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COf:lozzs are simple primitives for describing plane curves. They thus are primarily image-based
descriptors. Yet they have the power to capture important information about the 3D woled
such as maki_ng part boundaries explicit. The codon description is highly redundant (useful [or‘
error«corrfacnon), This redundancy can be viewed as a constraint on the number of possible
codon strings. For smooth closed strings that represent the bounding contour (silhoue!-l.e) of
many smooth 3D objects, the constraints are so strong that sequences containing 6 elements
yield only 33 generic shapes as compared with a possibie number of 15,625 combinalicnsi.
€ 1585 Academic Press, Inc

1. INTRODUCTION

An ‘importam task for object recognition is the description of the shape of a
bounding contour, such as a silhouette that cutlines an object. Although recognition
Qeed require only partial segments of such contours, the internal canonical descrip-
tion, against which the image contour is compared, is very likely a closed ring. Qur
concept of most “objects” should lead us to expect such a closed contour. The
deg:npiion of closed, 2D contours thus is an important ingredient of a syste;nAfor
object recognition. First we present such a scheme, described in more detail

elsewhere [3, 4] and then show how the scheme leads to a hierarchical taxonomy of
closed, 2D shapes.

2. THE REPRESENTATION

When we vliew shapes such as those in Fig. 1, we immediately see the ellipse and
square as being “simpler” (in some psychological sense) than the lemniscate or
epicycloid. Why? If we were to “measure” the simphlcity of a shape contour by the
d.egree of its polynomial equation, then the cardioid in the middle would have the
simplest form, and the square the most complex, being the highest order polynomial
Clearly a polynomial represeritation seems quite inappropriate for our visual systern‘
because it does not make explicit the meaningful properties of the shapes. .

If we asked a child why the ellipse is “simpler” than the lemniscate, he would
prqbai?ly reply “because the latter has two parts, whereas the ellipse has only one.”
This simple observation is the basis for our representation for shapes: namely a
sha}?e should be ‘described in terms of its natural “parts.” Fortunately, the rule for
finding “parts” is conceptually simple, for when 3D entities are joined to create
complex objects, then concavities almost always are created at the join, as indicated
by the small arrows in Fig. 2. ,

This regularity of natural objects follows a principle of transversality treated more
fully elsewhere [5]. In the silhouette, these concavities appear as cusps, or as places

*D. D. Hoffman is now at the University of California, Irvine.
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rge

Fis. 1. An cllipse, square, cardioid, lemaiscate, and epicycloid. The cardicid has the simplest (lowest
order} equation; the square is the highest order polynomial equation.

FiG. 2. loining parts generally provides concavities in the resulting sithouetie.

of maximum negative curvature. Natural parts thus lie between concave cusps. In
Fig. 1, the rule specifies that the ellipse and the square have no parts, whereas the
lemniscate has two and the epicycloid has three. (The cardioid can not be broken
simply into two parts, hence must be “simpler” than the two figures on its right.)
Cur first rule for representing (2D} shapes is thus as follows:

Segment a curve at concave cusps (or minima of negative curvature) in order
to break the shape into its * parts.”

3. PART DESCRIPTORS: CODONS

Having now broken a curve into “parts” our next task is to describe the part.
Again, we wish that our description capture some natural property of shape?s, rather
than an arbitrary mathematical formula, such as a polynomial equation. _qu
example, at some stage in our representation, we would like to know _whether it is
round or polygonal. But even before such descriptors, is there a still simpler, more
abstract, representation? Perhaps first we should represent the f‘s{ci_es“ of the part, or
its “top.” As a siep in this direction, we propose a very primitive representation
based upon the singular peints of curvature, namely the maxima, zmrurpa, an‘d
zeroes of curvature along the curve. An important property of these descriptors 1s
that their ordinal relations remain invariant under transiations, rotations, and
dilations. Thus, regardless of the 3D orientation and size of a part to its whole, a

FI1G. 3. Minima of curvature are indicated in slashes. Arrows indicate direction of wraversal of curve.

“Figure™ is taken to be 10 the left of the dircction of traversal
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relation between these descriptors is preserved in the 2D image. This property
follows because the inflection of a 3D curve is preserved under projection, guarantee-
ing that at least the ordinal relations between minima, maxima, and zeroes of
curvature will be preserved under projection. Our scheme thus provides a very
primitive representation for a part, simply in terms of the ordinal relations of the
extrema of curvature. This approach yields six different basic primitive shapes, or
codons (see Fig. 4).

In order to define the codon types, it is first necessary to define maxima and
minima of curvature. These definitions require that a convention be adopted for the
sign of curvature. Consider Fig. 3. There are two directions along which the profile
of the face may be traversed. In the upward direction (left) the minima of curvature
(slashes) correspond to the points where the curve rotates at the greatest rate in the
clockwise direction. If the same curve is traversed in the opposite direction, however,
then the maxima and minima reverse. Qur convention thus places “ figure” to the left
of the direction of traversal. When the figure is on the left, then the profile indeed
looks like a face becanse the minima of curvature divide the curve into the natural
parts—namely forehead, nose, mouth, and chin. (Note that the opposite view vields
the “vase” of Rubin’s famous figure~ground illusion observed as early as 1819 by
Turton [14]) Thus, knowing which side is the figure determines the choice of
orientation on a curve, or, conversely, choosing an orientation determines which side
is the figure by convention. Minima are then typically associated with the concavities
of the figure, whereas maxima are convexities.

To define our basic primitive codons, we first note that all curve segments Iying
between minima of curvature must have zero, one, or two points of zerc curvature. If
there are no zeroes (i.e., inflections), then the segment is designated as a type 0
codon (see Fig. 4). Those with two zeroes are called type 2 codens. If a segment has
exactly one zero, then the zero may be encountered either before (type 17) or after
{type 1) reaching the maximum point of the segment during traversal in the chosen
orientation.

The type O codons may be further subdivided into 0%, 0 and {c0) to yield six
basic codon types. Consider Fig. 3 once again. Note that as the ellipse is traversed in
different directions, the minima of curvature change as expected. In the lower ellipse,
which corresponds to a “hole” with figure outside, the minima have negative
curvature, because the direction of rotation is clockwise. (Thus, the slashes suggest a
part boundary by our rule, which will be repaired later when we discuss “holes.”) In
the upper ellipse, however, the minima have positive curvature (the rotation is
always counterclockwise). Thus, the type 0 codon can be subdivided into 0" and 0 -
with the superscript indicating the sign of curvature. Note that the 0~ codon can
constitute a part boundary, whereas the type 0% codon must appear only as a shape

ARG

Fig. 4. The primitive codon types. Zeroes of curvature are indicated by dots, minima by slashes. The
straight line (o) is a degenerate case included for completeness, although it is not treated in the text.
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descriptor. Finally, the type oo codon simply is the degenerate case of a straight line
that has an oo of zeroes.

4. CONSTRAINTS ON SMOOTH CODON STRINGS

Not all sequences of codons are possible if the curve is smooth. Referring to Fig. 4
once again, note that 2 17 can not follow a 17 codon unless a cusp is allowed.
Similarly, a 1% can not follow a 1™, because if such a join is attempted either a cusp
will be created or, if the curve is indeed smooth, the 1¥ codon would have to be
transformed into a type 2. To specify all legal smooth codon strings, we will first
enumerate all pairs, and then show what pair substitutions are legal for one element
in a sequence of pairs, thereby creating all possible triples.

Define the “1ail” of a codon as the region about the first minima encountered
when traversing the curve. The “head” of the codon is the subsequent minima. A
smooth string of two codons is then allowable only if the head of the first codon has
the same sign of curvature as the tail of the second codon in the string. Table 1a
shows the sign of curvatare for each codon type {exciuding the degenerate type o).
Table 1b is constructed simply by multiplying the sign of curvature of the “head” of
the first codon (the left-most column) by the “tail” of the second (given in the
second row). If the signs agree, then a (+) is entered, indicating a legal smooth join,
otherwise the () product is an illegal smooth join. Thus, for these five codons, there
are 13 legal joins out of a possible 25 combinations. .

To enumerate the possible codon triples for a smooth contour, we now require
that the curvature of both the head and tail of a middle codon match the tail of its
successor or the head of its predecessor in the string. Table 2 provides the signs of
the heads (and tails) of the legal pairs (left column) which must match the tail (or
head) of the third codon in the string. For each column under the third codon, the
legal triplets are indicated by a (+). If two pluses appear in brackets, then the third
codon can either precede or follow the pair. Consider first the case where the third
codon follows the pair (these are given in the columns headed “tail”), There are 34

legal smooth triplets of this type. Symmetry arguments vield a similar number of
triplets when the third codon precedes the pairs (these are given in the columns
headed *“head”). Thus, there are only 34 legal codon triplets out of a possible
5% = 125,

TABLE 1
Codor Sigratures (a) and Lega! Smooth Codon Pairs (&)

a b LEGAL CODON PAIRS

CODON SIGNATURES 2nd CODON (tail)

CODON TAIL HEAD 15t CODON fhead) 0-(=} O%(+) 1" (-} 1*(+} 2(-}
0~ - - 07~} + - + +
o* + + 0F(+} - + - -
i - + S - -+ - -
1* + - i~ + - + - +
2 - - 2 {-} + - + - +
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TABLE 2
Legal Smooth Codon Triplets

THIRD CODON
LEGAL CODON PAIRS 0= ot 1~ i 2
- = + o+ -+ + - - -
TAIL HEAD TAIL HEAD  TAIL HEAD  TAIL HEAD  TAIL HEAD TAIL HEAD
00~ R .
WD [+ + + f+
g“ ; -+ + + f+ +
2 - - =+ o+ + + i+ =+
1] + 4+ [+ + -+
e
0-1+ + - + + + o+ +
1—0* - % + + + 4 +
1 - - [+ =+ + + f+ 4
1+0w + - + + f+ +
1 + o+ [+ 4 + +
1+2 + - + + %] +
2 0: - - I+ o+ + + [+
z ; -+ * + I+ 4] +'
- - f+  +] + + 0
NUMBER OF LEGAL 5 2 3 <!
PAIR SUBSTITUTIONS ’
NUMBER OF 8 4 6 8
PAIR SUBSTITUTIONS ’

Nrote. The third codon can either follow or precede the pair. A { + Jindicates a proper join. Because
ol symmetry, there are an equal number of total pluses in the head and tail columns.

Of the 34 possible triplets, there are 18 cases where the same codon can be
attac_:hed to either end of the codon pair, indicated by [+ + ]. This subset is
particularly useful for establishing legal smooth codon strings of order higher than
three. For example, consider a codon sequence C,_ . C,C.,,. We now desire to
.expand ;hehsequt_ance. This can be done simply by replaci;lg jC} by C.C,, where C,C,
1§ one of the pairs that will accept ¢ i stri :

b one o fouoging e il ac pt C, at either end. To extend the string, we thus

Any individual codon in a smooth string may b ir yieldi
1y be replaced by any pair vieldine g
[+ + 1 for the (third) codon in Table 2. e ¢

Thus, an 0~ codon may be repl i i
placed by any one of the foli :
0-07,072,1"1,20-,22, etc. ’ ¢ oTomine pais
To calcuia-lte the nuxr}ber of possible quadruplets, we can determine from Table 2
how many times any given codon type appears in the middle portion of the string,.
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TABLE 3

A Comparison Showing How the Number of Possible Strings of Codor Elements is Reduced
as First Smoothness {Open Strings) and Then Closure Are Imposed as Constraints on a Curve

NUMBER OF CODONS NUMBER OF:
IN STRING COMBINATIONS  OPEN STRINGS  CLOSED STRINGS
1 5 5 (2)
2 25 13 3
3 125 34 5
4 625 89 !
5 3,125 233 17
[ 15,625 10 33
7 78,125 1,597 85
8 390,825 4,181 128
9 1,853,125 10,946 287
10 9,765,625 28,657 513

Then we can multiply this number of occurrences by the number of possible pair
substitutions. For example, the type 0 7 codon appears as the middle codon in rows
1, 8, and 11. In each row, the only legal third codons whose tail curvature matches
that of the head of 0 "are 0, 17 and 2 (see Table 1). Thus the O " codon appears as
the middie codon in 9 of ali the possible triplets. Similarly we find the foliowing
number of occurrences of the other codon types in the middle position of the string:

07"=0;0"=4;1"=6;1"=6;2=9.35 = 34

Thus the total number of possible smooth codon quadruples will simply be the
sum of each of these numbers times the number of possible pair substitutions for
each type {next to last row of Table 2), less any duplicate strings. The total
substitutions are 134, but the 0~ and 2’s duplicate each other, reducing the total
quadruples by 45. The answer is the difference of 89 out of a possible 625. Table 3
shows how the number of possible open strings increases with the number of codon
elements. In general there will be less than 5 - 7%V =172 possible smooth strings of N
codons compared with 5% possible (see Appendix II).

5. CLOSED CODONS

Because most objects have closed bounding contours, matching to closed codon
sequences is of greater interest for shape recognition than representing open strings.
Clearly this constraint on the codon sequence will further reduce the number of
allowable smooth shapes. Indeed, this constraint is so powerful that all closed shapes
containing up to four codons will be enumerated shortly.

First, let us examine the generating rules. Closed codon pairs can be noted stmply
by inspecting Table 2. Here, the signs of the heads and tails of the pairs in the first
column must agree. The only cases are 0707, 070%, 072, 1717, and 22. These
shapes are depicted in Fig. 5, with figure indicated by cross-haiching. Note that there
are only three basic outlines, if figure and ground are ignored. Later, we will address
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Fre. 5. Legal smooth, closed codon pairs. Figure is indicated by cross hatching. Part boundaries are
noted by the slashes.

the groblem of indexing identical codon descriptors that have different figure-ground
relations (e.g., the 22 pair) and also the observation that the part boundaries
(slashes) for the “holes” do not seem appropriate.

_From these five legal codon pairs, we can now easily generate the legal closed
triples. Simply consider the pair as a string of three elements and then replace each
“middle” element by a pair according 10 Table 2. Thus, the closed pair 1 '17 may be
rewritten as 171717 (or 1*171%) and the 1* (or 17) can then be replaced by 0 17,
1707, 217 (or 071%,1707,1%2). Such substitutions vield a total of 10 different
codon triplets, or only $ different outlines out of a-possible 125 if figure and ground -
are ignored. These shapes are shown in Fig. 6 with their codon labels. Figure 7
shows the result of applying the same rewrite rules to the triples to enumerate all
possible codon quadruples. Here there are only 9 outlines out of a total possible
combination of 5% or 625 sequences. Appendix 11I shows that the upper bound on
the number of closed smooth codons is 2! + 1, where N is the number of codons
in the ring. The compression is thus about 2¥ ! /5% or over 102 for a 10-element
ring. The reduction comes in part from a propagation of constraints through the
closed string, very analogous to the constraint propagation used by Waltz [15] to
solve for “blocks-world” shapes using constraints on legal trihedral joins,

6. MIRROR REVERSAL, HOLES, AND FIGURE-GROUND

In Fig. 5, three pairs of codon shapes are possible for a two element ring. For each
pair, the outline is the same, but the figure—ground relation is reversed. The situation
%s similar to a lock-key arrangement, where the shapes in the upper row fit snugly
into their “hole” complements in the lower row.

Two problems arise in representing these mirror shapes: First, a lock~key pair
may have the same codon description, such as “22” on the right. This is easily
rectified by adding an extra index. The second problem is perceptual, For each of

OUED

000 onrooont 12,1 2.2,2,

F16. 6. Legal smooth, closed codon triptets.
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F1G 7. Legal smooth, ciosed codon guadruples.

the shapes in the lower row, although “figure” is outside, we strongly prefer the
“ ” figure. Why? ‘ . _
hgi?neaisn:;higinto whyy“ holes” are prefgrred as fipure can be obta;ne(rir }l?g’ ;;:;i;%
that all the shapes in the lower row consist of two parts by 0;1:’ ru ;. { he slashes
indicate the points of maximum negative .curvaiur_e:) Or} ht e ot ter Certai},]ya
“ellipse” and * peanut” in the upper row age s_:ngleé;l g:t:;a:i \Ag; eo:titia; Zr Cepainly 8
i ity is “simpler” in some very basic s ‘ . \
::;%ciees :2:3 :s descn%e the “hole” as the complementary figure if that %O?lpjz:lfﬁé
has fewer parts. Note that for the 22 durgbbell shapc?s, the preferen(;:e i \?‘rbum e
hole and its “key” is less strong. In fact, it is not too dlt.ﬁcult to regard eac g é)w
in the hole as a part of the hole, whereas it is almost 1mpossib1e1 to”\ina\;i )
elliptical hole as having two parts. Our rule for representing holes™ 1s thus:

Represent a “hole™ by its figure-ground complement if that complement has
fewer “parts.”

Note that there are many linguistic examples where this rule h:lsl b;,en e?.p?g;c:.o?‘fo;
“ o » “oval window,” etc., are escriptl

example, “key-hole,” “screw-hole,” “ova , :

hole iin terms of the fgure-ground complemf:nt. (‘Appenc_hx I shows ho?v a

figure-ground complement can be computed easily using a binary representation.)

7. INDEX DEVELOPMENT

The shapes of closed codon rings shown in Figg 5-7 have all begn drawdn ;o
preserve symumetry. Furthermore the axes of elongation tend to be stra{%gz, an :hee
> i “¢hin” “thick” for most peoples’ taste. What are
“nargs” are neither too “thin” nor oo ** thic] : s’ 1
nﬁes that underly the canonical representation of these pnmutive shapes? What
9
ularities of the world are captured here? o .
regCieariy any time a rule is applied to put 2 codon ring in c_anomcgi form, th.en wc;
have an implicit shape index which is being defauitegi. An interesting enfterfasiox% g
the abstract codon description is thus 1o devei‘op indices that are meaningful. el
fact that the codon hierarchy is small provides an opportunity for a rafn?nat
development of such indices—at least for a start. (A more complete and useful se
i i ~world property.)
hould relate each index to a desired real wor o
8 Tl:} give the flavor of this approach, consider the first three ;izlnmjéuve ;gci??(shaéaze)s
in Fi ipse” (= “ * (= 171%), and the “dumbbell” (= 21).
Fig. 5: the “ellipse” (= 00), the “peanut { 2 .
E‘;hal’g useful properties can now be assigned to an ellipse outlﬁae? We ??“::g;’igi
i i - What about the orientati
entioned the need to specify figure ground_. : :
Qiipse or its eccentricity, or even perhaps its size? These four parameters will
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completely specify the elliptical shape relative to a reference frame. However, if we
encounter an ovoidal shape having the same 00 codon description, then still another

index may be required. For our single, most primitive closed shape we thus have
already the following possible indices:

FIGURE-GROUND 0,
ORIENTATION (OF AXIS)

ECCENTRICITY (ASPECT RATIO)
SIZE
SKEW

v« Mo B —

As we proceed to the next more complex shape, the “peanut,” the axis is now

curved, and the left and right portions need not have identical size Two more
parameters thus must be added:

RELATION LEFT AXIS TO RIGHT AXIS
RELATIVE SIZE, LEFT TO RIGHT “PART"

24
T

These indices suffice for the dumbbell.

In a similar vein we may proceed up the closed codon hierarchy, adding additional
indices. This procedure automatically provides an ordinal order to the indices
(whether this order is perceptually appropriate is a separate issuel). Note that
left—right “handedness” does not appear until we encounter four element codon
rings. For codon rings greater than four or five, the complexity of the shape
undoubtedly prohibits practical use. In sum, the codon hierarchy can thus be used 1o
develop an ordered set of indices to the more metrical properties of shapes.'

8. MAPPING 3D = 2D

Codons are descriptors for 2D plane curves, .and hence of necessity are an
image-based representation. In Marr’s [9, 10] terminology, they are part of the data
structure of a primal sketch. An important aspect of the motivation for the codon
description comes from the nature of the 3D world, however, namely the rule for
locating part boundaries at maxima of negative curvature. This rule for partitioning
& curve captures the concavity regularity created when two 3D parts are joined (see
Fig. 2), as seen in the 2D image. Thus, the presence of a concavity in silhouette is
used to infer a part boundary in the 3D world. (See [5] for a more rigorous treatment
of this inference.) Can other inferences about the properties of 3D objects also be
made from the codon descriptors?

To explore the kinds of inferences possible about 3D shape from 2D contours, we
will consider some of the canonical, primitive shapes penerated by codons shown in
Figs. 5-7. Our aim is not to exhaust all possible inferences, but rather to indicate a
profitable direction for future study.

There are two kinds of inferences to consider: (1) those that lead to the acceptance
of a particular 3D shape and (2) those that reject a possible 3D shape {12, 11}

It is expected that a mapping between our codon-based and axial-based (or “grassfire”) representa-
tions for shapes can be made with a suitable List of indexed parameters. We see the advantage of the
codon scheme being that crude part descriptions appear at the top level, allowing immediate access,
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Consider the first three primitive outlines given in Fig 5: the ellipse, the peanut, and
the dumbbell. An example of the rejection strategy is that the 2D peanut contour
can not arise from a surface of revolution about a straight axis, for if it did, then the
concavity in the outline would be eliminated. Similarly, the dumbbell can not be the
projection of a 3D surface of revolution about a vertical axis, although it could be a
3D shape created by revoiving the outline about the horizontal axis (i.e., a dumbbell
in 3D).

An example of the accept strategy is the inference that the elliptical outline
represents a 3D ellipsoid. But of course although it is true that a 3D ellipsoid wili
generate a 2D elliptical contour, so will any planar 2D ellipse or more awkwardly
any shape whatsoever that has at least one elliptical cross section.

To infer the 3D shape from the 2D contour thus requires assumptions about (1)
what the hidden 3D surface looks like, (2) whether the shape is 2ID or 3D, and (3)
whether the silhouette arises from a plane curve, etc. [13]. Clearly, then, the accept
mode of inference is much more fragile than the rejection strategy. In one case the
inference rests on assumptions, whereas in the other, possible assumptions are
rejected.

What kinds of 3D properties then can be tested from 2D codons? We have already
mentioned the surface of revolution constraint, which is a particularly popular basis
for modelling shapes [2, 1, 8]. But still deeper insights into 3D shape can be obtained
if the part boundaries are reinforced by spines and cusps which appear in the image
[7]. For example, in Fig. 8 the sithouette of all three figures is the same. However,
their interpretation is quite different. Assuming general position, outline (A) is seen
as planar, (B) as three dimensional, whereas (C) suggests a 2D fin on a 3D ball,
otherwise it would be an impossible object [6]. It is clear that as the codon
representation is developed, the internal contours must play an important role. Their
presence may force {or exclude) a particular 3D interpretation. These differences in
interpretation should be reflected in the codon description. For example, the
description of (B) should include three separate codon strings rather than just one
for the silhouette. Thus the silhouette (A) = (2002) whereas (B) is more correctly
depicted as {[2][000]{2]), with the two [2] being the “ears” of the head [000]. In this
case the transformation from A to B is a simple restructuring of the string. Other
cases with similar silhouettes will not be so simple. Yet, just as 3D shapes constrain
the 2D codon descriptors and vice versa, so will there be constraints on the
transformation of strings of type B into those of type A (and vice versa). Here is an
exciting but difficult area for future study.

() {8) (C)

Fic. 8 Internal contours may drastically alter the 3D interpretation as well as the codon deseription.
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9. SUMMARY

Cod_ons are simple primitives for describing planar curves. They thus are princi-
_paily image-based descriptors. Yet they have the power to capfure important
information about the 3D world, such as making part boundaries explicit. The
codon df?scription is highly redundant (useful for error-correction). This redundancy
can be viewed as a constraint on the number of possible codon strings, For smooth
clqsed strings that represent the bounding contour (silhouette) of many smooth 3D
objects, t‘he constraints are so strong that sequences containing 6 elements yield only
;’>3 generic shapes as compared with a possible number of 15,625 combinations. An
intriguing and important question for image understanding is to explore the con-

slt:aints on the possible 3D configurations that can project into these 33 generic 2D
shapes.

APPENDIX I: A BINARY MAPPING FOR CODON STRINGS?
1. Mapping Rule

Fave? basic codon types would normally require at least three bits for a binary
ezicodmg. However, there are sufficient constraints on codon joins that the 0 = and
07 codons can be distinguished, provided at least one member of the string is not a
type {} codon. By inspecting Tables 1 or 2, we see that if a type 0 codon followsa 1™
codoa?, then it must be an 0%, whereas if the type 0 follows a 1% or 2 type codon
then. it must be an 0 . Similarly if 2 type 0 precedes a 1™ or 2, it must be type 0 -
but if it precedes a 1™ codon, then it is type 0. Because adjacent type 0 codons mus;
havp the same sign, the designation of the 0 codon type will be completely specified
by‘ its neighbors. This redundancy is also reflected in the number of legal codon
pairs, which %s thirteen and can be mapped into 4 bits or 2 bits per codon.

OCur mapping scheme utilizes the constraint that between every minima there is at
feast ‘one maxima (provided the positive minima of 0* are noted). Thus, given the
location of a minima in a binary string we only need to encode the position and
number of inflections in relation to the maxima. (This was the basis for the codon

deﬁnition:s.) Let “1” represent an inflection and “¢” represent no inflection. Then
the mapping rule will be as follows:

CODON TYPE BINARY CODE -
O;’ - ¢
H - ol
i i i¢
2 —

il

Noie_ Fh&t in this mapping, the position of both the maximum and minimum is
implicit. _Nameig_( the minima lie at the beginning and end of a binary pair whereas
the ‘maximum lies between the pair. This property will be seen to be useful in
depicting figure-ground reversals where maxima and minima exchange places. The

Deres . . .
; This mapping and its properties were first noted by Chris Fitch and Steve Schad in WR's class,
Matural Computation™ in the Fall of 1683,
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exchange can be brought about simply by phase shifting the starting point on a
string by one element.

2. Mirror Transform

A mirror transform in a codon string occurs most frequently when a shape is
symmetric. The rule for effecting a mirror transform is to read the string backwards
and change the signs of the 1* and 1~ codons (see [4]). The binary rule is simpler:
“Read the string backwards.”

EXAMPLE.
ORIGINAL STRING 1° 2 17 1+ 0 1-
BINARY MAPPING 31 11 10 01 00 10
REVERSAL BINARY 01 00 10 01 11 10
MIRROR STRING 1 0 1~ 1+ 2 1”

Note that the mirror codon is simply the original read backwards with the signs
changed.

3. Lock-Key or Figure-Ground Transform

The basic idea underlying a figure-ground reversal is that the maxima and
minima must be exchanged. This can be accomplished by rotating the binary string
by one element. However, because a figure—ground exchange also entails a reversal
in the direction of traversing the curve, the order of the binary string must also be
reversed. Hence the figure—ground rule is: “Rotate the binary string by one element
and read the string backwards.”

EXAMPLE.
ORIGINAL STRING (FIGURE) 1+ 2 17 1% 0 17
BINARY MAPPING 01 11 1w 01t 00 10
ROTATE ONE ELEMENT 00 11 11 00 0 O
REVERSED BINARY 0 061 o0 11 11 O¢
COMPLEMENTARY STRING (GROUND) i ottt 0 2 2 0

APPENDIX II: MUMBERS OF POSSIBLE OPEN, SMOOTH CoDON STRINGS

1. Strategy of Proof

An upper bound on the number of legal codon strings with smooth jolns, but
which are not closed, will be obtained by induction. First we will determine the
number of possible strings of length N + 1 given the number of strings of length V.
This relation will then lead to an obvious sequential pattern for even and odd Ns of
low numbers. The sequence will be bounded by 5 - 7% D%

2. Two Types of Strings

Referring to Table 1, we note that a codon string may be extended in only two
ways: (2) by adding eithera 07, 17, or 2 or (b) by adding either a 0% or 17. If the
string ends in a 07, 17, or 2, then there are three choices. namely {(a), for the
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addition, but if the string ends in 2 07 or 17, then there are only two choices, namel
{b). Let us designate the 0 7, 17, and 2 codons as type A and the 0%, 1~ as ty,pe B (ﬁ):
and B simply specify whether the head of the codon has positive or nega-tive
curvature, respeciive]y.) Then if there are 4, strings of length N endingin 07, 1°
or 2, there will be 34, possible strings of length N + 1 that are constructed %rorr;
these 4 codons. Similarly there will be 2B,, possible strings of length N -+ 1

constructed from these B, codons. The total number S(N + 1 i
Sonstucied from ¢ ~ T 2{ ) of strings of length

Z(N+1)=134y + 2B,. (13

Let us now consider a string of length N ending in a type A codon (07, 1.2}
How fixd each of these codon types arise from the string of length N — 1‘?, Aéaiﬁ
rcfernng to Table 1, we see that the next-to-last codon must have been either an ¢~
1%, or 2. Thus we have two instances of type A (namely 0 7, 2) and one instance of,
type B (namely 17). The number of 4, codon strings is then simply

Ay=24,_,+ B, .. (2}

Similarly, we fmd that :.he last type B codon in a string {namely 0*,17) must be
preceded by either an 0¥, which is type B, or a 1~, which is type A. Hence we have

By = Ay + By_, {3)

W‘? now can solve for A, and By, in terms of Z. But first note that adding (2) and
(3) gives us the relation

Ay + By=34,_, +2B,_, = Z(N) (4a)
or

By =Z2(N) - 4,. : (4b)

NO“‘ II the Ilght-hand terms ()f (4[)) are iepfaced by ﬁle a 10p! tate f(PIII%S (),{ . 1
and (2)9 Wi ﬁlld tElE] pp Eqs ( }

B, =3%(N-1). (5a}
Thus from (4a),
Ay =Z(N)-Z(N -1). (5B}
Finally, by substitution in (1) and changing the index by one, we obtain
E(N)=3%(N-1) - (N - 2). " (6)
These totals for N are given in column 3 of Table 3.

3. Upper Bound

An upper bound on these totals can be set by making the negative right-hand term
of Eq. (6) smaller _and then approximating the sums by the positive term. For
example, by algebraic manipulation, the nepative term can be reduced to S(N — 4.
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giving
(N =7 -3(N-2)-Z(N - 4). {n

An upper bound on the possible number of open codon strings is thus 7 - Z{(N ~ 2),
We then observe the following pattern:

CORRECT

E@=T-5 =35 34
@) =7-13 =91 89
E(5)=7-7-5 =245 133
E(6)=7-7 13 =637 610

Note that for all odd sums the factor other than 7 is 5, whereas for the even sums,
the factor is 13. Thus if N is odd, Z 4, < 5 7% "5/2 whereas if N is even,
Zeven < 13- 77372 Now note that 13 may be approximated by 5 - 722, or more
especially 13 < 5 - 7V/2. Thus the factor 13 may be replaced to yield the single
equation for the upper bound on Z,

S(N)< 5. 702 (8)

APPENDIX IHI: NuMser oF SmooTr CLOSED CODON STRINGS

1. Strategy of Proof

We will use the binary representation presented in Appendix 1. Furthermore, we
will count only the basic closed shapes without regard to whether figure or ground is
specified. The counting proceeds by constructing a binomial tree, subject to three
constraining rules:

{i) The sum of the 1s must be even.
(i) There must be an even number of adjacent binary ¢s in any sequence.

(ii) Omly the 1111..., string can end in a 1.

The first rule says that the total number of inflections in a closed string must be even
{or zero). I there were an odd number of inflections then the string cannot close on
itself because the sign of curvature at the beginning and end of the string would be
different. ‘

The second rule follows indirectly from the first. A type 2 codon is represented by
“117 because it has two inflections. Thus taking ail “2”s from the string will still
leave an even number of “1”s. For each remaining “1” there will be an equal number
of ¢s. This number will be even. The total number of ¢s in the binary string rema@ns
even because all other ¢s in the binary string will come from the type 6 dodon, which
is répresented by a pair of binary ¢s. The requirement that there musi be an even
number of adjacent ¢s follows from the legal joins shown in T z}ble 1 For example, a
1411 sequence, corresponding to a 172 string is illegal. The third digit must be a ¢,
changing the stringtoa 1717, etc.

CODON CONSTRAINTS 221

TABLE 4
Tree Structure of Binary Codon Strings of Length N

STRING POSTION LEGAL
{or LEVEL, N} BiNARY TREE POSSIBILITIES
1
0 () —
é e =1
1 - —
- . 1 ¢ _ .-
2 | b 1 3
¢, 1 ¢ 1 ¢ 1 ¢
3 ¢ 4 1 $ L 4 1 5
4 ¢l 41 41 41 61 4.1 g1 o1 9
$1 €1 61 @1 ¢$1 4.1 $1 g1
tw) (0 {w}

The third rule simply forces the end position in the string to be a zero to prevent
duplication of strings. The exception is a codon string made up only of type “2”
codons, which must be included in the count, Otherwise the string is rotated to
remove a final binary “1”.

2. The Construction

We wish to count all possibilities for the binary ¢ and 1 in any position of the
string of codon length M. This will be accomplished by constructing a tree, with two
binary positions added at each new level, N, of the tree. The binary positions, of
course, represent the five basic codons plus the constraint that allows both the 0 -
and 07 codons to be represented by the binary pair ¢¢ (see Appendix I).

Table 4 shows the construction of the binary tree. The tree is initiated by the pair
of 1s in the first row at level 0. These pairs of 1s then branch to a pair of 0s and 1s at
level 1, corresponding to a single codon.

At this level the possible legal binary pairs according to our rules would be o¢
and 11, corresponding to the type 0 and 2 codons. However neither of these single
codons can close on itself without introducing a maxima. Hence the first legal closed
binary sequences begin at level 2.

Reading down from the top through level 2 (and ignoring the initializing 1s), we
have only three possibilities: ¢ppep, 11, ¢, and 1111 (see Fig. 5). The sequences
¢¢ll and 1¢él are illegal because a sequence cannot end in a “1” unless all
members of the sequence are “1” (rule (iii)). Hence there are only three possible
closed strings made of two codons.

Moving to the third level, we now need explore only those branchings {and
cross-branchings) that end in ¢. There are five legal strings obtained by directly
moving down the branches without crossing over. These are dobhpodd, ddllee,
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. and 111111, However, note that the second and thir§ strings are
islrf:;?; r];)lti:i(ii of one another and hence are duplicates. Indeed, any f1ght;§brang:»
ing sequence from a ¢¢ to a 1l on the left side of the tree must be dt_spixcate on the
right side of the tree, because a simple lefmfa.rd rotation ‘of the binary stréng cin
move the 11 pair into the first position. The initial pair 11 will now COTrespon to the
11 pair at level one on the right side of the iree, an(; the preceding pair of pmarylcpcps}
will have moved into the last position, corresponding to the ¢¢s at the h:ghgst ewii
being considered. Hence all direct strings on the left side of the tree can be ignore
in the direct string count, with the exception oit the”scqt_ience $Ppd¢. .., consisting
solely of binary ¢s. Thus, the number of legal .“d:rect‘ strings constructed by moving
down the tree without “crossovers” (dashed lines) will be

Number of direct strings: = 2 + 277 %, {9)

3. Crossover Strings

The above count does not include “crossings” bfatw?gn branches similar to those
indicated by the dashed lines. Given that a “crossing” 18 made at one level, \ye are
then required by rule (i) to cross back at the next or later ?evel in spch a manngr
that the number of adjacent s is even, and .such that the string cpds in ¢. Thus tbe
first crossing 14¢1 is illegal because it ends in a “1.” However this sequence can be
extended at level 3 into a legal string, namely 1¢pdlod. (Note that the other croism%
1411¢¢ is illegal because there is a single “$.”) We thus see that there are no egii
crossover strings of codon length two, and only one of codon length three, namely
195&1;?’2};1% to level four, we may continue to use the 1«;!><;b‘1 CrOssOver as a “hea{ler.f
Mow a 11 at level three may be used to extend the string, for we pave a ggar o
binary ¢s available at level four. This gives us the two Crossover sitnngs ending ;n
columns “y” and “z,” as indicated in the last row of Table 4. In‘ addition, we 1m 3;
now also creale a new Crossover header, namd}f 1ppadl, which becomes egg
because of the binary ¢s available at level four. This new sequence, 1¢¢¢¢}1}¢¢ er; s
in column “x.” By considering crossovekrlsfon the left side of the tree we have thus

trings of codon length four.
adge(?wmsg;;i?i:ie tshe fzghi—half of the tree. At level two, we may adq anotherl
crossover at the “1” followed by a period. Crossigg over here and back agamn at levhie
three, we obtain the following sequence ending in column {w): 111¢_¢1¢¢. But this
sequence is the mirror transform of & previous string found by an egrher CTOSSOVEF (0
the left side of the tree, namely 1é¢11lpo. {The mirror transform is .Ehe same string
read in reverse, and in this case rotated by two to place the two binary ¢s at thle
end.) It should be obvious that the symmetry of the crossover header, namely
1¢...¢1, allows one to read it backwards to get the same result. }-lence alihcr;)sfsoge;s
on the right half of the tree will be the “mirrors” of strings obtained on the left adci

We are now in a position to count the crossover stnngs. At each new leveln, wi a ;
one string of the form l¢g... ¢plég. This sequence dgubles at each su:fiss;ve ev;:1 ,
giving us 2% -3 possible strings from the first possible crossover, 2 from the
second, efc.

N

Number of crossover strings = 3. 2% 77, (10)
J=3
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4. Final Count
Adding the counts for the direct (9) and crossover {10) strings, we obiain

"
Number of closed strings: = 2 + 2¥ "2 + ¥ 2¥ -/, an
J=3

By algebraic manipulation, it can be shown that the above reduces io

Number of closed strings: = 2¥"? + 1 (N =2} (12)
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