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0.  ABSTRACT

Colored objects normally maintain stable color appearances across a wide range

of viewing conditions, even though these changing conditions introduce large variations

into the corresponding visual signals.  This is the phenomenon known as “color

constancy”.  Two major types of variation arise from changes in the light illuminating the

objects, and from changes in the backgrounds against which the objects are seen.  Most

studies of color constancy have focused on the challenge posed by variations in

illumination, and many of the best-known models of color constancy were developed

primarily to solve this problem.  Color constancy with changing backgrounds has

received relatively little attention, but is increasingly being recognized as an equally

important problem.  There is an interesting complementarity between these two aspects

of color constancy, in that simple mechanisms that would tend to maintain excellent color

constancy for one of these types of variation, tend to fail quite badly for the other.  In

particular, many color constancy models rely on the space-averaged light from scenes to

estimate illumination, but such models generally misinterpret colored backgrounds as

colored illuminants.

There may not be a general solution that achieves color constancy with both

changing illuminants and changing backgrounds.  It is argued that instead of seeking a

general, computational solution, color constancy should be studied in terms of the actual

properties of the visual system and of the ecological color signals it evolved to see.  An

analysis of measured natural reflectances and illuminants has led to several hypotheses

about the mechanisms involved in biological color constancy:  (1)  The popular “Grey

World” models of color constancy, which interpret changes in the space-averaged light as



changes in illumination, will generally fail, as variations in the chromaticity of space-

averaged light are at least as likely to arise from changing backgrounds as changing

illuminants;  (2)  Linear models based on 3-dimensional representations of illuminants

and surfaces are inadequate to capture important variations in ecological color signals;

(3)  The relative variations due to changing backgrounds and illuminants are highly

asymmetric in the luminance and color-opponent channels, with variations in the

luminance channel corresponding largely to changes of illumination intensity, while

variations in the chromatic channels primarily represent varying reflectances.  (4)

Asymmetries in the known physiological and psychophysical properties of the luminance

and color-opponent channels may represent important adaptive tuning to these measured

asymmetries in the corresponding ecological signals, suggesting that color constancy is

not simply “lightness constancy x 3”.



1.  COLOR VISION

When we open our eyes, our world of stably colored objects seems to appear

instantly and automatically.  The reliability and seeming effortlessness of color

perception belies the difficulties of this achievement.  It remains a major goal for

perceptual science to understand how biological systems process visual signals from the

external world to generate perceived colors.  Our naïve, direct experience of color is that

color is simply a property of colored objects, just as size and shape are, and reflecting this

view one approach to color science has sought to identify color with the physical

properties of objects.  But since Newton’s famous spectral analysis of light, color

research has predominantly focused on the relationship between colors and the spectral

characteristics of light, with objects viewed more as the modifiers of colored light than as

themselves the source of color (see Finger 1994, Mausfeld 1998.)  A competing line has

focused on the important role of contrast in color vision, and the identification of colors

with ratios of light signals from different parts of a visual scene (Zeki 1993, Whittle, this

book?).  A more biologically oriented approach, and the one I favor, is to identify color

with the color sensations of seeing organisms, and to try to understand color in terms of

the relationship between the physical signals captured by eyes and the neural processes

which generate colors.

Studies and discussions of color often suffer from the many ambiguities and

confusion in our language for color. .  J. J. Gibson (cited in Eco 1985) observed that “The

meaning of the term colour is one of the worst muddles in the history of science!”  The

term color, and other color words, have been variously used to describe light, objects,

contrasts, and perceptions.  Under ordinary circumstances, these are all so tightly linked



that the confusion is minimal.  But the scientific study of color typically involves the

deliberate dissection of these variables into competing influences, and so requires more

precise terminology to distinguish all these aspects of color.  Here the term color will be

used to refer to the sensation of color in an organism with color vision, while objects and

lights will be described in terms of their spectral reflectances and spectral power

distributions, respectively.  Color, so defined as a sensation, need not correspond to any

physically measurable property of objects or lights, and in this sense there is no defined

measure of the “veridicality” of color perception.  Another language ambiguity arises

from the frequent exclusion of blacks, whites and greys from the domain of color; here

color will refer to the full range of colors including these achromatic colors.

OBJECT COLORS:  It is generally assumed that the primary purpose of color vision is to

support detection and identification of objects in the environment.  Helmholtz (1866)

noted that “Colors have their greatest significance for us in so far as they are properties of

bodies and can be used as marks of identification of bodies,” and on this point Hering

(1920) agreed, “In vision, we are not concerned with perceiving light rays as such, but

with perceiving the external objects mediated by these radiations; the eye must inform us,

not about the momentary intensity or quality of the light reflected from external objects,

but about these objects themselves.”  This emphasis on colored objects as the business of

color vision makes color constancy paramount, so the perceived colors can be reliably

associated with appropriate colored objects.  But it should be kept in mind that seeing

stably colored objects need not be the only purpose of color vision.   For instance,

perceiving the changing colors of the sky may be important for keeping time or



predicting weather changes, and some organisms appear to use color sensitivity primarily

to detect such environmental changes.

The perception of object colors is mediated by the light reflected from objects to

the eye.  Figure 1 is a very simplified schematic of the basic problem of color vision.  The

banana represents a typival colored object of interest to the visual system.  For the

purposes of color vision, its surface may be approximated by a spectral reflectance

function showing the fraction of incident light at each wavelength reflected from the

surface.  In this case, the banana is ripe, and absorbs most of the short wavelengths of

light while reflecting much of the middle and long wavelength light.  The banana is

illuminated by daylight, which may be represented by a spectral power distribution,

showing its relative power at each wavelength.  The light reflected from the banana,

which provides the proximal signal available for color vision, is determined at each

wavelength by the banana’s spectral reflectance multiplied by the illuminant’s soectral

power distribution.  Note that the proximal light signals for color vision depend equally

on the reflectances of objects, and the incident illumination on those objects.  In human

eyes, these proximal light signals would normally be sensed by three types of cones,

reducing a high-dimensional proximal light signal (that is, one which may vary

independently at each wavelength) to a 3-dimensional neural signal.  The disarmingly

simple yet elusive goal of color science is to understand how this set of 3 cone responses

is processed to reliably generate the perceived color of the banana.
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*********************** Figure 1 about here ************************

COLOR CONTRAST:  When isolated uniform spots of light are viewed against

completely dark backgrounds, their perceived colors (sometimes called “aperture colors”)

can be reliably predicted from the physical composition of light in the patch.  But the

same uniform patch of light may generate a very different color appearance as soon as it

is juxtaposed with, surrounded by, or preceded by, other spots of light.  Hering observed,

“In general, one and the same ray can be seen, according to the circumstances, in all

possible color hues,” and Delacroix (see Evans 1964) boasted that he could paint the skin

of Venus from the dirtiest mud, provided he could surround it with appropriate contrast

colors.  Such color contrast phenomena provide compelling evidence that perceived

colors are not determined locally, by just the light signals from each point in a scene, but

are relativistic, and involve comparisons of light signals across space and time.  Color

contrast effects are often treated as illusions or defects of visual processing.  Kaiser &

Boynton (1996), for example, refer to the aperture color of light as its “objective color”,

while the colors perceived in an identical spot of light in another context are called

“subjective colors”.  On the other hand, many color researchers consider contrast the

essential mechanism for achieving color constancy.  Whether color contrast works to



favor or hinder color constancy depends on how it relates to changes in illumination and

changes in backgrounds.

2.  COLOR CONSTANCY

Color constancy is the tendency for objects to maintain stable color appearances,

despite considerable variations in the physical and neural signals mediating color vision.

Color constancy is just one of many perceptual constancies that allow us to recognize and

maintain stable perceptual representations of the external world, despite changes in the

received signals informing us about the world. Because the fixed, intrinsic properties of

objects are likely to have greater behavioral significance than the fluctuating signals

available for their perception at any moment, the constancies are considered essential

perceptual achievements.  A general definition of perceptual constancy, after Hochberg

1988, is “the constancy of perception of the fixed properties of distal objects, despite

variations in the proximal stimuli from the objects”. For example, a friend’s face may be

uniquely recognized across a wide range of distances, positions, lighting, motions, and

facial expressions, which all generate very different retinal images.  Note that just as this

“face constancy” need not preclude us from simultaneously recognizing faces and

perceiving all these variations, color constancy need not imply that we are blind to the

variations, such as changing backgrounds and illumination.

Applying Hochberg’s above formulation to color constancy generates the following

general definition of object color constancy:  “the constancy of the perceived colors of

objects, despite variations in the proximal light signals.”  This differs importantly from

the most common formulation, which restricts color constancy to ‘the constancy of the



perceived colors of objects despite variations in the illumination’.  The general definition

includes variations in the illumination, as well as many other types of variations that may

pose challenges for color constancy.  These include changes of the backgrounds against

which objects are seen, changes in the atmospheric conditions through which light signals

travel, and other changes such as changes in the viewing geometry, and changes in the

neural sensitivity to the signals.  Each of these challenges will be considered in turn

below, with examples of the failures of color constancy that arise from each.

Variations of Illumination.  The best known challenge to object color constancy comes

from changes in the light illuminating objects.  The difficulties caused by changing

illumination can be appreciated from the schematic of color signals shown in Figure 1.

Because the light reflected from the banana depends on the reflectance multiplied by the

illuminant, any change in the illuminant will cause a proportionate change in the reflected

light.  For example, the light reflected from a banana may become greenish when the

banana is an unripe green under a white illuminant, or when the banana is ripe yellow but

its illuminant is greenish, perhaps from being filtered through green leaves.  The reflected

light reaching the eye from the banana may be identical in these two cases, but

determining the true state of the banana may be important to a hungry animal.  The

changes of illumination to be considered should include not only temporal changes in the

average illumination across an entire scene, which is what most color constancy

references to changes of “the” illuminant imply, but also to the spatial variations of

illumination across different parts of the scene or even across individual objects



In everyday experience, most colored objects do seem to maintain approximate

color constancy across diverse illuminants, suggesting that our visual systems are largely

successful at unscrambling objects’ reflectances from illuminants.  This is generally

considered the great achievement of color constancy; Hering (1920) wrote,“The

approximate constancy of the colors of seen objects, in spite of large quantitative or

qualitative changes of the general illumination of the visual field, is one of the most

noteworthy and most important facts in the field of physiological optics.”  Examples of

failure of color constancy with changing illumination can be enjoyed in the clouds at

sunset, as they run through a dramatic range of colors due entirely to changing

illumination, or on a uniform white movie screen, which fortunately does not maintain

the constant appearance of a large white rectangle as the projector changes its

illumination.

Variations of Background. Besides changing illumination, objects may also be seen

against a variety of different backgrounds.  In ordinary viewing, this rarely seems to

affect their perceived colors.  And because the local light signals from ordinary, opaque

objects depend on the object’s surface and its illuminant as shown in Fig 1, but not on its

background, this phenomenon of color constancy with variations of background may at

first seem a trivial “achievement”. But the well-known effects of color contrast certainly

do affect color appearances.  Helson (1940) pointed out that “Hue, lightness, and

saturation depend not only upon composition and intensity of light from an object but

fully as much upon the reflectance of background and other objects”  Whittle and

Challands (1969) and Gilchrist (1979) noted that the reliance of the visual system on

edges and contrasts makes constancy with changing backgrounds an important challenge



for lightness constancy.   Hamilton (1979) made the provocative suggestion that the

evolution of trichromacy in our primate line may have been driven not by the reflectances

of objects of interest, but by the need to identify them against a variety of different

backgrounds.  Failures of color constancy with changing background include the well-

known simultaneous contrast effects.  One striking example is the moon’s appearance as

bright white against the deep black background of the heavens, even though its surface is

dark grey rock.

Variations of Atmospheric conditions.  In the usual idealizations of color signals, such

as the cartoon in Figure 1, the proximal signals are equated with the light reflected from

objects.  In fact, the atmosphere through which light is transmitted can greatly attenuate

and distort this light.  These filtering effects can arise from vision through fog, haze,

precipitation, smog, water or other transparent media.  In general, these atmospheric

effects increase with viewing distance; the “aerial perspective” of Leonardo, in which

distant objects were painted with more blue and less contrast than near objects, takes

advantage of this common effect of atmospheric haze.  Color constancy with variations in

atmospheric conditions has not been extensively studied, but there is evidence that visual

processes provide partial compensation for the reduced contrasts in scenes viewed

through “veiling illuminants” (Gilchrist & Jacobsen 1983) or underwater (Emmerson and

Ross 1987). Brown & MacLeod (1997) studied the dependence of color appearance on

the variance [roughly, the contrast] of surrounding colors, and suggested that the

observed perceptual compensation for reduced contrast may be involved in color

constancy with variations in atmospheric conditions.  A typical failure of color constancy



with atmospheric conditions occurs when objects become greyer and eventually

disappear as the fog rolls in.

Other Variations.  In addition to the above, there are a variety of other sources of

variation in the color signals from objects that pose difficulties for color constancy.

Changes in viewing geometry, such as may arise from relative motion of the object,

illuminant or viewer, or from gradients of surface orientation within objects, may have

important effects.  Many of these effects are obscured by the canonical one-dimensional

approximations of reflectances and illuminants (such as in Fig 1) widely used in color

constancy models; this oversimplification of complex physical properties led Wandell

(1996) to call this type of canonical model “a ruse”.  For example, changes in the surface

orientation with respect to both the direction from the illuminant, and the direction to the

observer, will generally affect both the intensity and the spectral distribution of the

received light signals.  The changing colors of iridescent butterfly wings as they move

provides one example of such a failure of color constancy with changes in viewing

geometry.  And variations in the spatial distribution of illumination, such as from a

spotlight to diffuse lighting, may also have dramatic effects.  Specular highlights, and

variations of shading with shape, are 2 common manifestation of these effects of viewing

geometry on color signals; note that these both also provide valuable information about

the objects and their illuminants.

Another effect of viewing geometry lies not in the external signals, but in

anisotropies in the eye itself, such as spatial variations in its optics, resolution, and light

and spectral sensitivities.  These may produce large changes in object colors as they are

seen in different parts of the visual field.  For example, colored objects appear



decreasingly saturated and eventually turn grey as their retinal images move toward the

periphery.  Colored patterns such as stripes may also appear to change color with viewing

distance as the color contrast effects seen at close range become assimilation and

eventually a homogeneous mixing at further distances.  Even brightly colored objects will

look grey under dim illumination, as the cone signals become too weak to support color

vision, even though the physical chromatic contrasts are unaffected.  Finally, dynamic

variations in the sensitivity of the visual system, including changing pupil size and neural

adaptations to previous stimuli, also affect perceived colors, with colored afterimages

providing a dramatic example.  Although such neural sources of variation in early color

signals are not typically considered part of the domain of color constancy, these are the

proximal signals for subsequent brain processes, and so they should also be kept in mind.

3.  ILLUMINANTS VERSUS BACKGROUNDS

While all of the above types of variations may pose difficulties for color

constancy, and must be included in any eventual comprehensive model, this chapter

focuses just on the problem of achieving color constancy when both backgrounds and

illuminants may be varying.  These two sources of variation have distinct but largely

complementary effects on color signals, as illustrated in Figure 2.  Consider a reference

spot seen on a particular background, under a particular illuminant, as in the top stimulus.

If only the background reflectance changes, as in the bottom left stimulus, the light

received from the spot itself would be unaffected, but the contrast of the spot relative to

its background may change dramatically - even reversing sign, as in the example shown.

On the other hand, if only the illuminant changes, as in the bottom right, this directly

affects the light reflected from the test spot itself, but usually has only a minor effect on



the contrast of the test spot relative to its background.  Thus, if the color of the test spot

was entirely determined by just the light from the spot itself, as in a purely local model of

color vision, there would be excellent color constancy when the background changed, but

none when the illumination changed (as the spot color would change in proportion to the

illuminant change).  On the other hand, if the color of the test spot depended entirely on

the contrast of the spot relative to its background, as in a number of color constancy

models, there would be good color constancy when the illumination changed, but none

when the background reflectance changed (as now the spot would change color in

proportion to the background change).  Thus while may be easy if only one of these can

change, the challenge for color constancy to succeed in the real world is to

simultaneously handle both types of change.  Brainard & Wandell (1986) remind us that

“Human vision maintains approximate color constancy despite variation in the spectral

reflectance functions of nearby objects and despite variation in the spectral power

distribution of the ambient light.”  Whittle and Challands (1969) suggested that this

requires two types of constancy: “first with respect to changes of background alone such

as occur with relative movement of the object and its background, and second with

respect to changes of illumination of the object and its background together.”

In general, when surround signals change as in Figure 2, the proximal signal is

ambiguous whether this change arose from a change in illumination, a change in

background reflectance, or some combination of the two.  In a typical color constancy

experiment, a subject is shown a fixed reference spot and surround as in the top of Figure

2, and asked to adjust the spot in a test surround, such as the those in the bottom of Figure

2, until the test spot matches the reference spot.  Note that although the two surrounds



shown in the bottom of Figure 2 provide identical proximal signals, constancy would

require the subject to somehow discriminate them and make very different spot settings

in each.  When such experiments are simulated with emissive displays controlled by

computers, not just the proximal signals but in fact the entire stimulus is physically

identical for the two conditions;  whether the change in the surroud is considered a

change of background reflectance or a change of illumination, and in consequence the

degree of color constancy assigned to the subject’s response, depends only on which

occult software variable was changed.  In practice, owing to the commonly restricted

formulation of color constancy in terms of changing illumination, such experiments

usually equate color constancy with constant contrast responses (as if compensating for

changing illumination).  But perhaps such experiments should best be interpreted more

neutrally, in terms of spatial interactions affecting color, rather than as measures of color

constancy.



*********************** Figure 2 about here ************************

4.  MODELS OF COLOR CONSTANCY

With the paradigm shift from color as a property of objects to color as a response

to light, the mystery of color constancy arose.  Because the intensity and spectral

composition of light from objects changes with their illumination, shouldn’t their

perceived colors also change?  So the challenge for color constancy was early formulated

in terms of invariant object colors despite varying illumination.  The local model of color

vision, in which the colors seen at each point correspond just to the composition of light

at the same point, has been the default model of color vision, and probably still

corresponds to the notions of most people with a modicum of science education.  It

became the reference point for color constancy models to improve upon, as it offers zero

Change of
Backgound

Preserves Luminance

Change of
Illumination

Preserves Contra
 (approximately! )



color constancy with changing illumination.  But this same local model can provide

perfect color constancy with changing backgrounds, and so it is useful to include it  in the

mix of color constancy models.  Indeed, based on evidence discussed in section 5, under

natural conditions it may actually be a more successful model of chromatic color

constancy than some of the more celebrated color constancy models, which provide

excellent color constancy with changing illuminants, but at the expense of zero color

constancy with changing backgrounds.

Most models are designed to first estimate the illuminant, in order to then

compensate for it.  Note that estimating the illuminant may be neither necessary nor

sufficient for achieving color constancy.  For example the models of Wallach (1940) and

Cornsweet (1970) can achieve lightness constancy with changing illuminants by using

only signals based on the ratios of light across edges, and need not ever estimate or

represent the absolute intensities of illuminants in order to compensate for them.  But if

estimating the illuminant is the goal, it would seem at first that the most sensible thing to

do would be to simply look up at the sky, and measure the illuminant directly.  But for all

the varying and often complex indirect schemes that have been suggested for estimating

the illuminant, this direct approach does not seem to be part of any serious color

constancy models.  But two approaches are closely related:  Land and McCann’s original

Retinex model (see McCann 1989) used the light reflected from white surfaces to directly

estimate the illuminant, and others have used specular reflectances within the scene the

same way.

Most recent models of color constancy can be divided into two broad (but

partially overlapping) classes.  The first group of models takes advantage of known visual



mechanisms such as contrast and adaptation to estimate or normalize to changing

illuminants.  The second group is based on linear models of the physical properties of

illuminants and reflectances, and constructs algorithms to reconstruct the most likely

surface reflectances from the proximal signals.

The visual models have generally been directed toward achieving color constancy

with respect to variations in illumination, but not changes in background reflectance.

Given one proximal light signal and two unknowns (background and illuminant), the easy

solution is to try to eliminate one of the unknowns.  So generally a strong assumption is

made which severely constrains or eliminates changes of background reflectance, leaving

only illumination changes to account for.  Lightness constancy.  The most common of

these assumptions is some form of the “Grey World” hypothesis: that the space-averaged

reflectance of visual scenes is a neutral middle grey, and thus that the space-averaged

light from each scene is proportional to its illuminant.  Grey World models include those

based on von Kries adaptation to the entire visual scene (e.g. Ives, Helson 1943, Lennie

& Fairchild), and the more recent Retinexes ( Land 1983).  A modification of this model

assumes only that the space-average reflectance from scenes is known, but is not

necessarily neutral grey (Buchsbaum 1980).  When the Grey World assumption holds

true, adaptation to the space-average light would tend to achieve color constancy despite

changes in illumination. The critical assumption is that all deviations from the standard in

the space-averaged light from scenes represent changes of illumination.  If this Grey

World assumption is violated, such as might happen in a forest of predominantly green

surfaces, these models will sutomaticall normalize as if the illuminant were green and the



leaves grey, and consequently generate strong failures of color constancy. Brainard &

Wandell (1986) studied this problem in Land’s Retinex, and concluded that “the

algorithm is too sensitive to changes in the color of nearby objects to serve as an adequate

model of human color constancy.”

The second general class of color constancy models involve constructing linear

models of the physical properties of reflectances and illuminants, and devising

computational solutions to estimate the most likely reflectances from these models.

These models, unlike the visual models, may bear little resemblance to the known

properties of biological visual systems, and their design may be oriented more toward

machine vision than human vision.  (Many are even designed to reconstruct the full

spectral reflectance functions of surfaces; this seems akin to suggesting that the goal of

olfaction is to reconstruct 3-dimensional molecular models of odorants.)

The linear models are based on the hypothesis that low-dimensional linear models

are sufficient to represent both the spectral reflectances of surfaces and the spectral power

distributions of illuminants for color vision (Cohen 1964, *****). Such models are

usually limited to 2 or 3 dimensions, corresponding to the trichromacy of human color

vision.  Then under specified conditions, it may be possible to precisely reconstruct the

reflectances and illuminants of scenes.  These models would not be expected to succeed

if their assumptions about the low dimensionality of natural color signals are violated.

Both types of color constancy models can perform extremely well in artificial

model worlds which incorporate their assumptions.  (For the visual models, these are

most commonly that changes in space-averaged background reflectances are small



compared to change sin space-averaged illumination; for linear models, that natural

reflectances and illuminants have low dimensionality.)  In fact, these model are

commonly “tested” only in conditions that incorporate their own assumptions, and

seldom under natural viewing conditions in the “real world”.  So how well do their

assumptions represent the natural color environments for which color vision evolved?

This becomes an empirical question, which may be addressed by analyzing the actual

properties of natural surfaces and illuminants.

5.  ECOLOGY OF COLOR SIGNALS

An evolutionary view of perception holds that our sensory and cognitive

processes are tuned to the relevant ecological signals and challenges that affect survival

and reproduction (von Uexkull 1909, Vollmer 1984, Delbruck 1986).  From this

perspective, the purpose of color vision would be not to solve some general

computational problem, such as reconstructing all the physical reflectance functions, but

to reliably inform the organism about behaviorally relevant color signals in the

environment.  To understand color vision, then, it may be more valuable to study the

properties of natural color signals than the physics of light.  Measuring and analyzing

ecological color signals serves two purposes here:  One is to test the assumptions and

constraints built into current color constancy models against the real world; and the other

is to seek insights from these color signals into the challenges and possible solutions of

color constancy.



Individual Natural Reflectances

The interactions of a surface with light are surprisingly complex.  To properly

characterize surfaces requires high-dimensional functions that include not just the

dependence on the wavelengths of incident light, but the incident angle, the reflected

angle, and in the case of fluorescent surfaces the various wavelengths of emitted light as

well. In most models of color vision, surface reflectances are approximated by one-

dimensional functions of reflectance versus wavelength.  (Indeed, in lightness models,

they are often just a scalar!)  The measured surface reflectances to follow are such one-

dimensional approximations, and so they presumably underestimate the diversity and

dimensionality of reflectances.

Cohen (1964) analyzed the spectral reflectances of 433 Munsell color chips and

found them to be well characterized by a 3-dimensional basis set.  But the Munsell chips

are artificial surfaces, explicitly designed to be well-behaved for human color vision, and

so may not represent very well the true diversity of natural surfaces.  Another commonly

studied set of natural reflectances is Krinov’s (1947) measurements of terrains, but as

discussed below this should not be considered a set of individual object reflectances.  A

third approach to collecting natural light signals makes simultaneous spectral analyses of

the light from many points in a scene (Webster and Mollon 1997, Ruderman et al. 1998),

but these light signals are not true reflectances, but the products of reflectance and

illumination, and there is no practical way to analyze just the reflectance components

from them.  Lacking an appropriate data set for natural spectral reflectances, I undertook

to compile one using a portable Photo Research PR-650 spectrophotometer.  By

measuring the spectral power distributions of light reflected from various natural



surfaces, and dividing by the light reflected from an artificial white standard held in the

same location and orientation, one-dimensional approximations of surface reflectances

were obtained.

Ideally one hopes to study a set of surface reflectances representative of the

natural surfaces for which our color vision evolved to see.  For practical reasons, I settled

for measuring the surface reflectances of natural objects found within a few miles of the

University of California, San Diego.  Also for practical reasons, I did not randomly

sample points from across natural scenes, but tried to capture the gamut of natural colors

by selecting a wide variety of colored objects.  So brightly colored flowers and  fruits are

vastly over-represented relative to their actual frequency in nature, while large expanses

of sand and leaves were very undersampled relative to their spatial extent.  But note that

relatively uncommon but salient color signals, particularly of colored fruits, may have

been a dominant driving force in color vision (Polyak 1957), while the variations in

background colors of leaves may have been spectral noise that our color vision actually

evolved NOT to see (Nagle and Osorio 1993).

A total of 563 such natural objects were measured relative to the white standard to

obtain a new set of natural object reflectance data (Brown 1994).  These reflectances

were highly diverse and contained far more spectral variation than was found in the

Krinov set.  To represent the chromatic range in this set, the chromaticities of these

objects, under simulated illumination by CIE Source C, are plotted in Fig3.  The same

data are shown on both the standard CIE chromaticity plot (left), and on the more

physiologically relevant MacLeod-Boynton chromaticity plot (right), in which the axes

correspond to the axes of the color-opponent channels.  Interestingly, the chromaticities



almost all lie to one side of a line through the white point, and are biased toward the red,

yellow and green regions, with little representation of blues or turquoises.  This

chromatic bias in individual reflectances suggests that space-averaged backgrounds are

also unlikely to be neutral grey, as the Grey World hypothesis requires.

Averaged Natural Reflectances:  It is also useful to measure the space-averaged

reflectances of various scenes.  The best-known set of such measurements are Krinov’s

(1947) spectral data from Russian terrains.  These terrains have sometimes been

described in color constancy studies as natural objects, which in one sense they are, but

they are certainly not small objects such as leaves and fruits, but rather very large

expanses of terrain, measured while rotating the spectrophotometer or even from an

airplane.  As Krinov noted, “Thus the data obtained refer basically to average natural

backgrounds.”  These spectral measurements correspond to virtual reflectances of the

whole terrain.  (They are not true averages of individual reflectances, because the actual

illuminant may vary from point-to-point across the terrain, and particularly in the

shadows, while this approximation assumes a uniform illuminant.)  The gamut spanned

by the chromaticities of these average natural backgrounds, again assuming Source C

illumination, is shown in Fig 3.  Krinov’s set clearly spans a much smaller gamut of

chromaticities than the individual object reflectances, suggesting that treating Krinov’s

set as represenative of natural object reflectances leads to a great underestimate of the

actual diversity of object reflectances..  On the other hand, treating Krinov’s set as

representative of space-averaged background reflectances, it is hardly the tight cluster

around the white point that the Grey World hypothesis assumes.  On average, these



terrains were a dark desaturated yellow-green, demonstrating that the world is not grey.

(I made similar space-averaged measurements in San Diego, using a calibrated diffuser

over the spectrophotometer, and obtained a gamut of terrains similar to Krinov’s but

relatively lacking in the green regions.)

*********************** Figure 3 about here ************************
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Individual and Averaged Natural Illuminants:

Illuminants, like reflectances, are more complex than the one-dimensional

spectral power distribution functions commonly used to represent them.  The spatial

distribution of all the sources of illumination, and the polarization, are two important

factors omitted from such approximations.  Moreover, the natural illuminants studied are

usually just the daylight from the sky, while the actual light reflected from objects may

come from a variety of other sources including previously reflected or filtered light with

significantly different spectral characteristics.

There have been many studies of the spectral power distributions of natural

illuminants (Henderson 1970).  One of the most influential was that of Judd, MacAdam,

& Wyszecki (1964), who analyzed the data from 3 other sets of measurements of

daylight.  They plotted the chromaticities of each sample, and the gamut spanned by these

chromaticities is replotted in Fig 3.  These daylights form a rather compact range of

chromaticities, somewhat smaller than the range of average natural backgrounds, and

oriented along a blue-yellow axis.  According to the Grey World Hypothesis, the range of

daylight variance should be larger than that of space-averaged backgrounds.  If in fact the

opposite holds, as appears to be the case here, normalizing to the average of the

background will likely backfire, by misinterpreting the chromaticity of the background as

that of the illuminant.

The daylights studied by Judd, MacAdam, & Wyszecki and plotted in Fig 3

included both measurements of the integrated daylight from the entire sky, and

measurements taken in the shade and representing essentially the chromaticity of the sky



minus the sun.  Such restricted daylights do often occur in the shadows of scenes, but

they do not represent space-averaged illuminants a scene would be likely to have.  Two

other sets of correlated color temperature measurements of daylight which compared

these two types of daylight measurements (full sky, and sky-minus-sun) were also

obtained from Henderson (1970) and replotted in Fig 4.  This clearly shows that almost

all of the chromatic variance in mixed daylight sets (such as that in Fig 3) was restricted

to the sky-minus-sun measurements, reflecting the well-known fact that the sky is blue.

But when sunlight is included in measurements of daylight, there is remarkably little

chromatic variance in these daylights.

This implies that most of the chromatic variance in daylights is found in the

spatial variations between sunlit and shady regions of a scene, particularly when the sky

(and thus the shadows) is blue, and not in the temporal variations of space-averaged

illumination across entire scenes.  Since it is the space-averaged illuminant that most

color constancy models seek to estimate or adapt to, it would seem that the problem for

color constancy of varying chromaticities in natural illumination has been greatly

overestimated.  On the other hand, illumination does vary from point-to-point across

scenes, and this will pose a serious challenge for color constancy. Endler has analyzed the

illumination in natural forests on a fine scale, and characterized many additional

contributions, such as reflections and filtering through leaves, in addition to light from

the sky.  So while the Judd, MacAdam & Wyszecki set overestimates the chromatic

variance in space-averaged illuminants, it underestimates the chromatic variance in

spatially varying illumination.



*********************** Figure 4 about here ************************

Analysis of Spectral Variance:

The linear models approach to color constancy relies on the assumption that natural
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functions.  It would be interesting to know just how much of the chromatic variance

(roughly, the variance in the shapes of the reflectance functions) could be accounted for

by such a low-dimensional set.  Applying another metric, of the variance from the mean

accounted for in normalized reflectance functions, yielded starkly different results: now

Cohen’s Munsell set could account for just 43% of the chromatic variance in the Krinov

set, and 65% of the variance in the individual object reflectances.  A new 3-dimensional

basis set derived from natural reflectances was also developed, and this improved these

values of variance accounted for to 76% for the Krinov set, and 87% for the individual

reflectances.  This suggests that at least for chromatic constancy, the low-dimensional

linear models will generate much larger errors than was previously appreciated.  Endler

also analyzed the variances in hi measurements of microilluminants, and found that while

3 basis functions could capture most of the variance in illumination within each scene, a

different set of 3 basis functions was generally required for each different scene.  It has

been suggested that the trichromacy of human color vision might represent an optimal

adaptation to an underlying 3-dimensionality in natural color signals, of surfaces and/or

illumiannts (Cohen 1964, Shepard 1992).  The present analysis suggests that natural

signals contain considerably more than 3 dimensions of variance.  Of course, the fact that

many or most nonmammalian vertebrate animals have evolved 4 or more dimensions of

spectral sensitivity also provides strong evidence that there remain natural color signals

for which we humans are colorblind.

In addition to the chromatic variances shown in Figs 3 and 4, reflectances and

illuminants have important achromatic variances in amplitude.  Fig 5 illustrates the range

of achromatic variance in for illuminants (the Judd, MacAdam & Wyszecki set) and



reflectances (the Brown set), in comparison with the chromatic variances along the r-g

and y-b color opponent axes (corresponding to the axes of the MacLeod Boynton

chromaticity diagram in Fig 3).  Natural illuminants span an enormous range of

intensities, roughly 10 orders of magnitude from starlight to bright sunlight, while the

range of total reflectances of natural objects spans less than 2 orders of magnitude from

deep black to white.  This disparity in the range of intensities is indicated on the

logarithmic scale of luminance at left.  But with this intensity variance removed, the

natural reflectances span a much larger range of the chromatic axes than do the natural

illuminants.  Apparently, the chromatic and achromatic dimensions of color vision face

very different challenges from changing illuminants versus changing backgrounds.

Might the visual system have evolved distinct strategies for achieving achromatic and

chromatic color constancy, in tune with these differences in the ecological color signals?

*********************** Figure 5 about here ************************



6. ASYMMETRIES IN THE OPPONENT CHANNELS

The initial human visual response to color signals occurs in the 3 types of cones,

which each respond to the intensity of illumination weighted by different spectral

sensitivities.  Each type of cone is subject to almost the same 10 billion-fold range of

illuminant intensities, and to the 100-fold range of reflectances, as the luminance signal

of Fig 5, and so the 3 cone channels are practically symmetrical in their relative variance

due to illuminants and backgrounds.  Thus the cones do not seem well suited to take

advantage of the achromatic/chromatic asymmetry in natural color signals.

The retina transforms the initial cone signals into the luminance and color-opponent

signals of retinal ganglion cells which the brain uses for subsequent visual processing,

including color vision.  This transformation places almost all of the intensity variation

into the luminance channel, while the remaining chromatic signals are in the 2 color-
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opponent channels.  This suggests that the opponent transformation places almost all of

the variance in illumination into the luminance channel, and leaves the 2 color-opponent

channels to deal with variations due primarily to reflectances.  While there may be many

other reasons for this retinal transformation into opponent channels (see MacLeod and

von der Twer, this book?), the observation that it largely separates the illuminant

variation from the reflectance variation suggests that one advantage it may offer is to

facilitate color constancy with changing backgrounds and illuminants.

The transformation from cone responses into opponent channels has not generally

been regarded as particularly relevant for color constancy.  According to David Hubel

(1988), “the two ways of handling color – r, g, and b on the one hand and b-w. r-g, and y-

b on the other- are really equivalent.”  But there are a number of intriguing asymmetries

in the properties of the luminance and color-opponent channels which might represent

adaptations to their different distributions of natural color signals.  Some of these

asymmetries are discussed below, with speculations on their possible relevance for color

constancy.

(1) Saturation of chromatic but not achromatic induction at low contrast

One of the striking but often overlooked differences between achromatic

chromatic color induction is that the strength of achromatic induction increases

monotonically with increasing contrast, while the strength of chromatic induction

saturates at surprisingly low chromatic contrasts, and is flat or even deceasing for higher

contrasts.  A nice demonstration of this (from Meyer, described in Helmholtz 1866) is the

tissue paper effect: a grey piece of paper on a saturated color background generally

appears lightly tinged with an induce complementary color, but desaturating the



background by overlaying a piece of white tissue paper may dramatically increase the

induced color.  Kirschmann (1892) reported diminishing returns with increasing

chromatic contrast in his classic studies of color induction.  De Valois et al. (1986) also

reported an asymmetry between achromatic and chromatic induction with achromatic

induction continuing to increase over a much larger range of contrasts than chromatic

induction.  Might this asymmetry in induction relate to a corresponding difference

between luminance and achromatic variance?  Helmholtz suggested that Meyer’s Effect

could be interpreted in terms of the likelihood that the light from the inducing surround

corresponds to the color of the illuminant.  Since the chromatic range of natural

illuminants is quite small, it might make sense to “bet” that only desaturated surrounds

are likely to represent the chromaticity of the illuminant.  On the other hand, for

achromatic induction there would be practically no limit to the range of surround

intensities corresponding to illuminant intensities.  It must be noted however that humans

also achieve color constancy over a large range of artificial illuminants, spanning a much

larger gamut of chromaticities than natural illuminants, and the simplistic assumption that

illuminants rarely vary in chromaticity cannot account for this.

(2) Chromatic but not achromatic sensitivity to diffuse stimulation.

It is commonly noted that the early visual system responds primarily to local contrasts,

and thus loses sensitivity to uniform changes.  Whittle and Challands wrote that “loosely

speaking, the visual system differentiates the input, and to achieve certain perceptual

goals we have to integrate it.  Because of this contrast dependence, there is remarkably

little effect of changing the overall intensity of ilumination (Walraven et al. 1990), and



has been taken as the key to lightness oconstancy.  But there is considerabl;e evidence

that the color-opponent channels are not so dependent on spatial contrast.  In De Valois et

al (1958) study of primate LGN cells, strong responses were found to diffuse

monochromatic light.  The center-surround structure of retinal ganglion cells and LGN

cells also supports this distinction.  Typical Type II cells, with a cone-selective center and

a complementay or non-selective antagonistic surround, provide the same cells sensitivity

to spatial variations in luminance contrast while maintaining sensitivity to spectral

variations in uniform illumination (Hubel 1993).  A 2-DG study by Tootell et al. 1988

also found much stronger cortical responses to spatially diffuse chromatic variation than

to spatially diffuse luminance variations.  And a number of psychophysical studies have

found a corresponding effect in which contrast sensitivity requires much greater spatial

contrast for luminance than for chromaticity (Mullen 1985).  So perhaps the visual

system does not “differentiate” the chromatic signals as much as it does the luminance

signals.  Since the space-averaged chromaticity of light from a scene is more likely to

represent surface reflectances than illuminants, allowing the DC chromatic signals to pass

might be an important contributor to chromatic color constancy, possibly accounting for

why the green forest continues to look green and not a normalized grey.  At the same

time, the empirical observations that chromatic ganzfelds lose their perceived color

(Cohen 1964), that retinally stabilized stimuli fill in with the surrounding color (Iarbus

1967), and that dichoptic contrast matches are determined almost entirely by contrast

(Whittle, this volume) indicate that under these circumstances local chromatic signals

may not reach the brain.



(3)  Dependence of chromatic induction on luminance contrast.

Another interesting asymmetry among the opponent channels lies in the interaction

between chromatic induction and achromatic contrast.  Kirschmann (1892) reported

maximal color induction occurred when the inducing surround and the induced test spot

had equal brightness.  Others have found that induction is strongest for surrounds equal

or greater in luminance, and falls off when the surround is dimmer than the test spot

(Hurvich and Jameson 1959, Kinney 1962).  What implications might this have for color

constancy?  Recall that most of the chromatic variance in daylights was associated with

the spatial changes from sun to shadow under blue skies (Fig 5).  If the strongest

chromatic deviations in natural illuminants are associated with deep shadows, it may be

valuable to link chromatic induction to luminance relations.  The experiment shown in

Fig 6 provides a hint for how this interaction may be used to promote color constancy

with spatially varying illumination across a scene.  The surround consisted of sectors

varying in luminance and chromaticity.  Induction was measured into test spots of

variable luminance.  The result was that induction into the test spot was strongest from

sectors having the same luminance as the test spot, consistent with Kirschman’s Law.  In

other words, the dark test spots were most affected by the dark sectors of the surround,

and the light test spots by the light sectors of the surround.  This mechanism, if it operates

similarly when viewing natural scenes, would tend to segregate chromatic interactions

within shadows from those within sunlit areas.  These results also provide another strong

challenge to models based on the average light from surrounds:  The surround with large

dark green sectors and small bright purple sectors had the identical space-averaged light

as the complementary surround with large dark purple sectors and small bright green



sectors, yet they had opposite color induction effects on the test spots.  Both surrounds

also had essentially the same luminance variances and chromatic variances, but differed

in the covariances of luminance and chromaticity.

*********************** Figure 6 about here ************************
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LGN and thence to the primary visual cortex for further processing.  Both the LGN and

the primary cortex maintain opponent representations, and so it seems a reasonable

assumption that postretinal color processing occurs largely with opponent

representations.  Therefore, evidence that the adaptations and spatial interactions

involved in color constancy are postretinal would support that the likelihood that they

occur on an opponent representation, and not in a cone space.

A number of lines of evidence does suggest a cortical site for much of the processing

involved in color constancy.  There is the anatomical evidence that receptive fields in

precortical visual areas are generally quite small, and not likely to support the long-range

interactions involved in color constancy.  Zeki’s (1983) study of color responses to

Mondrian displays under changing illumination found that cells even in V1 were

responding based primarily on the wavelengths and not the color appearances, while cells

inV4, with much larger receptive fields and long-range connections, had responses

resembling color constancy.  Land et al (1983) studied a patient with a severed corpus

callosum, and found that color induction effects were restricted to half visual fields,

suggesting that the spatial interactions involved must be cortical.  De Valois et al. (1986)

suggested that the temporal properties of color induction also indicate a cortical locus.

Alan Gilchrist (1977) demonstrated the effects of depth, which presumably involve

cortical processing, on color induction.  Olson and Boynton (1984) found that color

induction in stimuli presented to one eye can be masked by stimuli presented to the other

eye, and wrote, “It is concluded that the basis of the chromatic induction is largely or

entirely nonretinal.”  And two studies (Thompson & Latchford 1986, and Webster Day,

& Willenberg 1988) used the McCollough Effect of orientation-contingent color



adaptation to demonstrate that the McCollough Effect adapts to the local physical

composition of light, not its perceived color; this implied that the perceived color was

generated after the presumably cortical locus of the orientation-dependent effect.  The

above experiments all point to the likelihood that much of the processing involved in

color constancy has a cortical locus, and so are likely to involve opponent

representations.

This hypothesis suggests that the visual system evolved to take advantage of the

asymmetries in the achromatic and chromatic dimensions of color signals for changing

backgrounds and illuminants by confining almost all of the achromatic variance into one

channel, leaving primarily reflectance variance in the other two.  The asymmetries and

other idiosyncracies of color induction in these channels may be tuned to take advantage

of this difference, and make the problem of color constancy easier.  But by no stretch

does this solve color constancy, as each dimension still has to deal with varying

illuminants and backgrounds, just with different distributions of these.  The luminance

channel must deal with essentially the problem of “lightness constancy”, over a range of

10 orders of magnitude of illumination and 2 orders of magnitude of reflectance.  And

while the color-opponent channels have relatively small chromatic variance in natural

illumination to contend with, this can still be significant.   For example, Maksimov

(check ref) pointed out that the leaf of a dandelion in direct sunlight has approximately

the same physical chromaticity as a dandelion flower in deep shade, yet the flowers look

yellow and the l;eaves green in both sun and shade.



7.  SUMMARY

The seeming immediacy and reliability of color vision belies the inherent

ambiguity of color signals, and the complexity of the neural processing involved in color

perception.   The effort to understand human color vision has been one of the major

enterprises of perceptual study, engaging the efforts of generations of top researchers

including many of history’s most celebrated scientists, such as Leonardo, Newton,

Young, Helmholtz, Maxwell, Mach, Schrodinger, and Crick.  Despite this enormous

effort, we still lack a model of color vision which can successfully predict the perceived

colors even in simple 2-dimensional “Mondrians”.

Much of the difficulty arises from two essential but complementary aspects of

color vision: its dependence on the spectral power distribution of light from each point in

a scene, reflected in the cone quantum catches, and its dependence on comparisons

between the light signals from across the scene, reflected in postreceptoral contrast

signals.  The local signals involve equally the surface reflectance properties of objects

and the spectral power distribution of illuminants, and so make it difficult to maintain

object color constancy across varying illuminants.  Contrast representations are largely

invariant with changing illuminants, but introduce problematic sensitivity to changing

background reflectances.

Two classes of color constancy models make strong assumptions about the

properties of natural color signals in order, which were tested in an analysis of natural

spectral reflectances and illuminants.  The frequent assumption made by visual models of

color constancy that the space-averaged light from scenes may be used to estimate the

illuminant was shown to be inconsistent with the natural data for chromatic variance, but



a more plausible hypothesis for intensity variations.  The assumption made by linear

models of color constancy that natural color signals are well represented by 2- or 3-

dimensional basis sets was challenged by the inability of such models to represent the

chromatic variance in natural reflectances.

A further analysis of the natural reflectances and illuminants found an interesting

asymmetry between the luminance and chromatic dimensions of color vision.  The

luminance channel must handle an enormous range of illuminant intensities, and a much

smaller (though still large) range of reflectances, corresponding to the problem of

lightness constancy.  But the chromatic variance in the color-opponent channels is

considerably larger for natural reflectances than natural illuminants.  Evidence from

neuroscience and psychophysics suggests that much of the processing for color constancy

occurs at or beyond this opponent processing stage.  This raises the possibility that the

visual system has adopted distinct strategies for achieving color constancy in the

luminance and color-opponent channels, rather than approaching color constancy as

simply “lightness constancy X 3”.  Asymmetries in the properties of luminance and

color-opponent channels, including the saturation of chromatic but not achromatic

induction at low contrast, the sensitivity of chromatic but not achromatic mechanisms to

diffuse stimulation, and the dependence of chromatic induction on achromatic contrast,

are all possible manifestations of such adaptive responses to natural color signals.



FIGURE LEGENDS

Figure 1.  A simplified view of color vision.

A colored object, such as the banana shown in this cartoon, may be roughly

characterized by its surface reflectance function, which plots the proportion of incident

light reflected at each wavelength.  The light illuminating an object is represented by its

spectral power distribution, which shows its intensity at each wavelength.  The light

reflected from the object at each wavelength is given by the product of these two

measures.  In the human visual system, the proximal light signal is sampled by 3 types of

cones, each of which may be characterized by its spectral sensitivity to light of different

wavelengths.  The resulting triplet of cone responses, L, M and S, provides the initial

neural signal available for color vision.  Although these cone responses depend as much

on the illuminants as on the reflecting surfaces, to achieve color constancy the visual

system must generate perceived colors which depend only on the object.

Figure 2.  Change of Background versus Change of Illumination.

This illustrates the complementary effects on visual signals caused by two types of

variation which pose challenges for color constancy.  The reference stimulus, shown

above, is a middle grey spot (reflecting, say, 50% of the incident light) on a lighter

grey background.  If the same spot is seen under the same illuminant but against a

darker background, it will still reflect 50% of the incident light, and thus have the

same luminance as before, but its contrast relative to the background changes.  On the

other hand, if the spot is seen under a dimmer illuminant but against the original



background, it will now have a proportionally lower luminance (reflecting 50% of a

dimmer light), but its contrast relative to the background will not change.  To achieve

color constancy for both types of change, the spot must produce the same perceived

color in all three conditions shown.

Figure 3.  Chromatic distributions of natural color signals.

The plots show the range of chromaticities for 3 sets of natural color signals, plotted in

both the standard CIE chromaticity diagram (left), and the physiologically-based

MacLeod-Boynton chromaticity diagram (right).  To plot the chromaticities

corresponding to reflectance data, diffuse illumination by CIE Source C (represented by

the white cross) was assumed.

Natural Objects (individual black circles):  These represent the chromaticities of 563

individual natural reflectances.  Data is from Brown’s (1994) measurements of the

spectral reflectances of 563 natural objects in San Diego.

Natural Terrains (lined region):  This outlines the gamut of chromaticities spanned by

337 large, space-averaged natural backgrounds.  Data is from the Russian data reported

by Krinov, 1947, based on wide-field measurements of spectral reflectances of natural

terrains.  The data in electronic form were kindly provided by Larry Maloney, and

corrected against Krinov’s original published data.

Daylights (black region):  This outlines the gamut of chromaticities spanned by daylight

illumination, from part or all of the sky. These chromaticities were taken from the data

published in Judd, MacAdam & Wysezcki 1964.  (Some of the original published points



could not be resolved, but these were generally near the center of the distribution, so their

omission does not affect the gamut shown here.)

Figure 4.  Variances of Natural Color Signals in the Opponent Channels.

This illustrates the relative ranges of variation in illuminants and reflectances, for each

dimension of MacLeod-Boynton color space (corresponding to the physiological

opponent-color channels).  For luminance, the variation of intensity in illuminants is

many orders of magnitude greater than for reflectances, showing a dramatic difference

even on the logarithmic scale of luminance.  But for purely chromatic variations, after

luminance variation is removed, this relation is reversed, with natural reflectances

showing greater variation than natural illuminants in both the blue-yellow (b) and red-

green (r) dimensions.  Illuminants data from Judd et al. 1964, and reflectances data from

Brown, as in Fig. 3

Figure 5.  Distribution of Daylights.

This plot shows that almost all of the chromatic variation in measured daylight

illuminants was obtained from measurements taken in shadow (grey bar), and

corresponds to the varying colors of patches of sky.  When the sun is included in

integrated measurements of total daylight illumination (black bars), there is very little

chromatic variation among measurements.  Data from the daylight measurements of

Henderson & Hodgkiss (1964) and Winch et al. (1966) were pooled and plotted on a

mired scale.  (Mireds are an inverse measure of correlated color temperature, which



provides a more perceptually uniform scale of colors than color temperature.  Data were

obtained from Henderson 1975.)

Figure 6.  Dependence of Color Induction on Luminance of the Induced Spot.

This summarizes data from an experiment by Brown (1995).  When a background varied

in both luminance and chromaticity, the color induced into test spots depended strongly

on the luminance of the test spots, and was primarily determined by regions of the

surround having luminances equal to or greater than the test spots.

In this study, a small test spot of variable luminance was embedded in surrounds varying

in both luminance and chromaticity.  The 2 complementary surrounds used had identical

space-averaged luminances and neutral chromaticity, but one consisted of 3 large, dark

green sectors and 3 small, bright purple sectors, while the other consisted of 3 large, dark

purple sectors and 3 small, bright green sectors.  (The sizes of the sectors were inversely

related to their luminances to maintain the neutral space-average.  Purple and green were

chosen to maximize the saturation available on monitor.)  Subjects cancelled the induced

color by adjusting the chromaticity of the test spot along a purple-green axis until it

appeared neutral grey.  Results from 18 subjects (9 for each surround) were pooled, and

data .  Net color induction is indicated , combined from the two complementary disk

constructions, show that when the test spot had the same luminance as the dark sectors,

its color appeared complementary to the dark sectors.  Test spots with luminances equal

to either the bright test spot or the mean luminance of the disk appeared complementary

to the bright sectors.
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