurable spaces. E €
Xand S ).

2. m: X — Y is a measurable surjective function
with n( E) = S.

3. Let (E, &) and (S, S) denote the measurable
spaces on E and S respectively induced from those
of X and Y. Then 7 is a markovian kernel on
S x & such that, for each s, n(s, -) is a probabil-
ity measure supported in 7~!{s} N E.

Suppose px is some unbiased measure (or, more
generally, a measure class) on the measurable space
(X, X), e.g., ux might be unbiased in the sense that
it is invariant for the principle homogeneous action of

FIGURE 1. INlustration of an observer.
a group on X. Then an observer is called ideal if
px(n~'(S) — E) = 0.

Every point of 7~1(S) — E is a false target, ie., a
nondistinguished configuration that projects to a dis-



tinguished premise; thus an observer is ideal if its un-
biased measure for false targets is zero. A sufficient
condition for this to hold is that S have measure zero
in Y (with respect to the measure m.pux defined, for
al A € Y, by mux(A) = px(n~'(A))). This ex-
plains the “Minimal false targets” property introduced
in section 1.

Bennett et al. propose that the abstract structure
of every perceptual inference, whether biological or
nonbiological, whether visual or auditory or in any
other modality, is without exception an instance of
an observer [22-25]. That is, Bennett et al. propose
that the definition of an observer provides a formal
grounding for the field of perception. (This is in much
the same way that the definition of a Turing machine
provides a formal grounding for the field of computa-
tion: all computations are instances of a Turing ma-
chine just as all acts of perception are, according to
Bennett et al., instances of an observer.) The percep-
tion of structure from motion discussed in this paper
provides one example in support of this proposal.
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