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Abstract

To date, the most successful formal models of perception have been Bayesian
and the most successful formal models of evolution have been Darwinian. If
we want a formal model of perceptual evolution, it is only natural to bring
Bayes and Darwin together. In this paper we attempt just that. The result
is a clear and interesting set of mathematical problems that must be solved
to obtain a rigorous and adequate theory of perceptual evolution.
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1. Introduction

The freshwater eel is notable not only for great sushi, but also for chro-
mophore substitution (Beatty, 1984; Lythgoe, 1991). As young adults these
eels spend most of their time in fresh water and, like many other freshwater
creatures, have a long-wavelength visual pigment known as porphyropsin,
with a maximal sensitivity at 522 nanometers. As the time draws near for
the first leg of their breeding migration, which takes them into coastal wa-
ters, the porphyropsin changes to a rhodopsin with maximal sensitivity at
500 nanometers. And as the time draws near for the last leg of their breed-
ing migration, which takes them into the deep sea, the rhodopsin changes
its maximal sensitivity to 487 nanometers, a value typical for many deep-sea
creatures. This is but one of many engaging examples of the adaptation,
both phylogenetic and ontogenetic, of perceptual systems to environments.

The variety of adaptations in vision alone is remarkable. The optical
systems used include pigmented pits without lenses or mirrors, found in
some platyhelminthes, protochordates, coelenterates, annelids and molluscs
(Salvini-Plawen & Marr, 1977); multiple pigmented tubes, found in some
tube-worms; spherical lens eyes, found in fishes, some molluscs, alciopid an-
nelids, and copepod crustaceans (Pumphrey, 1961); corneal refraction, found
in many terrestrial vertebrates and arachnids (Land, 1985); apposition com-
pound eyes, found in many diurnal insects and crustacea; refracting superpo-
sition compound eyes, found in nocturnal insects and some crustacea (Exner,
1891; Kunze, 1979; Nilsson, 1989); simple mirror eyes found in the Pecten

bivalve mollusc and the Gigantocypris crustacean; and reflecting superpo-
sition compound eyes, found in shrimps, prawns, crayfish, and lobsters (for
an excellent review, see Land, 1991). Each solution works in its niche. Even
something as simple as a pinhole eye has served the cephalopod Nautilus

well for 400 million years (Lythgoe, 1991, p. 4).

Then there is the variety of visual pigments and colored oil drops used
in vision. Humans are trichromats, as are some species in almost every
animal class (Jacobs, 1981, p. 153). Squirrels, rabbits, tree shrews, some
fishes and male New World monkeys are dichromats. Goldfish and turtles
are tetrachromats (Crawford et al., 1990; Neumeyer, 1985; 1986). Pigeons
may be pentachromats (Delius & Emmerton, 1979; Emmerton & Delius,
1980; Wright, 1979). The mantis shrimp has at least ten spectral types of
photoreceptors (Cronin, Marshall, & Land, 1994; Cronin & Marshall, 1989).
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Some visual pigments respond to ultraviolet (Neumeyer, 1985) and some to
near infrared (Lythgoe, 1988).

The variety explodes when it comes to the neural processing and inter-
pretation of visual images. On one extreme there is almost no processing,
as in creatures with simple eye spots. On the other extreme there is human
vision, with tens of billions of neurons devoted to image interpretation.

So if we are interested in perceptual evolution, and in particular how the
perceptual interpretations of organisms are adapted to their environments,
we must admit at once that the topic encompasses an incredible diversity
of phenomena. Indeed the diversity is such that one might be tempted to
conclude that there is little useful to be said in general about perceptual
adaptation, but much to be said about individual cases.

That may yet turn out to be true. But recent developments in the formal
study of perception, and developments with a longer history in the formal
study of evolution, offer hope for a formal theory of perceptual adaptation
that captures the unity behind the many cases while respecting the remark-
able diversity. In this paper we take initial steps directed toward making this
hope a reality.

Currently the most rigorous and comprehensive formal theories of per-
ception are Bayesian (see, e.g., Knill & Richards, 1996), and the most suc-
cessful theories of evolution are neo-Darwinian. We will begin by developing
the Bayesian approach to perception, and then place this approach in a
neo-Darwinian context. This leads to concrete mathematical problems, re-
garding the convergence of certain probabilistic processes, whose resolution
will provide key insights into the scope and limits of perceptual evolution.

2. Bayesian Perception

In the case of vision, the simplest motivation for the Bayesian approach is
as follows. We are given an image or sequence of images, I, and we wish to
reach conclusions about the visual scenes, S, responsible for I.

In general, countless different scenes could, in principle, be responsible
for I. This ambiguity arises because the relationship between scenes and
images is typically one of projection, e.g., from the three dimensions of the
visual world to the two dimensions of retinal images. Since the mapping
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from scenes to images is many to one, the mapping from images to scenes is
one to many.

So, given an image I, there are many scenes to be considered as pos-
sible interpretations since there are many scenes that could in principle be
responsible for I. An observer would like to pick the “right” one, but might
not have sufficient information to know with certainty which one to pick. If
a guaranteed “right” choice is not possible, a probabilistic assessment over
all possible choices is next best. Ideally, in this case, an observer would like
to find a conditional probability,

Pr(S | I), (1)

which specifies the probabilities of various scenes given the image I.
As a simple example, suppose our image Iline has just one straight line

segment in it. Consider the following two sets of scene interpretations. In
the first, Sline, the interpretation is as some (any) straight line in 3-D which
projects to the given line in the image. There are many such lines, at differ-
ent orientations in space, all of which project to the same line in the image.
Together these lines constitute the set Sline. In the second Scurve, the in-
terpretation is as some (any) curve in 3-D which projects to the given line
in the image. There are many such curves, including semicircles, various
sinusoidal curves, and so on, all of which project to the same line in the
image. Together these curves constitute the set Scurve. What we would like
to compute are the conditional probabilities

Pr(Scurve | Iline) and Pr(Sline | Iline). (2)

Each set of interpretations, Sline and Scurve is uncountably large. So set
size alone won’t help us much in computing these conditional probabilities.
What we need is the apparatus of Bayes rule:

Pr(S | I) =
Pr(I | S)Pr(S)

Pr(I)
. (3)

It is conventional to call Pr(S | I) the posterior probability, Pr(I | S) the
likelihood function, and Pr(S) and Pr(I) the prior probabilities. What we
want to compute are the posterior probabilities Pr(S | I). They will give us
the relative confidence we should place in the various possible interpretations.
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We can compute them, by Bayes rule, if we know the likelihood function
Pr(I | S) and the prior probabilities Pr(S) and Pr(I).

Do we know the likelihood function Pr(I | S)? We do, if we know
how scenes get rendered as images. In fact Pr(I | S) is sometimes called
the rendering function for this reason. If we know, for instance, that the
projection is orthographic and noise free, then we know that for each possible
scene S, the likelihood function is a dirac delta function on that image I

which is the orthographic projection of S. If instead we know that the
projection is orthographic and noisy, and that the noise is distributed as a
gaussian N(0, σ), then we know that for each possible scene S, the likelihood
function is a gaussian of variance σ2 centered on that image I which is the
orthographic projection of S. So if we know how images are rendered as
scenes, and we often do have a reasonable idea about this, then we know the
likelihood function Pr(I | S).

Do we know the prior probability Pr(I)? Not really. But this might not
be a problem in practice. As long as Pr(I) is not zero, it really doesn’t much
matter what it is when computing the posterior by Bayes rule. We can simply
view it as a normalizing factor, to make all the conditional probabilities sum
to one. Or we can ignore it and just look at the ratios of various posterior
probabilities to find the relative likelihoods of various scene interpretations.
Of course if Pr(I) is zero, as may be the case if the space of possible images
is nondiscrete, then there is a serious technical issue to deal with. One must
reformulate Bayes rule in a more sophisticated setting, using Radon-Nikodym
derivatives and kernels, to get a rigorous result (Bennett et al., 1996). This
has been done, but is outside the purview of this paper.

Do we know the prior probability Pr(S)? To know this would be to
know, under a frequentist interpretation of probability, in fact how frequently
different scenes in the world actually occur. This is surely a lot to know.
It is hard to imagine how, in practice, one could empirically obtain such
information. One cannot, in practice, measure all scenes. There simply is
not enough time, phylogenetically or ontogenetically, to do so. And one
cannot, in principle, arrange for an appropriate statistical sample of scenes
from which one can infer the proper population statistics. It’s not clear even
how one would try to do this. When pollsters sample voters prior to an
election, they try to obtain a stratified random sample. They stratify their
sampling based on their prior knowledge about properties of the population
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of voters. Such knowledge about the population of scenes is not at hand.
So a frequentist interpretation of Pr(S) seems to lead us into trouble.

But if we adopt a subjectivist interpretation, then Pr(S) is the prior proba-
bility that the observer assumes to hold for purposes of computing interpre-
tations. Pr(S) codifies the assumptions of the observer. These assumptions
heavily influence, via Bayes rule, the posterior probabilities assigned by the
observer to various scenes, and thus heavily influence what the observer sees.
In the example at hand, however, it is hard to imagine a principled assump-
tion to make about the prior probabilities of lines versus curves. Intuitively
one might expect that there are more curves than lines, but beyond this it’s
hard to assign specific probabilities. Let’s assume, for now, that both are
just given some positive probability.

Assumptions can also affect the likelihood function. For instance, one
assumption that the observer might hold in the example at hand is the
assumption of a generic view. That is, the observer might assume that all
possible viewing directions are equally likely. If one thinks of the set of
viewing directions as being isomorphic to the unit sphere, where each point
on the sphere represents a different view directed toward the center of the
sphere, then the probability of a given set of views is proportional to the area
of that set on the unit sphere. Under this assumption it is easy to prove that
the set of viewing directions for which curves in space project to the given
line in the image is a set which has no area. Indeed this set is a great circle
on the unit sphere. Since this set has no area, it has probability zero. Thus
the probability

Pr(Iline | Scurve) = 0. (4)

On the other hand, the set of viewing directions for which straight lines in
space project to the image Iline is the entire unit sphere. Thus the probability

Pr(Iline | Sline) = 1. (5)

If we assume that Pr(Scurve) > 0, Pr(Sline) > 0, and Pr(Iline) > 0, then
by putting (4) and (5) respectively into Bayes rule (3), we find that

Pr(Scurve | Iline) = 0, (6)

and that
Pr(Sline | Iline) = 1. (7)
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Thus an observer who makes the plausible assumption of a generic viewpoint,
and who also assumes that curves and lines occur with nonzero probability,
is led inexorably to the conclusion that a straight line in an image must be
interpreted as a straight line in space.

This example is simple, in that the critical probabilities involved in the
computation, namely the likelihoods, are either zero or one so that the result-
ing posteriors are also zero or one. This simplicity is intentional, to illustrate
how Bayesian approaches to vision work, but without getting bogged down in
detailed mathematical computations. However the Bayesian approach is, of
course, not restricted to these simple cases. The priors and likelihood func-
tions, and therefore the posteriors, can be as nasty as you like. In this manner
many interesting problems of vision have been successfully addressed within
a Bayesian framework, including visual motion (Bennett, Hoffman, Prakash,
& Richman, 1996; Jepson, Richards, & Knill, 1996; Knill, Kersten, & Ma-
massian, 1996), texture (Blake, Bülthoff, & Sheinberg, 1996; Witkin, 1981),
stereovision (Belhumeur, 1996), shading and lighting (Adelson & Pentland,
1996; Freeman, 1996), and color constancy (Brainard & Freeman, 1994).
In many of the cases just cited, the Bayesian analysis leads to an effective
computational procedure, thus allowing one to build a process model that
can be implemented by computer. So in addition to providing interesting
theoretical insights, the Bayesian approach also aids in the construction of
working computer vision systems.

3. Two Approaches to Ontogenetic Adaptation

Perceptual adaptation is a refining of an observer’s perceptual conclusions
in consequence of its interactions with its environment.

In the simple example of the last section, we saw that (usually uncon-
scious) assumptions by the observer play a key role in the perceptual con-
clusions it reaches. These assumptions are modeled in a Bayesian framework
by priors and likelihood functions. Changes in the observer’s assumptions
must, on the Bayesian formulation, be modeled by changes in the observer’s
priors and likelihoods. These changes will, in general, also lead to changes
in the resulting posteriors, i.e., in the observer’s perceptual conclusions.

Therefore one way to model perceptual adaptation within a Bayesian



Perception and evolution December 2000 9

framework is to model changes in the likelihoods and priors an observer uses
as it interacts with its environment. These changes will systematically affect
the perceptual conclusions of the observer, resulting in systematic perceptual
adaptation. This approach seems to us most natural, and is the one we will
pursue in some detail here. We call it the structural adaptation approach.

But there is another approach that one might take. If one never al-
ters the priors or likelihoods, one can still get changes in the posteriors, and
therefore perceptual adaptation, by simply conditioning on more and more
data. As the observer has more and more commerce with its environment,
the observer obtains a larger pool of data on which to do its Bayesian com-
putations and arrive at a posterior. This accumulated data need not affect
the structure of the likelihood function or priors at all. It can simply change
the argument given to the likelihood function, and thus lead to a different
posterior. This approach seems to us less natural as a model either of on-
togenetic or phylogenetic adaptation. It seems unlikely that adaptation is
simply a matter of conditioning on more data, without concomitant struc-
tural changes in the priors and likelihoods effectively used by the organism.
But it is a logical possibility, one that we call the nonstructural adapta-

tion approach. In a later section we formally compare the structural and
nonstructural approaches to adaptation. This provides clearer insight into
both.

4. Bayes Meets Darwin: Basic Ideas

Whether one choses a structural or nonstructural approach to ontogenetic
adaptation, there remains the problem of placing this ontogenetic adaptation
in a phylogenetic context in such a way that satisfies, at least in broad outline,
neo-Darwinian accounts of evolution by natural selection. What will not
work, of course, are Lamarckian-style theories of either the structural or
nonstructural types, in which a parent passes on to its offspring the results
of its ontogenetic adaptation. The parent cannot, on a structural approach,
pass on to its offspring the structural changes in its likelihoods and priors that
took place in the course of its perceptual interactions with its environment.
Moreover the parent cannot, on a nonstructural approach, pass on to its
offspring the body of data it has accumulated in the course of its perceptual
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interactions with its environment.

What it can pass on, and all it can pass on, is its genome. On the
Bayesian hypothesis this genome encodes, inter alia, the various Bayesian
structures and processes (including priors and likelihoods) involved in per-
ception and ontogenetic perceptual adaptation. This genome is subject to
random mutations, so that the offspring can, in principle, have slightly dif-
ferent Bayesian structures and processes than the parents.

The key idea (and an old one) is this. If an organism’s genetic endow-
ment allows its perceptual system to adapt so well and so quickly to its
environment that it can, with greater probability than its competitors, re-
produce and pass on its genes, then in succeeding generations the offspring
will inherit this advantaged perceptual ability, with minor random muta-
tions. Some of these mutations will be beneficial to perceptual adaptation,
more will be harmful. But natural selection will, in this manner, tend to
grant higher frequency of offspring to those whose mutations are beneficial.

So there are two evolutionary processes intertwined. There is the onto-
genetic evolution of the perceptual system within the life of an individual.
And there is the phylogenetic evolution of the perceptual system across gen-
erations. Those genomes which grant more effective ontogenetic evolution
tend to persist in the phylogenetic evolution.

This story sounds promising in broad outline. To see if it really works
it is necessary, of course, to formalize structural and nonstructural Bayesian
approaches to perceptual adaptation and to prove that they have the ability
to properly converge to or track with those aspects of a changing environment
that are crucial to an organism’s survival to reproductive age. We now turn
to these formal issues.

5. Structural and classical Bayes Updating

To recapitulate: The classical model operates by sequentially updating the
posterior as data arrive, while holding the prior and likelihood function fixed.
The sequencing here is based upon successively richer conditioning on present
and past data; the strategy of instantaneous inference remains unaffected by
such information. In our notation, given a data sequence (I1, · · · , Ik), the
posterior is updated to
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Pr(S|(I1, · · · , Ik)) =
N((I1, · · · , Ik)|S) Pr(S)

Pr((I1, · · · , Ik))
, (8)

where N is a markovian kernel known as the “likelihood function.” Classical
updating is also known as Bayesian statistical inference and has a long history
in the statistical literature (see, eg., Diaconis and Freedman, 1986 and refer-
ences cited therein). A different scheme has been proposed by Bennett and
Cohen (1997) as part of their “directed convergence” scheme for acquiring
stable percepts. In this scheme, their structural procedure involves updating
not only of posteriors but also of priors consequent to an observation. When
the image I1 arrives, Bayes’ rule produces a posterior Pr1(S) = Pr(S|I1).
This posterior is then taken as the new candidate prior to be used for a
Bayesian inference at the next arrival of a premise. In contrast to the iter-

ative character of classical updating, the structural variety is recursive: the
result at any given stage changes the very strategy of computation at the
next stage.

In order to clarify the differences between these two kinds of procedure,
we will develop our notation somewhat. The space of punctual premises will
be denoted Y . We wish to include the possibility, in a performance model, of
probabilistic premises: those that arrive as a probability measure. We will
denote such premises (eg., the data I) by λ(dy). Thus a punctual premise
y0 reappears as the “Dirac measure,” or “point mass” δy0(dy) at y0: the
measure that assigns to any set B ⊂ Y the value 1 if y0 ∈ B and 0 otherwise.
The space of punctual percepts, on the other hand, will be denoted X. A
probabilistic premise will, in general, lead to a probabilistic percept: we are
therefore interested in percepts which are themselves measures on X. Con-
versely, in the presence of noise, even a punctual state of affairs in the world
– say x ∈ X – will lead to the appearance of a probabilistic premise. In
this sense, the “noise kernel,” or likelihood, function N plays the role of an
image-rendering function which assigns, to each punctual percept x, the cor-
responding probabilistic premise N(x,dy). That is, for x in X, N(x, dy) is
the probability distribution on Y which expresses the likelihood that premises
will be acquired assuming that the system is subject to an ambient state of
affairs represented by x. As a final motivation for probabilistic premises and
percepts, note that Bayes’ rule gives a procedure whereby premises (proba-
bilistic or punctual) are transformed to (probabilistic) conclusions: we will
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call this updating procedure the updating law and denote it by P . Thus,
given a premise λ, the updating law produces a posterior probability µ(dx)
on X by integrating over the premise distribution:

µ(dx) =def λP =def

∫
λ(dy)P (y, dx). (9)

Of course, this updating law1 P has further structure that depends on the
image rendering function N and the current prior µ0. Bayes rule in the
discrete case expresses this dependence as

P(µ0,N)(y, A) =
∑

x∈A µ0(x)N(x, y)∑
x∈X µ0(x)N(x, y)

, (10)

where we have explicitly displayed the dependence on the current prior and
on the likelihood function as subscripts. In the continuous case we have

P(µ0,N)(y, A) =
d(

∫
x∈A

µ0(dx)N(x,dy))
d(

∫
x∈A

µ0(dx)N(x,dy))
(y). (11)

Here the right-hand side is given as a Radon-Nikodym derivative: see
[Bennett, Hoffman, Prakash & Richman], equations (5.21) and (5.28). The
likelihood, or image rendering function N takes percepts and yields premises,
according to physical laws of projection, refraction, noise etc. P , in turn,
accepts prior probabilities and, employing the offices of N , gives a procedure
for transforming those priors into posteriors upon the arrival of a premise.2

In classical updating, P remains the same regardless of the sequence of
percepts. In structural updating, by contrast, at stage n, where the prior
is µn, the law is P(µn,N). Then, in the (n + 1)th stage, a premise λn+1 is
acquired; this results in the new conclusion µn+1 by

µn = λnPn−1. (12)

This µn+1 then becomes the prior at the next stage. It is a fact, though we
shall not prove it here, that the two procedures are identical for the sequences

1 Note that we often write the argument before a function, rather than
after it: this leads to a certain notational convenience, as we shall see.

2 So far, these notational changes are purely formal and seek to express
the essential functional relationships in Bayes rule. We will see, however,
that there is much more than formality to the content of this notation.



Perception and evolution December 2000 13

of punctual premises, i.e., Dirac measures, that the classical case considers.
However, the structural procedure is vastly more general, in that it allows the
use of non-point masses and therefore of much more general kinds of premise.
Moreover, the structural procedure allows us to improve on the efficiency of
convergence: Even with a sequence (y1, · · · , yk) of punctual premises, the
structural method allows us to use, at stage n, the premise

λn(dy) =
1
n

n∑
k=1

δyk
(dy), (13)

We expect the structural posteriors using this sequence of premises to con-
verge more rapidly than the classical posteriors (which, perforce, use punc-
tual premises) to the true state of affairs.

Let us use a simple example to illustrate updating. Suppose we are
to infer the relative probabilities of heads and tails for a biased coin. The
probability of a head, to be inferred, is some number x ∈ X = [0, 1]. Succes-
sive premises yk consist of tossing the coin and observing the outcome. So
yk = 1 or 0, depending on whether we observe a head or a tail. Now if the
probability of a head were actually x, the distribution of premises y would
be governed by N(x,dy) = x|y|, where |y| =

∑n
k=1 yk is the number of heads

in the n observations. Then the random vector {yk}n
k=1 = (y1, · · · , yn) is

distributed binomially, i.e., the probability of any n-long sequence of heads
and tails equals a product of x’s (one for each yk = 1) and of (1 − x)’s (one
for each yk = 0). This is just x|y|(1−x)n−|y|. Finally, the random variable x

is itself taken to be distributed according to the prior µ0, so in terms of the
posterior probability on [0, 1], the previous expression is proportional to a
density with respect to µ0. Hence classical Bayesian statistical inference says
that, after n observations have been obtained, and given a prior probability
µ0 (on the x’s), the posterior probability is

µn(dx|{yk}n
k=1) =

x|y|(1 − x)n−|y|µ0(dx)∫
x′|y|(1 − x′)n−|y|µ0(dx′)

; (14)

the denominator in (14) is the normalization which makes the left-hand side
a probability.

We would like these posteriors in equation (14) to converge to the point
mass (or Dirac delta) at the true value x̄, given that the data {yk} are inde-
pendent and identically distributed with a probability of x̄ for heads. Such
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a convergence of the posteriors to the true coin probability is called consis-

tency in the literature. It is well known that whenever the prior µ0 assigns
positive measure to every open interval around x̄, we have consistency: The
measures µn converge weakly to Dirac measure at x̄. That is, if A is any
(measurable) subset of the interval [0, 1],

Limn→∞µn(A|{yk}n
k=1) =

{ 1 if x̄ ∈ A
0 otherwise, (15)

for almost all2 input sequences {yk}∞k=1. In other words, the limit is the
point mass at x̄. This is satisfying; there are, however, more complicated
situations where consistency does not obtain, in a generic sense (Diaconis
and Freedman, 1986).

In general, consistency for Bayes updating is defined as follows: Given
that the data arrive under the law N(x̄,dy) for a (punctually) true state of
affairs x̄, then we say that the pair (µ0, x̄) consisting of the initial prior and
the actual situation x̄ is consistent if , the posteriors µn defined in (9) and
(10) (or (11)) above converge weakly to Dirac measure at x̄. This means that
for every bounded, continuous, real-valued function f on X, if we define

µn(f) =def

∫
X

µn(dx)f(x), (16)

then

µn(f) −→ δx̄(f) = f(x̄), (17)

as n → ∞. Weak convergence is a natural notion, in that the collection of
bounded continuous functions on X can be thought of as observables for the
states of the world: in state x, the observable f has the value f(x). Thus
consistency is the requirement that in the Bayes updating scheme, the lim-
iting values of all observables are their true values – surely an operationally
sound notion. Moreover, weak convergence has the technical advantage that
it is the easiest of the various kinds of convergence criteria to satisfy: if a
given sequence of measures is weakly convergent, then it is so in other ways
too.

2 By ‘almost all’ input sequences we mean ‘with respect to the usual
measure extended from that defined on cylinder sets of the set of sequences,
i.e., infinite product set Y × Y × . . ., given by N(x̄, dy) in each factor.
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We will refer to the above definition of consistency as classical adapt-

ability : the pair (µ0, N) is (classically) adaptable to the state of affairs x̄ if
(µ0, x̄) is consistent as in (16) above. That is, for almost all input sequences
y1, y2, y3 . . ., the sequence of distributions µ1, µ2, µ3 . . . on X obtained as
n → ∞, by successively conditioning on the first n terms of y1, y2, y3 . . .,
converges weakly to Dirac measure at x̄.Classical adaptability corresponds,
in evolutionary situations, to the capability of an organism to attain a stable

perceptual representation of the persistent environmental feature represented
by x̄, beginning with the initial perceptual representation µ0. Note, however,
that this definition of adaptibility is of practical value only if punctual inputs
are received according to the law N(x̄, ·) for some fixed x̄ in X.

We now state the natural generalization of classical adaptability to the
structural situation:

The pair (µ0, N) is adaptable to the probability measure µ on X if the
structural process with initial prior µ0 and repeated premise λ = µN

converges weakly to a probability measure µ∞. We call this weak limit
µ∞ the adaptation of (µ0, N) to µ.

Structural adaptability corresponds, in evolutionary situations, to the capa-
bility of an organism to attain a stable perceptual representation of the stable
environmental feature represented by µ, beginning with the initial percep-
tual representation µ0. Clearly the faster the rate of adaptation, the more
likely is it that this particular adaptability will persist through generations.

6. Bayes and Darwin Meet: Directed Convergence

Consider an inferencing system (X, Y, N, µ0), where X is the space of
conclusions for the inference, Y is the space of premises and N is the ‘image
rendering kernel.’ µ0 is the ‘prior’ measure on X which encodes the system’s
initial subjective probabilities for conclusions in X.

The classical process can reasonably be used to acquire stable inferences
only in situations where (i) the points of Y represent premises which are
acquired with perfect discrimination by the system, and where (ii) the points
in X irredundantly parametrize, via N , all possible distributions of images
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which might occur in practice. In fact, with regard to (ii), given N and
the prior µ0, the question of whether or not classical adaptibility holds is
meaningful only when the law governing the punctual inputs at each stage
is N(x̄, ·) for some fixed x̄ in X. If for some x̄ in X, (µ0, N) is not adaptable
to N(x̄, dy), then a state of affairs corresponding to x̄ (i.e., a state of affairs
which generates premises according to the law N(x̄, dy)) will never be stably
inferred. On the other hand, if there is more than one x̄ in X with the
same N(x̄, ·) then classical adaptability becomes almost meaningless. This
suggests that we should weaken the definition to be something like: (µ0, N)
is adaptable to x̄ if the posteriors in the classical process converge to a
measure supported on the set Vx̄ = {x′ ∈ X : N(x′, ·) = N(x̄, ·)}. Putatively
this measure will be the restriction of µ0 to Vx, normalized to a probability
measure. Without additional information there is no way to make a stronger
inference than this, so this weaker type of adaptability at least provides a
‘platform’ for a more specialized inference that might permit discrimination
within Vx. Note that if Vx̄ has more than one element in it, such a measure
on Vx̄ represents a multistable percept.

We will assume that we have a standard way to measure the rate of weak
convergence. Then if (µ0, N) is adaptable to x̄, we will denote by f(µ0, N ; x̄)
the reciprocal of the rate of convergence to Dirac measure at x̄ of the classical
process starting with (µ0, N). We might then interpret f(µ0, N ;x) as the
‘length of time required for convergence’. For example, if (µ0, N) is not
adaptable to x then f(µ0, N ;x) will be infinite.

For our purposes we can define an environment to mean the collec-
tion of possible ambient states of affairs, together with their probabilities
of occurrence. Suppose an organism’s perceptual inferencing system utilizes
(X, Y, N, µ0). In the case of systems which employ the classical process to
acquire stable percepts, we will assume that these ‘possible ambient states
of affairs’ are represented by points of X. Thus, a (classical) environment
E is specified by a probability measure ρE on X . This measure, called the
underlying environmental measure, is meant to give a much more global and
long-term description of the environment than does µ0, or do the measures
on X which embody perceptual inferences. In fact ρE is intended to provide
comprehensive information about the relative frequency of occurrence, over
an extended period of time, of the various states of affairs represented by
points of X. By contrast, an inference is intended to describe the state of
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affairs encountered by the organism more instantaneously, i..e. an inference
intends to describe a much more specific and transient state than does the
underlying environmental measure ρE .

In addition to frequency of occurence of environmental states of affairs,
we will also assume that the underlying environmental measure ρE contains
information about the degree to which the states of affairs are adaptively
critical, i.e., information about the survival value of the inference. Consider,
for example, a creature which must drink water every few days for survival,
and which is also the prey of an extremely deadly predator which comes
into the vicinity, say, once every few months. For purposes of survival the
abilities to correctly infer the presence of the predator or to correctly infer
the presence of water are of equal importance. So, in spite of the fact that
the corresponding states of affairs occur with very unequal frequency, they
may be given equal weight by ρE . We conclude that if ρE(S) is large for
some S ⊂ X, then the environmental states of affairs represented by S are
collectively significant for survival, perhaps because they are only moderately
critical but occur frequently, or perhaps because they are enormously critical
but occur only rarely.

We can now define the classical adaptivity of the organism to an envi-
ronment E for the case where stable inferences are acquired via the classical
process. We assume X and Y are fixed, so that in effect we are defining the
adaptivity Acl(µ0, N ;E) of (µ0, N) to E as

Acl(µ0, N ;E) =
1∫

X
ρE(dx)f(µ0, N ;x)

. (18)

The adaptivity is an indicator of the time required for the organism
to arrive at stable percepts which stably represent environmental states of
affairs as they are encountered. This indicator takes into account, via ρE ,
the relative likelihood of encountering the various states of affairs, as well as
the survival value of a correct inference in the context of the encounter. The
smaller the average value of f , i.e., the less the average time required for
adaptation, the larger will be the value of the adaptivity. Hence the larger
the value of the adaptivity, the more rapidly does the organism’s perceptual
system make correct inferences about environmental states of affairs. To
say that the adaptivity is infinite means that the function f(µ0, N ;x) on
X has value 0 except possibly on some subset of X which has ρE- measure
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0. This means that stable percepts are instantaneously inferred in almost
all environmental conditions, i.e., in all conditions except those represented
by the ρE-measure zero subset of X. On the other hand to say that the
adaptivity is 0 means that there is a class of environmental states of affairs
which are significant for survival (i.e., they are represented by a set S in X

for which ρE(S) > 0), but the perceptual adaptation to these environmental
states is very slow (i.e. f takes large values on S). In particular if (µ0, N)
is not adaptable to x in X, then we make take f(µ0, N ;x) to be ∞, so if
nonadaptability holds on any set S in X with ρE(S) > 0, then the adaptivity
will be 0.

We now consider the case of an organism which acquires stable percepts
using the structural process; we will indicate the appropriate definitions of
adaptability and adaptivity. In this case, as in the classical case, we as-
sume that the basic data for the organism’s perceptual inferencing system is
(X, Y, N, µ0), where these symbols have the same meanings as above. But
in this case the priors, beginning with µ0 are updated recursively, based on
premises which are probabilistic, i.e., the premises are probability measures
λ on the scene space Y . To review the updating procedure, suppose that at
time n the updated prior is µn. We then have the Bayesian posterior kernel
P(µn,N) for this prior µn and the likelihood kernel N .

(Recall that P(µn,N) is the kernel from Y to X which has the following
interpretation: Assume that the distribution of states of affairs is given by
the probability measure µn on X, and assume that N(x, ·) describes the
probabilities of scenes in Y being acquired as premises given that the actual
state of affairs is x. Then, for y ∈ Y , P(µn,N)(y, S) is the probability that an
environmental state of affairs which is represented by some point of S was
transduced, given that the scene y was acquired as a premise.)

Suppose that at the next (n + 1th) instant the premise λn+1 is acquired.
Recall that the system then infers the measure λn+1P(µn,N) on X, which
becomes the next prior µn+1, i.e., the priors are updated recursively accord-
ing to the law µn+1 = λn+1P(µn,N), where µn denotes the prior at time n,
P(µn,N) is the Bayes posterior kernel for this prior and for the likelihood
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kernel N , and λn+1 is the premise at time n + 1. Thus, for A ⊂ X,

µn+1(A) =
∫

Y

λn+1(dy)P(µn,N)(y, A). (19)

In this situation, a stable percept is a weakly convergent sequence of measures
µn on X which arises from this updating procedure for some sequence of
premises λn.

Now suppose that an environmental state of affairs is described as a
probability measure µ on X. Here, the meaning of the likelihood kernel N

is that the premise scene transduced from µ is described by the probability
measure µN on Y , defined by µN(B) =

∫
X

µ(dx)N(x, B). We will say that
(µ0, N) is structurally adaptable to µ if the sequence of measures µn on X

defined recursively by (19) (beginning with µ0), converges weakly for the
constant sequence of premise measures λn = µN on Y . In other words,
(µ0, N) is adaptable to µ if, beginning with µ0, the system acquires a stable
percept in the presence of that persistent environmental state of affairs which
corresponds to µ. Let µ∞ denote the weak limit of the sequence µn; this µ∞

exists by definition in case of adaptability as above. For the definition here of
structural adaptability of (µ0, N) to µ it is too much to require that µ∞ = µ,
just as for classical adaptability of (µ0, N) to x in X it is too much to require
that the classical process converges to x. All that we can ask is that a stable
percept be acquired in the presence of the given persisting environmental
state of affairs. In the classical case, if an environmental state corresponds to
the punctual x in X, then for the system to be in the ‘presence of a persistent
environmental state’ means that the system obtains sequences of punctual
premises yn in Y which are independent and identically distributed with law
N(x, ·). In the structural case, if an environmental state corresponds to the
probability measure µ on X, then for the system to be in the ‘presence of a
persistent environmental state’ means that the system obtains a sequence of
probabilistic premises λn which are identically equal to µN .

We now consider the meaning of adaptivity in the structural case. As
in the classical case, we assume we have a measure of the rate of weak
convergence, and we denote its reciprocal by f . If (µ0, N) is adaptable to µ,
then f(µ0, N ;µ) may be interpreted as the length of time required for the
convergence of the structural process {µn} beginning with µ0 generated by
the constant premise sequence λn = µN . If (µ0, N) is not adaptable to µ,
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then we may set f(µ0, N ;µ) = ∞. We must also specify a precise definition
of ‘environment’ as we did for the classical case; the idea again is that an
environment E is represented by an underlying environmental measure ρE ,
which is a measure on the space of environmental states of affairs. In the
structural case, while X is a ‘configuration space’ for these states, the actual
states are identified with probability measures µ on X. Thus, denoting the
set of probability measures on X by P(X), we will define a (structural)
environment to be a probability measure ρE on P(X).3 We can now define
the structural adaptivity of an organism (µ0, N) to an environment E as

Ast(µ0, N ;E) =
1∫

P(X)
ρE(dµ)f(µ0, N ;µ)

. (20)

Note that µ is now the variable of integration on P(X). As in the classical
case, the number Ast(µ0, N ;E) may be interpreted as the expected rate
of perceptual adaptation to the environment, a rate which is adjusted for
survival value of the various environmental conditions.

7. Conclusions

One significant distinction between structural and classical Bayesian updat-
ing of perceptual inferences is that a directed convergence strategy is available
in the structural case (Bennett and Cohen, 1977). Directed convergence is
a strategy for acquiring stable percepts, i.e., convergent sequences of instan-
taneous percepts, even in a noisy environment with ubiquitous distractors.
The idea is to decide whether or not to incorporate a premise λ into the
updating procedure based on (i) how close λ appears to be to the current
percept, and (ii) how strong is the belief that the current percept is close
to a ‘correct percept.’ To make this precise, suppose at time n an organism
(µ0, N) which uses structural updating has percept µn, so that its updating
law is the Bayesian posterior kernel P(µn,N). Suppose that there is a strong

3 For this purpose we should assume that X is a complete separable metric
space, whose σ- algebra of measurable sets is generated by the open sets of
its metric topology. Then, by theorems of Prohorov [Billingsley], P(X) is
also a complete separable metric space, with its corresponding σ-algebra of
measurable sets; ρE is a measure for this σ-algebra.
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belief that µn is close to a correct percept ‘µ’. In fact the degree of that
belief may be expressed as the distance within which it is believed that µn

lies from µ. Then µnN should be correspondingly close to µN , since N is
continuous as a function from P(x) to P(Y ) (P(X) denotes the probability
measures on X, etc.). Now when we say that µ is a ‘correct percept’ we mean
that it represents a stable environmental feature of interest to the organism.
Because it represents a stable environmental feature, we expect that it will
be transduced, i.e., there is a nontrivial probability that any given premise
transduces that feature. And if a premise λ does transduce the feature rep-
resented by µ, then λ will be close to µN and consequently close to µnN .
Thus, to the extent to which the degree of belief in µn is justified, within a
reasonable time interval the organism will receive a premise λ that confirms
the degree of belief in µn, in the sense that it lies sufficiently close to µnN .
Thus, suppose that at the next (n + 1)st instant a premise λ is received.
If λ confirms the degree of belief in µn, since the organism is interested in
the feature µ, λ will be accepted as λn+1, and hence incorporated in the
updating procedure. Indeed we will then have µn+1 = λP(µn,N). On the
other hand, if a λ which confirms the degree of belief in µn is not received
within a reasonable time, then there will be reason to modify the degree of
belief to suppose that µn lies at a greater distance from a correct percept
than was originally thought, and hence justifying acceptance of premises λ

which lie further from µnN than was acceptable previously.

The use of such a strategy introduces a ‘flexibility of direction’ into
the updating procedure, that maximizes the possibility of convergence to
a conclusion which represents one of a possible multitude of environmental
phenomena, each of which may be responsible for a share of the raw premises
obtained by the organism. By using the directed convergence strategy, the
conclusions are updated only in response to the premises in a recursively
selected subsequence (of the sequence of all premises); the actual selection
occurs as the result of an ongoing balancing dance of belief and confirmation.

It seems clear that the organism (µ0, N) must use something similar to
a directed convergence strategy to selectively incorporate premises into the
updating procedure. Otherwise, given the complexity of the environment,
with numerous features being transduced on the sensorium in the presence of
noise and other perturbations, it is hard to imagine that the raw sequence of
incoming premises would correspond to just one of those features, and would
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do so in a manner which would produce, via updating, a convergent percept
sequence. But in any case it is unreasonable to expect that, in practice, the
premise sequences that yield the stable percepts (i.e., that yield convergent
percept sequences), are constant. In other words, suppose the organism
obtains a sequence of premises λn which give rise to the convergent percept
sequence µn, whose limit µ represents a stable environmental feature. In fact,
suppose for simplicity that this premise sequence arose from transduction
of that very feature. In practice, this does not mean that λn = µN for
all n. For, because of various perturbations whose effect is not completely
subsumed in the ‘noise’ kernel N, the transduction will result in premises
which are close to µN but not equal to it. Therefore the most we can
reasonably expect in this situation is that the premises λn converge to λ =
µN (as the percepts µn converge to µ). Indeed if we imagine that a raw
sequence of premises which are random perturbations of µN is obtained,
then the directed convergence procedure will lead to the recursive selection
of a subsequence which optimizes the possibility of convergence of the µn to
µ.

But recall that the adaptivity of (µ0, N) to µ and the associated function
f(µ0, N ;µ) were previously defined in terms of the sequence of percepts µn

which is generated in response to the constant premise sequence λn = λ =
µnN for all n. How is this definition relevant to the ‘real world’ situation
where the adaptivity of the organism to µ depends on its response to a
non-constant premise sequence λn which converges to λ? The idea is that
the adaptivity defined in terms of the constant sequence λ is an idealized
version of the response of the organism to a random premise sequence which
converges to λ. And in this spirit, if µ and µ′ are measures on X, the relative
values of f(µ0, n;µ) and f(µ0, N ;µ′) represent the relative expected rates of
convergence of the percepts, in response to random premise sequences which
converge on the one hand to µN and on the other hand to µ′N .

We expect that ongoing mathematical investigations will clarify these
intuitions, and lead ultimately to computable models.
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