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Abstract 

We propose that, for the task of object recognition, the visual system decom- 
poses shapes into parts, that it does so using a rule defining part boundaries 
rather than part shapes, that the rule exploits a uniformity of nature-transver- 
sal@, and that parts with their descriptions and spatial relations provide a first 
index into a memory of shapes. This rule allows an explanation of several 
visual illusions. We stress the role inductive inference in our theory and 
conclude with a p&is of unsolved problems. 

1. Introduction 

Any time you view a statue, or a simple line drawing, you effortlessly perform 
a visual feat far beyond the capability of the most sophisticated computers 
today, through well within the capacity of a kindergartener. That feat is 
shape recognition, the visual identification of an object using only its shape. 
Figure 1 offers an opportunity to exercise this ability and to make several 
observations. Note first that, indeed, shape alone is sufficient to recognize 
the objects; visual cues such as shading, motion, color. and texture are not 
present in the figure. Note also that you could not r,easonablv predict the 
contents of the figure before looking at it, yet you recognized the objects. 
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Figure 1. Some objects identifiable entirely from their profiles. 

Clearly your visual system is equipped to describe the shape of an object and 
to guess what the object is from its description. This guess may just be a first 
guess, perhaps best thought of as a first index into a memory of shapes, and 
might not be exactly correct; it may simply narrow the potential matches and 
trigger visual computations designed to narrow them further. 

This first guess is more precisely described as an inference, one the truth 
of whose premises-the descriptions of shape--does not logically guarantee 
the truth of its conclusion-the identity of the object. Because the truth of 
the Iconclusion does not follow logically from the truth of the premises, the 
strength of the inference must derive from some other source. That source, 
we claim, is the regularity of nature, its uniformities and general laws. The 
design of the visual system exploits regularities of nature in two ways: they 
underlie the mental categories used to represent the world and they permit 
inferences from impoverished visual data to descriptions of the world. 

Regularities of nature play both roles in the visual r;aA: of shape recogni- 
tion, and both roles will be examined. We will argue jkst, just as syntactic 
anaIysis decomposes a sentence into its constituent structure, so the visual 
system decomposes a shape into a hierarchy of parts. Parts are not chosen 
arbitrarily; the mental category ‘part’ of shapes is based upon a regularity of 
nature discovered by differential topologists-transversality. This is an exam- 
ple of a regularity in the first role. The need arises for a regularity in the 
second roIe because although parts are three-dimensional, the eye delivers 
mly a two-dimensional projection. In consequence the three-dimensional 
parts must be inferred from their two-dimensional projections. We propose 
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that this inference is licensed by another regularity, this time from the field 
of singularity theory. 

2. Why parts? 

Before examining a part definkiion and its underlying regularity, we should 
ask: Given that one wants to recognize an object from its shape, why partition 
the shape at all? Could template matching or Fourier descriptors rise to the 
occasion? Possibly. What follows is not so much intended to deny this as to 
indicate the usefulness of parts. 

TO begin, then, an articulation of shapes into parts is useful because one 
never sees an entire shape in one glance. Clearly the back side is never visible 
(barring transparent objects), but even the front side is often partially 
occluded by objects interposed between the shape and the observer. A 
Fourier approach suffers because all components of a Fourier description can 
change radically as different aspects of a shape come into view. A part theory, 
on the other hand, can plausibly assume that the parts delivered by early 
vision correspond to the part:; stored in the shape memory (after all, the 
contents of the shape memory were once just the products of early visual 
processing), and that the shape memory is organized such that a shape can be 
addressed by an inexhaustive list of its parts. Then recognition can proceed 
using the visible parts. 

Parts are also advantageous for representing objects which are not entirely 
rigid, such au the human hand. A template of an outstretched hand would 
correlate poorly with a clenched fist, or a hand giving a victory sign, etc. The 
proliferation of templates to handle the many possible configurations of the 
hand, or of any articulated object, is unparsimonious and a waste of memory. 
If part theorists, on the other hand, pick their parts prudently (criteria for 
prudence will soon be forthcoming), and if they introduce the notion of 
spatial relations among parts, they can decouple configural properties from 
the shape of an object, thereby avoiding the proliferation of redundant men- 
tal models. 

The final argument for parts to be considered here is phenomenological: 
we see them when we look at shapes. Figure 2, for instance, presents a cosine 
surface, which observers almost uniformly see organized into ring-like parts. 
One part stops and another begins roughly where the dotted circular contours 
are drawn. But if the figure is turned upside down the organization changes 

such that each dotted circular contour, which before lay between parts, now 
lies in the middle of a part. Why the parts change will be explained by the 
partitioning rule to be proposed shortly; the point of interest here is simply 
that our visual systems do in fact cut surfaces into parts. 
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Figure 2. The cosine surface at first appears to be srgopri 
ring terminating and the next bqinn hc 
circular contours are drawn. But this W 

is turned upside down. 

3. Parts and uniformities of nature 

Certainly any proper subset of a surface is a part of that surface. This de& 
ition of part, however, is of little use for the task of shape recognition. And 
although the task of shape recognition constrains the class of suitabl 
definitions (see Section S), it by no means fo 
an ad hoc choice, and to allow a useful corre 
and mental representations of shape, tke defi 
vated by a uniformity of nature.’ 

One place not to look for a defining regul 
One could say that all parts are cylinders, or 
or some combination of these; but this is le 
ering a relevant regularity. And such a 
applicability, for certainly not all shapes 
ders, cones, spheres, and polyhedra. 

If a defining regularity is not to be found in part shapes, then another pla 

*Unearthing an appropriate uniformity is the most creative, and often most dif%ult, step in devising an 
explanatory theory for a visual task. Other things being equal, one wants the most general uniformity of nature 
possible, as this grants the theory and the visual task the broadest possible scope. 
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~~~~~~~~~ qp/arity, When any two surfaces inter- 
ai ivf txmcatre dixtmtinuities, as indicated 

Consider the two three-dimensional blobs de- 
rtainly these two spatially separated shapes are 
Indeed, each spatially distinct object in a visual 

NOW if two such separate objects are interpenet- 
ite object, as shown in the right of Fig. 3, then 
before separate parts of the visual scene, are 

surely now prime candidates to be parts of the new composite shape. But can 
we td, simply by examining the new composite shape, what the original 

That is, is there a way to t where one part stops and the next 
s on the new composite sh ? Fortunately there is a way, one 

regultrrity in the y two shapes generically intersect. 
ed transversaiity ( a detailed discussion of transversal- 

in and Pollack (1974)). 

@ ~~~~~~~~~~~~~~ rcllgukl@. When two arbitrarily shaped surfaces are made 
ate they always% meet in a contour of concave discontinuity 

observe the silhouette of the composite shape 
8 that this composite silhouette is not 
ilhouette of one of its parts intersects 

tte of the other part. At these two points the direction of the 
outline (Le., its tangent direction) changes abruptly, creating a 

co~cavf3 cusp (Le., a cusp which points into the object, not into the 

aThe word alwcrys is best interpreted **with p:*ob,%bility one assuming the surfaces interpenetrate at ran- 
dom”. 
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background) at each of the two points. In fact, such concave discontinuities 
arise at every point on the surface of the composite shape where the two parts 
meet. These contours of concave discontinuiv of the tangent plane of the 
composite shape will be the basis for a partitioning rule in the next section. 
But three observations are in order. 

First, though it may sound esoteric, transversality is a familiar part of our 
everyday experience. A straw in a soft drink forms a circular concave discon- 
tinuity where it meets the surface of the drink. So too does a candle in a 
birthday cake. The tines of a fork in a piece of steak, a cigarette in a mouth, 
all are examples of this ubiquitous regularity. 

Second, transversality does not double as a theory of part growth or part 
formation (D’Arcy Thompson, 1968). We are not claiming, for example, that 
a nose was once physically separated from the face and then got attached by 
interpenetration. We simply note that when two spatially separated shapes 
are interpenetrated, their intersection is transversal. Later we will see how 
this regularity underlies the visual definition of separate parts of any compo- 
site shape, such as the nose of a face or a limb of a tree, regardless of how 
the composite shape was created. 

Finally, transversality does encompass movable parts. As mentioned ear- 
lier, one attraction of parts is that, properly chosen, they make possible a 
decoupling of configuration and shape in descriptions of articulated objects. 
But to do this the parts must cut an object at its articulations; a thumb-wrist 
part on the hand, for instance, would be powerless to capture the various 
spatial relations that can exist between the thumb and the wrist. Now the 
parts motivated by transversality will be the movable units, fundamentally 
because a transversal intersection of two surfaces remains transversal for 
small pertubations of their positions. This can be appreciated by reviewing 
Fig- 3. Clearly the intersection of the two surfaces remains a contour of 
concave discontinuity even as the two surfaces undergo small independent 
rotations and translations. 

4. ParGtioning: The minima rule 

On the basis of the transversality regularity we can propose a first rule for 
dividing a surface into parts: divide a surface into parts along all contours of 
concave discontinuity of the, tangent plane. Now this rule cannot help us with 
the cosine surface because this surface is entirely smooth. The rule must be 
generalized somewhat, as will be done shortly. But in its present form the 
rule can provide insight into several well-known perceptual demonstrations. 
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4. I, Blocks world 

We begin by considering shapes constructed from polygons. Examine thle 
staircase of Fig. 4. The rule predicts that the natural parts are the steps, an,d 
not the faces on the steps. Each step becomes a ‘part’ because it is bounded 
by two lines of concave discontinuity in the staircase. (A face is bounded bly 
a concave and a convex discontinuity.) But the rule also makes a less obvious 
prediction. If the staircase undergoes a perceptual reversal, such that the 
‘figure’ side of the staircase becomes ‘ground’ and vice versa, then the step 
boundaries must change. This follows because only concave discontinuities 
define step boundaries. And what looks like a concavity from one side of a 
surface must look like a convexity from the other. Thus, when the staircase 
reverses, convex and concave discontinuities must reverse roles, leading to 
new step boundaries. You can test this prediction yourself by looking at the 
step having a dot on each of its two faces. When the staircase appears to 
reverse note that the two dots no longer lie on a single step, but lie on two 
adjacent steps (that is, on two different ‘parts’). 

Similar predictions from the rule can also be confirmed with more compli- 
cated demonstrations such as the stacked cubes demonstration shown in Fig. 
5. The three dots which at first appear to lie on one cube, lie on three 
differeat cubes when the figure reverses. 

Still another quite different prediction follows from our simple partitioning 
rule. If the rule does not define a unique partition of some surface, then the 
division of that surface into parts should be perceptually ambiguous (unless, 

Figure 4. The Schroder staircase, puNished by H. Schroder in 1858, shows that part 
boundaries change when figure and ground reverse. The two dots which at 
first appear to lie on one step suddenly seem to lie on two adjacent steps 
when the staircase reverses. 
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of course, there are additional rules which can eliminate the ambiguity). An 
elbow-shaped block provides clear confirmation of this prediction (see Fig. 
6). The only concave discontinuity is the vertical line in the crook of the 
elbow; in consequence, the rule does not define a unique partition of the 
block. Perceptually, there are three plausible ways to cut the block into parts 
(also shown in Fig. 6). All three use the contour defined by the partitioning 
rule, but complete it along different paths. 

Figure 5. Stacked cubes abo show that parts change when figure and ground reverse. 
Three dots which sometimes lie on one cube will lie on three different cubes 
when the figure reverses. 

Figure 6. Elbow-shaped blocks show that a rule partitioning shapes at concave discon- 
tinuities is appropriately conservative. The rule does not give a closed con- 
tour on the top block, and for good reason. Perceptually, three different 
partitions seem reasonable, as illustrated by the bottom three blocks. 

. P 



Parts of recognition 73 

4.2. Generalization to smooth surfaces 

The simple partitioning rule directly motivated by transversality leads to in- 
teresting insights into our perception of the parts of pobygonal objects. But 

how can the rule be generalized to handle smooth surfaces, such as the cosine 
surface? TO grasp the generalization, we must briefly digress into the differen- 
tial geometry of surfaces in order to understand three important concepts: 
surface normal, principal curvature, and line of curvature. Fortunately, al- 
though these concepts are quite technical, they can be understood intuitively. 

The surface normal at a point on a surface can be thought of as a unit 
length needle sticking straight out of (orthogonal to) the surface at that point, 
much like the spines on a sea urchin. All the surface normals at all points on 
a surface are together called a field of surface normals. Usually there are two 
possible fields of surface normals on a su:face--either outward pointing or 
inward pointing. A sphere, for instance, can either have the surface normals 
all pointing out like spines, or all pointing to its center. Let us adopt the 
convention that the field of surface normals is always chosen to point into 
the figure (i.e., into the object). Thus a baseball has inward normals whereas 
a bubble under water, if the water is considered figure, has outward normals. 
Reversing the choice of figure and ground on a surface implies a concomitant 
change in the choice of the field of surface normals. And, as will be discussed 
shortly, a reversal of the field of surface normals induces a change in sign of 
each principal curvature at every point 3n the surface. 

It is often important to know not just the surface norm4 at a point but 
also how the surface is curving at the point. The Swiss mathematician 
Leonhard Euler discovered around 1760 that at any point on any surface 
there is always a direction in which the surface curves least and a second 
direction, always orthogonal to the first, in which the surface curves most. 
(Spheres and planes are trivial cases since the surface curvature is identical 
in all directions at every point.) These two directions at a point are called the 
principal directions at that point and the corresponding surFace curvatures 
are called the principal curvatures. Now by starting at some point and always 
moving in the direction of the greatest principal curvature one traces out a 
line of greatest curvature. By moving instead in the direction sf the least 
principal curvature one traces out a line of least curvature. On a drinking 

glass the family of lines of greatest curvature is a set of circiles around the 
glass. The lines of least curvature are straight lines running thit length of the 
glass (see Fig. 7). 

With these concepts in hand we can extend the partitioning rule to smooth 
surfaces. Suppose that wherever a surface has a concave discontinuity we 
smooth the discontirxluity somewhat, perhaps by stretching a taut skin over it. 
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Figure 7. Lines of curvature are easily depicted on a drinking glass. Lines of greatest 
curvature are circles. Lines of least curvature are straight lines. 

Lines of greatest curvature Lines of least cirrvoture 

Then a concave discontinuity becomes a contour where, locally, the surface 
has greatest negative curvature. In consequence we obtain the following 
generalized partitioning rule for surfaces. 

Minima rule. Divide a surface into parts at loci of negative minima of 
each principal curvature along its associated family of lines of curvature. 

The minima rule is applied to two surfaces in Fig. 8. The solid contours 
indicate members’of one family of lines of curvature, and the dotted contours 
are the part boundaries defined by the minima rule. The bent sheet of paper 
on the right of Fig. 8 is particularly informative. The lines of curvature shown 
for this surface are sinusoidal, whereas the family of lines not shown are 
perfectly straight and thus have zero principal curvature (and no associated 
minima). In consequence, the product of the two principal curvatures at each 
point, called the Gaussian curva;ture, is always zero for this surface. Now if 
the Gaussian curvature is always zero on this surface, then the Gaussian 
curvature cannot be used to divide the surface into parts. But we see parts 
on this surface. Therefore whatever rule our visual systems use to partition 
surfaces cannot be stated entirely in terms of Gaussian curvature. In particu- 
lar, the visual system cannot be dividing surfaces into parts at loci of zero 
Gaussian curvature (parabolic points) as has been proposed by Koenderink 
and van Doorn (1982b). 

The minima rule partitions the cosine: surface along the circular dotted 
contours shown in Fig. 2. It also explains why the parts differ when figure 
and ground are reserved. For when the page is turned upside down the visual 
system reverses its assignment of figure and ground on the surface (perhaps 
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Figure 8. Part boundaries, as defined by the smooth surface partitioning rule, are 
indicated by dashed lines on several different surfaces. The families of solid 
lines are the lines of curvature whose minima give rise to the dashtld parti- 
tioning contour. 

due to a preference for an interpretation which places the object below rather 
than overhead). When figure and ground reverse so does the field of surface 
normals, in accordance with the convention mentioned earlier. Bu; simple 
calculations show that when the normals reverse so too does the sign of the 
principal curvatures. Consequently minima of the principal curvatures must 
become maxima and vice versa. Since minima of the principal curvatures are 
used for part boundaries, it follows that these part boundaries must also 
move. In sum, parts appear to change because the partitioning rule, moti- 
vated by the transversality regularity, uses minima of the principal curvatures, 
and because these minima relocate on the surface when figure and ground 
reverse. A more rigorous treatment of the partitioning rule is provided in 
Appendix 1. 

5. Parts: Constraints from recognition 

The task of visual recognition constrains one’s choice of parts and part de- 
scriptions. We evaluate the part scheme proposed here against three such 
constraints-reZiabiCity, vekatility, and computability-and then note a non- 
constraint, information preservation. 

Reliability. Recognition is fundamentally a process of matching descr-ip- 
tions of what one sees with descriptions already in memory. Imagine the 
demands on memory and on the matching process if every time one looked 
at an object one saw different parts. A face, for example, which at one institnt 
appeared to be composed of eyes, ears, a nose, and a mourh, might at a laleer 
instant metamorphose into a potpourri of eye-cheek, nose-chin, 2~3 mouth- 
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ear parts-a gruesome and unprofitable transmutation. Since no advantage 
accrues for allowing such repartitions, in fact since they are uniformly de- 
leterious to the task of recognition, it is reasonable to disallow them and to 
require that the articulation of a shape into parts be invariant over time and 
over change in viewing geometry. This is the constraint of reliability (see 
Marr, 1982; Marr and Nishihara, 1978; Nishihara, 1981; Sutherland, 1968); 
the parts of a shape should be related reliably to the shape. A similar con- 
straint governs the identification of linguistic units in a speech stream (Liber- 
man et al, 1967; Fodor, 1983). Apparently the shortest identifiable unit is the 
syllable; shorter units like phones are not related reliably to acoustic paramet- 
ers. 

The minima rule satisfies this reliability constraint because it uses only 
surface properties, such as extrema of the principal curvatures, which are 
independent (up to a change in sign) of the coordinate system chosen to 
parametrize the surface (Do Carmo, 1976). Therefore the part boundaries 
do not change when the viewing geometry changes. (The part boundaries do 
change when figure and ground reverse, however.) 

Versatility. Not all possible schemes for defining parts of surfaces are suffi- 
ciently versatile to handle the infinite variety in shape that objects can exhibit. 
Other things being equal, if one of two partitioning schemes is more versatile 
than another, in the sense that the class of objects in its scope properly 
contains the class of objects in the scope of the other scheme, the more 
versatile scheme is to be preferred. A partitioning scheme which can be 
applied to any shape whatsoever is most preferable, again other things being 
equal. This versatility constraint can help choose between two major classes 
of partitioning schemes: boundary-based and primitive-based. A boundary- 
based approach defines parts by their contours of intersection, not by their 
shapes. A primitive-based approach defines parts by their shapes, not by their 
contours of intersection (or other geometric invariants, such as singular 
points). 

Shape primitives currently being discussed in the shape representation lit- 
erature inchJde spheres (Badler and Bajcsy, 1978; O’Rourke and Badler, 
1979), gener&ed cylinders (Binford, 1971; Brooks et al., 1979; Marr and 
Nishihara, 1978; Soroka, 1979), and polyhedra (Baumgart, 1972; Clowes, 
1971; Guzman, 1969; Huffman, 1971; Mackworth, 1973; Waltz, 1975), to 
name a few (see Ballard and Brown, 1982). The point of interest here is that, 
for all the interesting work and conceptual advances it has fostered, the 
primitive-based approach has quite limited versatility. Generalized cylinders, 
for instance, do justice to animal limbs, but are clearly inappropriate for 
faces, cars, shoes, . . . the list continues. A similar criticism can be levelled 



Parts of recognition 77 

against each proposed shape primitive, or any conjunction of shape primi- 
tives. Perhaps a large enough conjunction of primitives could handle most 
shapes we do in fact encounter, but the resulting proposal would more resem- 
ble a restaurant menu than a theory of shape representation. 

A boundary-based scheme on the other hand, if its rules use only the 
geometry (differential or global% of surfaces, can apply to any object whose 
bounding surface is amenable to the tools of differential geometry-a not too 
severe r&triction.3 Boundary rules simply tell one where to draw contours 
on a surface, as if with a felt marker. A boundary-based scheme, then, is to be 
preferred over a primitive-based scheme because of its greater versatility. 

The advantage of a boundary-based scheme over a primitive-based scheme 
can also be put this way: using a boundary-based scheme on,: can locate the 
parts of an object withotrt having any idea of what the parts look like. This 
is not possible with the primitive-based scheme. Of course one will want 
descriptions of the parts one finds using a boundary-based scheme, and one 
may (or may not) be forced to a menu of shapes at this point. Regardless, a 
menu of part shapes is not necessary for the task of locating parts. In fact a 
menu-driven approach restricts the class of shapes for which parts can be 
located. The minima rule, because it is boundary-based and uses only the 
differential geometry of surfaces, satisfies the versatility constraint-all 
geometric surfaces are within its scope.4 

Computability. The partitioning scheme should in principle be computable 
using only information available in retinal images. Otherwise it is surely 
worthless. This is the constraint of comp~t~~bility. Computability is not to be 
confused with efficiency. Eficiency measures how quickly and inexpensively 
something can ble compute;, and is a dubious criterion because it depends 
not only on the task, but illso on the available hardware and algorithms. 
Computability, on the other hand, states simply that the scheme must in 
principle be realizable, that it use only information available from images. 

We have not yet discussed whether our parts are computable from retinal 

geometric tools might well be represented by fractal-based 
schemes (Mandelbrot, 1982; Pentland 1983). Candidate shapes *are trees, shrubs, clouds--in short. objects 
with highly crenulate or ill-defined surfaces. 

‘One must, however, discover the appropriate scales for a natural surface (Hoffman, 1983a, b; Witkin. 
1983). The locations of the part boundaries depend, in general, o.a the scale of resolution at which the surface 
is examined. In consequence an object will not receive a single partitioning based on the minima rule, but will 
instead receive a nested hierarchy of partitions, with parts lower in the hierarchy being much smaller than 
parts higher in the hierarchy. For instance, at one level in the hierarchy for a face one part might be a nose. 
At the next lower level one might find a wart on the nose. The issue of scale is quite difficult and beyond the 
scope of this paper. 
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images (but see Appendix 2). And indeed, since minima of curvature are 
third derivative entities, and since taking derivatives exaggerates noise, one 
might legitimately question whether our part boundaries are computable. 
This concern for computability brings up an important distinction noted by 
Marr and Poggio (1977), the distinction between theory and algorithm. A 
theory in vision states what is being computed and why; an algorithm tells 
how. Our partitioning rule is a theoretical statement of what the part bound- 
aries shcruld be. and the preliminary discussion is intended to say why. The 
rule is not intended to double as an algorithm so the question of computability 
is still open. Some recent results by Yuille (1983) are encouraging though. 
He has found that directional zero-crossings in the shading of a surface are 
often located on or very near extrema of one of the principal curvatures along 
its associated lines of curvature. So it might be possible to read the part 
boundaries direstly from the pattern of shading in an image, avoiding the 
noise problems associated with taking derivatives (see also Koenderink and 
van Doorn, 1988, 1982a). It is also possible to determine the presence of part 
boundaries directly from occluding contours in an image (see Appendix 2). 

Informatim preservation: A non-constraint. Not just any constraints will 
do. The constraints must follow from the visual task; otherwise the constraints 
may be irrelevant and the resulting part definitions and part descriptions 
inappropriate. Because the task of recognition involves classification, namely 
the assignment of an individual to a class or a token to a type, not all the 
information available about the object is required. Indeed, in contrast to 
some possible needs for machine vision (Brady, 1982b, 1982c), we stress that 
a description of a shape for recognition need not be information preserving, 
for the goal is not to reconstruct the image. Rather it is to make explicit just 
what is key to the recognition process. Thus, what is critical is the form of 
the representation, what it makes explicit, how well it is tailored to the needs 
of recognition. Raw depth maps preserve all shape iniormation of the visible 
surfaces, but no one proposes them as representations for recognition because 
they are simply not tailored for the task. 

6. Projection and parts 

We have now discussed how ‘parts’ of shapes may be defined in the three-di- 
mensional world. However the eye sees only a two-dimensional projection. 
How then can parts be inferred from images? Again, we proceed by seeking 
a regularity of nature. As was noted earlier, the design of the visual system 
exploits regularities of nature in two ways: they underlie the mental categories 
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used to represent the world and they license inferences from impoverished 
visual data to descriptions of the world. The role of transversality in the 
design of the mental category ‘part’ of shape is an example of the first case. 
In this section we study an example of the second case. We find that lawful 
properties of the singularities of the retinal projection permit an inference 
from retinal images to three-dimensional part boundaries. For simplicity we 
restrict attention to the problem of inferring part boundaries from sikouettes. 

Consider first a discontinuous part boundary (i.e., having infinite negative 
curvature) on a surface embedded in three dimensions (Fig. 3). Such a con- 
tour, when imaged on the retina, induces a concave discontinuity in the 
resulting silhouette (notice the concave cusps in the silhouette of Fig. 3). 
Smooth part boundaries defined by the minima partitioning rule can (also 
provide image cusps, as shown in the profiles of Fig. 1. It would be convenient 
to infer the presence of smooth and discontinuous part boundaries in three 
dimensions from concave discontinuities in the two-dimensional silhouette, 
but unfortunately other surface events can give rise to these discontinuities 
as well. A torus (doughnut), for instance, can have two concave discon- 
tinuities in its silhouette which do not fall at part boundaries defined by the 
minima rule (see Fig. 9). 

Fortunately, it is rare that a concave discontinuity in the silhouette of an 
object does not indicate a part boundary, and when it does not this can be 
detected from the image data. So one can, in general, correctly infer the 
presence or absence of part boundaries from these concave: discontinuities. 
The proof of this useful result (which is banished to Appendix 2) exploits 
regularities of the singularities of smooth maps between two-dimensional 
manifolds. We have seen how a regularity of nature underlies a mental cate- 
gory, viz., ‘part’ of shape; here we see that another regularity (e.g.. a singu- 

larity regularity) licenses an inference from the retinal image to an instance 
of this category. 

Figure 9. A torus can have concave discontinuities (inducated by the arrows) which 
do not correspond to part boundaries. 
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Figure 10. A reversing figure, similar to Attneave (I 974), appears either as an alternat- 
ing chain of tall and short mountains or as a chain of tall mountains with 
twin peaks. 

The singularity regularity, together with transversality, motivates a first 
partitioning rule for plane curves: Divide a plane curve into parts at concave 
cusps. Here the word concave means concave with respect to the silhouette 
(figure) side of the plane curve. A concavity in the figure is, of course, a 
convexity in the ground. 

This simple partitioning rule can explain some interesting perceptual ef- 
fects. In Fig. 10, for instance, the same wiggly contour can look either like 
valleys in a mountain range or, for the reversed figure-ground assignment, 
like large, twin-peaked mountains. The contour is carved into parts diffe- 
rently when-figure and ground reverse because the partitioning rule uses only 
concave cusps for part boundaries. And what is a concave cusp if one side of 
the contour is figure must become a convex cusp when the other side is 
figure, and vice versa. There is an obvious parallel between this example and 
the reversible staircase discussed earlier. 

6.1. Geometry of plane curves 

Before generalizing the rule to smooth contours we must briefly review two 
concepts from the differential geometry of place curves: principal normal and 
curvature. The principal normal at a point on a curve can be thought of as a 
unit length needle sticking straight out of [orthogonal to) the curve at that 
point, much like a tooth on a comb. All the principal normals at all points 
on a curve together form a field of principal normals. Usually there are two 
possible fields of principal normals--either leftward pointing or rightward 
pointing. Let us adopt the convention that the field of principal normals is 
always chosen to point into the figure side of the curve. Reversing the choice 
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of figure and ground on a curve implies a concomitant change in the choice 
of the field of principal normals. 

Curvature is a well-known concept. Straight lines have no curvature, circles 
have constant curvature, and smaller circles have higher curvature than larger 
circles. What is important to note is that, because of the convention forcing 
the principal normals to point into the figure, concave portions of a smooth 
curve have negative curvature and convex portions have positive curvature. 

6.2. Parts of smooth curves 

it is an easy matter now to generalize the partitioning rule. Suppoce that 
wherever a curve has a concave cusp we smooth the curve a bit. Then a 
concave cusp becomes a point of negative. curvature having, locally. the 
greatest absolute value of curvature. This leads to the following generalized 
partitioning rule: Divide a plane curve into parts at negative minima of curva- 
ture.5 

Several more perceptual effects can be explained using this generalized 
partitioning rule. A good example is the reversing figure devised by Attneaye 
(see Fig. 11). He found that by simply scribbling a line through a circle and 
separating the two halves one can create two very different looking contours. 
As Attneave (1971) points out, the a-ppearance of the contour depends upon 

Figure 11. Attneave’s reversing figure, cortstructed by scribbling a line down a circle. 
The apparent shape of a contour depends on which side is perceirred as 

fg i ure. 

c 

qransversality directly motivates using concave cusps as part boundaries. Only by smoothing do we 
include minima as well (both in tne case of silhouette curves and in the case of part boundaries in three 
dimenskns). Since the magnitude of the curvature at minima decreases with increased smoa:hing. it is useful 
to introc’uce the notion of th,e strength or goodness of a part boundary. The strength of a part boundary is 
hii;her the more negative the curvature of the minimum. Positive minima have the least strerzgth. and deserve 
to be considered separately from the negative minima, a possibility suggested to us by Shimon Ullman. 
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which side is taken to be part of the figure, and does not depend upon any 
prior familiarity with the contour. 

Now we can explain why the two halves of Attneave’s circle look so differ- 
ent. For when figure and ground reverse, the field of principal normals also 
reverses in accordance with the convention. And when the principal normals 
reverse, the curvature at every point on the curve must change sign. In par- 
ticular, minima of curvature must become maxima and vice versa. This repos- 
itioning of the minima of curvature leads to a new partitioning of the curve 
by the partitioning rule. In short, the curve looks different because it is 
organized into fundamentally different units or chunks. Note that if we chose 
to define part boundaries by inflections (see Hollerbach, 1975; Marr, 1977), 
or by both maxima and minima of curvature (see Duda and Hart, 1973), or 
by all tangent and curvature discontinuities (Binford, 1981). then the chunks 
would not change when figure and ground reverse. 

A clear example of two very different chunkings for one curve can be seen 
in the famous face-goblet illusion published by Turton in 1819. If a face is 
taken to be figure, then the minima of curvature divide the curve into chunks 
corresponding to a forehead, nose, upper lip, lower lip, and chin. If instead 
the goblet is taken to be figure then the minima reposition, dividing the curve 
into new chunks corresponding to a base, a couple of parts of the stem, a 
bowl, and a lip on the bowl. It is probably no accident that the parts defined 
by minima are often easily assigned verbal labels. 

Demonstrations have been devised which, like the face-goblet illusion, 
allow more than one interpretation of a single contour but which, unlike the 
face-goblet illusion, do not involve a figure-ground reversal. Two popular 
examples are the rabbit-duck and hawk-goose illusions (see Fig. 13). Because 
these illusions do not involve a figure-ground reversal, and because in conse- 
quence the minima of curvature never change position, the partitioning rule 

Figure 12. The reversing goblet can be seen as a goblet or a pair of facial profiles 
(adapted from Turton, 1819). Defining part boundaries by minima of cur- 
vature divides the face into a forehead, nose, upper lip, lower lip, and chin. 
Minima divide the goblet into a base, a couple parts of the stem, a bowl, 
and a lip on the bowl. 
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Figure 13. Some ambiguous shapes do not involve a reversal of figure and ground. 
Consequently, the part boundaries defined by minima of cl*rv,yture do not 
move when these figures change interpretations. In this illustration, for in- 
stance, a rabbit’s ear turns into a duck’s bill without moving, and a hawk’; 
head turns into a goose’s tail, again without moving. 

must predict that the part boundaries are identical for both interpretations 
of each of these contours. This prediction is easily confirmed. What is an ear 
on the rabbit, for instance, becomes an upper bill on the duck. 

If the minima rule for partitioning is really used by our visual systems, one 
should expect it to predict some judgments of shape similarity. One case in 
which its prediction is counterintuitive can be seen in Fig. 14. Look briefly 
at the single half-moon on the right of the figure. Then look quickly at the 
two half-moons on the left and decide which seems more similar to the first 
(go ahead). In an experiment performed on several similar figures, we found 
that nearly all subjects chose the bottom half-moon as more similar. Yet if 
you look again you will find that the bounding contour for the top half-moon 
is identical to that of the right half-moon, only figure-ground reversed. The 
bounding contour of the bottom half-moon, however, has been mirror re- 
versed, and two parts defined by minima of curvature have been swapped. 
Why does the bottom one still look more simi ar? The minima rule gives a 

simple answer. The bottom contour, which is not figure-ground reversed 
from the original contour, has the same part boundaries. The top contour, 
which is figure-ground reversed from the original, has entirely different part 
boundaries. 

‘7. Holes: A second type of part 

The minima rule for partitioning surfaces is motivated by a fact about generic 
intersections of surfaces: surfaces intersect transversally. As Fig. 3 illustrates, 
this implies that if two surfa,ces are interpenetrated and left together to form 
a composite object then the contour of their intersection is a contour of 
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Figure 14. A demonstration that some judgments of shape similarity can be predicted 
by the minima partitioning rule. In a quick look, the bottom left half-moon 
appears more similar to the right half-moon than does the top left one. 
However the bounding contour of the top left half-moon is identical to that 
of the right half*moon, whereas the bounding contour of the bottom left 
half-moon has been mirror reversed and has had two parts interchanged. 

cor?cave discontinuity on the composite surface. Now suppose instead that 
r the two surfaces are interpenetrated one surface is pulled out of the 
s, leaving behind a depression, and then discarded. The depression 

ereaxd in this manner has just as much motivation for being a ‘part’ on the 
basis of transversality as the parts we have discussed up to this point. 
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AS can be seen by examining the right side of Fig. 3, the contour that 
divides one part from the other on the composite object is precisely the same 
contour that will delimit the depression created by pull2ng out the penetrating 
part. But whereas in the case of the composite object this contour is a contour 
of concave discontinuity, in the case of the depression this contour is a con- 
tour of convex discontinuity. And smoothing this contour leads to positive 

of a principal curvature for the case of a depression. We are led to 
that a shape can ave at least two kinds of parts-‘positive parts’ 

which are bounded by neg ive extrema of a principa curvature, and ‘nega- 
tive parts’ (holes) bounded by positive extrema of a principal curvature. 

This result presents us with the task of finding a ser of rules that determine 
when to use positive extrema or negative extrema as part boundaries. We do 
not have these rules yet, but here is an example of what such rules might 
look like. If a contour of negative extrema of a principal curvature is not a 
closed contour, and if it is‘ immediately surrounded (Le., no intervening 
extrema) by a closed contour of positive extrema of a principal curvature, 
then take the contour of positive extrema as the boundary of a (negative) 
part. 

Note in any case that what we will not have are single parts bounded by 
both negative and positive extrema of a principal curvature. 

Inferences and regularities of nature have cropped up many times in the 
theory and discussions presented here. It is useful to explore their significance 
more fully. 

Perceptual systems inform the perceiver abou: properties of the world she 
needs to know. The need might be to avoid being eaten, to find what is 
edible, to avoid unceremonious collisions, or whatever. The relevant knowl- 
edge might be the three-dimensional layout of the immediate surrounds, or 
thal ahead lies a tr*ee lo&d \yith fruit, or that crouched in the tree is an 
unfriendly feline whose perceptual systems are also at work reporting the 
edible properties of the world. Regardless of the details, what makes the 
perceptual task tricky is that the data available to a sensorium invariablv e 

underdetermine the properties of the world that need to be known. That is, 
in general there are infinitely many states of the world which are cons&nt 
with the available sense d ta. Perhaps the best known example is that a!- 
though the world is three-dimensional, and we perceive it as such, each retina 
is only two-dimensional. Since the mapping from the world to the retina is 
many-to-one, the possible states of the world consistent with a retinal image, 
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or any series of retinal images, are many. The upshot of all this is that 
knowledge of the world is inferred. Inference lies at the heart of perception 
(Fodor and Pylyshyn, 1981; Gregory, 1970; Helmholtz, 1962; Hoffman, 
1983b; Marr, 1982). 

An inference, reduced to essentials, is simply a list of premises and a 
conclusion. An inference is said to be deductively valid if and only if the 
conclusion is logically guaranteed to be true given that the premises are true. 
So, for example, the following inference, which has three premises and one 
conclusion, is deductively valid: “A mapping from 3-D to 2-D is many-to-one. 
The world is 3-D. A retinal image is 2-D. Therefore a mapping from the 
world to a retinal image is many-to-one.” An inference is said to be induc- 
tively strong if and only if it is unlikely that the conclusion is false while its 
premises are true, and it is not deductively valid (see Skyrms, 1975)? So the 
following inference is inductively strong: “The retinal disparities across my 
visual field are highly irregular. Therefore whatever I am looking at is not 
flat.” Though this inference is inductively strong, it can prove false, as is in 
fact the case whenever one views a random dot stereogram. 

In perceptual inferences the sensory data play the role of the premises, 
and the asser:ions about the state of the world are the conclusions. Since the 
state of the world is not logically entailed by the sensory data, perceptual 
inferences are not of the deductive variety-therefore they are inductive. 

This is not good news. Whereas deductive inference is well understood, 
inductive inference is almost not understood at all. Induction involves a 
morass of unresolved issues, such as projectibility (Goodman, 1955), abduc- 
tion (Levi, 1980; Peirce, 1931), and simplicity metrics (Fodor, 1975). These 
problems, though beyond the scope of this paper, apply with unmitigated 
force to perceptual inferences and are thus of interest to students of percep- 
tion (Nicod, 1968). 

But, despite these difficulties, consider the following question: If the pre- 
mises of perceptual inferences are the sensory data and the conclusion is an 
assertion about the state of the world, what is the evidential relation between 
perceptual premises and conclusions? Or to put it differently, how is it possi- 
ble that perceptual interpretations of sensory data bear a nonarbitrary (and 

%e distinction between deductively valid and inductively strong inferences is not mere pedantry; the 
distinction has important consequences for perception, but is often misunderstood. Gregory (1970, p. MI), 
for instance, realizes the distinction is import&it for theories of perception, but then claims that “Inductions 
are generalizations of instances.” This is but partly true. Inductive inferences may proceed from general 
pmmises to general conclusions, from general premises to particular conclusions, as well as from particular 
premises to general conclusions (Skyrms, 1975). The distinction between inductive and deductive inferences 
lies in the evidential relation between premises and conclusions. 
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even useful) relation to the state of the world? Or to put it still differently, 
why are perceptual inferences inductively strong? 

Surely the answer must be, at least in part, that since the conclusion of a 
perceptual inference is a statement about the world, such an inference can 
be inductively strong on y if it is motivated by laws, regularities, or unifor- 
mities of nature. To see this in a more familiar context, consider the folloGng 
inductively strong inference about the world: .=‘If E release this egg, it will 
fall”. The inference here is inductively strong because it is motivated by a 
law of nature-gravity. Skeptics, if there are any, will end up with egg on 
their feet. 

Laws, regularities, and uniformities in the world, then, are crucial for the 
construction of perceptual inferences which have respectable inductive 
strength. Only by exploiting the uniformities of nature can a perceptual sys- 
tem overcome the paucity of its sensory data and come to useful conclusions 
about the state of the world. 

If this is the case, it has an obvious implication for perceptual research: 
identifying the regularities in nature which motivate a particular perceptual 
inference is not only a ood thing to do, but a sine qua non for explanatory 
theories of perception. B An explanatory theory must state not only the pre- 
mises and conclusion of a particular perceptual inference, but also the lawful 
properties of the world which license the move from the former to the latter. 
Without all three of these ingredients a proposed theory is incomplete. 

‘At least two conditions need to be trr\e of a regularity. such as {rigidity. for it to be useful: (1) It shmid 
in fact be a regularity. If there were not rigid objects in the world, rigidity would be useless. (2) It should 
allow inductively strong inferences from images to the world, by making the ‘deception probability’. to be 
defined shortly, very close to zero. For instance, let w (world) stand for the following assertion about four 
points in the world: “are in rigid motion in 3-D”‘. Let i (image) stand for the following assertion about the 
retinal images of the same four points: “have 2-D positions and motions consistent with being the projections 
of rigid motion in 3-D”. Then what is the probability of w given i? The existence of rigid objects does not in 
itself make this conditional probability high. Using Bayes’ theorem we find that P(~ji) = P(Iv) - P(il~![P(ir~) 
* P(ilw) + P(-W) * P(il-IV)]. Since the numerator and the first term of the denominator are identical. this 
conditional probability is near one only if P(w) - P(i[ Hj) % P(-W) - P(il-w?). And since P(-IV). though unknown 
is certainly much greater than zero, P(w(i) is near one only ii P(ij-w)--let’s call this the ‘deception probabil- 
ity’- is near zero. Only if the deception probability is near zeri, can the inference from the image to the world 
be inductively strong. A major goal of ‘structure from mobor*’ proofs (Bobick, 1983; Hoffman and Flin- 
chbaugh, 1982; Longuet-Higgins and Prazony, 1981; Richards c’t ~1.. 1983; Ullman, 1979) is to determine under 
what conditions this deception probability is near zero. Using an assumption of rigidity, for instance. Ullman 
has found that with three views of three points the deception probability is one, but with three views oi four 
points it is near zero. 
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9. conclwion 

The design of the visual system exploits regularities of nature in two ways: 
they underlie the mental categories used to represent the world and they 
license inferences from incomplete visual data to useful descriptions of the 
world. Both uses of regularities underlie the solution to a problem in shape 
recognition. Transversality underlies the mental category ‘part’ of shape; sin- 
gularities of projection underlie the inference from images to parts in the 
world. 

The partitioning rules presented in this paper are attractive because (1) 
they satisfy several constraints imposed by the task of shape recognition, (2) 
they are motivated by a regularity of nature, (3) the resulting partitions lotik 
plausible, and (4) the rules explain and unify several well-known visual illu- 
sions. 

Remaining, however, is a long list of questions to’be answered before a 
comprehensive, explanatory theory of shape recognition is forthcoming. A 
partial list includes the following. How are the partitioning contours on sur- 
faces to be recovered from two-dimensional images? How should the surface 
parts be described? All we have so far is a rule for cutting out parts. But 
what qualitative and metrical descriptions should be applied to the resulting 
parts? Can the answer to this question be motivated by appeal to uniformities 
and regularities in the world? What spatial relations need to be computed 
between parts? Although the part definitions don’t depend upon the viewing 
geometry, is it possible or even necessary that the predicates of spatial rela- 
tions do (Rock, 1974; Yin, 1970)? How is the shape memory organized? 
What is the first index into this memory? 

The task of vision is to infer useful descriptions of the world from changing 
patterns of light falling on the eye. The descriptions can be reliable only to 
the extent that the inferential processes which build them exploit regularities 
in the visual world, regularities such as rigidity and transversality. The discov- 
ery of such regularities, and the mathematical investigation of their power in 
guiding particular visual inferences, are promising directions for the re- 
searcher seeking to understand human vision. 

Surf&e partitioning in detail 

This appenldix applies the surface partitioning rule to a particular class of 
surfaces: surfaces of revolution. The intent is to convey a more rigorous 
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understanding of the rule and the partitions it yields. Since this section is 
quite mathematical, some readers might prefer to Sook at the results in Fig. 
16 and skip the rest. 

Notation. Tensor notation is adopted in this section because it allows con- 
cise expression of surface concepts, (see Dodson and Poston, 1979; Hoffman, 
1983a; Lipschutz, 1969). A vector in s3 is x = (x’, x’, x3). A point in the 
parameter plane is (u’, u*). A surface patch is x = x(u’, u*) = (x1(& u*), 
x’(u’ , u*), x3(d) u*)). Partial deriviatives i denoted by subscripts: 

aX a5r X1=pi,X*= *,X1*=-- a2i au au'au2 yetc* 

A tangent vector is dx = x1&’ + x2&4* = xidui where the Einstein summa- 
tion convention is used. The first fundamental form is 

1 = dx 9 dx = xi l xidu’dd = gijdu’dd 

where the gij are the first fundamental coefficients and i, j = 1, 2. 
The differential of the normal vector is the vector dl\i = Nidu’ and the 

second fundamental form is 

11 = d% . N = xij l Ndu’dd = bi#u’dd 

where the b, are the second fundamental coefficients and i, i = 1, 2. 
A plane passing through a surface S orthogonal to the tangent plane of S 

at some point P and in a direction du’:duj with respect to the tangent plane 
intersects the surface in a curve whose curvature at P is the normal curvature 
of S at 1’) in the direction du’:duj. The normal curvature in a direction du’:du’ 
is k, = 11/l. The two perpendicular directions for which the values of k, take 
on maximum and minimum values are called the principal directions, and the 
corresponding curvatures, kl and k2, are called the principal curvatures. The 
Gaussian curvature at P is K = klk2. A line of curvature is a curve on a surface 
whose tangent at each point is along a principal direction. 

Partitions of a surface of revolution. A surface of revolution is a set S c 
s3 obtained by rotating a regular plane curve a about an axis in the plane 
which does not meet the curve. Let the x1x3 plane be the plane of a and the 
2 axis the rotation axis. Let 

a(d) = (x(u’),z(u’)), a c z-8 < b, @‘)I > 0. 

Let u* be the rotation angle about the x3 axis. Then we obtain a map 

x(2, u*) = (x(u*)cos(uz), x(u’)sin(u*), z(u’)) 
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Figure 15. Surface of revolution. 

from the open set U = {(u’, u2) E $X2; 0 < u2 < 2n, a < u’ c b} into S (Fig. 
15). The cume (x is called the generating curve of S, and the 2 axis is the 
mzztion ax+ of S. The circles swept out by the points of Q are called the 
parallels of S, and the various placements of a on S are called the meridians 
of s. 

Let cos(rr2) be abbreviated as c and sin(u2) as s. Then x1 = (qc, nls, q) 
and x2 = ( --xs, xc, 0). The first fundamental coefficients are then 

gq r xi l xj = (y;). 
The surface normal is 

If we let u be arc length along a then v’$ + xf = 1 = gpl and 

N = (qc, qs, -x1). 

The second fundamental coefficients are 

b, = gii . N = xllzl 0 ‘1’11 

Sinceg12 = b12 = 0 the principal curvatures of a surface of revolution are 
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kl = hllgll = XllZl - Wll 

kz = b22/g22 = -zl/.x. 

The expression for kl is identical to the expression for the curvature along 
a. In fact the meridians (the various positions of a on S) are lines of curva- 
ture, as are the parallels. The curvature along the meridians is given by the 
expression for kl and the curvature along the parallel is given by the expres- 
sion for k2. The expression for k2 is simply the curvature of a circle of radius 
x multiplied by the cosine of the angle that the tangent to cc makes with the 
axis of rotation. 

Observe that the expressions for kl and k2 depend only upon the parameter 
u*, not u2. In particular, since k2 is independent of u2 there are no extrema 
or inflections of the normal curvature along the parallels. The parallels are 
circles. Consequently no segmentation contours arise from the lines of curva- 
ture associated with k2. Only the minima of kl along the meridians are used 
for segmentation. Fig. 16 shows several surfaces of revolution with the 

Figure 16. Partitions on surfaces of revolution. 

contours not necessarily 
where a'=0 1 
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minima of curvature along the meridians marked. The resulting segmentation 
contours appear quite natural to hiuman observers. 

As a surface of revolution is flattened along one axis, the partitioning 
contours which are at first circles become, in general, more elliptical and bow 
slightly up or down. 

Appendix 2 

Inferring purt boundaries from imagce singularities 

In general, ia concave discontinuity in a silhouette indicates a part boundary 
(as defined by the: minima rule) on the imaged surface. This appendix makes 
this statement more precise and then examines a special case. 

Only two types of singularity can arise in the projection from the world to 
the retina (Whitney, 1955). These two types are @MS and spines (see Fig. 
17). Intuitively, folds are the contours on a surface where the viewer’s line 
of sight would just graze the surface, and a spine separates the visible portion 
of a fold from the invisible. A contour on the retina corresponding to a fold 
on a surface is called an outline (Koenderink and van Doorn, 1976, 1982b). 
A temination is a point on the retina c:orresponding to a spine on a surface. 
A T-junction (s+ze Fig. 17) occurs where two outlines cut each other. 

We wish ito determine the conditions in which a T-junction indicates the 
presence of a part boundary. Two results are useful here. First, the sign of 
curvature of a point on an outline (projection of a fold) is the sign of the 
Gaussian curvature at the corresponding surface point (Koenderink and van 
Doom, 1976, 1982b). Convex portions of the outline indicate positive Gaus- 
sian curvature, concave portions indicate negative Gaussian curvature, and 
inflections indicate zero Gaussian curvature. Second, the spine always occurs 

Figure 17. Singularities of the retinal projection. 

T-junction 
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at a point of negative Gaussian curvature. That is, the visible portion of a 
fold always ends in a segment whose projected image is concave (Koenderink 
and van Doorn, 1982b). 

The scheme of the proof is the following. Suppose that the folds on both 
sides of a T-junction have convex regions, as shown in Fig. 17. Then the sign 
of the Gaussian curvature is positive, and in fact both principal c\xvatuxzi 
are positive, in these two regions. Now the presence of a spine indicates &at 
these regions of positive Gaussian curvature are separated by a region of 
negative Gaussian curvature. This implies that the principal curvature as- 
sociated with one family of lines of curvature is negative in this region. But 
then the principal curvature along this family of lines of curvature must go 
from positive to negative and back to positive as the lines of curvature go 
from one hill into the valley and back up the other hill. If this is true, then 
in the generic case the principal curvature will go through a negative: 
minimum somewhere in the valley-and we have a part boundary. 

There are two cases to consider. In the first the loci Iwhere one principal 
curvature goes from positive to negative (parabolic curves) surround each 
hill. In the second case the parabolic curve surrounds the valley between the 
two hills. We consider only the first case. 

In the first case there are two ways that the lines of curvature entering the 
valley from one parabolic curve might fail to connect smoothly with lines of 
curvature entering the valley from the other parabolic curve: they might 
intersect orthogonally or not at all. If they intersect orthogonally then the 
two principal curvatures must both be negative, and the Gaussian curvature, 
which is the product of the two principal curvatures, must be positive. But 
the valley between the parabolic contours has negative Gaussian curvature, 
a contradiction. 

If the lines of curvature fail to intersect then there must be a singularity in 
the lines of curvature somewhere in the region having negative Gaussian 
curvature. However, “The net of lines of curvature may have singular prop- 
erties at umbilical points, and at them only.” (Hilbert and Cohn-Vossen, 
1952, p. 187). Umbilical points, points where the two principal curvatures are 
equal, can only occur in regions o:’ positive Gaussian curvature-again a 
contradiction. (Here we assume the surface is smooth. A singularity could 
also occur if the surface were not smooth at one point in the valley. But in the 
generic case part boundaries would still occur.) 

This proof requires that the two folds of a T-junction each have a convex 
region. The two folds of T-junctions on a torus do not satisfy this condition--- 
they are always concave. Thus it is a simple matter to determine from an 
image when a T-junction warrants the inference of a part boundary. 

The proof outlined here is a special case. A general proof is needed which 
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specifies when a concave cusp in a silhouette indicates the presence of a part 
boundary or two different objects. The more general proof would not use the 
relation between spine points and Gaussian curvature. The proof might run 
roughly as follows: a concave cusp is a double point in the projection. A line 
connecting the two points on the surface which project to the cusp necessarily 
lies outside the surface between the two points. But then the surface is not 
convex everywhere between these two points. Consequently there is a con- 
cave discontinuity (part boundary) between the points or the Gaussian curva- 
ture must go negative. If the Gaussian curvature goes from positive (convex) 
to negative and then back to positive (convex), one of the principal curvatures 
must also. But this implies it has a negative minimum, in the general case, 
and so we have a smooth part boundary. 
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Les auteurs sugg&ent que le syst&me visuel pour la reconnaissance des objets. decompose les formes en 
cSICments et qu’il utilise pour cela une r&Ii: definissant les front&es de ces tlCments plut8t que leurs formes. 
Cette r&gJe exploite une r&gularitC de la nature: la transversalit Lfzs &lCments, leurs descriptions et leurs 
relations spatiales foumissent un premier index dans la memoire des formes. On peut avec cette regle rendre 
compte de plusieurs illusions visuelles. Le!i auteurs insistent sur le r6le de I’infhence inductive et concluent 
en indiquant les problemzs 3on r&olus. 


