CHAPTER 9

Regularities of Nature:
The Interpretation of Visual Motion

S. R. REUMAN
D. D. HOFFMAN

Schoot of Social Sciences
University of California
Irvine, CA

1. Introduction

The human visual system can tecover the three-dimensional structure of objects
from their changing two-dimensional images formed on the retina. Cinematography
provides a familiar example of this ability; each frame of a movie is two-dimension-
al, yet we have clear impressions of scene structure and depth. A particularly
informative demonstration depicts a rotating sphere represented only by dots of light
randomly positioned on its surface (Figure 1). To create the first frame of such a
movie sequence, three-dimensional positions on the surface of the sphere are spec-
ified at random and then projected orthographicaily onto a two-dimensional image
plane. (Orthographic projection is **parallel’” projection; the z or depth coordinate
is lost entirely while the (x,y) coordinates of each point remain unaltered.) Each
subsequent frame, N, of the movie is then computed by rotating the dots from their
initial three-dimensional positions N3k degrees about some fixed axis, and then
projecting onto the image plane. Given a fixed frame display rate for the sequence,
the choice of @ determines the rotation speed of the sphere in three dimensions.
When the frames are shown in sequence, subjects have Jittle difficulty perceiving
the correct three-dimensional structure and motion of the sphere over a wide range
of dot densities and film rates, even though single frames give no impression of
structure or depth. Demonstrations such as this make clear that our visual systems
can recover three-dimensional structure from image motion in a highly reliable and
flexible manner.

How is it possible that, in general, we can open our eyes to a novel moving scene
and instantly understand the three-dimensional relationships of the objects we view?
The inference from two dimensions to three is clearly underconstrained. In the dot
displays there are an infinite number of possible interpretations since each image dot
could, a priori, be assigned any z coordinate at all. What additional information then
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Figure 1. The three frames at left show the successive positions of dots when they are
orthographically projected from the surface of a rotating sphere onto an image plane,
When the frames are shown in rapid succession in their natural order, we recovér the
Correct shape of the generating sphere, and perceive it in three-dimensions, despite
the loss of information during projection.

might be brought to bear to reduce the number of possibilities to a unigue solution,
and more importantly, to the correct solution?

2. Natural Regularities

The additional constraining information needed to infer the three-dimensional state
of the world from changing images is gained by exploiting regularities of nature—
those patterns of the physical world which are highly stable over space and time.
The number of possible visual interpretations of a scene can be reduced, often to a
unique choice, by assuming that fundamental natural patterns such as the laws of
physics hold for the objects being imaged. For this reason we expect that human
visual machinery fulty expioits such environmental regularities in solving the struc-
ture from motion problem.

2.1 The Rigidity Regularity

Ullman (1979a) noted the value of natural regularities in reducing or eliminating
the inherent ambiguity of retinal scene analysis, cailing them ‘“‘reflective con-
straints”” since they reflect properties of the physical world. Following several
earlier researchers (Wallach & O'Connell, 1953; Gibson & Gibson, 1957 Green,
1961, Hay, 1966; Johansson, 1975) he suggested that rigidity is one regularity used
by the human visual system to recover three-dimensional structure. The principle,
as he formulated it, states '

Any set of elements undergoing a two-dimensional transformation whicli has a unigue
interpretation as a rigid body moving in space, should be interpreted as such a body in
motion,

Uliman showed that by incorporating this rigidity principle, the visual system
couid indeed uniquely recover object structure from a sequence of images projected
on the retina. His approach was to determine the minimum amount of visual infor-
mation necessary to achieve a unique solution to three-dimensional object struc-
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ture.! In fact, the amount of information required is quite small. Ullman's structure
from motion theorem states :

Given three distinct orthographic views of four non-coplanar poimis in a rigid configu-
ration, the structure and motion compatible with the three views is uniquely deter.
mined up to a reflection about the image plane.

The rigidity constraint as Ullman formulated it makes no explicit reference to
spatiotemporal limits on its applicability. The assertion that objects in the environ-
ment can often be treated as locally rigid has some intuitive force. Yet, if an object
must be perfectly rigid over a large region or extended period the plausibility and
usefulness of the assumption is clearly reduced. Experiments confirm these expecta-
tions. If we construct a rotating dot display using dots widely separated in space or
time, it will be found that the perception of depth and structure, so obvious in more
dense displays, is entirely absent. If we then view a smaller twin of the same display
sequence or step back further from the image plane, thereby lessening image (and
retinal) inter-dot distances, the impression of depth returns. As yet there is no good
definition of the locality within which rigidity must hold. Or, if it holds at all
distances, there is no adequate explanation of why the recovery of structure from
motion breaks down when the visual information is too widely separated in space or
time. If normal viewing conditions and the spatio-temporal sampling rate of the
human visual system are assumed, three views of four points is a quite weak
requirement, and makes dependence on the rigidity principle more plausible.

A simpie algorithm based on Ullman’s structure from motion theorem involves
testing local sets of four points for a unique interpretation as a rigid body moving in
space, and combining successes. For all local groups interior to the image of an
object, i.e., those whose elements belong to the same physical object, the scheme
will be successful. Boundary points belonging to different objects are classified by
testing them within a local group whose other members are known to lie within a
single object. Local tests are independent and can be done in parallel. No backtrack-
ing is required during the process of combining successes since, by the structure
from motion theorem, any successful interpretation of four points as a locally rigid
body is unique.

Although Ullman’s approach is quite powerful, there are displays which in
principle it cannot account for, such as the ‘‘biological motion™ displays of
Johansson (1973). Johansson’s displays are similar in concept to the dot displays
already described, but focus on the more complicated patterns evident in human
locomotion. Subjects are filmed in the dark with small light buibs attached to joints

! This approach provides a methodological link between research on the perception of motion
displays and research on the theoretical foundation of such abilities, By finding lower bounds on the
spatio-temporal information that must be involved in early structure from motion computations, visual
perception, as well as the computational theory requisite to building a successful simulation of the
system, can be clarified.
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(Figure 2). As in the case of the random-dot sphere, single frames of a biological
motion display are completely unrecognizable and yet when shown in sequence,
yield strong impression of three-dimensional structure and depth. However,
Johansson’s displays do not contain any group of four non-coplanar points moving
in a rigid configuration. Here, the only rigid links lie between individual dot pairs
such as ankle-knee, knee-hip, and so on. Thus the rigidity principle alone is inade-
quate and we are forced to conclude that additional (or alternative) regularities of
nature must be brought to bear in this situation.

22, The Planarity Regularity .

What is a reasonable candidate for an additional natural constraint that ‘would
explain the recovery of structure in biological motion displays? We would like to
choose a constraint that provides high predictive power when applied to the image
data. The key observation here is that limbs in motion move in highly regular
paths. Casual observation reveals that the limbs of an ambulating animal do not
move about arbitrarily. During normal gait, limbs typically swing in a plane for
extended periods of time. This constraint on limb motion can be formalized as a
*‘planarity principle’’ (Hoffman & Flinchbaugh, 1982), and tested for it predictive
power in explaining the recovery of structure in biological motion dispiays. The
planarity principle claims that the visual system exploits planar limb motion by
implementing the following:

Any set of elements undergoing a two-dimensional transformation which has g unigue
interpretation as a rigid structure moving in one plane, shouid be interpreted as such g
body in motion.3

Hoffman and Flinchbaugh (1982) show that the planarity regularity can be used
to prove the following two **structure from planar motion"* propositions:

Proposition 1. Given three distinct orthographic projections of two points con-
strained to rotate {and translate) rigidly in q plane, the structure and motion
compatible with the three views are uniquely determined up to a refl-:tion about the
image plane.

chapter, this point is eicpiained in detail by formalizing the inference process in terms of Bayes'
Theorem. '

_ 3 The pianarity pririciple is actually a consequence of more fundarental naryral regularities stem-
ming from Newton's laws of motion and the properties of mass. While we do not yet have a satisfactory
form for the underlying principle, the idea can be iffustrated by noting that to a first approximation, limbs
act like simple, rigid pendula doing work under the force of gravity. In the simplest case, obedience to
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Figure 2. An example of a motion display in which the rigidity principle alone is
insufficient to explain our perception of depth and structure. The display does not
contain any group of four non-coplanar dots moving in a rigid configuration, the
minimum condition required by the structure from motion theorem, (a) A single frame
of a typical motion sequence. (b) The correct links between dots which must be
discovered to interpret the display correctly.

Proposition 2. Given two distinct orthographic projections of the three end-
points of two rigid rods linked in a hinge joint to form a pairwise-rigid siructure
which is constrained to move in one plane, the structure and motion compatible
with the two views are uniquely determined. (A pairwise-rigid structure is a set of
points moving in space so that each point remains at a constant distance from at .
least one other point, and no three points are in a rigid configuration. Arms and
legs are obvious examples.) :

We can sketch the proof of proposition 1 as follows, Let O, and A, be the two
points in frame i, for i=1,2,3. In 3-space, the vectors a; from O, to A, have egual
length and are coplanar under the rigidity and pianarity constraints. Note that
transiation of O, in depth or in the image plane can be ignored without loss of
generality. For translation in depth, recovery is impossible under orthographic
projection,* while for transiation parallel to the image plane, recovery is trivial.
Therefore we canset 0, = 0, = 05 = O (figure 3a). In 3-space, the vectors a; from
O to A, have equal length and are coplanar under the rigidity and planarity con-
straints. Thus we have

2,2, 2,8, m

8,°8,=d,'8, 2)

4 The use of orthographic projection (as opposed to perspective projection) has been justified else-
where on the basis of locality arguments. See Uliman (1979a), p. 158,
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Figure 3a. The geometry underlying three views of two rigidly linked points con-
strained to move in a plane.

by the rigidity principle and
8 {8, %Xa,)=0 (33

by the planarity principle. As in the case of the rigidity principle, the planarity
principle need only hold locally under normal viewing conditions, since the number
of views and points required to obtain a unique three-dimensional structure is smal.
Recall that under orthographic projection, x and ¥ coordinates are preserved while z
coordinates are lost entirely. In this manner, the problem is reduced to recovery of
the relative z coordinates of one point in each of the three frames, given the
corresponding x, and y,. So, by eqns. (1), (2) and (3} we have

2=z3+k,=0
gk, =0 : “)
kot thozy+kezy =0 '

where
k= +yi-x3-3
k,=xi+y? ~-xg=y3
g P A (3

ky=xyy, =% ¥,
kg=x¥;=x3¥)
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Figure 3b. The geometry underlying two views of three points linked in pairwise-rigid
manner (see Proposition 2) and constrained to move in a plane.

The details of the proof that there is a unique solution to the above system can be
found in Hoffman and Flinchbaugh (1982), The proof of proposition 2 is similar.

What are the potential difficulties with the above scheme? First, we must be sure
of uniqueness. That is, if the object of concern is actually rigid and in planar
motion, then an analysis based on these properties should deliver only one three-
dimensional interpretation.’ This is the problem of *‘phantom structures’* (Uliman,
1979a). The proof that there can be no phantom structures follows from the proof of
propositions 1 and 2 above. Second, one can ask, ‘‘What is the probability that the
analysis will return a rigid, planar interpretation of a set of points if in fact the points
are not moving in such a configuration?'* This is the *‘false targets™ problem. The
probability of false targets is low and in fact is zero given images of infinite
resolution. Recall that three views of two points moving rigidly in a plane in space
map to six points on an ellipse in the image. (Again, as in the uniqueness proof of
Proposition 1, we can ignore translation in depth and in the image plane.) Only five
points are needed to specify an ellipse. The probability that a randomly chosen sixth
point lies on a given ellipse is zero and thus the probability of false targets is zero.

2.3.  The Fixed Axis Assumption
By exploiting certain natural regularities, a visual system operating mecha-
nistically, that is, without benefit of higher-level knowledge, can solve the problem

3 Under orthographic projection, we are limited 10 uniqueness up to reflection about the image plane.
6 The probability of false targets given infinite image resolution is also zero when the rigidity
principle alone is used to recover depth from three views of four points.
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of recovering three-dimensional object structure in an interesting and practical class
of scenes. If the rigidity principle alone is assumed, three views of four non-
coplanar points are required. If the planarity principle is invoked in addition, three
views of two rigidly moving planar points, or two views of three such points linked
in pairwise-rigid fashion will suffice. But what of scenes in which even these small
fequirements are not met? Given a display of fewer than four points moving rigidly
in 3 non-planar path (thereby bypassing both the structure from motion and planarity
theorems) can the human observer yet recover the relative depth of the points?
This is not mere pedantry. Our goal is essentially to find the smallest possible
complete set of regularities—complete in the sense that the combined predictive
power of the members should rival the structure recovery abilities of the human
visual system. Johansson has shown (1975) that a display of two points moving
opposite each other through rectangular or elliptical paths (Figure 4) is sufficient to
create the impression of depth. However, he did not attempt to restrict the number
of views to the minimum necessary to make such a judgement. We have constructed
a display in our laboratory using only three frames of three dots rotating about a
vertical fixed axis. The duration of the display can be made arbitrarily long by
repeating the sequence (1-2-3-2-1-2-3 . . . ), making judgement about shape more
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Figure 4. Johansson’s displays showing depth-from-motion with only two dots. Two
dots moving in an elliptical path in the image (a) are perceived as maintaining a
constant distance from each other and thus seem to be moving in a circle in depth (b).
When the two-dimensional path is a square (c), the result is the perception in (d).
Adapted from G. Johansson, Visual Motion Perception; in “Recent Progress in Percep-
tion”, p. 71, Freeman Press, 1976. '
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feasible while still restricting information input to three frames. Depth and structure
can still be seen clearly when such a sequence is viewed by a naive observer, Thus
again we are led to the conclusion that our model is inadequate; rigidity and
planarity alone cannot explain the general recovery of depth and structure from
image data.

A few researchers have sought explanations for our ability to perceive depth in
these very sparse displays through the use of a fixed axis assumption. Webb and
Aggarwal (1981) studied this idea but did not address the question of the minimal
information necessary to arrive at a unique interpretation. Bobick (1983) also exam-
ined the fixed axis assumption. He showed that three views of two points, when
coupled with knowledge of the instantaneous direction vectors of the points and the
fixed axis assumption, are sufficient to specify a unique structure. Bennett and
Hoffman (in preparation) have recently shown that three views of three points are suf-
ficient to recover object structure and motion uniquely, for rigid, fixed-axis motion.
Bennett and Hoffman (1985) have also found that three views of four points or
four views of two points in non-rigid, fixed-axis motion are sufficient to recover
object structure uniquely and with zero probability of false targets. Thus under the
fixed axis assumption, it is possible to compute the three-dimensional structure of
objects without relying on rigidity at all.

The work of Green (1961), using rotating dot displays, has been cited as evi-
dence that the fixed axis assumption is justified from a psychophysical point of
view. Green examined various parameters influencing perceived rigidity of rotating
objects, among these the direction and motion of the axis of rotation. He found that
a (projected) random-dot figure tumbling about a point? was perceived as less rigid
than one moving about a vertical fixed axis, indicating that such an axis does at least
make it easier for the visual system to recover the structure of the object in question.
However he also found that rotation about various fixed but non-vertical axes was
perceived as less rigid than rotation about a vertical fixed axis (Green 1961, experi-
ments 5 and 6). In fact, there were some instances (objects consisting of random
unconnected line segments) in which perceived rigidity of non-vertical fixed axis
rotation was lower than that associated with the tumbling display. It thus seems that
the situation is more complicated than the fixed axis assumption can easily explain.
Orientation of the axis of rotation, particularly vertical vs. non-vertical, as well as
the structure of the display (lines vs. dots in Green’s experiments) are both con-
founding variables. Indeed, Green’s work could be interpreted as providing evi-
dence against the fixed axis assumption, since the perception of depth and three-
dimensional structure still occurred in displays with moving axes, albeit with less
clarity. We have duplicated some of Green’s displays in our laboratory and have
found similarly that complex axis motion reduces but does not destroy the ability to
recover depth and structure.

7 To ramble a figure about 2 fixed point, Green used Euler's formulas to specify rotation speed
around each of the three coordinates axes.
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24. A Regularity Based on Mass

As an alternative to the fixed axis assumption, we are currently examining the
use of a natural regularity based on the fact that objects in the real world have mass
and therefore momentum. By assuming that image data stems from real, physical,
massive objects, the visual system can at once make use of the enormous predictive
power of the laws of physics, in particular, the laws of motion.

Our choice of this approach has been motivated by the fact that objects in the real
world always have mass and thus their images can be expected to be interpreted
using that knowledge. The goal of the visual system is to make useful inferences
about the physical world. Utility implies manipulation and prediction of position as
well as recovery of three-dimensional structure. Therefore endowment of the im-
aged object with mass and momentum, shouid enhance the ability to make accurate
and useful inferences about the underlying physical reality.

Assuming that objects have mass may explain the observation that rotational
motion in dot displays must be smooth for the structure recovery process to operate
successfully. We have constructed in our laboratory a moving dot display in which
the arc distance of axis movement per frame is constant while rotational direction of
the axis is altered 45 degrees every third frame. In such displays where dot motions
are jerky, structure from motion falls apart, and yet the fixed axis assumption would
predict correct interpretation of such sequences. Interpretation based on the assump-
tion that the cbject has momentum handles this situation naturally.

We suggest that the visual system exploits knowledge of mass and momentwum by
implementing the following statement:

Any set of elements that has a unique interpretation as a moving, rigid body with non-
zero mass should be interpreted as such a body.

The mass regularity implies obedience to Newton’s laws for the motion of a rigid
body in space

[

F

N

i

R 8l

where the linear momentum P is defired by P = MV, the angular momentum L is
defined by L = I-W, F and N are the total external force on the body and the total
torque about a suitable point O, V is the velocity of the center of mass, and I and W
are the inertia tensor and the angular velocity abour the point O (Symeon, 1971). L is
usually measured with O at rest or at the center of mass for unconstrained bodies
moving in space. In the case of rotational motion, conservation of angular mo-
mentum as expressed above states that when the resultant external torque acting on
the body is zero, the total vector angular momentum of the body remains constant.
We are currently engaged in determining the implications of the exploitation of this
principle by the visual system in the interpretation of rotational displays.
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One obvious question arises from dependence on the mass regularity. How can
perceptual reversal of rotational direction be explained? That is, how is it possible
that a clearly perceived, rotating random-dot sphere could instantaneously reverse
direction if it were assumed to have momentum during the structure recovery

only if the path of each dot is predicted, computed, and tested continuously with
each frame. If this continuous predict-compute-test cycle were interrupted for any
reasen, a bottom-up system would *“forget’” the previous direction of motion and

 initiate again, in an arbitrary direction, using the new incoming data. Another
possibility is that such ambiguous demonstrations lead to two interpretations being
computed simultaneously, each one consistently “‘seeing”* motion in one direction,
but alternately admitted to consciousness, Switching one or the other interpretation
into consciousness could happen for a variety of reasons having little or nothing to
do with the method of structure recovery. Rigorous establishment of the meaning of
reversal in these displays requires strict control of a number of factors (e.g., eye
movements} which may be confounding the effect of a regularity underlying system
interpretation of the display. It will be necessary to design experiments with this in
mind to settle the issue. i

3. Inference: The Link Between Regularities and Physical Structure

We have considered the importance of seeking plausible regularities in the natural
world that might assist the visua] system in solving the structure recovery problem.
The key to their plausibility lies in the idea that the goal of vision is to infer useful
properties of the physical world. We want to use regularities which convey the
greatest “‘predictive power’’ possible. How can we determine precisely what this
predictive power stems from? How do we know if a particular regularity wili
provide the power to make our inferences correct? Before answering this question it
will be helpful to discuss the categories of reasoning-—inductive and deductive-.—
into which inference can be divided, and to clarify the difference between them,

An argument is deductively valid if and only if it is logically impossible that its
conciusion is false while its premises are true. It is characteristic of all deductively
valid arguments that the conclusion must be contained in the premises. Most people
are familiar with simple examples such as

All mammals are animals.
All skunks are mammals.

Therefore, all skunks are animals
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An inductive argument differs from a deductive argument in degree of strength
only, and should not be thought of as a different “‘type’* of argument. An induc-
tively strong argument is defined as one which is pot deductively valid, and whose
conclusion is probable given that the premises are true. The degree of inductive
strength depends on the degree of probability involved. Note that because the
argument is probabilistic, the conclusion, unlike in the deducti ve case, could still be
incorrect even when inductive strength equals 1,

As another illustration of the difference between inductive and deductive reason-
ing, observe the fallacies in the following two common misconceptions. First, it is
sometimes thought that deductive arguments proceed from general to specific while
inductive arguments proceed from specific to general. Actually, deductively valid
arguments can proceed in all four possible ways, from general to general, general to
specific, specific to general, and specific to specific (Skyrms, 1975). Inductively
strong arguments have similar versatility. The difference between deductively valid
and inductively strong arguments lies not in the domain of their potential application
but in the different standards by which they judge validity. Only in the deductive
argument must the facts comprising the conclusion be contained in the premises, A
second misconception is the idea that inductive arguments necessarily imply the
presence of consciousness, i.e., they cannot be impiemented mechanically as is
possibie for deductive arguments. This is simply incorrect. To implement inductive
reasoning on a computer, it is only necessary 1) to provide a means of learning from
experience, or 2) to program in our own experience by basing the computer's
decisions on natural regularities which will increase the inductive strength of its
inferences, :

The logical framework within which the visual system must operate is inherently
inductive. We are given (x.y) coordinates and must recover the comresponding z
coordinates of each point. Since the facts comprising the conclusion of a deduc-
tively valid argument must be stated explicitly in the argument premises, and the z
coordinates are indeed not given, it is impossible to recover the 2 coordinates via a
deductively valid argument. Hence we are constrained to maximize the degree of
inductive strength of arguments used in attempting the recovery.

If it were possible to use a deductively valid argument and ensure the success of
the recovery process, we might hope to decode a conclusion (three-dimensional
structure) already somewhere available in the *‘premises” provided by the image
information and the various constraining assumptions. If this indeed were possible,
it would suggest an entirely different approach to the recovery (and the research)
process. In fact it would be far more satisfactory to use such an approach, since so
much more is known about the rules and structure of deduction than induction.
However, this is simply not possible and we must study the inductive strength of
possible reconstruction schemes.

Now we are ready to analyze the roots of predictive power in inductive reason-
ing. What is the key to inductive strength? An example using Bayes’ Theorem will
clanify the answer. Let w (world) stand for the following assertion about four points
in the world: **are in rigid motion in three-dimensions”’. Let i (image) stand for the
following assertion about the retinal images of the same four points: *‘have two-
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dimensional positions and motions consistent with being the projections of rigid
motion in three-dimensions”. Then what is the probability of w given i? The
existence of rigid objects does not in itself make this conditional probability high.
Using Bayes' Theorem we find that

P(w) - Plilw)

POV = BT BTy + Beew) T FT=w)

Since the numerator and the first term of the denominator are identical, P(wli) is
near one only if ‘ i

P(w) P{ijw)=>P( = w)P(i]| —w)

And since P(— w), though unknown is certainly much greater than zero, P(wli)
is near one only if P(i| = w) is near zero. That is, only if P(il — w) is near zero can
the inference from the image to the world be inductively strong. But what is
P(i|— w)? It is precisely the ‘‘false targets’* probability (FTP) encountered in the
proof of Ullman's structure from motion theorem earlier. Ullman found that with
three views of three points the FTP is one, but with three views of four points it is
near zero. Similarly, a major goal of other ‘‘structure from motion™ proofs
(Hoffman & Flinchbaugh, 1982; Bobick, 1983; Longuet-Higgins & Prazdny, 1981;
Richards, Rubin, & Hoffman, 1983) is to determine under what conditions the FTP
is near zero. .

The answer to our question about the root of predictive power in visual inference
is the FTP. Is there any more that can be said about this probability? In particular,
can we obtain guidance in the search for plausible regularities? That is, what can the
FTP tell us about selecting a regularity for incorporation in a model visual system?
One observation is that a necessary precondition to obtaining a near-zero FTP is an
overconstrained system of equations. There must be at least one more equation than
unknowns (an inconsistent set). However, this is not much help when the regularity
providing the equations has not yet been chosen! Another moment of thought tells
us that P(w) should not be zero, since this will leave P{wli) equal to zero. But this
does not narrow our choices much, since phenomenologically at least, there are
many regularities that seem general in space and time. Unfortunately, it turns out
that the problem of choosing regularities presents deep problems for logic and the
philosophy of science that have never been adequately solved. While the FTP
provides a post hoc means of evaluating a chosen regularity, it can teil us little about
why we should choose one regularity over another, and we must rely on intuition for
guidance,

4. A Model: Rigidity and Planarity as Regularities

The basic problem with the formulation of the rigidity and planarity principles as
presented so far is that they make no allowance for minor real world violations of
their mathematical idealizations. There are at least three sources of such violations.
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First, noise is introduced during transmission of the visual waveform and during
detection at the cornea, lens, and retinal levels. Second, an animal must deal with
minor deviations from the principles. For example, it is necessary to overlook the
minor deviations from planarity in limb motion in order to use the planarity princi-
ple (though it is of course possible that an animal searches for and knowingly puts
such deviations to use in object recognition). The third source of inaccuracy stems
from the difficulty of identifying real world feature points. Comners are rarely sharp
under close inspection. When we look at a biological motion display that replaces
the knee with a single well-defined point of light, consistent identification of that
point over time is relatively simple. In an actual lighted scene of a human walking
however, the knee has an extended surface which could be tagged at several places
in attempting to establish links of constant length between thigh and ankle.

Assume that the visual system receives a stimulus and reconstructs the three-
dimensional object using only the rigidity and planarity constraints. How can it best
deliver output given its inaccurate inputs? Or, as Marr (1982) has put it, how can it
maintain the principle of *‘graceful degradation’*? Surely it cannot afford to fail
completely in making a judgement with respect to its goals, but rather must in some
sense provide the most rigid or the most planar interpretation possibie. That is, the
system could (1) assume strict rigidity but relax its planarity constraint to fit the
input data, (2) assume strict planarity but relax its rigidity constraint to fit the data,
or (3) allow the minimum relaxation of both rigidity and planarity necessary to fit
the data.

We have constructed a computer mode] implementing the first two alternatives
within a constrained optimization paradigm. For each alternative, we examined the
two cases noted in Proposition 1 and 2 earlier (three views of two rigidly linked
points or two views of three pairwise rigidly linked points) given different levels of
added gaussian noise. The model has two goals. First, it was designed to enable
comparison of structiure recovery strategies in the face of noise for the two cases
above—relaxing planarity while maintaining rigidity, and relaxing rigidity while
maintaining planarity. Second, we were interested in evaluating a particular al-
gorithm (see below) for the practical computation of structure from motion.

Addition of varying degrees of gaussian noise was simulated as follows. On each
trial, image data ((x.y) coordinate pairs computed from an exact paraliel projection
of a three-dimensional dot configuration) were radially perturbed by gaussian noise,
truncated at three standard deviations from the original points. The standard devia-
tion was a parameterized percentage of the two-dimensiona distance between accu-
rate data values. Gaussian noise was generated by a simple algorithm based on the
central limit theorem:

.4
_SKX, -2

YRR

where the X; are uniformly distributed pseudo-random numbers between 0.0 and
* 1.0. As X approaches infinity, the random variable y approaches a perfect normal

(6)
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distribution. For purposes of the model, we set X = 100, and varied the standard
deviation as necessary. Each perturbed data point was computed independently
from (6). The perturbed data points were then used as input to our-algorithm, with
one hundred trials per perturbed data set computed for each of eleven standard
deviations of noise. The mean absolute value of the triple product and the mean
difference in vector length between successive views of individual points were used
as measures of relative planarity and rigidity respectively. The implementation
recovers the optimal relative z coordinates from the perturbed (x,y) coordinates by
minimizing rigidity (planarity) subject to the condition of maintaining strict
planarity (rigidity). i

It is important to use an algorithm that could in fact be accomplished by neural
computations, even though we do not claim that the chosen algorithm resembles
that underlying the neural implementation of depth recovery. Computation by neu-
ral networks is usually taken to have at least two characteristics: (1) a high degree of
parallelism, and (2) locality of processing. Locality here refers to the general
principle that computation is distributed among a large number of relatively simple
“'processors”’, each of which performs some relatively independent sub-computa-
tion. We have chosen an algorithm which supports these principles and provides a
means of implementing the optimization in paraliel by a network of simple pro-
cessors, each connected only locally to its N nearest neighbors. ‘

The basis of the algorithm is the following (see Ullman, 1979b). Given a differ-
entiable function of n variables £x), it can be shown that motion of X, in the
direction of f'(x;)= &f/8x; is convergent to the local unconstrained maxima of F
Such a process can be realized in a network of processors by assigning the computa-
tion of f'(x,) to the i processor p;, where p, has access to the minimal subset of
arguments necessary to compute f'(x,). This idea is made useful in the constrained
optimization case by a theorem due to Kuhn and Tucker (1951) that established
equivalence between the constrained maxima of a function and saddle points of its
associated Lagrangian. Saddle points of a Lagrangian can be computed by the
gradient method noted above and thus by a network of simple processors similar to
the unconstrained case. The minimization case is included since minimizing fx) is
equivalent to maximizing —fx). Thus (for the minimization case), given a differ-
entiable objective function fix) of n variables subject to m constraints of the form
24x) = 0, the Lagrangian associated with the problem is a function of n+m
variables defined as

L(x,u) = f(x} ~ Zu,g(x) N

where u is an m-vector of chosen multipliers. A non-negative saddle point of the
Lagrangian is a point (x',u’) such that

Lix'wm=Lix' n")=Lix,n") ®

for every x=0,u=0.
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Arrow, Hurwicz, and Uzawa (1958) investigated the application of Kuhn and
Tucker’s (1951) theorem to constrained optimization. They defined a set of differ-
ential equations describing motion with respect to local gradients toward the saddie
point optimum which can be implemented iteratively by the recusrence relation

xyr+ t=max{0.xp-pL, ]
ulr* ! =max{0, u“+-pL_"} (9

where p is a selected step size and L, and L, are partial derivatives of the Lagrang-
ian. Arrow et al. proved convergence theorems with relevance to linearity, con-
tinuity, and convexity. Briefly, the gradient method described above can be proved
to converge to a global minimum for the continuous case if fix) and ail the g(x) are
convex. Where f is not convex, convergence can be proven within a sufficiently
local neighborhood of the minimum point. A modified version of the method can be
used to convert linear objective functions to non-linear convex counterparts to
ensure convergence in the continuous linear case. An implementation by Marschak
(chap. 9, Arrow, 1958) showed convergence in the discrete linear case using the
modified method. His work uncovered useful practical lessons which have been
reiterated in our experience with the non-linear case. These lessons are discussed in
détail in the next section.

4.1.  Results: The Model

Listed below are the Lagrangians associated with the four cases we have consid- -
ered. The ks are constant expressions in (known) x and y coordinates. For cases 2
and 4, (two views of three points) z;, refers to the z coordinate of vector i in view j
{Figure 3b).

CASE 1: Allow relaxation of planarity in the face of noise, but require perfect
rigidity. Three views of two points.

L\@0)= (kg2  +ky2y +kyza)2—u (23 =24 +k ) )~ u(2f =23+ ky) (10

CASE 2: Allow relaxation of planarity in the face of noise, but require perfect
rigidity. Two views of three points.

Lz(z’u)ﬂ(kzza; + k-lzb; +k52a2)2 + (kﬁzag + k7zb1 + kszbz)z- u; (23: ""'252

CASE 3: Allow relaxation of rigidity in the face of noise, but require perfect
planarity. Three views of two points.

Ly(z )= (23~ 23+ k )2+ (23 =23+ ky)2 ) (ky2) + k2, +kszy) {12)
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CASE 4: Allow relaxation of rigidity in the face of noise, but require perfect
planarity. Two views of three points.

Liaw=(3, =25, +k P+ (2}, = 2, k)2~ u, (kyz, +hoz, Hksz,,)
—“2(k62a1+k72b:+kszbz) (13)

These four cases could have been implemented as is by the gradient method we
have described. However, we chose to modify the basic algorithm slightly. Note
that in the appropriate cases, maintenance of perfect planarity or rigidity allows us
to set all the Lagrange multiplier terms to zero. Since the constraint equations from
which these terms are derived are to be maintained at zero by our model **visual
system’’, there is no need to iteratively approximate the u;’s. This simplification
reduces processing time. The same idea suggests soiving for as many z,s as possi-
ble in the constraint equations and substituting into the cotresponding objective
function. In this way, n variable objective functions each subject to m constraint
equations were reduced to functions of n—m variables. This lessens further the time
necessary to compute and follow gradients. (We are indebted to T. Indow for
discussions on the above points.) '

These modifications do not alter the Arrow-Hurwicz gradient method fundamen-
tally. If planarity (say) is to be maintained perfectly, there is no need to iterate with
respect to the planarity *‘dimension’. The system need only have the n—m pro-
cessors necessarv to minimize our objective function with respect to rigidity. In
effect, we have .nade those n-m processors more powerful by incorporating the
planarity requirement into them. ,

Practical considerations also suggest employing the modified algorithm. In addi-
tion to reducing processing time, the most important practical benefit of the modi-
fied algorithm is the reduction in information necessary to begin the iteration pro-
cess. In the naive approach using all z; and u;, an initial value is necessary for cach
of the n+m variables. If little prior knowledge is available to motivate this choice, it
becomes a serious obstacle to ensuring convergence in the non-convex case. Even
in the convex case, initial values too far from the convergence point can lead to
erroneous results because of range or accuracy restrictions on the particular machine
being used. With the modified method, we reduced the information requirement by
2m initial values, thereby reducing startup difficulty.

The objective functions to be minimized now become

CASE 1:

Liz)=(kyz +ky(2}+k )5 +ko(2F+k,)- )2 (14)
CASE 2:

L{z,,,.zb,)z{k:,za,+k4zb,+k5(z§,+kt)-5)2+(Iceza,+b,zbl+ks(zgl+k2)»5)2 (15)
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CASE 3;
L(z,,zz)=(zf—zi+kl)2+(zf-((k,z, +h 2} Ky P+, )2 {16)
CASE 4;

Lzgp25)=(23) = ((Ka2,, Hhgz, Vs P4k P+ (23, — (kg2 +r2, )
k) +k,)? (1n

Table 1 lists ali the statistics collected on 100 trials for each of 11 levels of noise
for each of the four cases. A single set of three 3-space vectors was used as
unperturbed data throughout all trials reported for cases 1 and 3. Another set
consisting of the above set with an added fourth vector was used as anperturbed
input data for cases 2 and 4. Figures 5-9 plot each statistic graphically against
increasing noise. Figure 5 shows the proportion of trials converging to a solution as
noise increases. When the standard deviation of noise is below 5~8% of the average
two-dimensional distance between unperturbed points, results are quite stable, with
all trials converging as expected. Figures 6, 7, and 8 compare mean triple product
magnitudes (a measure over all trials at a given level of noise, of the relative
deviation from planarity), mean vector lengths (a measure of the relative depth from
the origin assigned to the two-dimensional data points by the algorithm), and mean
differences in length between successive views of individual point vectors (a mea-
sure of relative deviation from rigidity). When planarity is relaxed (cases 1 and 2),
~ there is an increase in both mean vector length and mean triple product magnitude as
noise increases over 5%. When rigidity is relaxed (cases 3 and 4), up to 5% noise
can again be handled, but the increase in mean vector length is no longer observed.
The mean triple product magnitude stays lower as expected, while the deviation
from rigidity is higher and increases with noise.

The drop in mean triple products and vector lengths at the highest levels of noise
is not due to a real effect on these variables but to the increase in trials with no
solution—only those trials with relatively unperturbed data survived to converge
and be included in the statistics. (This conclusion was made by comparing the
average perturbation of input data from converging trials with that from degenerate
trials,) )

4.2, Results: The Algorithm

Our experience with the speed of the gradient algorithm parallels that of Mar-
schak (Arrow, 1958, chapter 9). Even the simplified method we have used can
result in uselessly slow convergence at higher noise levels. Figure 9 shows that the
number of iterations® required increases 3—4 orders of magnitude as noise increases

* This is the number of iterations per ser of new : iterates. Thus, paraliel implementation of these
computations with n ~ m processors would not eliminate the problem.
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Table 1. Statistical Comparison of Algorithmic Recovery of Structure from Motion for
11 Levels of Gaussian Noise. The Four Cases Are Defined and Described in the Text.
Measures Used Were MTP (Mean Triple Product Magnitude), MVL (Mean Vector
Length), MR (Mean Rigidity = Mean Absolute Difference in Frame-Specific Vector
Lengths), N (Number of Trials Converging to a Solution), and | (Mean Number of
Iterations to Convergence). For MTP, MVL, and MR, Standard Errors Are Listed with
the Statistic (Stat = S.E.). :

R Nome | Siak. CASE 1 CASE 2 CASE 3 CASE 4
B[ MTP | 0725 40es I LY T T X6l |
MVL 1.00£0 1.00%5. 1104 1.0043. 4804 1.00%4,38e-4

MR 0 74509 11804225008 | 1.890eSde T40-0

NI 100, 1 100, 138 100, 14 100, 78

a5 | MIP 07 %1.0383 " 2028, 5004 20TET 914 KOIER. 5004 |
MVL 1.00:48.13e-3 1.00:45.¢20-3 1.0024.870-3 100455403

MR | 5.140946.0200 | 8.850-04T.0009 | 5.060dh].080m4 | 2 160-547 700t

N.J _100, €94 100, 874 100, 1047 100, 220
TR | MTP ATE2 3003 20321 06ed 226703 "% 1,963
MVL 900214402 10010662 SOE1.320-2 1,004 1.080-2

MR | 5.2089%7.440-0 | T.750.028.000% | S.4led21.3004 | 1900555708

N.E 100, 1624 100, 1313 100, 3070 160, 381

50 [ MTF 7%5.9703 20242 900-3 ARSI | 03000
MVL 1.00£3.09e-2 1.001.08e-2 1.00::2.98-2 100 1. 9862

MR | 7.0000£8.53e0 | 7.900-0£7.560-0 | 5.3Te427.7265 | 1.04eubh4 1608

N 100, 2851 100, 2131 100, 8453 100, 569

10 | MTFP 207 % 1.00e7 30326, Tded 207£9.806-3 L20326.73e-3 |
MVL 10026372 101242862 1.00£6.28e-2 1.00£4.290-2

MR | 64800471800 | 8.57e048.630-0 | 54204270005 | 1.0Be-545.0008

NI 100, 4338 100, 3047 100, 10822 100, T8

70T MTP 218321762 D4ET 562 213271502 iZL. 0T |
MVL L0139 1.01:8.65e-2 104,138 101486802

MR | 80309276100 | 5.050-9+7.7609 | 5.36e-4£5.3005 | 1.06e-S+4.800-8

NI 100, 5394 100, 4186 100, 16824 100, 1012 |

40 1 MTP 21948462 20827 Bde- ZI9EASTe2 208%7.930-2 |
MVL 1.11+.398 1.042.192 1.10£.258 1.04:£,191

MR | 7.30e-9%7.710% | 92400280700 | 9.0Ted22790.3 | 1.05e-5:£4.330.8

N.I 100, 9434 100, 5513 100, 23563 100, 1276

50 ] MTP 253%.135 2192 7.1262 TBAE A2 BI6E5.540-2 |
MVL 1.5241.56 1124068 L15£.545 1.06%.308

MR | 163e-823.6508 | 11108225008 | 16002257162 | 44303243402

Nt 9, 22432 98, TT32 96, 32063 97, 1828

6.0 | MTP 363%.315 T ) 236Z.108 Biz.am |
MVL 33024.95 2.6126.38 1442948 1.274.56%

MR | 296e-0%8.3308 | 3.18e-821.37%7 7.000-24.12¢ £.550-2¢,196

NI 88, 76552 83, 31039 ™, 52267 %0, 2560

2.0 | MTP AE3T8 28712 1632, 108 BTN
MVL 268532 2.6924.97 1.09:4,755 1.134.961

MR | 4.13e8%1.44e-7 | 2.20e-842.83-8 185,258 2384296

N 63, 146517 72, 63319 62, $2307 62, 5159

60 | MIP KT ¥EE) 506,578 NNk AL T
MVL 1812335 6.83427.4 116112 1.61:41. 46

MR | 1376833358 | 4.05e-8+3.90e8 A8T4 426 AT1%,505

NI 54, 100060 46, 117898 50, 135372 29, 11871
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wh

PERCENT OF TRIALS WITH ND SOLUTION

L T ; 2 . ' % 32 ed

STD DEV. OF GAUSSIAN NOISE
1% INTER-POINT DISTANCE)

Figure 5. Percent of trials with no solution versus different levels of gaussian noise
akbed to two-dimensional input data. The standard deviation of the noise was mea-
sured as a percentage of the average two-dimensionai (image) distance between un-
perturhed dot positions. Cases 14 are defined and explained in the text.

from O to 4%. It may be possible to enhance speed with various implementation
tricks. For example, p, the step size, was initially set at 0.1 for cases 1, 2, and 4,
and at 0.01 for case 3 following initial testing showing that these values provided a
- good tradeoff between speed of convergence and the increase of degeneracy with
noise. Following Marschak’s example, p was halved and the iteration repeated
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MEAH TRHIME PRODUCT MAGMITUDE

STD. DEY. OF GAUSSIAN NOISE
1% IMTER-PQINT DISTANCEL

Figure 6. Deviation from planarity: Mean triple product magnitude over 100 trials
versus different levels of gaussian noise added to input data. Relaxation of planarity
(cases 1 and 2) differs from relaxation of rigidity (cases 3 and 4) only at noise levels
above 5-8%. At the highest two noise levels, many trials involve input data too
perturbed to result in convergence within implementation parameters. Thus at these
levels, only those on the low end of the distribution survive to be included in the
results, lowering the observed mean.

whenever a z; iterate became negative. A fast but more sophisticated means of
choosing p initially and adjusting it as a function of gradient magnitude might
alleviate the speed problem to an extent. However, beyond such attempts, the
iterative nature of the algorithm is an inherent limitation on its speed.

In Marschak’s implementation, a Runge-Kutta averaging method was used to
enhance accuracy. Such enhancement is helpful because solution by the gradient
method involves extrapolation of local gradient information to obtain successive
iterates. Extrapolation in following gradients generally results in more serious error
accurnulation as the step size between successive iterates is increased. On the other
hand, we have already noted that an excessively small step size can mean uselessly
slow convergence. We chose not to use Runge-Kutta averaging in order to enhance
speed. The consequences of this choice would be felt in combining local solutions
across an image since all slightly inaccurate local solutions would have to be
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MEAM VECIOR 1ENGTH

TS DEV OF Gautbian NOISE
1Y INTER PQINT DiSTaNCE)

Figure 7. Mean vector length over 100 trials versus different levels of gaussian noise
added to the two-dimensional input data.

reconciled 1o converge at a suitable global interpretation, but this stage has not yet
been explored. However, it is useful to note that here in the case of accuracy, as in
the case of speed, step size is critical in determining performance.

The issue of accuracy in practical use of the gradient method is wider than error
generation and propagation as described above. It is necessary to choose an
€, =|z" ' ~2% at which to stop, a lower bound €, on z7to distinguish degenerate
cases. a lower bound €, on p to avoid false convergence caused by halving p too
many times, and an upper bound €, on the range of partial derivatives representabie
on the machine. It may even be necessary to choose a lower bound €, on the range
of derivatives allowed in addition to €, to avoid prolonged occillation of the deriva-
tive around zero near the solution. The lack of a principled means of choosing and
varying these parameters with input data makes the performance of the algorithm at

Figure 8, Mean differences between successive views of individual point vectors (used
as a measure of deviation from rigidity). The exact formuias used were Z(abs(ja,|i
~flayif) +abs(la,|~lia;[) /n for cases 1 and 3 and S(abs(lla,||—lia,i)+abs(ib, ]| b, /n
for cases 2 and 4. Thus comparison is only appropriate between cases 1 and 3 or
between cases 2 and 4.
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Figure 9. Mean number of iterations to convergence. See text for case definitions.
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higher noise levels more variable and difficult to judge objectively. In our impie-
mentation, the choice of these parameters was made in initial test runs. They were
then held constant throughout the simulation reported here as a basis for eliminating
trials with no solution (€,=1075,6,=10"5,¢,=0,¢,=1010,¢,=0).

Our final observation with respect to the algorithm used concerns the need for
previous knowledge. The gradient method in the case of rigidity and planarity
cannot be considered a startup method since arbitrary selection of z}(and p) does not
guarantee convergence even when a solution exists. Thus, performance, i.e., speed
and frequency of convergence, is ultimately dependent on estimation outside the
ability of the algorithm. i

We are led to the conclusion that the gradient method of solving the structure
from motion problem is of some value but has important limitations. First, it is
hampered by its iterative nature and potential for error accumulation. Additionally,
while it is robust enough to deliver a solution in the face of 5% standard deviation
gaussian noise, such performance does not approach that of the human system.
Finally, initial parameter choices and their optimal variation with input are not yet
well determined. Given adequate ‘‘external system knowledge’’ of this sort, it may
be possible to initiate and maintain sufficient locality to lessen the significance of
the speed issue. It remains to be seen whether a more sophisticated use of param-
eters in this manner can overcome some of the algorithm'’s limitations.

5. Summary and Conclusions

Our discussion has emphasized the importance of the search for plausible reg-
ularities of nature that can adequately constrain image interpretations and allow the
visual system to infer the three-dimensional structure of the world. The driving
force behind these inferences is the need to achieve goals such as manipulation and
movement with respect to the scene analyzed. The strength of the inferences which
can be made about the scene, and thus the successful achievement of visual goals,
hinges on choosing regularities that minimize the false targets probability-the
probability that image brightness patterns can be consistent with phenomena obey-
ing the regularities when in reality those phenomena do not cbey the regularities.
We have examined some of the consequences of exploiting the useful regularities of
local rigidity of objects and local movement in a plane. Both enable the unique
recovery of three-dimensional scene structure from very little spatio-temporal infor-
mation. Our simulation compared alternative structure recovery strategies in the
face of noisy data by varying the relative importance of optimizing the rigidity and .
planarity regularities in the interpretation process. The results suggest that .both
strategies—relaxing planarity while maintaining rigidity and relaxing rigidity while
maintaining planarity—degrade at about the same rate with noise. However, at the
highest noise levels, relaxation of planarity can lead to solutions with longer mean
vector lengths.
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