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Perceptual Representations:
Meaning and Truth Conditions

Donald D. Hoffman and Bruce M. Bennett

All acts of perception, regardless of modality, share a
common formal structure. In this regard, the field of perception is
like any other scientific field; behind the diversity of specific
phenomena studied by each field there is, or at least one hopes
there is, a fundamental unity that can be expressed precisely,
perhaps in the language of mathematics.

In this paper we propose a formal, though admittedly partial,
account of the structure common to ali acts of perception. A
central aspect of this structure, according to our account, are
formal entities we call "observers”. We propose a definition of an
observer, a definition intended to be a formal counterpart to the
informal claim that perception is a process of inference and that
the inferences typical of perception are not deductively valid.

Before presenting the formal definition of an observer, we
first consider two examples of visual observers. These examples
are chosen to illustrate the principles that underlie our definition
of an observer. They are chosen for their perspicuity and their
mathematical simplicity, and are not intended to be a represen-
tative sampling of ali the work done in perception. In fact, the
first example is fabricated. Against the background of these
examples, we present the definition of an observer and discuss its
properties. As the definition uses some elementary concepts from
measure theory, we include an appendix on these concepts for the
convenience of the reader. Given the definition of an observer, we
discuss, first, under what coaditions an observer’s performance is
ideal; we discuss, second, the inferences of observers in the
presence of noise; and we give, third, four examples of observers,
all drawn from the field of computational vision.
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A theory of perception cannot, of course, stop with a theory
of observers. A complete theory must also discuss the objects of
perception -- those entities with which an observer interacts in an
act of perception -- and the relationship between observers and
their objects of perception. On this issue we face a fundamental
choice. We can propose that the objects of perception have the
same formal structure as observers, or we can propose that they
have a different formal structure.

Were we t0 propose that objects of perception have a formal
structure different from that of observers we would have to
explain why we adopted the ontologically less parsimonious course.
We would also have to provide convincing arguments that the new
formal structure was indeed appropriate for the objects of
perception. And we would have to demonstrate that the two
distinct formalisms, one for observers and one for objects of
perception, could somehow be integrated so that observersand
their objects of perception could interact, _

We choose the ontologically parsimonious course. Specifically,
we propose that the objects of perception are themselves obser-
vers {as formally defined in section four). In the concluding
sections of this paper, we develop this idea a little. In Bennett et
al. 1988 we develop it quite a bit further, introducing "reflexive
observer frameworks" as a formal account of the interaction of
observers with their objects of perception.

We turn first to some introductory examples.

BUG OBSERVER

Imagine a world in which there are bugs and one-eyed frogs
that eat bugs. The bugs in this world come in two varieties --
poisonous and edible, Remarkably, the edible bugs are distinguished
from the poisonous ones by the way they fly. Edible bugs fly in
circles. The positions, radii, and orientations in three-dimensional
space of these circles vary from one edible bug to another, but all
edible bugs fly in circles. Moreover, no poisonous bugs fly in
circles. Instead they fty on noncircular closed paths, paths that
may be described, say, by polynomial equations.

The visual task of a frog in such a world is obvious. To
survive it must visually identify and limit its diet to those bugs
that fly in circles. How does the frog determine which bugs fly in
circles? First, the frog’s eye forms a two-dimensional image on its
retina of the path of the bug. If the path is a circle, then its
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retinal image will be an ellipse.? The contrapesitive is also true: If
the retinal image is not an eliipse, then the path is not a circle,
Therefore the frog may infer with confidence that if the retinal
image of a path is not an ellipse then the bug is poisonous. In
this case the frog does not eat the bug.

The frog needs to eat sometime. What can the frog infer if
the retinal image is an ellipse? It is true, by assumption, that if
the path is a circle then its retinal image wil be an ellipse. But
the converse, viz., if the image is an ellipse then the path is a
circle, is in general not true. For example, eHiptical paths also
have elliptical images. With a little imagination one can see that
many strangely curving polynomial paths have elliptical images. In
fact, for any unbiased measure on the set of polynomial paths
having elliptical images, the subset of circles has measure zero. So
the converse inference, from elliptical images to circular paths, is
almost surely false if one assumes an unbiased measure. Putting
this in terms relevant to the frog, if the image is an elipse then
the bug is almost surely poisonous, assuming an unbiased measure,
If the image is not an ellipse then the bug is certainly poisonous.

This situation presents the frog with a dilemma each time it
observes an elliptical image. It can refuse to eat the bug for fear
it is poisonous, in which case the frog starves. Or it can eat the
bug and thereby risk its life. Regardless of its choice, the frog
will almost surely perish.

This is a world harsh on frogs, but one which can be made
kinder by a simple stipulation about the paths of poisonous bugs.
Stipulate that poisonous bugs almost never trace out paths having
elliptical images. So, for example, poisonous bugs almost never
trace out elliptical paths. (This is not to say, necessarily, that
poisonous bugs go out of their way to avoid these paths. One can
get the desired effect by simply stipulating, say, that there are
approximately equal numbers of edible and poisonous bugs and that
all polynomial paths are equally likely paths for poisonous bugs.
Then only with measure zero will a poisonous bug happen to
traverse a path having an elliptical image.) This is equivalent to
stipulating that the measure on the set of pathshaving elliptical
images is not unbiased, contrary to what we assumed before. In
fact it is to stipulate that this measure is biased toward the set
of circles. With this adjustment to the world frogs have a better
chance of surviving. Of course it is still the case that each time 2
frog eats a bug it risks its life. The frog stakes its life on the
faith that the measure on bug paths is biased in its favor. But
then the frog has little choice.
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Presumably the frog makes visual inferences about things
other than bugs, so we will call its capacity to make visual
inferences about bugs its "bug observer”. This bug observer is
depicted in Figure 5-1. The cube labelled X is the space of all
possible bug paths, whether poisonous or edible3 An unbiased
measure on this space will be called u,. The wiggly line labelled
E denotes the set of circular bug paths. £ has measure zero in X
under any unbiased measure g . This is captured pictorially by
representing E as a subset of X having lower dimension than X. A
biased measure on X that is supported on E will be called p.
The square labelled Y is the space of all possible images of bug
paths, whether poisonous or edible, The map » from X to Y
represents orthographic (parallel) projection from bug paths to
images of bug paths. An unbiased measure on the space ¥ will be
called pu .. Y is depicted as having dimension lower than X
because tI{e set of all paths in three dimensions which project
onto a given path in the plane is infinite dimensional (by any
reasonable measure of dimension on the set of all paths). The
curve labelled § represents the set of ellipses in Y, ie., § = #(E).
§ has measure zero in Y under any unbiased measure g . This is
captured pictorially by representing § as a subset of ’i’ having
lower dimension than Y.

=
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FIGURE §-1

Bug observer
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We now interpret Figure 5-1 in terms of the inference being
made by the bug observer. The space Y is the space of possible
premises for inferences of the observer; the space X is the space
of possible paths. Each point of ¥ not in S represents abstractly a
set of premises whose associated conclusion is that the event E of
the observer has not occurred. Each point of - S represents
abstractly a set of premises whose associated conclusion is a
probability measure supported (having all its mass) on E. To each
point of § is associated a different probability measure on E.
This probability measure can be induced from the probability
measure p» on E and the map g by means of a mathematical
structure called a conditional probability distribution, discussed in
the appendix. We call » the "perspective” of the bug observer.

In summary, a lesson of the bug observer is this: the act of
observation unavoidably involves a tendentious assumption on the
part of the observer. The observer assumes, roughly, that the
states of affairs described by E occur with high probability, even
though E often has small measure under any unbiased measure H,
on X. (More precisely, the observer assumes that the conditional
probability of E given § is much greater than one would expect
under an unbiased measure.) This is to assume that the world
effects a switch of event probabilities such that the observer's
interpretations have a good chance of being correct. The kindest
worlds switch the probabilities so that an observer’s interpretation
is almost surely correct. In this case the measure in the world is
not unbiased; it is completely biased towards the interpretations of
the observer.

One can put this another way. The utility of the bug
observer depends on the world in which it is embedded. If it is
embedded in a world where states of affairs represented by points
in #°1(S) are all equally likely, then it will be useless. Put it in
a world where states of affairs represented by points of E occur
much more often than those represented by all other points of
% “1($), and it is quite valuable. An observer must be tuned to
reality. And no finite set of observers can ever determine if the
world in which they are embedded effects the necessary switch
from the unbiased to the biased measure. They must simply
operate on the assumption that it does; perception involves, in
this sense, unadulterated faith.
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BIOLOGICAL MOTION OBSERVER

The bug observer discussed in the previous section was
chosen primarily for its simplicity; it permitted the examination of
some basic ideas with minimal distracticn by irrelevant details. In
this section we construct an observer that solves a problem of
interest to vision researchers. . :

The problem is the perception of “biological motion,”
particularly the locomotion of bipeds and quadripeds. Johansson
1973 highlighted the problem with an ingenious experiment. He
taped a small light bulb to each major joint ona person (ankle,
knee, hip, etc.), dimmed the room lights, turned on the small light
bulbs, and videotaped the person walking about the room. Each
frame of the videotape is dark except for a few dots that appear
to be placed at random, as shown in Figure 5-1I. When the
videotape is played, the dots are perceived to move, but the
perceived motion is often in three dimensions even though the
dots in each frame, when viewed statically, appear coplanar. One
often perceives that there is a person, and that the person is
walking, running, or performing some other activity. One can
sometimes recognize individuals or accurately guess gender.

To construct an observer, we must state precisely what
inference the observer must perform: we must state the premises,
the conclusions, and the biases of the inference. Now for the
perception considered here, the relevant inference has, roughiy,
this structure: the premise is a set of positions in two dimensions,
one position for each point in each frame of the videotape; the
conclusion is a set of positions in three dimensions, again one
position for each point in each frame of the videotape. Of course,
this is not a complete description of the inference for we have
not yet specified how many frames of how many points will be
used for the premises and conclusions, nor have we specified a
bias.

A bias is needed to overcome the obvious ambiguity inherent
in the stated inference; if the premises are positions in two
dimensions, and the conclusions are to be positions in three
dimensions, then the rules of logic and the theorems of mathema-
tics do not dictate how the conclusions must be associated with
the premises; given a point having values for but two coordinates
there are many ways to associate a value for a third coordinate.
We are free to choose this association and, thereby, the bias.
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Figure 5-1)
One frame from a biological motion display

If we wish to design a psychologically plausible observer, we
must guess what bias is used by the human visual system for the
perception of these biological motion displays. To this end, let us
consider if a bias toward rigid interpretations will allow us to
construct our observer,

When we observe the displays, we find that indeed some of
the points do appear to us to move rigidly: the ankle and knee
points move together rigidly, as do the knee and hip points, the
wrist and elbow, and the elbow and shoulder. Our perception does
indicate a bias toward rigidity. We observe further, however, that
not all points move rigidly: the ankle and hip do not, nor do the
wrist and shoulder, the wrist and hip, and so on. It appears, in
fact, that our bias here is only to see some pairs of points moving
rigidly.

This suggests that we try to construct a simple observer, one
that has as its premises the coordinates in two dimensions of just
two points over several frames, and that associates the third
coordinate in such a way that the two points move rigidly in
three dimensions from frame to frame, We assume that each point

- =
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can be tracked from frame to frame. (This tracking is cailed
"correspondence” among students of visual motion and is itself an
example of a perceptual bias, namely an assumption, unsupported
by logic, that a point in a new position is the ‘same’ point that
appeared nearby in the preceding frame.)

Now this inference must involve distinguishing those premises
that are compatible with a rigid interpretation from those that are
not, for as we noted above, we see some pairs of points as rigidly
linked and others as not. This is to be expected: of what value is
an observer for rigid structures if its premises are so impoverished
that they cannot be used to distinguish between rigid and nonrigid
structures? This suggests what is, in fact, an important general

principle, the discrimination pringiple:

® An observer should have premises sufficiently informative to
distinguish those premises compatible with its bias from those that
are not.

We shall now find that it is not possible to construct our
proposed observer so that it satisfies this principle. To see this,
we must first introduce notation. Denote the two points O and P.
Without loss of generality, we always take O to be the origin of a
cartesian coordinate system. The coordinates in three dimensions
of P relative to O at time i of the videotape are b = (x.5,2).
We denote by p, = (x;.3;) the coordinates of P relative to O in
frame J that can be obtained directly from the videotape. This
implies that P; can be obtained from p; by parallel projection
along the z-axis. If the observer is given access to n frames of
the videotape, then each one of its premises is a set (Bict,. e

We will find that no matter how large n is, ail premises
wﬁi:l,...,n are always compatible with a rigid interpretation of the
motion of O and P in three dimensions over then frames. That is,
there is always a way to assign coordinates z; to the pairs (x;y,)
50 that the resulting vectors always have the same length in three
dimensions. Therefore this observer violates the discrimination
principle.

To see this, we write down a precise statement of the
rigidity bias using our notation. This bias says that the square of
the distance in three dimensions between O and P in frame i of
the tape, namely the distance x% + y} + zf. must be the same as
the square of this distance in any other frame i, namely the
distances xf + y? + 23,1 < i < n. We can therefore express the
rigidity bias by the equations in (1).

95
i)x’l'+y{+z§=x?+y§=zi’, ! <i<n

This gives n-1 equations in the » unknowns Zy,....Zy. Clearly this
system can be solved to give a rigid interpretation for any
premise {ESN7Y) A (=($;}i=1 _,)- Therefore the observer
contemplated here violates the discrimination principle and is
unsatisfactory.

Ullman 1979 has shown that one can construct an observer
using a bias of rigidity if, instead of using two points as we have
tried, one expands the premises to include four points. He found
that three frames of four points allow one 10 construct an
observer satisfying the discrimination principle. This valuable
result can explain our perception of visual motion in many
contexts. Unfortunately we cannot use Ullman's result here, for
in the biological motion displays only pairs of points move rigidly,
not sets of four.

Perhaps we could resoive the problem by selecting a more
restrictive bias. Further inspection of the displays reveals the
following: pairs of points that move together rigidly in these
displays also appear, at least for short durations, to swing in a
single plane.* The ankle and knee points, for instance, not only
move rigidly but swing together in a pianar motion during a
normal step. Similarly for the knee and hip. The plane of motion
is, in general, not parallel to the imaging plane of the videotape
camera. All this suggests that we try to construct an observer
with a bias toward rigid motions in a single plane. We will find
that we can construct an observer with this bias, an observer that
requires only two points per frame and that satisfies the dis-
crimination principle.

Equations expressing this bias arise from the following
intuitions. If two points are spinning rigidly in a single plane then
the points trace out a circle in space, much like the second hand
on a watch. (The circle may also be translating, but by foveating
one point such translations are effectively eliminated.) The circle,
when projected onto the xy-plane, appears as an ellipse. There-
fore if two points in space undergo rigid motion in a plane their
projected motion lies on an ellipse. If we compute the parameters
of this ellipse we can recover the original circle and thereby the
desired interpretation.

To compute the ellipse, we introduce new notation. Call the
two points P, and P, Denote the coordinates in three dimensions
of point P; in frame j by Py = (xij,yij,zij). Denote the two-@nmen-
sional coordinates of P, in frame j that can be obtained directly
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from the videotape by B; = (x;.;). If the observer is given
access to n frames of the tape, then its premise is the set

{pij}izl,z;jml,...,n'
The x;; and y;; coordinates of each point B; satisfy the
following general equation for an ellipse;

2) ax} + bx;yy + oy + dx;; + ey; +1=0

Each frame of each point gives us one constraint equation of this
form, where the x;; and y;; are known and g, b, ¢, d, e are five
unknowns. Note that (2) is linear in the unknowns. Two frames
give four constraint equations (one equation for each point in
each frame), but there are five unknowns. Therefore each premise
is compatible with an interpretation of rigid motion in a plane.
Three frames give six constraint equations in the five
unknowns. For generic choices of x;; and y;; these six equations
have no solutions, real or complex, for the five unknowns.® This
is exactly what we want. To say that for a generic choice of X
and ¥;; our constraint equations have no solutions is to say that,
except for a measure zero subset, all premises are incompatible
with any (rigid and planar) interpretation. Furthermore, the
constraint equations are all linear, so that if the equations do
have solutions then generically they have precisely one solution

for an ellipse. This ellipse, in turn, can be the projection of one:

of only two circles, circles that are reflections of each other
about a plane parallel to the xy-plane. So if a premise is compat-
ible with at least one interpretation then generically it is compat-
ible with precisely two interpretations (the two circles). Thus to
each premise in § is associated, generically, a conclusion measure
supported on two points of E (where E is the set of rigid planar
interpretations). :

It is not true that if the premise is compatible with at least
one interpretation then it always has precisely two interpretations.
Within the set of premises that are compatible with at least one
rigid-planar interpretation there is a subset of measure zero that
is compatible with infinitely many such interpretations -- namely,
those { ﬁij}izl.z;j=l,...,3 for which the Equations (*) give infinitely
many solutions.

The abstract structure of the biological motion observer is
the same as that of the bug observer shown in Figure 5-I; the
meaning of the sets X. Y. E, S, and of the map x is different,
but the abstract structure is the same. In fact, we propose that
all observers have this same abstract structure, and capture this
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proposal formally in the next section where we define the term
observer. For the biological motion observer the space X is the
space of all triples of the three-dimensional coordinates of the
second point relative to the first point, i.e.,, X = R® This space
represents the framework for expressing the possible conclusions
of the biological motion observer. Each point in X represents some
motion over three units of time of two points in three-dimensional
space, where one of the two points is taken to be the origin at
each instant of time. The space Y is the space of all triples of
the two-dimensional coordinates of the second point relative to
the first, i.e., Y = RS, This space represents the possible premises
of the biological motion observer. -Each point in Y represents
three views of the two points. The map ¥ is a projection from X
to ¥ induced by orthographic projection from R3 to R3. E is a
measure zero subset of X consisting of those triples of pairs of
points in three-dimensional space whose motion is rigid and planar.
S is the image of E under ¥, S =»(E). Each premise in S consists
of three views of two points such that the motion of the points is
along an ellipse. To each premise in S is associated a conclusion,
viz., a probability measure on E. This structure, represented
abstractly in Figure 5-1, can also be represented as follows:

3) X = R® o E = rigid planar motions
l. J:
Y = R o5 §

DEFINITION OF OBSERVER

In this section we propose a formal definition of the coancept
"observer®. We suggest that every act of perception, regardless of
modality, is an instance of this formal structure.

The appendix to this paper reminds one of the definitions of
the measure theoretic concepts used in the following definition of

an observer.
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4) Definition: An gbserver is a six-tuple, ((X,X), (¥,Y), E, S, x.p)
satisfying the following conditions:

1. (X.,X) and (¥,Y) are measurable spaces. £ € X and S€ Y.

2. mX ——> Y is a measurable surjective function with ()
=8

3. Let (E,E) and (S, S) denote the measurable spaces on E
and § respectively induced from those of X and Y. Then
7 is a markovian kernel on § x E such that, for each s,
n (5. .) is a probability measure supported in #"1{s)nE.

The constituents of an observer have the following names:

5} X ~—~ configuration space

Y --- premise space

E --- distinguished configurations

S ~--~ distinguished premises

® -~~~ perspective

n --- conclusion kernel, or interpretation kernel
We also say that, for s € 8, (s, .) is a conclusion measure.
Discussion

In what follows, we sometimes write X for (X,X) and Y for
(Y,Y) when the meaning is clear from the context.

Fundamentally, an observer makes inferences with one
notable feature: the premises do not, in general, logically imply
the conclusions. In the definition of observer, the possible
premises are represented by ¥ and the possible conclusions by the
measures n(s, .).

An observer O works as follows. When O observes, it
interacts with its object of perception. It does not perceive the
object of perception, but rather a representation of some property
of the interaction. X represents all properties of relevance to O.
Suppose some point x € X represents the property that obtains in
the present interaction. Then O, in consequence of the interaction,
receives the representation y = x(x}, where y € Y. Informally, we
say that y "lights up" for 0. If x is in E, then y is in §: if x is
not in £ and not in %7 15) - £, then y is in ¥ - S. All O
receives is y, not x. O must guess x. If y is not in S, then O
decides that x is not in E and does nothing. If y is in S, then O
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decides that x is in £. But O does not, in general, know precisely
which point of E. Instead, O arrives at a probability measure
(s, .) supported on E. This measure represents Os guess as to
which point of E is x. If there is no ambiguity, then O's measure
is simply a Dirac measure supported on the appropriate point of E.

FIGURE 5-111
Illustration of an observer

From this description we see that an observer deals solely
with representations: x and y are elements of the representations
X and Y respectively, and n{s. .) is a measure on X. What these
representations signify we discuss in the Iast four sections of this
paper.

One notes at once that the definition of observer is quite
general. The class of observers is large, almost surely containing
observers for which there is no human, even no biological,
counterpart. Given this, of what use is observer theory to those
interested in human perception? Roughly, it is of the same use as
formal language theory is to those interested in human, or
"natural®, language. That is, formal language theory provides a
framework within which one can formulate precisely the guestion,
"What are the human languages?" Similarly, observer theory
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provides a framework within which one can formulate precisely the
question, "What are the observers of relevance to human or, more
generally, biological perception?” And just as the answer in the
case of language has not come from formal language theory alone,
so one would expect that the answer in the case of perception
wiill not come from observer theory alone. In both cases the
theory provides not an answer but a framework within which to
seek an answer.

The framework should, of course, allow ong to describe
concrete instances of relevance to human perception. Therefore we
present below four such examples. Moreover the framework should
guide one in the construction of new resuits. Examples of such
new results are given in Bennett et al. 1988.

The Conditions on Observers

We discuss the three conditions listed in the definition of
observer.

Condition 1: (X,X), (Y,Y) are measurable spaces. E€ X and S€ Y.

X is a representation in which E is defined. X itself is not
the real world, but a mathematical representation. Y represents ali
premises from which the observer can make inferences. We
stipulate that X and Y are measurable spaces because this is the
least restrictive assumption that always allows us to discuss the
measures of events in these spaces. It would be unnecessarily
restrictive to specify that X must be, say, an Euclidean space or a
manifoid.

Condition 2: ¥: ¥ —> Y is a measurable surjective function with
x(E)=8

x must be surjective, for otherwise there would be premises
in Y unrelated to the configurations in X: the observer would have
premises that were gratuitous. « must be measurable for the
premises Y must, at the very least, be syntactically compatible
with the configurations X. w(E) = § is a necessary. condition for
the distinguished premises to be good evidence for the conclusion
measures. :
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Condition 3: nis a markovian kernel on S x E such that, for each
s, (s, .) is a probability measure supported on ¥ {5}
nkE.

n represents the conclusions reached by an observer for
premises represented by S. For each s€ S, n assigns a proba-
bility ‘measure whose support is % "1{s}-N E; the measure has this
support because, from the perspective # of the observer, only the
distinguished configurations in x7){s} are compatible with the
premise represented by s.

IDEAL OBSERVERS

Let u, denote a measure class on (X,X) that i1s "unbiased™ its
definition makes no reference to properties of £ or x. We think
of p, as expressing an abstract uniformity of X which exists
prior to the notion of the distinguished configurations E. For
example, u, might be a measure class invariant for some group
action on X. u, provides an unbiased background measure class
by which one can determine if an observer is an "ideal decision
maker® (discussed below), and to which one can compare the
actual probabilities of obtaining configuration events in some
concrete universe.

By an abuse of notation, we sometimes use the same symbol,

, to denote both a measuvre class and a representative measure

in the class.
6) Definition: An observer satisfying the condition
B EYS) - E) =0
is called an ideal gbserver.

This condition states that the measure of “"faise target” is
zero. A false target is an element of F = x"YS) - E. False
targets "fool" the observer; they lead the observer to perceptual
illusions. Here is why. Note that since F is a subset of ¥ 1(S),
(F) is a subset of 5. Now suppose that some point x € X repre-
sents the property of relevance to the observer that obtains in
the interaction of the observer with the object of perception. Call
such a point the true configuration. Assume that the true
configuration is in F. Then the observer receives a premise 5 =n
(x) € S and arrives at the conclusion measure (s, .). However,
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this measure is supported off F (and on E), and therefore gives no
weight to the true configuration x in F. The conclusion measure
represents, in this case, a misperception.

An ideal observer is an ideal decision maker in the following
sense: Given that the true configuration is not In E, an ideal
observer almost surely recognizes this . We emphasize the “almost
surely”. We claim not that observers, ideal or otherwise, are free
of perceptual illusions; to the contrary, we claim that perceptual
illusions, such as the cosine surface and 3-D movies, illustrate
important properties of observers. But illusions are of two kinds:
those that arise from a true configuration of relevance to the
observer, i.e., from E itself, and those that do not. For an ideal
observer the latter kind of illusion is rare, in a sense described
formally by H,. _

Also true is the following: Given that. the true configuration
is in E, an observer, ideal or otherwise, always recognizes this.
True configurations in E always lead an observer to reach a
conclusion measure (which measures are always supported on E),
simply because #(EF) = § and nassigns a measure on £ for every
point in §.

True Configuration
E -E

0

it

"False Alarm™

SO el

tn

FIGURE 5-1V

Decision diagram for ideal observers.

Figure 5-1V summarizes these ideas in a decision diagram.
The diagram displays two kinds of true configurations across the
top: E, which indicates that the true configuration is in E, and
-E, which indicates that the true configuration is in X - £. The
diagram displays the two possible decisions of the observer along
the left side. Inside each box in the right column is a number
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which is a conditional probability, namely the unbiased (u,)
conditional probability that an ideal observer arrives at the
decision indicated to the left side of the diagram given that the
true configuration is in X - £. Inside each box in the left column
is a number; in this left column the number 1 is a shorthand for
"certainly” and 0 for "certainly not". The numbers in this left
column hold simply by the definition of observer; if the true
configuration is in £, then since § =#(E) and the observer always
decides that the true configuration is in £ given a premise in §,
the observer always decides correctly. Also inside each box is a
label in quotes which describes the type of decision represented
by that box.

As an example of how to read this diagram, consider the box
labelled “false alarm®. It contains a 0. This means that the
conditional probability is zero that an ideal observer wiil decide
that the true configuration is in £ given that in fact it is not.
{The one in the box labelled “correct reject” is the complementary
conditional probability).

A sufficient condition for an observer to be ideal is the fol-
lowing: :

7) wou(S) =0

This condition states that o (x "K$)) = 0, which implies that
m{®"XS8) - E) = 0, and therefore that the observer is ideal. This
condition often obtains in observers whose distinguished configura-
tions are defined by algebraic equations.

The definition of an ideal observer makes essential use of
the measure u_, a measure defined without regard to properties
of any external world. Therefore an ideal observer is ideal
regardless of the relationship between the ideal observer and any
external world. However, g, may not accurately reflect the
measures of events in the appropriate world external to the
observer. We discuss this in later sections.

That aspect of .the inference presented in Figure 5-1V is not
the only one of interest. An observer decides not only if the true
configuration is in E; it produces in addition a probability measure
supported on E which is its best guess as to which events in £
are likely to have occurred, together with their likelihoods. One
can ask if this measure is accurate. The answer to this requires
the establishment of a formal framework in which observer and
observed can be discussed. This is the subject of the last four

sections of this paper.
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NOISE

Thus far we have considered only observer inferences whose
premises are represented by single points s € 5. Such inferences
are free of noise in the sense that the premise is known precisely.
But if there is noise, if the premise is not known precisely but
only probabilistically, what conclusions can an observer reach? A
natural way to represent a noisy premise is as a probability
measure A on Y. A precise premise s € S is then the special case
of a Dirac measure supported on s. models noise or measure-
ment error as follows: for B € Y,A(B) is the probability that the
set of premises B contains the “true premise”. .

Given a probabilify measure A on Y the natural conclusion
for the observer to reach is the following:

8) with probability A(Y - S) there is no interpretation;
with probability A(S) the distribution of interpretations is p,

where, for A€E,
p(@ = XS [ n(s.AnwHs)INds).

Intuitively, A(S} is the probability of having received a "signal”,
i.e., a distinguished premise, and A (Y - §) is the probability of
not having received a signal.

Thus the definition of observer provides a formalism which,
by means of the interpretation kernel 1, unifies perceptual
inferencing “"policies” in the presence of noise. Moreover the
effects of various kinds of noise can be analyzed within a given
inferencing system. (For example, there may be regularities of the
noise worth exploiting. A common approach to noise represents
the set of noisy signals as a markovian kernel K on ¥ x Y, where
K(y,.) is computed by, say, convolving a fixed gaussian distribution
with the Dirac measure ¢(.) located at y.) These ideas need to
be studied systematically and to be compared with the ideas of
signal detection theory and various decision theories.

EXAMPLES OF OBSERVERS
In this section we consider several current explanations of

specific perceptual capacities and exhibit these explanations as
instances of the definition of observer.
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Example: Structure from Motion (Uliman 1979)

One can devise dynamic visual displays for which subjects,
even when viewing monocularly, report seeing motion and struc-
ture i three dimensions. This perceptual capacity to perceive
three-dimensional structure from dynamic two-dimensional images
is often called "structure from motion*.® To explain this capacity,
Ullman proposes what he calls the rigidity assumption: "Any set of
elements undergoing a two-dimensional transformation which has a
unique interpretation as a rigid body moving in space shouid be
interpreted as such a body in motion.* (1979:146) Moreover, he
proves a theorem which allows one to determine whether a given
collection of moving eiements has a unique rigid interpretation.
This structure from motion theorem states: “"Given three distinct
orthographic views of four noncoplanar points in-a rigid configur-
ation, the structure and motion compatible with the three views
are uniquely determined [up to reflection].” (1979:148)7

Because of the rigor and clarity of Ullman’s explanation it is
possible to state precisely to which observer it corresponds. It is
the observer whose configuration space consists of all three sets
of four points, where each point lies in R3. Since Uliman takes
one of the four points to be the origin, we find that the con-
figuration space X is R?*?. The premise space is the space of all
triples of four points, where each point lies in R? (i.e., in the
image plane). We find that the premise space Y is RS, Now
denoting a point in R® by (x.,y.z) and recalling that the map p: R®
- R2 given by (x.5.z) = (x,p) is an orthographic projection,
we find that the perspective » of Ullman's observer is the mapn:
X —> Y induced by p. E, the distinguished configurations, consists
of those three sets of four points, each point in R3, such that the
four points in each set are related to the four points in every
other set of the triple by a rigid motion. One can write down a
small set of simple algebraic equations to specify this (uncount-
able) subset of X, but this is uanecessary here. It happens that £
has Lebesgue measure zero in X. §, the distinguished premises,
consists simply in #(E). Intuitively, § consists of all three views
of four points that are compatible with a rigid interpretation. §
happens to have Lebesgue measure zero in Y, therefore the
Lebesgue measure of “false targets”, i.e., elements of »x ¥S) - E,
is aiso zero. Finally, for each s € 5, % (5, .) can be taken to be
the measure that assigns weight of 1/2 to each of the two points
of £ which, according 1o the structure from wmotion theorem,
project via ¥ to 5. This would correspond to an observer that saw
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that saw each interpretation with equal frequency. If one inter-
pretation was seen 90% of the time then the appropriate measure
would assign weights of .9 and .1.

Example: Stereo (Longuet-Higgins 1982)

Because one's eyes occupy different positions in space, the
images they receive differ subtly. Using these differesnces, one's
visual system can recover the three-dimensional properties of the
visual environment. This capacity to infer the third dimension
from disparities in the retinal images is called stereoscopic vision.3
To expiain this capacity, Longuet-Higgins assumes that the planes
of the horizontal meridians of the two eyes accurately coincide.
He then proves several results, of which we consider the fol-
lowing; *If the scene contains three or more nonmeridional points,
not all lying in a vertical plane, then their positions in space are
fully determined by the horizontal and vertical coordinates of
their images on the two retinas."

The observer corresponding to Longuet-Higgins’ explanation
has a configuration space consisting of all two sets of three
points, where each point lies in R3. Longuet-Higgins does not take
one of the three points to be the origin, so the configuration
space X is R!% The premise space is the space of all two sets of
three points, where each point lies in R2 Therefore the premise
space Y is R12, The perspective of Longuet-Higgins' observer is
the map #:X —> Y induced by the map p of example (6). E, the
distinguished configurations, consists of all pairs of sets of three
points, each point in R3®, such that the three poiats in each set
are related to the three points in the other set by a rigid motion
whose rotation is about an axis parallel to the vertical axes of the
two retinal coordinate systems. One can write down straight-
forward equations to specify this (uncountable) subset of X. §, the
distinguished premises, is #(E). And for each 5 € Sx(s, .) is Dirac
measure on the unique (generically, according to Longuet- Higgins’
result) point of E that projects via x to s.

Example: Velocity Fields along Contours in 2-D (Hildreth 1984)

Because of the ubiquity of relative motion between visual
objects and the viewer's eye, retinal images of occluding contours
(and other salient visual contours) almost perpetually translate and
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deform. For smooth portions of a contour, attempts to measure
precisely the local velocity of the contour must face the so-called
"aperture problem® if the velocity of the curve at a point s is
V(s), only the component of velocity orthogonal to the tangent at
s, vi(s), can be obtained directly by local measurement. The visual
system apparently overcomes the aperture problem and can recover
a unique velocity field for a moving curve. This capacity to infer
a complete velocity field along a two-dimensional curve given only
its orthogonal component is called the measurement of contour
velocity fields.? To explain this capacity, Hildreth proposes that
the visual system chooses the "smoothest" velocity field (precisely,
one minimizing [ i—%!—]"’ds) compatible with the given orthogonal
component. She then proves the following result: "If vi(s) is
known along a contour, and there exisfs at least two points at
which the local orientation of the contour is different, then there
exists a unique velocity field that satisfies the known velocity
constraints and minimizes [ |45 1%ds)."

The observer corresponding to Hildreth’s explanation has a
configuration space X consisting of all velocity fields along all
smooth contours in R3. §, the distinguished premises, consists of
all velocity fields along one-dimensional contours such that the
velocity assigned to each point s of the curve is orthogonal to the
tangent of the curve at 5. The premise space Y is the same as §.
(Because of the aperture problem the only premises are those in
S.) The perspective of Hildreth's observer is the map ¥ X —> Y
which takes each velocity field in X to its orthogonal component
field in §. Thus = takes X onto S. For s’€ 5, x7I(s") is all
velocity fields which have s5° as their orthogonal component.
According to Hildreth’s result, in each fibre x {s’) there is a
unique velocity field ¢ which minimizes her measure of smooth-
ness. K, the distinguished configurations, is the set of all these ¢'.
For each 5'€ §,n(s’,.) is Dirac measure on the corresponding ¢,

Example: Visual Detection of Light Sources (Ulman 1976)

The visual system is adept at detecting surfaces which,
rather than simply reflecting incident light, are themselves
luminous. This perceptual capacity is called the visual detection of
light sources. To explain this capacity, Ullman proposes that it is
unnecessary to consider the spectral composition of the light and
the dependence of surface reflectance on wavelength. He con-
siders the case of two adjacent surfaces, 4 and B, with reflec-
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siders the case of two adjacent surfaces, 4 and. B, with reflec-
tances s, and rp. (The reflectance of a surface, under Ullman’s
proposal, is a real number between 0 and | inclusive, which is the
proportion of incident light reflected by the surface.)® He
assumes that the light incident to surface A at some distinguished
point 0 has intensity 7, and that the intensity of the incident
light varies linearly with gradient K. Thus a point 1 on surface B
at distance d from O receives an intensity /, = Iy + Kd. (Ullman
restricts attention to a one-dimensional case and stipulates that 4
is positive if 1 is to the right of 0.) If 4 is also a light source
with intensity L, then the retinal image of the point 0 receives,
on Ullman’s model (which ignores foreshortening), a quantity of
light ey = r Iy + L. On the assumption that the light source, if
any, is at A4 (which can be accomplished by relabelling the
surfaces if necessary) the retinal image of ‘point 1 receives a
quantity of light ¢; = rgly. The gradient of light in the image of
surface A is §, = r K, whereas in the of surface B it is Sg =
rgK. Ullman then argues that the visual system detects a light
source at A when the quantity L = e, - e/(S,/Sy) + S,d is
greater than e,(S,/5g) - Sad; furthermore, is the perceived
intensity of the source.

The observer corresponding to Uliman’s explanation has a
configuration space consisting of all six-tuples:

9) (rprpdod.K.L),

where:

10) ryrg €10,1), K.d €ER, I,.LE[O, oo),

and L is the light source intensity. Thus
IDX=00,1]x[0,1]x[0,9) xRx R x {0, 00).
The premise space consists of all five-tuples:
12) (e4.24.5,4.5p.d),

where:

13) eg¢, € [0,00), S,.Sp, dER.
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Thus
14) Y = [0,00) x [0,od x RXR X R

the perspective of Ullman’s observer is the map x¥: X —= Y
defined by: '

15) (rA.rB.Io.d,K,L) !“""'"> (rAIe + L.rB(!o + Kd),rAK,rBK,d).

§, the distinguished premises, consists of that subset of Y
satisfying:

16) L > e,(S,/Sp) - 8,4

Similarly E, the distinguished configurations, consists of that
subset of X satisfying:

7)Y L > ry(I, + Kd) - r Kd

For each distinguished premise s = (ege.5,.55.d) € S,1(s,.) can
be taken to be any probability measure supported on those distin-
guished configurations in # “}(s) satisfying L = € - €(S,/Sg) +
Sad (since Ullman's explanation seeks to recover only the light
source intensity, not the other aspects of the configuration).

OBSERVER/WORLD INTERFACE: INTRODUCTION

What are true perceptions? Without addressing this central
question, no theory of perception can be complete. In observer
theory the perceptions of an observer are represented by its
conclusion measures so that, rephrasing, we may ask the question:
What are true conclusion measures? Now clearly the truth of
conclusion measures depends at least on two factors: (1) the
meaning of the measures and (2) the states of affairs in an
appropriate external environment. Recall, however, that the
definition of observer in (4) nowhere refers to a real world or to
an environment external to the observer. The spaces X and Y
represent properties of the interaction between the observer and
its environment but are not the environment itself. Therefore to
study true perceptions we first propose a minimal structure for
environments and for the relationship between observers and



R

n AT e

112

active times of (the scenarios of) different observers bear any
describable relationship to each other. Thus there maybe no
natural way to embed the active times of two different observers
into a third time-system (in some order-preserving manner). In
special cases, however, it is natural to assume that the active
times may be so embedded; this occurs, for example, when the
observers occupy the same "reflexive framework" (Bennett et al.
1988). In other cases the active times of different observers
admit comparisons of various kinds. For example, one instant of
the active time of a “higher level® observer may correspond to an
entire (random) subsequence of instants of the active time of a
“jower level” observer.

18) Definition: A scenario for the observer O = (X, Y.ES.¥.n) is
a triple (C .R, {Z,), ,p), Where:
(1) C is a measurable space whose elements are called states

of affairs:
(ii) R is a countable totally ordered set called the active

time;
(iii) {Z,)};.p is a sequence of measurable functions, all defined
on some fixed probability space £ and taking values in

CxY.

In other words, a scenario is a stochastic process with state space
C x Y and indexed by R.

Z, is called the gbservation at time ¢ or the presentation of
the observer with a state of affairs at time ¢ or the channeling at
time ¢. If Z, takes the value (c.y,) with ¢, € C and y, € Y, we
say that ¢, is the state of affairs at time ¢ and y, is the premise
(or sensation or sensory_input at time f.  For any sample point
we€ll, the sequence Z,(w), .p corresponds to a sequence of points
{(cp.yher in C x Y. We call this an gbservation trajectory.

The "states of affairs” in the definition are external to the
observer in the sense that they are not part of its structure. This
does not imply that these states of affairs are states {or parts) of
a physical world.!! In fact, physical properties are an observer's
symbols for these states of affairs, or for stable distributions of
these states of affairs. Any attempt to ground a theory of the
observer in an a priori fixed physical world encounters great
difficulties from the outset. Contemporary physics, for instance,
holds that physical theory itself must include the observer. This is
evident at the quantum level, where it seems impossible to escape
the conclusion that acts of observation influence the evolution of

13

the conclusion that acts of observation influence the evolution of
physical systems. It is also seen in relativistic formulations, where
the theory, by its very definition, consists in the study of
statements which are invariant under certain specified changes in
the pgrspective, or frame of reference, of observers. For such
reasons it is scientifically regressive to cling to a fixed "physical
world” as the ultimate repository for states of affairs. We do not
deny the existence of physical worlds but suggest that, habit
aside, it is more natural to ground physical theory in perceptual
theory than vice versa.

To summarize: we distinguish between perceptual conclusions,
states of affairs,and objects of perception. In primitive semantics
the states of affairs are undefined primitives whose existence is
assumed as part of a given scenario. These states of affairs are
relationships between the observer and its objects of perception,
which are not specified. The observer is presented randomly in
discrete time with states of affairs. This presentation is a
primitive, assumed as part of the scenario. The presentations
consist in a stochastic sequence (in the given discrete time) of
pairings of states of affairs with premises from the premise space
Y of the observer, These elements of Y constitute the only
information accessible to the observer about the scenario, i.e.,
about its "environment." The scenario provides the syntactical
structure to which semantics can be attached.

However, in the scenario itself there is no semantics: there
is no conclusion in the correct sense of theword. Namely, the data
of the scenario alone contain no direct relationship between the
states of affairs in C and the conclusion measure B or, for that
matter, the observer’s configuration space X. (We regard the
indirect relationship, at each instant t, which exists because the
conclusion measure 1(s,.} is deterministically associated to s, as a
purely syntactical relationship: the symbol 10 (s,.) is formally
attached to the symbol s, which in turn is formally attached to c,
via Z, = (c,,5).) The scenario directly relates states of affairs with
points of ¥ -- not with points of X.

The only information an observer directly receives is a
premise, a sensory input, at each instant of active time. The
scenario is a minimal formalism for an external world whose states
of affairs are related in some unknown manner to the successive
production of these premises. This world must be external to the
observer, because the internal structure of the observer, by
definition, consists only in XY .ES, n,n; these alone say nothing
about the production in a time sequence of elements of Y. To go
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environments, thereby advancing a primitive theory of semantics
for observers. We extend this theory in the penultimate section of
this paper. In Bennett et ai. 1988 we build a model for the
theory by the introduction of "reflexive observer frameworks".

We described the observer-world relationship above as
foliows: When the observer (X, Y, E, S,y .n) is presented with a
state of affairs in the world which corresponds to a point x of X,
the point #(x) €Y "lights up". If ={x) 5 then the observer
outputs no conclusion measure. If w(x) = s is in. § then the
observer outputs the conclusion measure %{s,.). Our task is to
explain this statement.

We distinguish two levels of semantics: primitive semantics
and extended semantics. In primitive semantics a "state of affairs”
is an undefined primitive (much as, in geometry, a "point” is an
undefined primitive); in extended semantics it is directly defined.
Primitive semantics is the "local" semantics of a single observer, a
minimal semantics which interprets the observer’s conclusion
measure % in terms of an external environment. Structure in
addition to that of the observer is necessary for this purpose
since conclusion measures are representations internal to the
observer and have no a priori external interpretation. (In other
words, the internal representation embodied in the conclusion
measure is not itseif a -conclusion. For a conclusion is by defini-
tion a proposition: it is an assertion about states of affairs in
some environment.) The necessary additional structure consists in
a formal description of an environment; in terms of this descrip-
tion, meaning can be assigned to the representation %, and this
meaning is the conclusion in the correct sense of the term.

In primitive semantics we assume that the “states of affairs”
with which an observer is presented are undefined primitives, and
that "presenting an observer with a state of affairs” is a primitive
relation. States of affairs are not objects of perception. We
reserve the term “object of perception to refer to "that with
which an observer interacts” in an act of perception. Rather,
states of affairs are relationships between the observer and its
objects of perception. For now these relationships are undefined
primitives; the environment of states of affairs is, in the primitive
semantics, an abstract formalism. The primitive semantics provides
a dictionary between the internal representations of the observer
and this abstract formalism.

By contrast, in extended semantics the states of affairs
themselves —- not only the single observer -- are directly defined.
At this level, the environment of the observer, as well as the
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states of affairs in it, have a priori meaning independent of the
observer’s conclusion measure.

This environment of states of affairs is not to be regarded
as a theatre for all possible phenomena; it need only be rich
enough in structure to provide a concrete model of the theoretical
environment posited at the first-level. The environment is not
accessible to the given observer; its perceptual conclusions are the
most it can know in any instant. The environment may, however,
be accessible to other “higher-level® observers under various
conditions; this leads to the notion of "specialization™ which we
discuss in Bennett et al. 1988.

SCENARIOS

We begin with a fixed observer O = (X.Y.E.S.x.n). As an
abstract observer, O consists only of its mathematical components
XYES, n.n as set forth in the definition in (4). We want to
view O as embedded in some environment as a perceiver, There-
fore we must provide additional structure to represent such an
embedding. We call this structure a scenarip for O. Given a
definition of scenario we can thent discuss the semantics of O's
conclusions. -

The definition of scenario involves an unusual notion of time.
Just as we assume no absolute environment, so also we assume no
absolute time. We assume only that there is given, as part of each
scenario, an "active time”; the instants of this active time are the
instants in which O receives a premise. This active time is
discrete. Perception itself is fundamentally discrete; any change of
percept is fundamentally discontinuous. To put it briefly: we model
perception as an "atomic” act. An atomic perceptual actis one
whose perceptual significance is lost in any further temporal
subdivision. This view is developed in Bennett et al. 1988 but a
few remarks are in order here.

As we have indicated, observer theory is not a fixed-frame
theory in which all phenomena are objectively grounded in a
single connected ambient space -- an analytical framework which
plays the role of an absolute "spacetime”. A.bsolute spacetime is
surely of interest both psychologically and physically, but in
neither case is this due to a principled requirement that every
scientific mode!l must begin with it. In particular, this is true of
absolute time. In building a theory which is centered on acts of
perception there is no reason (o assume, in general, that the



<

114

further, to posit a relationship between the states of affairs and X
that is compatible with the scenario data, brings us to the issue
of meaning.

MEANING AND TRUTH CONDITIONS

Let be given an observer O and a scenario (C.R.Z,) (Defini-
tion (18)). We have been referring to the “conclusion of the
observer” as the meaning of its conclusion measure. This meaning
is a proposition regarding a relationship between the conclusion
measure and the scenario. Now the truth or falsity of this
proposition can be decided only in the presence of a concrete
model of the scenario, i.e., only in the presence of an extended
semantics. Prior to such a model,i.e., within a primitive semantics,
we are free to assign meaning to O's conclusion measure by
postulating a relationship between it and the scenario. In the
definition to follow we state this relationship.

19) Definition: Let t € R. Let pr, and pr; be the projections of C
x Y onto the first and second coordinates respectively. The
meaning of the conclusion measure % at time r is the fol-
lowing pair of postulates;

Postulate 1. There exists a measurable injective function
Z: C —> X such that, if Z, = (c,.p,) then y, =xoEc,).

Postulate 2. »} is a nonzero measure and Ris its rcpd
with respect to ¥.

Let X, = Zopr; 2, Then X, is a measurable function with the
same base space as Z, and taking values in X. Letting ¥ § be the
distribution of X,, denote its restriction to xY(S) by »3 for A
€X , we have »3(4) = » (AN X YS)).

To specify a particular meaning for 7 in a given scenario, we
need only specify a £ such that p( #°%(S)) > 0; the interpretation
of is then established by Postulate 2.

The measurable function 5 is the configuration map; = (¢)
is the configuration of c. If the definition in (19) holds, (R, C,
{Z,}, £), is called a primitive semantics (for 0). A state of affairs
ceC is called a distinguished state of affairs if =(c) e E.

11§
Discussion of Postulate 1

The existence of the configuration map =, asserted in
Postulate 1 of (19), means that there is a time-invariant relation-
ship between the states of affairs in C and the configurations in
X; we therefore can now say what X represents. Until now X was
simply part of the internal formalism of the observer, an abstract
representational system. It is only by virtue of = that X repre-
sents the states of affairs; indeed = defines that representation.
The postulate states further that the pairing in the scenario
between ¢, and y; (via the channeling Z,) is imitated within the
observer by the pairing between Z(c,) = x and #(x) = y,. We
may say that (x,, x (x,)) is a picture of (c.v)-
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FIGURE 5-V
Postulate 1 says there exists a = for which this diagram commutes.

Given the configuration map X satisfying the properties of
Postulate 1, we may effectively replace € with X, at least for
the purposes of the primitive semantics. Because Z is one-to-one,
the internal formalism of the observer, specifically X, ¥ and «,
gives a good representation of the interaction of the observer
with its environment (as provided in the scenario). Thus we can
formally bypass C, and view the scenario as consisting, in essence,
of a discrete-time probabilistic source of elements of X, ie., as
the sequence of measurable functions (X,), . gr- These measurable
functions take values now in X, and are related to the original
measurable functions Z, of the scenario by X, =X o prZ,. To
emphasize this simplification, we will sometimes use the word
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~configuration” in place of "state of affairs". Of course, this is
an abuse of language; when we say, for example, "a configuration
x channeled to the observer,” we mean that a state of affairs ¢,
for which x = X (c), channeled to the observer. Figure 5-V
illustrates Postulate 1.

The condition that the X,’s have identical conditional
distributions over points s € S, namely the distributions %(s..),
expresses an assumption built into the observer that its relevant
environment is stationary: the distribution of states of affairs
which channel to the observer, resulting in premises in §, does
not vary with time. We mean neither that the observer has made a
considered or learned inference to this effect, nor that it has
made a scientific judgement about the stability of its environment,
Rather, our viewpoint is that a de facto assumption of stationarity
is fundamental to perceptual semantics, we are here modeling
perception at the level where each instantaneous percept involves
the output of a de facto assertion of some stationarity in the
environment. The stationarity condition given above is the
strongest such assertion that the observer can make without
exceeding the capacity of its language.

Discussion of Postulate 2

The set x }(S) consists of the configurations of those states
of affairs whose channelings could result in a distinguished
premise s € S. Postulate 2 says, then, that there is a nonzero
probability ¥ ( x - 18)) that such channelings occur. Moreover, it
assigns meaning to the conclusion measures 9 (s,.). Since 7(s,.) is
deterministically associated to s € § it can be viewed as the
"output” given s as “input®, in fact we have tacitly but consis-
tently viewed it in this way up to now. Using this terminology,
and given Postulate 1, the meaning assigned by Postulate 2 may be
expressed as follows: If the premise at time ¢ is 5 € S, then the
observer outputs the conditional distribution, given s, of the
configurations of states of affairs whose channeling could result in
s; this conditional distribution is %(s,.). It is independent of the
value of t. If the premise at time ¢ is not in S, then the observer
outputs no conclusion. This explains the description of the
observer-world relationship.

For Postulate 2 to hold at all times ¢, it is necessary that
the distributions of the X, have identical rcpd’s over S. Now the
observer itself cannot verify such a stationarity in the distribu-
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tions. For the observer has no language other than that provided
by n, with which to represent information about the distributions
of the X, ’s. In fact, it can say nothing about what happens when
v, € S, the observer is necessarily inert at such instants f.
Nevertheless this stationarity in the observer’s environment is
fundamental to our perceptual semantics; we as modelers can
verify the existence of such a stationarity.

As noted in the section on Scenarios, truth conditions for
the conclusions of an observer amount to giving additional
conditions on the scenario under which these conclusions are true
propositions. Thus the truth conditions will be satisfied in some
models (of the abstract scenario formalism), and not in others. We
reiterate that, for this reason, the truth conditions can only be
verified in the extended semantics where a concrete model of the
scenario is given.

Given an observer in a scenario and given a model of that
scenario (i.e., an extended semantics for the observer) we say that
the observer's conclusion is true at time ¢ or that the observer
has_true perception at time ¢ if the postulates of the definition
in (19) are true in that extended semantics. If the observer has
true perception at time ¢ for all ¢, and if the map = is the same
for each f, then we simply say that the observer has true
perception. This terminology allows truth an instantaneous
character.

EXTENDED SEMANTICS

So far we have assigned meaning to the observer’s conclusion
measures, but not to the states of affairs. A “state of affairs® in
C is a relationship between the observer and its objects of
perception. The objects of perception do not appear explicitly in
the definition of scenario, although each channeling arises from an
interaction between the observer and these objects. In order to
assign meaning to the states of affairs, ie., in order to extend
our semantics, we must construct models for the scenario in which
the objects of perception are specified.

In the next section we propose one such specification of the
objects of perception. Here we ask the following question: In
order to be able to extend our primitive semantics, what relation-
ship must obtain between the set of objects of perception and the
primitive semantics? Let us denote the set of objects of percep-
tion by B. The primitive semantics, as above, is (RCZ, E)In
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an extended semantics the set C of states of affairs plays a dual
role, both as the set of referents for O's conclusions and as the
set of relationships between O and B, The answer to our question
must ensure a compatibility between these roles. The elements of
B are the source of the channelings, they can in principle be
individuated by. @ only to the extent that they are individuated
by the relationships in C. We may now state our requirement of
compatibility between B and (R.C.Z,.E).

Assumpfion

Suppose that we have a primitive semantics (R,C,.Z,, £ ); in
particular, suppose ZE exists and has the property statedin
Postulate 1. Suppose that we are given a set B such that at the

instant ¢ of O's active time there is at most one channeling to O,

and that this channeling arises from the interaction of O with a

single element of B. The class of such interactions is parametrized
by C. Suppose further that the primitive semantics (R.C.Z,, £ )
induces an equivalence relation on B: two elements, say B, and B,
of B, are equivalent if and only if any channeling at time !
arising from the interaction of O with B, or B, results in the
same value of the measurable function X,, where X, is defined as
in the definition in (19). Since distinct elements of X, correspond
to distinct elements of C the equivalence classes are in one-to-one
correspondence with elements of C. Let B, denote the equi-
valence class in B which corresponds to the element c € C for the
equivalence relation just defined.

We can now say precisely what is the meaning of the
elements of C as relationships between O and B:

Condition

To say that an observer stands in the particular relationship
¢ of C to B at time ¢ means that the observer interacts with some
element of the equivalence class B_ at time ¢, and that a chan-
neling at time ¢ arises from this interaction; the channeling
results in the value E(c¢) for the measurable function X .

Since the state of affairs ¢ is specified by the corresponding
equivalence class B, we can think informally of the relationship
corresponding to ¢ as the "activation” of the class B_. As defined,
the notion is instantaneous. The formal definition of extended
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semantics is then the following:

20) Definition: Given a primitive semantics (RCZ,, E) for the
observer 9, an gxtension of this semantics consists in a set
F for which the hypotheses above hold (for some notion of

"interaction”). B is then called the set of gbijects of percep-

tion. Such extensions of primitive semantics are called
¢xtended semantics. In an extended semantics, the meaning
of the states of affairs as relationships between O and B is
described immediately above.

Once we are in an extended semantics, it is usually conven-
ient simply to bypass the states of affairs C and to speak only of
the objects of perception B and the configuration space X of the
observer. For the states of affairs map injectively to the con-
figurations by &, so no information is lost thereby. Moreover, by
assumption, all channelings originate in interactions of O with
elements of B. Thus the essential information in an extended
semantics for O is R,B ,®, and X, where

21) B —> X

is defined by & (B) = E(c) for that ¢ such that B, is the equi-
valence class (described immediately above) which contains B. In
this way, the equivalence classes now appear as the sets & {x}j,
for x € X, so that the original information carried by the states
of affairs is not lost.

Terminology

We refer to "the extended semantics defined by (R, B,®,
X)." (B,®) is called the gnvironment of the extended semantics.
We retain the terminology "configuration map" for ® ; now we can
speak of the configuration & (B) of the object of perception B.

~We call B a distinguished object of perception if &({B) is in E.

We say that B channels to @ at time ¢ if a channeling arises from
the interaction of O with B at time ¢, '

The postulates of the definition in (19) assume a new
significance in the context of extended semantics. Postulate 1 is
required to hold in order that the extended semantics exist.
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Postolate 2 is now also a truth condition whose veracity can be
tested in (R, B, ®, X,).

HIERARCHICAL ANALYTIC STRATEGIES AND NONDUALISM

In an extended semantics for an observer O, the states of
affairs C are relationships between O and a set B of objects of
perception, as stipulated in the definition in (20). The objects of
perception represent the minimal entities that can interact
instantaneously with the observer: at each instant of the obser-
ver's active time a channeling occurs, and there is at most one
channeling, corresponding to the interaction of the observer with
exactly one element of B. Thus a channeling indicates an
interaction of O with an object of perception. The conclusion of O
-- expressed by the output of the conclusion measure 7(s,.) -- is
an irreducible perceptual response of O to the channeling. The
interaction is an irreducible perceptual stimulus for Q. The word
“irreducible” here refers not to an absolute indecomposability, but
to an indecomposability relative to the observer's perceptual act;
In some (hypothetical) decomposition of both the observer and its
object of perception, a single channeling might involve many
“microchannelings” between components of the observer and its
object. But these microchannelings have no direct perceptual
significance for the original observer -- neither a channeling nor
a conclusion on the part of the original observer are associated to
a single microchanneling.

Up to now we have been considering the interactions of
systems without reference to their further decomposition -- what
one might call direct interactions. In this section we direct
attention, briefly and informally, to the problem of analyzing the
interaction between "complex systems," i.e., systems each admitting
more than one distinct level of structure. Assume for the moment
that the levels have already been distinguished. We suggest that
an appropriate analysis of such an interaction involves matching
levels of the respective systems in such a way that the total
interaction appears to consist of separate “direct interactions”
between the constituents at each of these matched levels. The
constituents of any given level, or stratum, are entities which are
not decomposable in that stratum, although they may be decom-
posable in terms of entities at lower levels of the stratification. It
may be that only one level of each system interacts directly with
% corresponding level of the other system, or it may be that any
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pair of levels, one level from each system, interacts directly. We
also assume that information flows between the various levels
within each system separately, so that the effects of the direct
interaction at any one level can propagate to other levels. Thus it
is not restrictive to require that an interaction should admit a
decomposition, for purposes of analysis, into separate direct
interactions between entities at certain matched levels. Nor is
such a requirement to be taken as a statement about the absolute
character of reality. _

It is rather a matter of choosing an analytical strategy. In
practice we want the freedom to choose the stratifications so as
to display effectively the total interaction in terms of direct
interactions at appropriate levels. (We wish to understand the total
interaction, not to embed some previously distinguished elementary
levels in a larger context.) This kind of freedom requires that our
concept of stratification has some flexibility, that its application
is not rigidly determined in every case (although each application
must produce strata whose mathematical relationship to one
another is of some well-defined type). The question of what
principles should govern the selection and “matching” of strata
rests in turn on the question of what constitutes “"direct inter-
action,” because the purpose of the matching of strata is to
display direct interaction. There need not be a unique answer to
this question, even in a concrete situation. Indeed, because of the
internal flow of information between the levels in each system,
there may be many ways to select a certain set of levels as being
the sites of direct interaction. But however the definitions of
stratification and direct interaction are uitimately fixed in a
particular case, we would adduce at least the following general
requirements:

22a) Irreducibility. The notion of "level" is sufficiently robust so
that irreducibility relative to a level makes sense: If P is an
irreducible constituent of a level L in a system A (ie., the
constituent P of A is a site for direct interaction at level L),
then although P may be decomposable in some way in the
total systern A4, there is no such decomposition within L

iself.

22b) Matching. To match levels L and L, in the respective
systems 4 and A4', means that every irreducible constituent of
L can in principle interact directly with every irreducible
constituent of L’



T

XY TR

124
Meta-Proposition

Insofar as any two entities interact they are congruent: the
part of their respective structures which is congruent delineates
the nature and extent of the primary aspect of their interaction.
Any aspect of the interaction which cannot be described in terms
of this congruence is secondary, and arises from the propagation
of the effects of the primary interaction by the internal flow of
information within the separate entities.

We can then take our notion of "direct interaction” to be the
"primary interaction® of this meta-proposition, so that direct
interaction is automatically nondualistic. Stratification of inter-
acting systems can then be defined in terms of levels of structure
at which congrueace cccurs.

Hierarchical analytic strategies differ significantly from “fixed
frame" analytic strategies. In the latter, there is a single un-
changing framework (such as spacetime) in which all phenomena of
interest are embedded.

NOTES
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This material is based on work supported by the National Science
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2. For simplicity, we assume parallel projection from the
world onto the retina.

3. This cubic representation implies no statement about the
dimensionality of the space of all closed curves in (R3) repre-
sented by level sets of polynominals,

4. For some discussion on this, see Hoffman and Flinchbaugh
1982 and Hoffman 1983.

5. Remarkably, one can prove this by finding one concrete
choice of the X and y;; for which the six equations have no (real
or complex solutions. Proof by concrete example is possible in
this case since, for systems of algebraic equations, the number of
solutions is an upper semicontinucus function of the parameters.
This fact often allows one to determine the number of interpre-
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tations associated to each premise rather easily. For more on
this, see Hoffman and Bennett 1986.

6. Among the formal studies of structure from motion are
Ullman 1979, 1981, and 1984; Longuet-Higgins and Prazdny 1580,
Webb and Aggarwal 1981; Hoff man and Flinchbaugh 1982; Hoffman
and Bennett 1985 and 1986; and Koenderink and van Doorn 1986,

7. The comment in bracket is ours; there are actually two
solutions which are mirror images of each other, as Ullman points
out elsewhere.

8. Among the formal studies of stereoscopic vision are Koen-
derink and van Doorn 1976, Marr and Poggio 1979, Grimson 1980,
Longuet~Higgins 1982, Mavhew 1982, and Richards 1983.

9, Among the formal studies of optical flow are Koenderink
and van Doorn 1975, 1976, and 1981; Marr and Uliman 1981; Horn
and Schunck [1981; and Waxman and Wohn 1987,

10. Among the formal theories of shading are Horn 1975,
Koenderink and van Doorn 1980, Ikeuchi and Horn 1981, and
Pentland 1984. Among the formal theories of reflectance are Land
and McCann 1971, Horn 1974, Maloney 1985, and Rubin and
Richards 1987. For reviews see Horn 1985 and Ballard and Brown
1982,

t1. In particular, when we define the collection of states of
affairs to be a measurable space C, we are not claiming that any
part of a physical world is a set.
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22¢c) Homogeneity. There is homogeneity within any given level in
the sense that the minimal syntax required to distinguish the
level L from other levels is not sufficient to discriminate
among the irreducible constituents of L.

22d) Transitivity. The notion of direct interaction is transitive:
Given three entities P,, P,, Py, if P; can interact directly
with P,, and P, can interact directly with Pg, then P, can
interact directly with Py, ‘

Terminology

An approach to the analysis of any type ofinteraction of
complex systems, which involves a notion of “direct interaction,”
and a corresponding notion of stratification of the respective
interacting systems into levels at which direct interaction occurs,
wili be called a hierarchical analytical strategy if the requirements
(22a) to (22d) above are fulfilled. This terminology is informal,
since we have not rigorously grounded it. However it is useful as
it stands for purposes of motivation and description. Here is how
we apply the terminology in observer theory, im a particular
perceptual context where a hierarchical analytic strategy has been

adopted:

23} To specify the objects of perception for an observer is to
specif y what constitutes direct interaction for that observer.

This proposal is reasonable, for we have already charac-
terized the objects of perception for O as “"minimal entities with
which O can interact instantaneously,” or "irreducibie perceptual
stimuli of O" in a given extended semantics. If we imagine this
semantics sitting at one level in a hierarchy, this characterization
of O's objects of perception models "direct interaction” at that
level. Now suppose we are given a hierarchical system, say 4, in
which the observer O is an irreducible entity at some distin-
guished level L. If B is any other system, perceptual or otherwise,
with which A can interact, then in virtue of (23) the level L’ of B
which is matched with L must consist of obiects of perception for
O. We claim that other entities, say P, in A at the same level L
as ¢ must also be be objects of perception for O. For by require-
ment (22b) above, the entities in L’ can interact directly with
these. And by (22d), O itself can in principle interact directly
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thpse. And by (22d), O itself can in principle interact directly
with such P. Thus, on the one hand the entities P at the same
level L as O may be represented as objects of perception of O:
tl}ey are structurally equivalent to objects of perception in thé
given asalytical framework. On the other hand, by (22¢), these P
are structurally indistinguishable from O, at least in terms of the
syntax associated to the level L. We finally conclude that the P's
also have some of the structure of observers.

Hypothesis

This suggests a hypothesis. The objects of perception for an
observer O have the same structure as O in the following sense:
the objects of perception share with O that part of O’s structure
which. defines it as an irreducible entity at the fixed level L of
the given hierarchical analysis. Stated succinctly, the objects of
perception of O may themselves be represented as observers.

) This hypothesis makes sense only in the context of a
?uerarchicai analytic strategy; since that notion is not rigorous, it
is clear that the argument given above which leads to the
hypotheis is not intended to be rigorous. However the hypothesis
motivates the construction of rigorous models of extended
§emaatics in Bennett et al. 1988, models which are designed to be
incorporated in a particular, well-defined hierarchical analytic
strategy. The hypothesis says that a fundamental nondualism is
associated with the various levels of the hierarchy; more precisely
the nondualism is a property of the syntax associated with each
such level, which is the minimal syntax necessary to distinguish
that level. Thus, in the presence of a hierarchical analytic
strategy, the apparently "dualistic” interaction of two complex
systems is decomposable into a set of "nondualistic" interactions
between entities at matched levels, together with information
propagation through the levels of each system. On the other hand,
one could take an approach which simply begins with a suitable
hypothesis of nondualism and observe that it suggests {though it
ce;tainiy does not require) hierarchical strategies. For example we
might begin with a metaproposition similar to the following.
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Appendix:
Mathematical notation and terminology

The definition of observer given in this papermakes use of
several mathematical concepts from probability and measure theory.
In this appendix we collect basic terminoclogy and notation from
these fields for the convenience of the reader. (For more
background, beginning readers might refer to Breiman 1969 or
Billingsley 1979. For advanced readers we suggest Chung 1974 and
Revuz 1984.)

Let X be an arbitrary abstract space, namely a nonempty set
of elements called "points.” Points are often denoted generically by
x. A collection X of subsets of Y is called a g-algebra if it
contains X itself and is closed wunder the set operations of
complementation and countable union (and is therefore closed
under countable intersection as well). The pair (X,X) is called a
measurable space and any set 4 in X is called an event, If (X,X)
is a measurable space and ¥ < X is any subset, we define a ¢
-algebra Yon Y as Y = {A 1 Y | A€ X). This measurable structure
on Y is called the induced measurable structure. A map x from a
measurable space (X,X) to another measurable space (Y.Y), #: X
—> ¥, is said to be measurable if x *(4) is in X for each 4 in
Y; this is indicated by writing w€X/Y. In this case the set g(x) =
{#Y(A)A€ Y) is a sub -algebra of X, called the g-algebra ofx. It
is also denoted ®'Y. A measurable function « is said to be
bimeasurable if, moreover, w#(A4) is in_ Y for all 4 € X. A mea-
surable function whose range is R or R = R U {- o0, 00} is also
called a random variable; the symbol X_also denotes the random
variables on X. (The g-algebra on R or R is described in the next
paragraph.) A measure on the measurable space (X,X} is a map u
from X t¢ RU {oo}, such that the measure of a countable union of
disjoint sets in X is the sum of their individual measures. A
measure M is positive if the range of B lies in the closed
interval [0,00]. A measure p is called g -finite if the space X is
a countable union of events in X, each having finite measure. A
property is said to hold "p almost surely” (abbreviated g as.) or
* u almost everywhere” (u a.e.) if it holds everywhere except at
most on a set of H-measure zero. A support of a measure is any
measurable set with the property that its compiement has measure
zero. If X is a discrete set whose ¢ -algebra is the collection of

“all its subsets, then counting measure on_X is the measure M

defined by u({x}) = 1 for all x € X. A probability measure is a
measure u whose range is the closed interval [0,1] and that

B = T Y
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satisfies w(X) = 1. A Dirac _measure is a probability measure
supported on a single point. If » and u are two measures defined
on the same measurable space, we say that p is absolutely
continuous with respect fo u (written p <<g) on a measurable set
E if p(A4) = 0 for every AcE with u(4) = 0. A measure class on
{(X,X} is an equivalence class of positive measures on X under the
equivalence relation of mutual absolute continuity. Given a
measure space {X,X,u ) and a mapping p from (X, X, ) to a measu-
rable space (Y.Y), one can induce a measure p.pu on (¥,Y) by {p.
w(A4) = u(p Y A4)). Then p.u is called the distribution of p with
respect tou, or the projection of g by p or the pushdown of g by
p.

If X and Y are two topological spaces, amap /1 X —> Y is
continuous if f-YU) is an open set of X whenever U is an open
set of Y. A confinuous f is a homomeorphism if it has a continuous
inverse, A basis for a topology is any collection of sets that are
open and such that any open set is a union of sets in the basis. A
topological space is called separable if it has a countable basis.
The smallest g -algebra algebra containing the open sets of a
topology (and therefore also the closed sets) is called the g-
algpebra generated by the topology or the associated measurable
structure of the topology. A metric on a set X is a function 4; &
X X —> R, = [0,00) such that for all x, y, z€ X, d(x,y} = 0 iff x
=y, d(x,y} = d(y.x), and d(x.y) + d{y.z) > d{x.z). Given €2> 0,
the set By(x, €) = (¥ | d(x, y} < € } is called the € -ball centered
at_x. A topological space is metrizable if there is a metric on the
space such that the open balls in the metric are a basis for the
topology. A standard Borel space is a separable metrizable
topological space with a ¢ -algebra generated by the topology. The
topology on R or R is here taken to be that generated by the
open intervals. The associated measurable structure constitutes the
Borel sets. Lebesgue measure A i the unique measure on the
Borel structure such that A{(a.b)) = b - a for b > a. The Lebesgue
structure is the smallest g-algebra containing all Borel sets and all
subsets of measure zero Borel sets. Lebesgue measure A then
extends to a measure with the same name on the Lebesgue
structure,

Let (X,X), (¥,Y) be measurable spaces. A kernel on X relative
to Y or a kernel on X relative to Y is a mapping N: ¥V x X —> R
Ufoo}, such that:

(i) for every y in Y, the mapping A —> N(y.4) i$ a measure on

X, denoted by N{y,.);




128

(ii) for every 4 in X, the mapping y —> N(y,4} is a measurable
function on Y, denoted by N(.,A4).

N is called positive if its range is in [0,00] and markovian if it is
positive and, for all y € Y, N(y, X) = 1. If X =Y we simply say
that N is a kernel on X In what follows, all kernels are positive
unless otherwise stated. If N is a kerpel on ¥ x X and M is a
kernel on X x W, then the product NM(y.A) = [ N(y.dx)M(x.4) is
also a kernel. _

Let (X,X) and (¥,Y) be measurable spaces. Let p: ‘X —> Y be
a measurable function and g a positive measure on (X,X). A
regular _conditional probability distribution {abbreviated rcpd) of u
with respect to p is a kernel mb;: Y x X —> [0,1] satisfying the
following conditions:

(i) nl is markovian;
(i1) m#(y,.) is supporied on p Yy} for p.p-almost all y € ¥:
(ifi) 1 g € LY(X ), then [ygdp = [ y(psn Ndy) S p-10yy M.

dx)g(x). -

It is a theorem that if (X,X) and (Y,Y) are standard Borel
spaces then an rcpd m_ exists for any probability measure g. In
generai there will be many choices for m# any two of which will
agree a.e. p«d on Y (that is, for almost all values of the first
argument). If p X —> Y is a continuous map of topological
spaces which are also given their corresponding standard Borel
structures one can show that there is a canonical choice of m&
defined everywhere.




