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1. INTRODUCTION

Most theories of shape recognition agree that 10 recognize a complex shape it
is useful to decompose the shape into simpler parts. The reasons are straight-
forward (Hoffman & Richards 1984). One never sees all of an opaque object
at once; certainly its back is not visible, and even its front may be partially
occluded by objects interposed between it and the viewer. So unless one can
afford the luxury of seeing an object in its entirety before recognizing it
(perhaps by walking around it), one must recognize objects from only partial
information. In addition, some objects have moveable parts, such as arms or
fingers, which allow them to assume many configurations. Decomposing such
objects into appropriate parts, thereby decoupling configuration from other
aspects of their shapes, can make ecasier their recognition. Finally, a

*We thank D. Mumford, W. Richards and R. Riley for useful comments., This material is
based upon work supported by the National Science Foundation under Grant No. IST-8413560,
and by a contract to D. Hoffman from the Office of Naval Research, Psychological Sciences Divi-
sion, Engineering Psychology Group.
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classification or description of parts, if the parts are appropriately chosen, is
likely to be simpler than a classification of arbitrary shapes, and indeed should
contribute to such a more general classification.

Although most theories agree that parts, in principle, are useful for recog-
nition, they often disagree about how parts should be defined. This despite the
widely acknowledged constraints that the parts on an object, however the
parts are defined, should not in general change with minor changes in viewing
geometry, i.e., with minor changes in the relative positions of the object and
viewer, nor should the parts change with minor changes in overall size of the
object.

There are two distinct approaches to the problem of part definition. The
first, and by far most common, defines parts by their shapes; the second
defines parts by their boundaries. The most typical parts proposed by parti-
sans of the first approach, henceforth the primitive-based approach, are
cylinders, cones, spheres, and polyhedra. Cylinders and cones are quite useful
parts for representing the shapes of animals since many of their limbs are
roughly cylindrical; polyhedra, on the other hand, do quite nicely for many
buildings, books, and some furniture. Once the primitive part shapes are
stipulated, it then remains to determine how to find these parts in complex
objects, how to represent the more metrical aspects of the primitive parts
(e.g., their length and width), and how to assign predicates of spatial relation-
ships among parts (e.g., above, inside, to the right of).

To date there are but two theories representative of the second, or
boundary-based, approach. Koenderink and van Doorn (1980, 1982) were the
first to suggest that parts should be defined by their boundaries (though they
were studying shading, not shape recognition); they propose that the appropri-
ate boundaries are parabolic contours, i.e., contours on a surface where the
Gaussian curvature is zero. Such contours possess several attractive proper-
ties. For instance, parabolic lines do not intersect and are always closed con-
tours. By choosing them as part boundaries, Koenderink and van Doorn find
that, on smooth surfaces of genus zero (no holes), there are only four qualita-
tive classes of parts, which they call humps, dimples, furrows, and ridges.

Hoffman and Richards (1984) also suggest that parts should be defined by
their boundaries rather than by a prespecified set of primitive shapes; they
propose that part boundaries, instead of being defined by parabolic curves,
should be defined by contours of negative minima of principal curvatures
along lines of curvature, or in some cases, by contours of positive maxima of
principal curvatures along lines of curvature. Hoffman and Richards’ proposal
will be discussed and extended further in this paper.

What are the relative merits of the boundary-based and primitive-based
approaches to the problem of part definition? If one wants only to recognize
a limited class of objects, say animals or aircraft, then the primitive-based
approach is quite satisfactory. If, on the other hand, one wants a general pur-

Shape Decompositions: The Role of Transversalit

pose shape recognizer, then the primitiv
simple reason that most shapes—human
merely of cylinders, cones, spheres, pol:
And adding new primitives as needed tc
hardly a way to build a principled th
approach, as exemplified by the parabc
Deorn, does give a part definition whicl
are guaranteed to exist on any smooth ¢
gle, and easily handled, exception) ai
behaved partition of the surface. Once
specified, it becomes a differential geor
kinds of parts that can indeed arise. 1
already done for compact smooth surfac
son the investigation need be restricted -
faces. In this way a completely gem
definition and part description can be ot
approach confuses the probiem of part ¢
part description, taking the latter to be 1l

Although the boundary-based appr
Doorn has much to recommend it, the
rules and one must be careful, if one’s
partitioning rule not primarily for o
relevance to the recognition task. (Kos
analysis of shading, not shape recogni
shortly the role of transversality in cons
Here we simply note that the human vis
parabolic lines in its definition of part
perception of parts which follow straigh
titioning rule are easily disconfirmed
Figures 1 and 2). According to the par
should not change on a surface when fif
abolic lines remains unchanged and (2)
surfaces since these surfaces have zero
ure I, a cosine surface, disconfirms the
circular contours in the figure initially
successive ring-like parts. Now turn the
dotted circular contours no longer lie be
lie on top of them. In effect, the loca
change in figure and ground induced by
a cylindrical surface, which has zero G
a surface should have no parts (or infini
hypothesis because every point of the s
However we do see a small number of



Bennett and Hoffman

irts are appropriately chosen, is
itrary shapes, and indeed should
Ny

principle, are useful for recog-
suld be defined. This despite the
iwts on an object, however the
: with minor changes in viewing
itive positions of the object and
ar changes in overall size of the

problem of part definition. The
15 by their shapes; the second
typical parts proposed by parti-
primitive-based approach, are
nders and cones are quite useful
since many of their limbs are
hand, do guite nicely for many
the; primitive part shapes are
to find these parts in complex
. aspects of the primitive parts
gn predicates of spatial relation-
ight of).
yesentative of the second, or
in Doorn (1980, 1982) were the
y their boundaries (though they
; they propose that the appropri-
ontours on a surface where the
1ssess several attractive proper-
sect and are always closed con-
Koenderink and van Doorn find
les), there are only four qualita-
tmples, furrows, and ridges.
that parts should be defined by
d set of primitive shapes; they
1g defined by parabolic curves,
minima of principal curvatures
contours of positive maxima of
Hoffman and Richards’ proposal
Japer.
dary-based and primitive-based
If one wants only to recognize
reraft, then the primitive-based
hand, one wants a general pur-

Shape Decompositions: The Role of Transversality 217

pose shape recognizer, then the primitive-based approach is inadequate for the
simple reason that most shapes—human faces for instance—are not composed
merely of cylinders, cones, spheres, polyhedra, or some combination of these.
And adding new primitives as needed to handle new objects one encounters is
hardly a way to build a principled theory. However, the boundary-based
approach, as exemplified by the parabolic lines rule of Koenderink and van
Doorn, does give a part definition which is completely general, for such lines
are guaranteed to exist on any smooth compact surface (ovoids being the sin-
gle, and easily handled, exception) and to provide a complete and well-
behaved partition of the surface. Once the boundaries of parts have been so
specified, it becomes a differential geometrical investigation to determine the
kinds of parts that can indeed arise. This Koenderink and van Doorn have
already done for compact smooth surfaces of genus zero, and there is no rea-
son the investigation need be restricted from more complicated classes of sur-
faces. In this way a completely general, and principled, theory of part
definition and part description can be obtained. In a sense, the primitive-based
approach confuses the problem of part definition with the separate problem of
part description, taking the latter to be the former.

Although the boundary-based approach taken by Koenderink and van
Doorn has much to recommend it, there are many possible boundary-based
rules and one must be careful, if one’s goal is shape recognition, to choose a
partitioning rule not primarily for mathematical convenience but for its
relevance to the recognition task. (Koenderink & van Doomn’s goal was an
analysis of shading, not shape recognition.) In this regard, we will discuss
shortly the role of transversality in constructing a definition of part boundary.
Here we simply note that the human visual system does not appear to employ
parabolic lines in its definition of parts, because two predictions about our
perception of parts which follow straightforwardly from a parabolic lines par-
titioning rule are easily disconfirmed (the two exceptions are illustrated in
Figures 1 and 2). According to the parabolic contours rule (1) part locations
should not change on a surface when figure and ground reverse since the par-
abolic lines remains unchanged and (2) no parts should be seen on cylindrical
surfaces since these surfaces have zero Gaussian curvature everywhere. Fig-
ure 1, a cosine surface, disconfirms the first prediction. Notice that the dotted
circular contours in the figure initially appear to lie in the troughs between
successive ring-like parts. Now turn the figure upside-down and note that the
dotted circular contours no longer lie between the ring-shaped parts but rather
lie on top of them. In effect, the location of the parts has changed with a
change in figure and ground induced by inverting the surface. Figure 2 depicts
a cylindrical surface, which has zero Gaussian curvature at every point. Such
a surface should have no parts (or infinitely many parts) by the parabolic lines
hypothesis because every point of the surface should lie on a part boundary.
However we do see a small number of parts in this shape, which disconfirms



Figure 1. The cosine surface
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the second prediction. Notice that this surface appears to be composed of
hump-like parts with part boundaries located approximately where the dotted
lines are drawn. Again, if the figure is turned upside-down a different organi-
zation into parts can be seen. The dotted lines no longer lie between paris but
within parts,

2. MOTIVATION OF PARTITIONING RULES

The motivation for the partitioning rule proposed by Hoffman (1983) and
Hoffinan and Richards (1984) is roughly as follows. Consider two separate
and arbitrarily shaped objects in a visual scene, as shown in the left half of
Figure 3. Surely these two 3-D objects are separate parts of the scene. Now
allow one of the objects to penetrate the other at some -arbitrary orientation,
thus forming a new composite object. Then certainly the two original objects
are good candidates for parts of the resulting composite object, and the locus
of points where the surface of the first object meets the surface of the second
is a good candidate for the part boundary,

Is there any special property about the way two surfaces intersect that can
be used to identify the locus of their intersection on the composite surface,
and thereby to identify the boundary between the parts? Indeed there is: when
two surfaces intersect they intersect transversally with probability one. This
means that the tangent planes to the two intersecting surfaces are of different
orientations at each point where the surfaces intersect..This implies further
that there is a discontinuity of the tangent plane to the surface of the new
composite object at each point along the contour of intersection (see Figure
3). If the two original surfaces are left together to form the composite surface
when the discontinuity is concave at each point on the contour of intersection,
which is the case illustrated in Figure 3. If, on the other hard, one of the two
original surface is removed subsequent to penetrating the other, it leaves a
depression bounded by a contour of convex discontinuity of the tangent plane,
as is illustrated in Figure 4,

This intuitive description can be made more precise in the foilowing way.
Consider two compact objects, say obj, and obj;, whose surfaces are given,

Figure 3. Transversal intersection leading to a protruding part
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Figure 4. Transversal intersection leading to a intruding part

respectively, as the zero level sets of the two functions f; (x) and f; (x). Here
x = [x, ¥, z) €R%. (A level set of a function, [, corresponding to some con-

stant, ¢, is the set of all points, @ where f(Q) = ¢). The functions f; and f» -

are sometimes called “inside-outside” functions in the computer graphics
literature (Barr 1983; Blinn 1982), because they can be used to define which
points in R* are inside the corresponding object and which are outside:

obj; = {xeR|fi(x) < 0}
obj, = {xeR’|f,(x) < 0}

That is, points in R? for which the inside-outside function is negative or
zero constitute the object, whereas points for which the function is positive
are outside. For instance, obj, might be a sphere defined by the function

f;(x):x2+y2+zz—1

Points for which f; is negative lie inside the sphere, points for which f; is
zero constitute its surface, and points where f; is positive lie outside.

The new composite object formed by interpenetrating obj, with obj, and
leaving the two together can be defined as the closed-set solid union of obj,
and obj,:

It

0bipew = Obj; ) obj, = {x&R®|xe&obj; OR x €obj,}

I3

{xeR*|fi(x) < 0OR fo(x) < 0}.

The surface of the new composite object is then (Barr, 1983)
Surf(obj; |J objy) = {xeR®|xeSurf(obj;) & x¢ obj,
OR

x¢ obj, & x € Surf(obj,)}
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which can be expressed in terms of inside-outside functions as
Surf(obj; {J obj) = {xeR*|fi(x) = 0 & fo(x) > 0
OR
Ji(x) > 0 OR fr(x) = 0}

This new composite surface has, in general, a contour of concave discon-
tinuity, consisting of points which satisfy f,(x) = fo(x) = 0.

The new object formed by interpenetrating obj, with obj, and then remov-
ing obj, can be defined as the closed-sei subtraction of obj, from obyj;.

Objuew = 0bj; — obj; = {xeR*|xeobj; & x¢ obj,}

il

{xeR%|fi(x) <0 & f(x) > 0}.
The surface of the resulting object is then (Barr, 1983)

Surf(obj; — obj;) = {xeSurf(obj;,) & x¢ obj,
OR

xeobj; & x & Surf(obj, )}

which can be expressed in terms of inside-outside functions as

Surf(obj; — obj;) = XeR|f,(X) = 0& fL(x) > 0
OR

f(x) <0&fr(x) =0}

This surface has, in general, a contour of convex discontinuity, consisting
of points which satisfy f,(x) = f{(x) = 0.

Based on transversality, then, we can take some contours of concave
discontinuity and some contours of convex discontinuity to be part boun-
daries. Roughly, all contours of concave discontinuity are part boundaries
except those lying in the bottom of a depression. And a contour of convex
discontinuity is a part boundary only if it surrounds a depression. (This rough
statement can be made precise and algorithmic using the language of
differential geometry, but this is beyond the scope of this paper.)

One further step is needed to begin to define part boundaries on smooth
surfaces such as the cosine surface of Figure 1. Consider what happens to a
patch of surface having a concave discontinuity running through it if the patch
is smoothed slightly (e.g., by draping a cotton sheet over it). Intuitively it is
clear that the concave discontinuity will become a locus of very high curva-

e e
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ture, in fact a locus of points which are negative extrema of surface curvature
in a suitable sense (see Figure 5 and the partitioning rule stated below). To
give this intuition a rigorous proof, however, requires dealing with some tech-
nicalities of a differential geometric nature, and so a complete and careful
analysis must be made. In §3 of this chapter we develop the necessary ana-
lytic framework and prove a fundamental theorem of the behavior of curva-
ture as smooth surfaces “approach” a transversal intersection (Theorem 6).
The theorem says that near this intersection curve there are points of arbi-
trarily large negative curvature on these smooth surfaces. To complete a
rigorous justification of the intuition it must be shown that these points form
contours—as in the rule stated below—on members of the family of smooth
surfaces, and that these contours approach the intersection curve. This will be
done in a subsequent paper.

Negative Minima Partitioning Rule: Divide a surface into parts whose
boundaries are contours consisting of points which are negative minima of
principal curvature along a line of curvature.

The boundaries defined by this negative minima rule are derived in §4 for
several classes of surfaces. The resulting boundaries are sketched in several
figures in that section so that one can better appreciate the effect of the rule.
To avoid confusion, it should be noted that although the minima rule employs
lines of curvature in its definition of part boundary, the part boundaries them-
selves are not, in general, lines of curvature.

The negative minima rule provides boundaries for all parts except depres-
sions. Depressions are delimited by positive maxima of the principal curva-
tures along their associated lines of curvature, which is the rule one obtains
by smoothing convex discontinuities. A further set of rules, which will not be
described here, determine when the negative minima rule is to be used and

Figure 5, Smoothing a transversal intersection leading to negative minima of curva-
ture, which in the figure occur along the curve in the shaded region
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when, instead, the positive maxima rule is to be used. Parts delimited by
negative minima of the principal curvatures are called “‘positive parts™ since
they correspond, roughly, to various kinds of bumps on an object. Parts del-
imited by positive maxima of the principal curvatures are called “‘negative
parts” since they correspond to depressions in an object.

This paper focuses entirely on positive parts delimited by negative minima
of the principal curvatures.

3. DERIVATION OF PARTITIONING RULES

In this section we will prove that smoothing a transversal intersection of sur-
faces leads to arbitrarily large negative curvature. It turns out that this is the
case regardless of how the smoothing is.accomplished in C?, i.e., for our pur-
poses a “smoothing” of a given surface will be a sequence of smooth surfaces
converging to it in the C* sense; for precise definitions see below.

We begin with an example intended to make plausible the claim and to
introduce in a concrete setting several concepts used in the proof. Following
the proof, we consider in detail two special cases of stnoothing which it sub-
sumes: (1) smoothing with a Gaussian and (2) smoothing by spline approxi-
mation.

3.1 Smoothing transversal intersections: An example

One particularly simple example of a transversal intersection is that formed by
the two lines y = O and x = 0, i.e. by the x and y axes, as shown in Figure
6a. Consider the sets of points in the plane which satisfy the equation
flx, ¥) = xy = 0, the so-called “zero level set” of the function J(x, »).
This level set is precisely the desired two lines, because it is the set of points
on which eitherx = Oor y = 0.

Representing this transversal intersection by means of a level set leads to a
convenient representation for smoothing. Consider the set of functions
g(x. ¥) = xy — ¢, where ¢ = 0. As ¢ approaches zero, the zero level sets
of these functions g(x, y) approach the zero level set of f(x, y), i.e. they
approach the case of transversal intersection, as shown in Figure 6b. In effect,
€ serves as a smoothing parameter, with larger values of ¢ indicating a greater
degree of smoothing. The parameter ¢ can also be thought of as an index into
the family of level sets, with each value of e uniquely associated with one
level set.

‘The curvature, k(x, ¢), on these level sets can be found by standard formu-
lae to be:

(V1 + ex )3




224 Bennett and Hoffman

For a particular choice of ¢, i.e. for any particular member of the family of
level sets, the curvature will have its greatest absolute value {and negative
sign) at the point where the level set intersects the Jine ¥ = x. This can be
seen by noting the symmetry of the level sets about the line y = x in Figure
6b. Now along this line we have that x = y = ¢/x, so that x = Ve. Substi-
tuting this relation into the equation for curvature, and simplifying, we find
that the negative minimum of curvature for the level set e is

Fomin (€) = 1¥2/e.

Now as € — 0, i.e. as the level sets approach the singular level set, the
minimum of curvature goes to —oo. Thus we see intuitively that smoothing
the transversal intersection by means of this family of level sets replaces the
singular point with negative minima of curvature, as illustrated by Figure 6b.

3.2 Preliminaries on the curvature of leve! sets

The previous section demonstrated, for a simple example, that smoothing a
transversal intersection leads to negative minima of curvature. In this section
we begin the proof that this result holds for all transversal intersections and
all smoothings.

We start by considering surface curvature. Curvature is a priori a property
of a surface (or manifold) at a point. However, in most applications the sur-
face in question is naturally defined as the level set of a function. Thus if f is

y

=9 f xy—e=0
» X

a b

Figure 6ab. Smoothing of a transversal intersection by a parametrized family of
Ievel sets
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a function on a domain D, and if PeD, we can look at the level set of f
through P, i.e. the set

M(f, P) = {QeD| f(Q) = f(P)}.

We note that there are many functions which have the same level set
through P. For example the sets f; = 0 and f, = 0 are the same if
fi = hfz, where h is a nowhere vanishing function. In spite of this ambi-
guity, our point of view here will be that of surfaces in R® as level sets
defined by particular functions. This reflects the situations which arise in
practice, and also leads most naturally to the study of variation of level sets,
which is our ultimate interest in this section.

The most general class of functions on whose level sets there is a reason-
able notion of curvature are the “C? functions”, i.e. functions with continuous
partial derivatives through the second order. If D is a domain in R", C*(D)
denotes the set of functions on D. If D is compact then C*(D) can be defined
to be the set of such functions which are C* on the interior of D, and which,
together with their derivatives through the second order, have continuous
extensions to the boundary of D, With this definition C*(D) is a metric space,
where we can define the metric, § |, as follows: Let f;, f, e C3(D). Then

Ifi = flle = i‘;g“aft(f’) — af2(P)|},

where @ ranges over all partial derivatives (with respect to some fixed coordi-
nate system) of order O through 2.

We now consider a domain D € R?, and let fe C*(D). For PeD, we have
the level set M(f, P). If VA(P) (the gradient of fat P) #= 0, M(f, P)is a
smooth surface through P; we can choose an orthogonal coordinate systemn
(x, ¥, z) so that Vf(P) points in the direction of the positive z-axis, and P is
the origin, as shown in figure 7. By the implicit function theorem there is a
C? function g(x, y) on a neighborhood of the origin in the x, y-plane so that
near P, M(f, P} is the graph z = g(x, ¥)}. The Hessian matrix of g at
P o= (0,0, :

ZuclP)  8xy(P)

g5(P) g, (P) |’
represents the so called “second fundamental form” of the surface M; at P,
and its eigenvalues are by definifion the principal curvatures of M(f, P) at P,

denoted by «;(f, P}, ix(f, P). Thus, after a suitable rotation of the x y-plane,
we may assume that g,,(P) = 0, so that the Hessian of g at P is now

&(P) ¢ _ (x5 P 0
0 g,(P 0 k(f, P) |
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Figure 7. A level set M, with an orthogonal coordinate system centered at some
point P of M

Now, from the relation f(x, y, g(x, ¥)) = constant, we deduce

Ll 3, 8) + (% 3 )8 = 0, filx, 3. 8) + fo(x, ¥, 8)gy = 0.
3.1

Using the fact that VF(P) = (0, 0, |VFA(P)|), i.e. that f,(P) = (P} =0
and f,(P) # 0, the equations (3.1) imply that g,(0, 0) = £25(0,0) = 0.
This, together with an additional differentiation of the equations (3.1) with
respect to x and y vields:

fex(P) + f(P)gue(0, 0) = 0, f,,(P) + f.(P)g,,(0,0) =0,
that is,

ki(fs Py = fu(PYFAPY,  ka(f. P) = [ (PYIfAP),
and finally:

Fue(P) ()
vipy PP = oy

This expression depends on the particular x-y-z coordinate system which is
assoclated as above to f and P. We want to express this same relation in a

K (f, Py = (3.2)
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form which is coordinate free, so that we can compare the curvatures of the
level surfaces of f with those of “nearby” functions. For this purpose we con-
sider the Hessian of f itself at P, denoted H(f, P). This is a quadratic form
on R, which can be defined intrinsically. In any given orthogonal coordinate
system, say (u!, #%, u®), it is represented by the matrix of second partial
derivatives fu;(P)). The trace of this matrix, i.e. the sum of its diagonal
clements, is independent of the particular coordinate system; we will denote it
by trtH(f, P).

Since in terms of the x-y-z system discussed above we have
tH(f, P) = f (P} + [, (P) + f,(P), the equations (3.2) imply:

uH(f, P) — f(P)
| VAP

Here z itself has an intrinsic meaning as an axis in the direction of the unit
normal vector Vf(p)/|Vf(P)| to M(f, P) at P. If we denote this unit vector
N(f, P), we may write

f(Py = N(f, PYH(f, PYN(f, P).

(This means that in the given coordinate system, if the Hessian is represented
by a matrix A and N(f, P) by a column vector B, then f,(P) = B'AB).
Thus we may rewrite (3.3), and we get;

Proposition 1: If f is C* around PeR®, and VF(P) # 0, then

ki (f, P) + x(f, P) = (3.3)

wH(f, P) — N(f, PYH(f, P)N(f, Py
| V(P

where «;{(f, P) are the principal curvatures of the level set M(f, P) at P,
H(f, P) is the Hessian form of f at P, and N(f, P) is the unit normal to
M(f, P) at P, i.e. N(f P) = Vf(P)/|Vf(P)|.

Remark: The quantity w(f, P} + x(f, P) is sometimes cailecl the
“mean curvature’ of the surface M{f, P) at P; we will denote it u(f, P).

10, Py + (f, P) =

3.3 Level sets with transversal intersections

As above, let D be a domain in R®, and suppose that ¢ € C*(D) has the fol-
lowing property: the level set M: ¢ = 0 consists locally of two smooth sur-
faces, B, and B,, which intersect transversally along a smooth curve §, as
shown in Figure 8. _

The two smooth surfaces are called the “branches™ of M; § is the “singular
locus” of M. The transversality of the intersection of the branches means that
at each pomt Py of S, the union of the tangent spaces to the branches gen-
erates R°, i.e. the tangent planes are not parallel, and the two tangent spaces
intersect in the tangent space to §;




228 Bennett and Hoffman

Figure 8. A level set consisting of two smooth branches intersecting transversally

Tp(By) NN Tp(By) = Tp(S)
Tr(B1) + Tp(B;) = R

Given such a ¢, and Py €S, we will choose an orthogonal coordinate sys-
tem (#, v, w) on R® that Py = (0, 0, 0), the u-axis is tangent to §, and the v
and w axes are chosen as follows: Let q; be a unit vector along the u-axis, i.e.
q;€7p,(5). Fori = 1,2 letr;eTp(B;) withr; | q; and {r;| = 1. Let g5
be (r; + 1)/ |r; 4+ 13|, ie. g3 is a unit “bisector” of r; and r,. Let g, be
43 X g;. Finally choose the coordinates v and w so that the positive v and w
axes are in the g, and g3 directions respectively. The picture is shown in Fig-
ure 9.

W

Figure 9. A canonical coordinate system associated with the level surface

My = 0. ‘
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If we intersect this figure with the v-w plane, we get Figure 10.

Remark: Note that the choices of orientation of r, and r, give rise to four
possible values of g3, any two of which are either orthogenal or point in
opposite directions. Thus alternate choices may reverse the roles of g, and g,
or reverse their orlentations. In the analysis of a shape from the point of view
of a given observer, however, there will generally be a “natural” choice of ¢,
which is “visible” to the observer.

Let b, be any C? function whose 0 level set is B;, i.e. Bi: b; = 0. In the u,
v, w system b;(Py) = b;(0, O, 0) = 0. Therefore, by Taylor’s theorem, we
have, near Py (G, ¢, 0),

b{u, v, w) = au + Bv + 1w + ¢lu, v, w),

where o = 9b;/0u(Pyy, B; = 0b/Ov(Py), v; = db/dw(Py). elu, v, w) is
a C? function whose order of vanishing-at Py is greater than 1, (i.e. whose
values, and that of its first partial derivatives, is 0 at P;). Now the intersec-
tion locus § is the common set of zerces b; = b, = 0; the tangent space to
S at Py is the null space of the Jacobian matrix of b,, b, at Py, i.e. the null
space of

oy Biom
a; By v

Figure 16. The intersection of Figure 8 with the v, w-plane
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in the u, v, w system. However this system was chosen so that the tangent
space to § is the u-axis, from which # follows that oy = oy = 0. Moreover,
the unit tangent vectors to B; N {# = 0}, i.e. ry, r, in Figure 10 above, are
reflections of each other about the w-axis, and it follows from this that
(B2, v2) = k(—pB, 1), for some constant k. Thus we may assume

by = Bv + yw + ¢(u, v, w),
by = —Bv + yw + e(u, v, w),

for suitable numbers 3, v.
But then, near Py, B; U B, is the level set » = 0, where

b= -8 + yzw + e(u, v, w),

(and now ¢ is a function which vanishes at P, to order greater than 2),

Now since ¢ and b have the same zero locus, there exists a non-vanishing
function & so that ¢ = hb. At Py = (0,0,0), h(u, v, w) = k+ higher
order terms in (&, v, w) where keR &k # 0. Thus, near Py,

&(u, v, w) = —k% + w + E(u, v, w),

where E(u, v, w) is €%, and vanishes at Py to order greater than 2. Letting
I = k@2, m = ky?, we can summarize as follows:

Proposition 2: Let ¢ be a C? function on a domain D in R?, and suppose
M: ¢ = 0 is the union of two smooth surfaces {the “branches’) which inter-
sect in a smooth curve §. Then there exists a right-handed erthogonal coordi-
nate system u, v, w in which Py is the origin, and near P,

d(u, v, w) = =% + mw? + E(u, v, w),

where: (a) I, m are distinct positive numbers such that the tangent planes to
the branches are VIv + Ymw = 0 and —Viv + Vmw = 0 respectively,
() E(u, v, w) is a C* function which vanishes at Py to order greater than 2,
i.e. its partial derivatives through the second order are zero at Py, and (c) the
1, v, w coordinate system is uniquely determined up o a rotation through a
multiple of 7/2 in the v w plane (corresponding to the four possible choices of
g3 as in the remark above), and reversal of direction of the w-axis.

We will refer to this expression of ¢ in the u, v, w as the canonical presen-
tation of ¢ at Py; the u, v, w system itself is called the canonical coordinate
system. _

We now want to study the nearby level surfaces ¢ = ¢, and especially cer-
tain features of their behavior at 1~ 0. At any point P, we can consider the
level set M(¢, P) of ¢ through P and as P — Py, M(¢, P) — M(¢$, Py) =
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M. Let us restrict our attention fo those P near § for which M(¢, P) is
smooth; by Sard’s theorem (or using the canonical representation of ¢ of Pro-
position 2), it is seen that there is a neighborhood of § on which this is true.
Thus, for P ¢ S, there is a well defined unit normal N(¢, P) to M(o, P) at P,
here N(¢, P) = Vé(P)/|Vo(P)|. Now as P — Py, |V¢(P)] —0. How-
ever, a natural question {and one which is important for the sequel) is whether
gin; N(¢, P) exists.

Proposition 3: Let v be a differentiable curve through Py, with unit
tangent vector (a, b, c¢) at Py (in the canonical u, v, w coordinate system for
¢). Then

lim N(o, Py = —o =10, 1m0)

AL T MO pey.
Popy [0, =1, mo)] v

Thus, the limit depends ohly on the tangent direction of v at Py, and i exists
provided that this direction is not that of the u-axis, i.e., v is not tangent to §.

Proof: Assume we have a canonical presentation of ¢ at P, with coordi-
nate system u, v, w. Let v be a differentiable curve through P, = (0, 0, 0),
with unit tangent vector (a, b, ¢) at Py. Thus if s is arclength, then
v(s) = (as + A(s), bs + B(s), cs + C(s)), where A(s), B(s), and C(s)
vanish at s = 0 to order at least 2 (i.e. A(s), B(s), C(s) are divisible by 5%).
Now Véiu, v, w)y = (E,, —2Iv + E,, 2mv + E,), s0 that

Vo(y{s)) =[E(v(5}), —2lbs—2UB(5) + EAy(5)), Zmcs+2mC(s) + E,(v(s))]

=g [(0’ _21})’ 2mC)+ [Eu('}"(s)) , Wle(s)”*“Ev(ly(s)) , *-2mC(S)+Ew('Y(S)) J }

8 § g

Let us denote by F(s) the vector (E,(y(s))/s, —2IB(s)+E,(y(s))/s,
2mC(s)+E,.(v(s))/s). We claim that F(s) vanishes as s —0, Since B(s)
and C(s) are actually divisible by 5%, B(s)/s and C(s)/s are still divisible by
5, s0 it is clear that these vanish. For E,/s, E,/s, E, /s, we note that since the
partials of £ at (0, 0, 0) vanish through the second order (by part (b) of Pro-
position 2 above), the partials of E,, E,, E,, vanish through the first order, so
‘we may use

Lemma: Let G be a C? function around (0, 0, 0) and suppose G, G,, G,,
G, all vanish at (0, 0, 0). Then lir% G{y(s))/s = 0 for any differentiable

.

curve vy with y(0) = 0,

Proof of Lemma:
L Gy(s)) _ . G(y(s) — G(y(0)) _ d
1{{13 S = il_{% . == dsG('Y(S))lm&
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But this derivative may also be computed in the form
d
Z,;G(W(S)) = (Gu(v(s)), Go(v(5)), Gulv(5)))¥(0),

and this is zero by hypothesis.
Returning to the proof of Proposition 3, we have

Vo(y(s)) = s[(0, 2b, 2mc) + F(s)],
where linéF(s) = (0, 0, 0). Hence

[VeCy(sH | = |s|(] (0, —2ib, 2me) || + h(s)),

where h(s) ~ 0 as 5 — 0, as is easily seen. Therefore

Voi{y(s)) - (0, —2{b, 2mc) + F(s)
| Volv(s)) |l (0, —2ib, 2me) || + B(s)’
50 that
=0 TV(y(s)) ] 10, =2, 2mey |
(0, ~Ib, mc)

SN 1) = =0, o

Note that the sign on the right will be 4+ when s/{|s|| = 1, i.e. when P — P,
from the positive direction with respect to the parametrization of y. To obtain
the result for approach to Py along v from the other direction, simply reverse
the orientation of the arc-length parametrization. This completes the proof of
proposition 3.

To introduce the basic idea of our main theorern which will be treated in
detail in the next section, we now state a prototype of this result, which
describes the behavior of the curvature of the level surfaces of ¢ itself at
points P approaching Py .

Propesition 4: With notation and hypotheses as above, let v be a
differentiable curve whose unit tangent vector, say (a, b, ¢) in the u, v, w
system, is not contained in the tangent planes to the branches B; of ¢ = 0 at
Fp, and is in the same sector formed by these planes as the positive w-axis.
For any P e § let u(¢, P) denote the mean curvature of the level surface
M(, P) of ¢ through P.! (Thus u($, P) = xi($, P) + #,(¢, P)). Then

i P) = —oo.
I}l_lgo p(o, P) oo
Pey

"It is understood that we are restricting ourselves to a neighborhood of Py in which the only
non-smooth level surface of i s ¢ = 0, Le. it is only on § that V¢ vanishes.
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Proof: By Proposition 1,

(¢, P) ~ N(¢, PYH(6, PIN(6, P)
] Py =
w(é P) 1Ve(P) |

This may be computed in any coordinate system; we will work in the u, v, w

system for convenience. Then, H(¢, P) is a continuous matrix-valued func-
tion of P, and

0O 0 0
H(dp, Py = |0 -1 0
0 m
Hence, i}in; trH(¢, P) = —! + m. By Proposition 3

lim N(¢, P)
PPy
Pey

is the unit vector (0, —1Ib, me)/VI?b? + m2ct. By continuity, we obtain
Jlim N(o, PYH(¢, P)N(¢, P)

Py
0 0 0 0
= (Pb* + m2H)~N0, ~b,me) |0 ~1 o | |~
mc
0 0 m

—*p% 4+ m3c?
Pb? + mic

Therefore, (*) the limit of the numerator in the expression for u(¢, P) above

is
—Pb? + mic?
—l 4 m o~ | ST me |
[ Pp* + mic?

which simplifies to {( ~mc? + b%)d where d = (%% + m*e?)™! > 0. Set-
ting this equation to 0, and solving for » and ¢, we get —mc® + Ib? = 0.
The set of vectors (a, b, ¢) for which this relation holds is the union of the
planes —VIb + Vmc = 0 and Vib + Vmc = 0, i.e. the tangent planes to
the branches of ¢ = 0 at P; as shown in Figure 11. Similarly, the set of vec-
tors (a, b, ¢) which yield a negative numerator in the limit are those
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>V

Figure 11. Cross-section through Py (in the v, w-plane) of the tangent planes to the
branches of M at Py; the limit of the mean curvatures, u(y, P, as P — Py along «y in
the shaded sector as shown, is negative because of the orientation of our canonical
coordinate systern

(a, b, ¢) for which |c/b| > VINm, i.e. those which lie on the same sector
(formed by the tangent planes to the branches) as the positive w-axis.

Thus let v be a curve satisfying the hypothesis. As P - P, along vy the
limit of the numerator in the expression for u(¢, P} is a negative number.
Since limp_p, | Vé | = 0, i.e. since the denominator approaches 0 through
positive values, we get the result.

We now want to study the question of uniformity of approach of p(é, P)
to oo as P - P, in suitably restricted regions:

Remark: Let k > vI/m, and consider the solid cone € in R® with vertex
Py, directrix the positive w-axis, and slope k, as shown in Figure 12.
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W

F.

tangent planes to
branches of ¢

Figure 12. Restricting our aftention to points P in cones of the type of C in this
figure will enable us to conclude that the mean curvature at P of the level surface of
through P, goes to — oo as P - P

Note that, except at Py, the boundary of this cone does not meet the planes
w = =Viimy, i.e. except at Py it is strictly contained in the upper sector
formed by these planes.

Consider the set V of all unit vectors lying in C. For each veV, if y is a
curve with v(Py) = v, then the limit as P — Py along v of the numerator of
the expression for p(¢, P) in Proposition 4 is negative, and depends only on
v. Moreover, from the explicit expression for this numerator derived in the
proof of Proposition 4, it is clear that it depends continuously on v. Since V is
compact, there is a maximum value p for this numerator attained on V, and it
must still be strictly negative for otherwise (as in the proof of Proposition 4)
there must be a vector in V which lies in the tangent plane to one of the
branches of ¢ = (0, and this contradicts the construction of V.
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Now for PeC, consider the line joining Py with P, viewed as a curve v
parametrized so that v(0) = Py and Pe+y. Let n(P) denote the value of the
numerator of u(¢, P), and let A(P) denote its limit as P — P, along this v.
Since A(P) depends only on v'(Py ), i.e. in this case on the unit vector in the
direction PyP, it is clear that A(P) is a continuous function of P and that
APy €< u < 0forall PeC. If C denotes the truncation of C at some con-
venient value of w,? then € is compact, and the function A(P) restricted to C
is therefore uniformly continuous. Moreover, the function n(P) itself is con-
tinuous in P, so n is also uniformly continuous on C.

Consider for the moment points O on the w-axis; for all these points /()
is the same (and in fact equals —I). There exists an ¢; > O such that if
|Q@ — Py| < e, then |n(Q) — A(@)| < |u|/4. By the uniform continuity
of n, there exists & so that for all P, PeC, |P— P
< & => |n(P) — n(P)] < |p|/4. Let e be sufficiently small so that
€y < €, and moreover that the cross-section of C slant height €, has radius
less than ¢ (see Figure 13). Note that then if PeC with {P ~ Py} < &,
then if @ denotes the point on the w-axis with the same w-coordinate as P, we
have both IP - Q{ < € and lQ - P{;! < €1.

It follows that

In(P)=(Q)| < |n(P)~n(Q)| + |n(Q) —A(O)] < '{j’ + 'f - “2’“' .

Since A(Q) < u, we find: There exists ¢ so that Pe C,
|P —~ P3| < e —> n(P) < p/2 (pafixed negative number).

Now since ¢ is €2, | ¢(P)|| - O uniformly on C as P— Pg. It follows
that: u{¢, P) ~ — oo uniformly on C as P — P, We may summarize this in
the following result which may now be stated in a coordinate free form:

Theorem 5. Let ¢ be a C? function on a domain D, in R®. Suppose the
level set ¢ = O consists of two smooth surfaces B, and B, which intersect in
a smooth curve §; suppose moreover that all other level sets of ¢ in D are
smooth. Let Py €S, and let L be a line through Py, perpendicular to §, which
bisects the tangent planes to the branches B; at P;. Let C be any solid cone in
D with vertex P, and directrix L, which does not touch the tangent planes to
the branches except at Py itself. Then

1 , P} = w00,
P§DM(¢ ) co
PeC

where p(6, P) is the mean curvature at P of the level surface of ¢ through P.
Moreover this limit is approached uniformly on C.

2 Al that is required is that C be contained in the domain of definition of ¢, and that
|Ve(PY| = 0 forall PeCexcept P = Py,
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Figure 13. An illustration of the argument arising in the study of the limit of the
mean curvatures, p{y, P),as P — Py in C

The main theorem. In general, if ¢ is a differentiable function whose
level set ¢ = (O has singularities (for example as above, where ¢ = 0 is
singular along the curve S), the nearby level sets ¢ = ¢ (teR, ¢t small) will be
smooth. Thus we can think of the family of surfaces M,: ¢ = ¢ as a canonical
family of smooth approximations to My: ¢ = 0 which converge to M, in
some suitable geometric sense as ¢ — 0. However there are many ways of
constructing such “smoothing families,” and in fact generic perturbations of ¢
will result in functions with smooth level surfaces near ¢ = 0.

In addition to the ¢ == 7 smoothing, we single out two other examples for
specific mention at this point. We will return to them in more detail later ();
the point here is to motivate the level of generality at which the Theorem 6
will be stated. First, there is “Gaussian smoothing,” where for ¢+ > 0 we
define

2
o |y

0 = = e ¥ gy
! V2w o )

The f,(x) can be viewed as “smoothings of the function ¢ itself, and for
small £, ueR the level sets f, = u are smoothings of the surface ¢ = 0.
Note that 1ingf, = ¢, and if we define f; = ¢ the function f,(x) depends

fLed

differentiably on r and x.
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As a second example, start with a sequence of lattices (i.e. discrete sub-
sets) L; of D, which get arbitrarily dense in I? as { ~ oo, We can use each lat-
tice as a set of control points fo construct a soitable bicubic spline f;, so that
limf; = ¢ and the level sets of the f; near ¢ = 0 are smooth. This example

[ G2

seems fundamentally different than that of the Gaussian smoothing; for one
thing the “parameter” i is discrete, and there is no “natural” continuous
parameter as in the Gaussian case. Note however that any “continuous param-

eter” smoothing f, of ¢ can be represented as a suitable sequence f; converg-.

ing to ¢, without excessive information loss, at least at ¢ itself. For this

reason we will consider a sequence of functions f; ( with smooth level sur-

faces) which converge to ¢ in €2, as the most general practical formulation of
" a “smoothing family.”

Theorem 6, which we prove in this section, states that when we smooth a
transversal infersection in this sense, negative curvature at points of the
smooth surfaces increases without bound the closer we get to the singular
level set ¢ = 0. Thus high negative curvature is seen to be the “‘stable form”
of transversal intersections, in the sense that slight perturbations of the singu-
larity yield smooth surfaces with arbitrarily high curvature. Indeed, it is
impossible to actually detect an intersection in practice (if we have access to
only one side of the surface); the most we can do is to measure curvature up
to the order of /o, where ¢ is the limit of the resolving power of our meas-
urement system.

Theorem 6: Let D be a domain in R, and let ¢ ¢ C2(D) be a function
whose level set ¢ = 0 is the union of two smooth branches which intersect
transversally in a smooth curve 5. Suppose {f;} is a sequence of functions
which converge in C2(D) to ¢, and all the level sets of the f; through any
point Pel> — § are smooth. Let 4 be a differentiable curve in D which inter-
sects ¢ = () at a single point Py € S, and which is not tangent to either of the
branches of ¢ = 0. Then

lim inf{u(f;, P) | Pev, | P — Py| < 8} = —oo
e 00
50

where u(f;, P) denotes the mean curvature at P of M(f;, P), i.e. the level set
of f; through P.

Remark: If we let f; = ¢ for each i in Theorem 6, we get a form of
Theorem 5.

Proof of Theorem 6: As in Proposition 1 of §3.1, for any PeD —~ § we
may write

uH(f;, P) — N(fi, PYH(f;, P)N(fi, P)
I Vfi(P) |

w(fi, P) =
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where H(f, P) denotes the Hessian form of fat P and N(f, P) is the unit
normai to the level surface M(f, P) at P, i.e. N(f, P) is the unit vector in
the direction of Vf(P). To simply notation we will denote H(f;, P) by
{,)ip> and its trace by £(P). H(s, P} and tH(¢, P) will be denoted by
{,)p and 2(P) respectively. Moreover we will denote N(f;, P) simply by
N;(P), and N(¢, P) by N(P).

Note that N(Py) is not a priori defined. However by Proposition 3,
lim N(P) exists as P — P, along v, since by hypothesis -y is not tangent to the
branches of ¢ = 0 and in particular not tangent to §. We will therefore use
the notation N(P;) to denote this limit for our given v; since v is fixed
throughout the discussion there is no ambiguity.

With our new notation, we have

4P) — (N(P), Ny(P)),p
| V(P |

We add and subtract the quantity #(Py) ~ {N(Py), N(Py))p, in the
numerator to obtain:

w(fu P) =

w(fi, Py =

(£(Py) — (N(Py), N(Py)) ) + (1(P) —t(Py})
~ ({N(P), Ny(P)), p— (N(Py), N(Py)}r,)

V(P |

Now the term on the left in the numerator is the limit as P ~ Py along v of
the numerator of the expression for (¢, 0) as in the proof of Proposition 4,
noting that our + satisfies the hypotheses of that proposition for a suitable
orientation of the axes. Therefore, by (*) in the proof of Proposition 4, this
term is a fixed negative number k. ‘

We now expand the term on the right in the numerator by adding and sub-
tracting {N(Py), N(Py,); p,, to obtain:

wlfe, Py = k| VF(P)]
+ (6(PY — (P |VF(P)] (6.1)
= ({NAP), Ni(P))i p — (N(Py), N(Po)}ip M |VF(PY|

+ ({N(Pg), N(Py))p, — (N(Py), N(Py) e YIVA(PY].

In order to prove the theorem, we must show the following: let L be any
positive integer. Then there exist n, 6 such that there is a Pevy with
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|P — Py} < 6and u(f;, P) < ~Lforalli > n.In fact we will prove the
stronger assertion

(6.2) Given L, there exist n, & such that for i > n and all P satisfying
82 < {P — Py| € 6, u(fi, P) < —L.

We will denote

1=u(P) ~ «Po),
2 = (N(P), Ni(P)}ip — (N(Po), N(Po))ip,
3 = (N(Py), N(Py))p, — (N(Po), N(Pp))ip-

With this notation, (6.1) becomes
k+1—-2+3
| V£i(P) |

Recalling that k is a fixed negative number (depending only on ), to prove
(6.2) we will find n, & such that for i > n and 6/2 < |P_~ Pyl < 8, we
have | VFi(P) | < |3k/2L], 11| < [k|/6, 12| < |kl|/6, |3] < |k|/6. This
will give the result, for then

w(fi, Py =

k+ |1] + |2] + 13]

L P <

Wi B) |Vfi(P) |
o K+ K6 + |Ki6] + |K/6]
- | VA(P) |

- 3k12 < 3k/2
| VA(PY| | 3ki2L |

Now, since f; — ¢ in CZ, it follows that |Vf;| — |V¢| uniformly on com-
pact subsets of v, and similarly {, };p = {,)p uniformly on compact subsets
of v (for this purpose we may identify {,) etc. with the appropriate Hessian
matrix of second partial derivatives.)

Let us first choose 8, so that if [P — Pyl < 6y, |[Vo(P)| < 3|k{/4L;
we can do this since |V¢(Py)| = 0 and V¢ is continuous. Next, choose 1y
so that, in view of the uniform convergence of Vf;(P) to V¢(P) on the com-
pact subset of ~ defined by [P — Pyl < &, |Vfi(P) — Vo(P)| < 3|kY/
4L for P in this subset. It follows that for i > n; and [P — Pg| < &,
|VAi(P)| < 3lkj/2L.

Now we look at the term 1. We can write it
(t;(P) — t(PY) + (#{P) = 1(Py)). Recall that 1;(p) is the trace of {.}p
and in particular it is a sum of second partial derivatives. Since the second
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derivatives of ¢ are continuous, we can find a &, so that if |P ~ Py| < &y,
[#(P) — t(Py)| < lk|/12. Then, since the second partial derivatives of the
f; converge uniformly to those of ¢ on the compact subset of v defined by
| P~ Pg| < 8y, we can find ny so that if i > ny, |4(P) — t(P)| < [k|/12 for
P in this subset. It follows that for i > n, and [P — Pyl < &, 1 < |k|/6.

We consider the term 3. Let B denote the unit vector N(Fy); it depends
only on v so is fixed throughout the discussion. Thus 3is (B,B)p —
(B,B), p. We can write this ((B,B)p, — (B, B)p) + ((B, B)p — (B,
B)(;p). Choose &; (by the continuity of the second partial derivatives of ¢)
so that if [P — Py| < &3, | (B, B}p, — {B,B}p| < lk|/12. Then choose ny
(by the uniform convergence of {,);p to {,)p on the compact subset of vy
for which |P — Py| < &) so that if i > nz, | (B, B}p — (B, B),p| < |k|/
12. It follows that there exist ny, 83 so that if { > ny and {P — Py| < &,
3 < |k|/6.

Now, to study the term 2 we first write it in the form
2 = (N;(P) + N(Py), Ni(P) — N(Py));p. Reverting back to matrix nota-
tion, let H denote the Hessian matrix of f; at P in some coordinate system,
and let N;(P) and N{P,) be written as vectors in the same system. Then

= (N;(P) + N(Py)-H(N;(P) —~ N(Py))

(where the dot denotes ordinary dot product in the given coordinate system,
and H is operating as a matrix on the vector N;(P) — N{(Fp)). Hence

2 < INi(P) + N(Py)| [HIN;(P) = N(PoDi.
< 2|H(N;(P) — NPy,

since N;(P), N(Py) are both unit vectors.
1t is a well known and easily verified fact that if H is any matrix, and /

~ denotes the sum of the lengths of the columns of H, then for any vector v,

[H(v)| < I|v|. Let [ denote an upper bound of the values of ! obtained for
the Hessian matrices H = H(f;, P} for Pevy, |P — Py| < 6; and
i = 1,2, -; to see that this bound exists, observe that there is a similar
bound for the Hessian of ¢ at points P in this compact set, and then use the
uniform convergence of the Hessians of the f; to those of ¢ on the set. Thus,
if [P — Pl < 8,

2] < 2AIN(P) ~ N(Po)|,
< 2H(IN(P) = N(P)| + [N(P) — N(Po)|).

Now N(P) converges to N{(P;} as P — P, along v. Therefore, choose a &,
which is < 83, and which also has the property that if
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[P — Py| < 84)N(P) —=N(Py)| < |k|/(24l). Observe that away from §
(i.e. away from P, in our sitmation we are just working on v), N(P) is a
weli-defined vector-valued function of P, expressible in terms of the deriva-
tives of ¢. Thus on any compact set not meeting S, N;{(P) converges uni-
formly to N(P). In particular, there exists n, so that if { > ny and &/
2 < |P ~ Py| € 8, then |[NAP) — N(P)| < |k|/(24]). It follows that
there exist n, and &8; so that if { > ny and 8,2 < |P — Py| € 84,
12] < |kis6.

It is now clear that if we let & = inf(8,, &5, 83, 84) and n =
sup(ny, #y, 3, ny) the conclusion of 6.2 is valid. This completes the proof
of Theorem 6.

Remark. Suppose that we have a smoothing family f; — ¢ as in Theorem
6. We would like to conclude that for sufficiently large i, the level surfaces of
the f; close to ¢ = { contain contours which are part boundaries in the sense
of the Negative Minima Partitioning Rule of §2 above, and moreover that
these contours converse to § in some reasonable way. Theorem 6 makes this
very plausible, but does not go all the way to give a proof. The essential
difficaities here may be understood by considerting the case of the level sur-
face smoothing of ¢, i.e., the case where all the f; are just ¢ itself. As we
have seen, these level surfaces have points of arbitrarily high negative curva-
ture close to §. The problem lies in the possibility that the relevant lines of
curvature on the given level surfaces near S get “trapped” in neighborhoods
of §. In this way the line of curvature might approach § so that the points on
it could have ever increasing negative curvature, i.e., no points is an
extremum. Since the boundary contours by definition consist of points which
are extrema Of curvature on their corresponding lines of curvature, there
would be no such contour in this case. Happily this kind of pathology can be
ruled out; the methods are beyond the scope of this paper and will be pub-
lished elsewhere.

4. EXAMPLES OF PARTITIONS

In the previous section we proved that smoothing a transversal intersection
leads to large curvature (negative for solid union, positive for solid subtrac-
tion) regardless of how one smooths. In this section we determine analytically
the negative minima partitioning contours on several classes of surfaces. This
allows a more rigorous understanding of the rule and the boundaries it
defines. In particular, this section illustrates that the negative minima rule is a
3-D definition of part boundary, not a 2-D rule of thumb for finding 2-D parts
(such as the “matched concavities hearistic,”—see Brady & Asada, 1984, for
a description, and critigue, of the matched concavities heuristic).
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Decomposition of developable surfaces

Developable surfaces are a special case of ruled surfaces, surfaces that are
generated by a one parameter family of lines (Do Carmo, 1976). A one
parameter family of lines {p(u'), v(u")} is a correspondence that assigns to
the parameter u'€(a, b) CR a point p(u!)eR® and a vector vieH) eR®,
v(u') # 0, such that both p(«') and v(x!) depend differentiably on u'. For
each u' € (a, b}, the line L(u') which passes through p(x') and is parallel to
v(u') is called the line of the family at u'.

Given a one parameter family of lines {p(u'), v(x')}, the associated ruled
surface is given by the parameterization

x(u', u®) = p(u') + uPv(u'), u'e(a, b) CR, wleR.

The curve p(u') is called a directrix, and the lines are called the rulings of
the surface x. In what follows we assume, without loss of generality, that 1!
is arc length along p and that |v(«')| = 1. Moreover we will adopt the fol-
lowing notation: If w is a vector or scalar valued function of the parameters
u', u®, then w; will denote dw/du'. Thus v = aviu', py = Ppiau)?,
X, = 3x/3u” etc. A ruled surface is said to be developable if the scalar triple
product (v, vy, p;) = O everywhere on the surface, implying that v, v,, and
p: all lie in a single plane.

In the next two subsections we determine the partitioning contours defined

by the minima rule for two nonexhaustive cases of developable surfaces—the
cylinder and cone.

Cylinders

A cylinder is a developable surface whose directrix, p, lies entirely in one
plane and whose rulings, v(u'), are parallel to a fixed direction in R?, imply-
ing that v; = 0. For a cylinder the first partial derivatives are

Xy = py + u’v, = p; (since vy = 0) and x, = v. The metric tensor is then
I 0
8y = XXy = 0 1
The surface normal is
X X X XV
i il = p X v
[xr X x| ipr X vl ]

The second fundamental coefficients are
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' ,» ¥
by = %N = (P11, P i )0 + lpul 0
0 it 0 0

Since g3 = by = 0 the principal curvatures on a cylinder are
ko= bi/gn = |pul
Ky = byplgy =0

The expression for x, is the magnitude of the second derivative of p with

" respect to arc length (with sign determined by the orientation of the field of

surface normalsy which is simply the curvature along the directrix p. The
directrix and its translations are, in fact, one set of lines of curvature and the
rulings the other set, since g1, and b, are zero. As expected, the curvature
along the rulings, «p, is zero. Consequently no partitioning contours arise
from the rulings (since there are no extrema of the principal curvature xy).
Only the minima of k; along the directrix and its translations are used for
defining part boundaries.

Figure 2, as discussed in the introduction, shows a cylinder and its parti-
tioning contours (dotted lines) for one of the orientations of the field of sur-
face normals. The partitioning contours break the cylinder into parts that seem
natural enough. If one inverts the figure one will experience a figure-ground
reversal, causing the bumps of the surface to become dips and vice-versa.
Notice that when the figure and ground reverse the perceived partitioning
lines shift away from the indicated dotted lines and to the lines that were pre-
viously positive maxima of «;. This occurs because the figure-ground reversal
is associated with a reversal in the orientation of the field of surface normals
and, hence, in the sign of x; everywhere on the surface. Contours of positive
maxima of x; and contours or negative minima of «, swap places and the par-
titioning along the new negative minima becomes apparent.

As noted in the introduction, segmentation rules which use only the Gaus-
sian curvature, rather than analyzing the principal curvatures independently,
fail on this example and on cones because the Gaussian curvature is every-
where zero, making impossible any segmentation based only upon the Gaus-
sian curvature. Yet human observers readily and consistently perceive parti-
tions in surfaces whose Gaussian curvature is everywhere zerd.

Cones

Cones are a special case of ruled surfaces in which the directrix, p, is simply
a point, the vertex of the cone. In consequence one can give the following
parametrization for the cone:

x(u', u*) = wv(u'), u'e(a, B)CR, u’eR.
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For this parametrization the first partial derivatives are x, = u°v, and

x; = v. The metric tensor is
@ (vevy 0
0 i

w v, X v)

v, xvl v

Sij ™ XX

The surface normal is

X X X

B X X %]

The second fundamental coefficients are

N = [uz(vx, v, V.u)”"l' 0]

bij - xij.‘ O 0

Since gy, = bj; = 0 the principal curvatures on a cone are

uz(vl: v, ¥11)

_ (v, v, vip)
(u® )2 (vi-vy) ] vy

Ky = bii/gu v
t

Ky = byylgy = 0

The u'- and u’-parameter curves are lines of curvature, since g, and by,
are both zero. As one would expect, the principal curvature, x,, along the
u*-parameter curves is everywhere zero. The expression for k; along the u'-
parameter curves (where u° is constant) does not depend on #”. Thus the con-
tours of negative minima of «; are straight lines which radiate from the vertex
of the cone. An example cone is shown in Figure 14 with the partitioning con-
tours indicated by dotted lines. The resulting parts appear quite natural.

Figure 14. Partitions of a cone
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Surfaces of revolution

A surface of revolution is a set § C R® obtained by rotating a regular plane
curve, o, about an axis in the plane which does not meet the curve. Let the
xz-plane be the plane of e and let the axis of rotation be the z-axis. Let

a(u') = (x(uh), 2u')), a <u' < b, xu') >0,
and let u” be the rotation angle about the z-axis. Then we obtain a map
x(u!, ¥?) = (x(u') cos(u?), x(u') sin(u?), z(u!))

from the open set U = {(u', ¥*)eR% 0 < u® < 2w, a < u' < b} into §
(as shown in Figure 15). The curve « is called the generating curve of §, and
the z-axis is the rotation axis of §. The circles swept out by the points of &
are called the parallels of 8, and the various placements of « on S are called
the meridians of S. '

The partial derivatives are x, = (x, cos(u?), x, sin(#?), z;) and
X, = (—x sin(u?), x cos(u?), 0). The metric tensor is

2 2
xy + z
& = xi.xj ] i i 0 .
0 x2

The surface normal is

X; X Xp (z; cos(u?), z; sin(u?), —x;)
. le X le \;‘212 + x12

If we et u' be arc length along o then /27 + x2 = 1 = g;; and

N

N = (z; cos(u?), z; sin(u?), ~X1 ).

Figare 15. A conveniemt parametrization for a surface of revolution
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The second fundamental coefficients are

X2 — 81z
b,-j=xij'Nﬂ [111 1211 0 }
0 —XZ

Since gio = b1z = 0 the principal curvatares on a surface of revolution are
Ky = bylgn = xnn — Y
0y = bplgn = —ulx

The expression for «; is identical to the expression for the curvature along
«. In fact the meridians (the various positions of « on S} are lines of curva-
ture, as are the parallels. The curvature along the meridians is given by the
expression for x; and the curvature along the parallels is given by the expres-
sion for k,. The expression for &, is simply the curvature of a circle of radius
x multiplied by the cosine of the angle that the tangent to & makes with the
axis of rotation.

Observe that the expressions for x, and , depend only upon the parameter
', not u?. In particular, since «, is independent of u” there are no exirema or
inflections of the normal curvature along the parallels. The parallels are cir-
cles. Consequently no partitioning contours arise from the lines of curvature
associated with x,. Only the minima of «; along the meridians are used for
partitioning. Figure 16 shows several surfaces of revolution with the minima
of curvature along the meridians marked. The resulting partitioning contours
appear natural.

Figure 1, as discussed in the introduction, illustrates that reversing the
orientation {of the field of surface normals) of a surface of revolution causes
us to carve the same surface differently. The dotted circular lines in the figure
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are the partitioning contours according to the negative minima rule. Note that
they lie in the valleys of the top figure. If the figure is inverted they no longer
lie in the valleys but on the peaks. By reversing the field of surface normals
the signs of the principal curvatures everywhere have reversed, Contours of
negative minima of the principal curvatures become contours of positive max-
itna, and vice-versa. Consequently the part boundaries are not invariant under
a reversal of orientation.

The torus

A torus is a surface in R* which is obtained by revolving a circle about a line
not passing through the circle, as shown in Figure 17. A convenient parametr-
ization for the torus is

x(u', u?) = ((b + asin(#?)) cos(u!), (b + asin(u®)) sin(u’), acos(u?)),
b > a

The first partials are x; = (— (b + asin(u®)) cos(u'), (b + asin(u?))
cos(ux'), 0) and xy = (acos(u?) cos(u'), acos(u®)sin(u'), @ 8in(1%) ).
The metric tensor is

s 22
8ij = XX = [(b +asm(u) 02}
0 a

The surface normal is
X % Xy

= —————" = {— cos(u') sin(u?), ~ sin(u') sin(u?), — cos(u?)).
[x; X X

The second fundamental coefficients are

- 2 . 2 0
by = x;°N = [(b +a sm(ou )) sin(u”) a].

Since g1, = by = 0 the u'- and u’-parameter curves are lines of curva-
ture and the principal curvatures on a torus are
k1 = byl = sin(u?)/(b + a sin(u?)),

Ky = bplgy =a”l.

The principal curvature «; is associated with the u'-parameter curves and
K, with the u’-parameter curves. «, is a constant, so the torus is not parti-

e
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Figure 17. The torus has no parts

tioned using the #*-parameter lines of curvature. «; is not a constant, but it is
independent of u'. Therefore the torus is not partitioned using the u'-
parameter lines of curvature either. We conclude that the torus is one
indivisible unit based on the negative minima partitioning rule.

Flattened surfaces of revolution

What happens to the partitioning contours on a surface of revolution if we
flatten it slightly along one axis orthogonal to the axis of revolution? We show
here that the circular partitioning contours of the surface of revolution become
elliptical and bowed slightly up or down in the middle. It would be of interest
to test this against perceptual judgments.

Figure 18 illustrates a convenient parametrization for a surface of revolu-
tion which is flattened:

x(u', u?) = (f(u') cos(u?), af(u') sin(u®), (u")), 0 < a < 1.

Let f(u') be abbreviated to f and let primes over the f’s indicate deriva-
tive with respect to #', Then the metric tensor is

gij = X,--xj

(f)*(cos*(u?) + aisinz(uz)) + 1 ffsin(u*) cos(u®)(a® — 1)
N £ sin(u®cos(u?)(a® — 1) FAsin(e®) + a®cost(u?))
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these contours
should be slightly
howed up or down T

Figure 18, Partitions on a flattened surface of revolution
The second fundamental coefficients are

—afid O

by = x;*N =
N ! 0 afid

where d = VaZcos?(u?) + sin*(u?) = a*(f)*

Since X;-%; # 0 in general, the parameter curves are not in general lines
of curvature. However when f = O then X;-X; = 0 so that contours where
this holds are lines of curvature. These contours are elliptical cross sections of
the flattened surface of revolution, cross sections having either the greatest or
least major axis locally. Along these lines of curvature the associated principal
curvature is

Kk = bylgyn = af " (sin®(1?) + a cos(u?)) ¥
Its extrema occur when
dkfou? = —T2af " (a?cosi(u?) + sif*(u?))">*(2 cos(u?) sin(z®)

— 2a%cos(u?) sin(u?)) = 0,

which happens when a®cos(u®) sin(u?) = cos(u?) sin(#*). This implies that
u? = nw/2, for n an imeger. For n even, k = a“zf"l, and for n odd,
x = af 1. Thus the minima occur when #° is @/2 or 3w/2. However these
minima are positive minima, since a and f are both positive, and consequently
there are no partitioning contours which arise from this family of lines of cur-

vature,

s
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To determine the partitioning contours defined by the other family of lines
of curvature, we begin by noting that when u® is na/2 the metric tensor

becomes
_ M+ 0
&ij = _
0 a2f2

e @Y+ 0
for n odd. Thus the u'-parameter curves given by #? = nz/2 are lines of cur-
vature. These curves are also the intersection of the flattened surface of revo-

lution with the xz-plane or- yz-plane. For » even-the associated principal cur-
vature is

forn evén-, and

k= byylgy = —f1(1 + (FY¥)",
and for n odd it is
k= bylgy = —af(l + a(fH*) 3"

The extrema of these two curvatures do not, in general, occur at the same
values of u' ( because a # 1). Thus the partitioning contours on the flattened
surface of revolution are not, in general, planar. So as a surface of revolution
is flattened, the partitioning contours which are at first circles become more
elliptical and usually bow either up or down slightly.

Elhows

An apparent problem for the negative minima partitioning rule is the
“elbow™, the problem being that for elbows the contours of negative minima
of curvature are not closed, so no parts are uniquely delimited, This is frue
for smooth elbows and, as shown in Figure 19, for nonsmooth elbows as well.

As can be seen in Figure 19, however, there is good reason for the rule to
specify an incomplete partitioning contour—the appropriate way to continue
the partition is inherently ambiguous. Each of these three completions shown
in the figure is equally reasonable.

Elongated terus

Elbows may also occur on entirely smooth surfaces. For instance, the torus
which has been scaled along one axis has two elbows. The following deriva-
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(a)

(b)

Partitioning of an elbow

Figure 19.
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Figure 19. Partitioning of an elbow
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tion will show that the negative minima rule gives rise to two open semicircu-
lar contours, one on the inside of each elbow, as shown in Figure 20,
The elongated torus may be conveniently parametrized as

x(u', u?)
= ((b + asin(u’)) cos(u’), d(b + a sin(u®)) sin(u'), a cos(u®)), b > a, d > 1.
This corresponds in Figure 17 to expanding the torus along the x*-axis. The
first partials are
Xp = {(—(b + asin(u®) sin(u"),d(b + a sin(u?)) cos(u'),0)
and
X, = (a cos(u?) cos(u'),ad cos(u®) sin(u'), —a sin(u?)).
The metric tensor is

(b + asin{u®}Y(sin*(a' + &?cos®(u')) acos(u®} cos(u') sin(u' (b + asin{u?) Hd* ~ 1)
acos(u?) cos(u') sin(u' ) (& + asin(e?) Wd® — 1} a(cos’(4?) cost(u') + d? cos? (1) sin*(u') + sin®(u?))

The surface normal is

N = (—d sin(u®) cos(u'), — sin(u')sin(u?), — d cos(u®))/f,

where

[ = ~Va? sin?(u?) cos?(u') + sinf(u'y sin*(u?) + d? cos®(u?).

Figure 20. An elongated torus has two semi-circular contours of partition
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The second fundamental coefficients are

b = | dsin(u)(b +a sin(u?))lf 0
Y 0 adl!f

Since gjp # 0 the u'- and u*-parameter curves are not in general lines of
curvature. However, along the curve u? = w2 we have cos(uz) = 0,
sin(#') = 1, and

0 a®

& = [(b + a)X(sin*(u') + d cos’(u))) 0]
11 - i

implying that this is a line of curvature {(by and g, are zero). The second
fundamental coefficients are

b = |4+ @k 0
Y 0 adih |’

k= Nd? cost(u!) + sinf(u').

where

The principal curvature along this line of curvature is
k= bylgn = db + a) TR

The extrema of curvature along this line occur where dx/du’ = 0.

»5‘?—"{ = —3/2d(b+a) " (d® cos* (")
u

+sin?(u)) 52 sin(u') cos(u') —2d* sin(u') cos(u’)) =0.

Since d > 1 this implies that d”cos(u') sin(u') = cos(u") sin(u'), which
oceurs for ' = nw/2, where n is an integer. Positive maxima of curvature
occur when n is odd, negative minima when »n is even.

A similar analysis shows that the contour u* = —x/2 is a line of curva-
ture whose extrema occur for u' = nw/2, where n is an integer. The
difference is that the positive maxima of curvature occur when n is even,
negative minima when # is odd.

Finally, at the parameter point (w/2, 0) we have that sin(ux' = 1,
cos(u') = 0, sin(u?) = 0, cos(u?) = 1, and find that the metric tensor is
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10
8 = 0 AP ’

implying that at this.point the u'- and w’-parameter curves are in principal
directions. The second fundamental form is

0 0
b[‘j = [0 ad] .

Hence «) = &;/g;; = 0. By symmetry this also holds for «; at the parame-
ter points (—w/2, 0), (—x/2, ), (w/2, 7). At each of the two elbows,
then, we have found that the innermost point of the elbow is a negative
minimum of «;, the outermost is a positive maximum, the uppermost and
lowermost points have x; = 0. By symmetry we conclude that the two parti-

tioning contours at the elbows are the open semicircles u' = #/2,
< ut < 0,andut = —7/2, 7 < u? <0,
5. SUMMARY

To recognize an object from its shape it is useful first to decompose the shape
into parts. Defining parts by their boundaries, rather than by their shapes,
afford the broadest possible scope to the partitioning scheme. Transversality, a
generic, stable property of the intersection of surfaces,  motivates the
boundary-based partitioning scheme considered here. In particular we show
that when one smooths a transversal intersection of surfaces one obtains arbi-
trarily large curvature as the intersection curve is approached (negative for
solid union, positive for solid subtraction) regardless of how one smooths. We
propose, in consequence, that some contours of negative minima of the princi-
pal curvatures and some contours of positive maxima of the principal curva-
tures are used by the human visual system as part boundaries. The rules
which tell when to use positive maxima and when instead to use negative
minima are being developed. Also to be developed is an extension of this
theory to multiple scales of resolution.
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