
CHAPTER FIVE

REFLEXIVE FRAMEWORKS

In this chapter we develop a framework, called a reflexive observer frame-
work, in which the objects of perception of an observer O are themselves ob-
servers having the same X, Y , E, and S as has O. We display the relationship
between reflexive observer frameworks and environments for extended seman-
tics. We illustrate the definition of reflexive observer framework with several
examples.

1. Mathematical notation and terminology

The examples of reflexive observer frameworks given in this chapter make use
of several mathematical concepts from group theory. In this section we collect
basic terminology and notation for the convenience of the reader.1

A topological group G is a group that is also a topological space and sat-
isfies (i) the map G → G which sends every element to its inverse is a home-
omorphism and (ii) the map G × G → G describing the group operation is
continuous. A measurable group G is a group that is also a measurable space,
such that the maps in (i) and (ii) above are measurable. Every topological
group is also a measurable group, with respect to the measurable structure
associated to the topology (cf. 2–1).

If H is an equivalence relation on a set G, then the set of all equivalence
classes is called the quotient set of G by H and is denoted by G/H. The map
π:G → G/H which assigns to each g ∈ G the equivalence class to which g

belongs is called the canonical map. If G is a topological space, then G/H has a
canonical topology: the quotient topology is the finest topology on G/H which
makes the canonical map π continuous. If G is a measurable space, then G/H
has a canonical measurable structure: the quotient measurable structure is the
largest σ-algebra on G/H which makes π measurable.

Let (G, ·) be a group with subgroup (H, ·), and a an arbitrary element

1 For more background we suggest Gilbert (1976).
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of G. The set Ha = {ha| h ∈ H} is a right coset of H in G. The set aH =
{ah| h ∈ H} is a left coset of H in G. The relation of belonging to the same left
coset is an equivalence relation on G; similarly for right cosets. A subgroup
(H, ·) of a group (G, ·) is called a normal subgroup of (G, ·) if g−1hg ∈ H for
all g ∈ G and h ∈ H. If (H, ·) is a normal subgroup of (G, ·), the left cosets
of H in G are the same as the right cosets of H in G. In this case the set of
cosets G/H = {Hg| g ∈ G} has a natural group structure induced by that of
G, i.e., (Hg1) · (Hg2) = H(g1 · g2).

If (G, ·) and (H, ∗) are two groups, the function f :G→ H is called a group
morphism or a group homomorphism if f(a · b) = f(a) ∗ f(b) for all a, b ∈ G. A
bijective group morphism is called a group isomorphism. If f :G→ H is a group
morphism, then the kernel of f , denoted by Kerf , is the set of elements of G
that are mapped by f to the identity of H; Kerf is a normal subgroup of G.

A group (G, ·) acts on the left on the set M if (1) there is a function
ψ:G×M →M such that, letting gm = ψ(g, m), we have (g1g2)m = g1(g2m)
for all g1, g2 ∈ G,m ∈M , and (2) ım = m if ı is the identity of G and m ∈M .
(G acts on the right if condition (1) is replaced by ψ(g1g2,m) = ψ(g2, ψ(g1,m));
in this case we write ψ(g,m) = mg. All actions here are left actions unless
otherwise stated.) If G acts on M , we say that M is a G-set. If M is a
topological (respectively measurable) space, the action is said to be continuous
(respectively measurable) if for all g ∈ G the map m 7→ gm is a continuous
(respectively measurable) map from M to M . The set of elements of G that
fix m ∈ M , i.e., {g ∈ G| gm = m}, is called the stabilizer of m and is denoted
Σm; each stabilizer is a subgroup of G. If each m ∈ M is stabilized only by
the identity ı of G, we say that G acts faithfully on M . G acts transitively on
M if for every m1,m2 ∈ M there exists g ∈ G such that gm1 = m2. M is a
principal homogeneous space for G if G acts both transitively and faithfully on
M . The set of all images of an element m ∈M under the action of a group G
is called the orbit of m under G, and is denoted by Gm; Gm = {gm| g ∈ G}.
The orbits are the equivalence classes for an equivalence relation on M ; two
elements of M are in this relation precisely when they are in the same orbit.
The quotient set for this relation is therefore the set of distinct orbits; it is
denoted M/G.

Let G act measurably on M . A measure µ on M is called G-invariant if,
for every measurable set A of M , µ(A) = µ(gA) for any g ∈ G. If G acts on
X, and E ⊂ X, then E is an invariant subset for the action if GE = E.
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2. Definition of reflexive observer framework

We now begin to study “participator dynamics” or, more properly, “participa-
tor dynamical systems on reflexive observer frameworks.” The phrase reflexive
observer framework refers to a structure for the set B of objects of perception
and for the configuration map Φ:B → X of an environment (4–4.4). In this
chapter we introduce reflexive observer frameworks and the subclass of sym-
metric observer frameworks; we study this subclass because it is natural and
mathematically tractable. Dynamics enters the picture in the next chapter.
We will find that, in the context of this dynamics, the question of true percep-
tion can be treated in a principled manner; we discuss this in chapter eight.
The dynamics underlies a general-purpose theory of interaction which is non-
dualistic and which employs a hierarchical analytic strategy (cf. 4–5). Xt will
appear as one aspect of this dynamics.

We begin with an observer O = (X,Y,E, S, π, η). We want to construct
a model of an environment (B,Φ) for O, as per 4–4. The nondualism of the
model results, as stated before, from the assumption that the objects of perception
are observers. We take B to be some set of observers whose X,Y,E and S are
the same as that of O. Then Φ assigns to every such observer an element of X.
A reflexive observer framework furnishes the relationship between an observer
B ∈ B and the element Φ(B) as follows. There is given a map Π which assigns
to each e ∈ E a map from X to Y ; thus for e ∈ E we have

Π(e):X → Y.

If Φ(B) = e ∈ E, then we require that the perspective map of the observer
B is Π(e), so that in this case B = (X,Y,E, S,Π(e), η) for some η. But if
Φ(B) = x /∈ E, we require nothing. The word “reflexive” indicates that each
e ∈ E represents both a distinguished configuration and a set of observers
which perceive the distinguished configurations of E—namely the set of those
observers B ∈ B whose perspective is Π(e). This set of observers is represented
by the preobserver (X,Y,E, S,Π(e)).

Once this structure is in place, we notice that the original observer O plays
no role other than to specify the X,Y,E and S. And for this purpose, any of
the observers in B serve equally well. In fact, we think of a reflexive observer
framework as providing an environment simultaneously for all the observers in
B; each of these observers has the same set of objects of perception, namely B
itself. We now present these ideas formally.
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Notation 2.1. Given two measurable spaces (X,X ) and (Y,Y), we denote
the measurable maps from X to Y by Hom(X,Y ).

Definition 2.2. Let (X,X ) and (Y,Y) be fixed measurable spaces. Let
E ⊂ X and S ⊂ Y be measurable subsets. A reflexive observer framework on
X , Y , E, S is an injective map Π:E → Hom(X, Y ) such that for each e ∈ E,
Π(e) is surjective, and Π(e)(E) = S.

Terminology 2.3. We denote a reflexive observer framework by

(X,Y,E, S,Π).

If Π has been fixed, we write πe = Π(e), so that we can use the notation

(X,Y,E, S, π•)

to represent the framework in this case; the subscript “•” represents a variable
on E. In this way the reflexive family is displayed as a family of preobservers
parametrized by E. X is called the configuration space of the framework. Y is
called the premise space of the framework. E is called the distinguished configu-
rations of the framework. S is called the distinguished premises of the framework.
Sometimes we drop the word “observer” and use the expression reflexive frame-
work.

Π will have, in general, some additional structure. If, for example, X and
Y are topological spaces and all the maps πe are continuous, then Π might be
continuous for some suitable topology on the set of continuous maps from X

to Y . However such restrictions do not belong in the general definition.
We give a concrete example of a reflexive framework at the end of this

section (and in the next section we present classes of formal examples). We
first make more explicit the connection between reflexive frameworks and en-
vironments.

As we have seen, a reflexive framework identifies each distinguished config-
uration e ∈ E with a perspective. The notation (X,Y,E, S, π•) of 2.3 suggests
another way to interpret reflexive frameworks. Suppose we begin with a set B
of observers all of which have the same X,Y,E, S. B might be, for example, the
set of all observers with these X,Y,E, and S (and with arbitrary perspective
maps and conclusion kernels). Then if e ∈ E is given, we can interpret the no-
tation (X,Y,E, S, πe) to mean the subset of B consisting of all those observers



5–2 REFLEXIVE FRAMEWORKS 83

whose perspective map is πe for that particular e. If we want to identify B
explicitly in this notation we write (B;X,Y,E, S, πe) or just Be. The elements,
if any, of this set Be are individuated only by their conclusion kernels. Let BE
denote the subset of B consisting of those observers whose perspective map is
one of the πe’s, so that

BE =
⋃
e∈E
Be. (2.4)

Then (X,Y,E, S, π•) denotes the partition of BE into the sets Be = (X,Y,E,
S, πe) for e ∈ E. If we must make B explicit we write (B;X,Y,E, S, π•) or just
B•. We summarize:

2.5. Let (X,Y,E, S,Π) be a reflexive framework. An alternate notation
for the framework is (X,Y,E, S, π•). Let also be given a set of observers
B, all having the same X,Y,E, and S. Then we can interpret the notation
B• = (X,Y,E, S, π•) to mean the partition of the subset BE of B into the sets
Be = (X,Y,E, S, πe), e ∈ E. This context fixes a meaning for the preobserver
(X,Y,E, S, πe): it is a particular set of observers—namely Be.

We can now state formally the basic connection between reflexive frame-
works and environments.

Definition 2.6. Let (B,Φ) be the environment of an extended semantics for
an observer O = (X,Y,E, S, π, η), where B is a set of observers all having
the same X,Y,E, and S as O, and where Φ is the configuration map of the
extended semantics,

Φ:B → X.

Let (X, Y , E, S, π•) be a reflexive framework on X,Y,E, and S. Suppose
that if Φ(B) = e ∈ E (i.e., if B ∈ Be) then πe is the perspective of B. We then
say that the reflexive framework supports the environment of the extended semantics.

In this case, each observer B ∈ BE has its perspective determined by its
configuration Φ(B). 2.4 becomes

BE = Φ−1(E), (2.7)
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indicating that BE is the set of distinguished objects of perception (cf. 4–4.4).
By contrast, there need be no relation between the perspective of an observer
in B − BE and its configuration in X − E.

If a reflexive framework supports an environment (B, Φ) then, with nota-
tion as above, we assume that the map

Ξ: C → X

is bijective, where C is the set of states of affairs for the semantics. Then the
subsets Be of B defined above play the role of the equivalence classes Bc of
B associated, as in 4–4, to the distinguished states of affairs c ∈ C; in fact
Bc = Be when Ξ(c) = e.

Suppose that O = (X,Y,E, S, π, η) is an observer, and (R,B,Φ, Xt) is an
extended semantics for O, where B is a set of observers with the same X,Y,E, S
as O. Suppose that no reflexive framework is given at the outset, but that the
map Φ has the following property: for each e ∈ E, all observers in Φ−1 (e)
have the same perspective. Then we can construct a reflexive framework which
supports the environment (B, Φ): we simply construct the map Π which defines
the framework by letting Π(e) be the perspective of any observer B ∈ Φ−1(e).

Terminology 2.8. If a reflexive framework supports an environment (B, Φ),
we call the elements of B the observers in the framework. We view B as the set of
objects of perception for each observer in B, and we take the given map Φ:B →
X to be the configuration map for each observer in B. If we are given a reflexive
framework (X,Y,E, S, π•) without specifying a particular environment which
the framework supports, we still use the expression “observer in the framework”
to refer to any observer having the same X,Y,E, S and having one of the
πe’s for its perspective. In other words, an observer in the framework is any
observer which completes a preobserver (X,Y,E, S, πe) for some e ∈ E. We
will sometimes use the expression “perspective in the framework” to refer to a
point of E, i.e., we abuse language by identifying e with πe.

This terminology emphasizes that a reflexive framework represents a fam-
ily of observers that observe each other. This family can be taken to be the
set B of any environment which is supported by the framework.

We illustrate the concept of reflexive framework with an example depicted
in Figure 2.9. Here the configuration space X of the framework is the plane
R2, a portion of which is represented by the rectangle in the figure. The
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FIGURE 2.9. A reflexive observer framework.

distinguished configuration set is the set E of points in the plane that have
integer coordinates. A few such points are represented by dots inside the
rectangle. The premise space Y is the unit circle, plus one point at the center
of the circle (call it s0). We view X and Y with the measurable structures
associated to their topologies (c.f. 2–1). The distinguished premise set S is
s0 together with the set of points on the unit circle in Y which correspond to
angles having rational tangents. We view Y as a measurable space where Y is
the σ-algebra generated by the standard Borel algebra on the unit circle, along
with {s0}.

Now to describe the framework, we must assign to each e ∈ E a measurable
function πe:X → Y such that πe(E) = S. We do this as follows. To each
point e of E associate a unit circle centered at e. We think of these circles as
translated, but not rotated, copies of the unit circle of Y . Let x ∈ X,x 6= e.
Then πe(x) is the point where the line determined by e and x intersects the
unit circle centered at e; since this circle is a copy of Y , we view πe(x) as
a point of Y . We define πe(e) = s0 in Y. If e 6= e′, since both have integer
coordinates the line joining them has rational slope, so that the point πe(e′) on
the circle represents an angle with rational tangent. It follows that πe(E) = S

as desired.
Figure 2.9 shows this procedure for three points of E: a, b, and c. In
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particular it shows (by means of green dots) πa(c), πb(c), πc(a), and πc(b) on
separate copies of Y which are depicted as centered at a, b, c. Each observer in
the framework has its own copy of Y , at most one point of which “lights up”
at any given instant. (However, when viewing Figure 2.9 the reader should
realize that the circles representing these copies are drawn inside X only for
convenience in visualizing the maps πa, πb, πc.) For example, suppose that
A,B,C are three observers in the framework whose perspectives are πa, πb, πc
respectively. Suppose, moreover, that at a particular instant t, B and C chan-
nel with each other. Then, as shown in Figure 2.9, at that instant the point
πb(c) lights up on B’s copy of Y and πc(b) on C’s copy. The point πc(a) in the
figure does not light up at time t in this case. The point πa(c) may light up at
time t, but if so it is not due to a channeling between A and C, for an observer
interacts with at most one object of perception at any instant. It would be due
to a channeling of A with some other observer whose perspective corresponds
to a point of X on the same line through a as c.

We will need one further definition, which provides the syntax for the
discussion of interpretation kernels in the context of reflexive frameworks.

Definition 2.10. A family of kernels {ηe}e∈E is called a family of interpretation
kernels for the reflexive framework (X, Y , E, S, π•) if, for each e ∈ E, (X, Y ,
E, S, πe, ηe) is an observer.

A family of interpretation kernels is a way to associate a single observer
to each perspective in the framework, i.e., the observer (X, Y , E, S, πe, ηe)
is associated to the perspective πe. Equivalently, it is a way to complete each
preobserver (X, Y , E, S, πe) (for e ∈ E) to an observer.

3. Channeling on reflexive frameworks

We now make precise the term “channeling” on a reflexive framework. Recall
that, in the primitive semantics, channeling denotes the presentation of an
observer with a premise from an undefined probabilistic source (4–2.2). In the
extended semantics, we speak of an object of perception “channeling” to an
observer (4–4.4); this means that a given channeling arises from an interaction
of the observer with that object of perception. Let us consider an environment
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(B, Φ) supported by a reflexive framework. We have a set B of observers—the
observers in the framework—which is the set of objects of perception for each
of its members. Now, according to the assumptions of extended semantics for
an observer O (4–4.1), at each instant of time O participates in at most one
channeling, implying that O interacts with but one of its objects of perception.

We make one further, and independent, assumption about channeling in
this reflexive framework. This assumption supports a strategy which seeks to
use direct interactions between observers as the foundation for an analysis of
dynamics.

Assumption 3.1. Let (B, Φ) be the environment of an extended semantics
supported by a reflexive framework. With notation as above, let A,B ∈ B.
Suppose at time t that B channels to A, i.e., that B is the object of perception
for A at that time. Then A also channels to B at time t, i.e., A is the object
of perception for B. (Compare Lefebvre (1982).)

For a given instant t, let L ⊂ B denote those observers in B which channel
at time t. For any B ∈ L, let χ̃(B) ∈ L be the observer with which B

channels. In view of Assumption 3.1, χ̃:L→ L is a well-defined function with
the property that χ̃2 = IdL (the identity map on L); a map with this property
is called an involution of L. (B may channel to itself: B = χ̃(B) is permissible.)
We arrive at the following definition:

Definition 3.2. Let (X,Y,E, S, π•) be a reflexive framework that supports
the environment (B, Φ) (4–4.4).
(i) A (B,Φ)-channeling on the framework is a pair (L, χ̃) consisting of a non-

empty subset L ⊂ B and an involution χ̃:L → L. (When there is no
danger of confusion about B and Φ we simply say “channeling on the
framework.”)

(ii) Such a channeling is elementary if there are at most two elements in L.

With the hypotheses and notation of Definition 3.2, let A,B ∈ B and
suppose that at time t, A and B channel to each other, so that A = χ̃(B).
Then πΦ(A) and πΦ(B) denote the perspectives of A and B respectively. Thus
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the premise for A’s perceptual inference resulting from this channeling is

πΦ(A)(Φ(B)),

and similarly the premise for B’s perceptual inference is πΦ(B)(Φ(A)). More
generally, we can use the χ̃-notation, and summarize as follows:

3.3. With the hypotheses and notation of 3.2, let (L, χ̃) be a channeling,
and let A ∈ L. Then A’s premise resulting from this channeling is

πΦ(A)(Φ(χ̃(A))).

Terminology 3.4. Given a channeling (L, χ̃), we denote

D =
⋃

A∈L∩BE
{A, χ̃(A)}, χ = χ̃|D.

(χ is the restriction of χ̃ to D.) We call the channeling (D,χ) the distinguished
part of (L, χ̃).

4. Formal examples of reflexive frameworks

This section presents formal examples of reflexive frameworks. The examples
do not represent a broad spectrum of types of frameworks, nor do they display
an obvious relevance to everyday perception. Rather, they have been chosen to
direct the exposition toward the particular subclass of symmetric frameworks.
These we develop in the next section; they are the frameworks of primary
interest in this book. In section six we develop in detail a perceptual example.

Example 4.1. Let G be a measurable group (see 5–1), and E and H mea-
surable subgroups of G. Denote by Y = G/H the set of left H-cosets with its
quotient measurable structure; H need not be normal. Let π:G→ G/H be the
canonical map, and let S = π(E) = EH/H. (EH denotes the set {eh|h ∈ H
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and e ∈ E}, so that EH/H is the set of left cosets of H by elements of E.)
Define Π:E → Hom(G, G/H) as follows: for each e ∈ E, Π(e) is the map
πe:G → G/H given by πe(g) = π(ge−1). We then have πe(E) = π(Ee−1) =
π(E) = S for all e (since E is a group), as required by the definition of a
reflexive framework. For each e ∈ E, π−1

e (S) = π−1(S) = EH.

E ⊂ G = Xyπe|E yπe
S = HE/H ⊂ G/H = Y

In this particular reflexive framework the set of fibres {π−1
e (y) | y ∈ Y } is

independent of e (as a set of subsets of X); in fact for each e the fibres are the
left H-cosets in X. To change e is simply to permute the fibres.

Example 4.2. This example generalizes the previous one. Again let G be
a measurable group. But now let H be an arbitrary group which acts mea-
surably on G on the right. (Thus the elements of H correspond to bijective,
bimeasurable maps from G to itself, maps which are not necessarily group
homomorphisms.)

Let G/H denote the orbits in G for the action of H, and π:G → G/H

the canonical map. Let E be a measurable subgroup of G, and let EH/H
denote the subset of G/H consisting of those orbits which contain an element
of E. For e ∈ E, define πe(g) to be π(ge−1) = H(ge−1), i.e., the H-orbit
on G containing ge−1. Let X = G, Y = G/H, E the given subgroup of G,
S = EH/H, and πe as defined above.

E ⊂ X = Gyπ|E yπ
EH/H = S ⊂ Y = G/H

In the case where the H in this example is a subgroup of G, acting on G by
left translation, we simply recover the previous Example 4.1. However this
case accounts for only a very small class of “natural” measurable actions of
one group on another. In fact, the example illustrated in Figure 2.9 is of the
type of 4.2, but not 4.1. In the next example we present the n-dimensional
generalization of the one in Figure 2.9. In the general situation of Example 4.2
it is not true (as it was in Example 4.1) that all the maps πe for e ∈ E have
the same set of fibres over S. This is evident from the next example.
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Example 4.3. With the notation of 4.1, let X = G = (Rn, +) be the n-
dimensional vector group; “+” denotes vector addition. LetH = (R+, multiplication),
i.e., H is the multiplicative group of positive real numbers acting by dilation
(scalar multiplication) on Rn. Then Y = G/H is the set of half-rays emanat-
ing from the origin, together with one point s0 which is the orbit consisting
of the origin itself. Since the set of half-rays is naturally identified with the
(n − 1)-dimensional unit sphere Sn−1 centered at the origin in Rn, we have
Y = G/H = Sn−1 ∪ {s0}.

Now let E = (Zn, +), the subgroup of points with integer coordinates, or
let E = (Qn, +), the subgroup of points with rational coordinates. In either
case the image by π of E in Y is the same: it is the set consisting of the point
s0 together with all points on Sn−1 with the property that the ratio of any pair
of coordinates is rational. This set is denoted Sn−1

r in the following diagram.

Qn or Zn = E ⊂ X = Rnyπe|E yπe
Sn−1
r ∪ {s0} = S ⊂ Y = Sn−1 ∪ {s0}

For e ∈ Rn = X we may conceptualize πe as follows: translate the unit sphere
Sn−1 (originally centered at the origin) to e. For any v ∈ Rn, if v 6= e take
the ray from e to v, and intersect it with this translated Sn−1 to obtain πe(v).
Define πe(e) = s0.

Example 4.4. Here is a further generalization of Example 4.2 in which the
constructions can be described without substantial change in the syntax. In its
generality this example contains all the others of this section. Again, let G be
a measurable group. We suppose that G has a partition in measurable subsets;
denote this partition as well as the corresponding equivalence relation by H.
Let Y = G/H and let π:G → Y be the canonical map. We take for the σ-
algebra Y the quotient measurable structure. Let J be a measurable subgroup
of G with the property that π(J) ⊂ Y is measurable. We set S = π(J).

Moreover, let us assume that we have a measurable space X on which G

acts measurably (on the left). Let x0 be a distinguished point of X, and let
E = Jx0 ⊂ X. We also assume the following:
(i) G acts transitively on X.
(ii) Let e ∈ E, and g, g′ ∈ G. If ge = g′e then g, g′ are in the same H-class in

G.
From this we now describe a reflexive framework on X, Y , E, S. Assumptions
(i) and (ii) insure that we can define πe in a manner consistent with the previous
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examples. In fact, for e ∈ E and x ∈ X, let xe−1 denote any element g ∈ G
such that ge = x. Such a g exists because of (i). Then define πe(x) = π(xe−1).
Assumption (ii) means that this definition of πe(x) is independent of the choice
of xe−1, i.e., πe is well defined. To see that πe(E) = S for all e, let e1 ∈ E,
and suppose that e = jx0, e1 = kx0, where j, k ∈ J . kj−1 is then one choice
for e1e

−1, so
πe(e1) = π(e1e

−1) = π(kj−1) ∈ π(J) = S.

Moreover it is clear that as e1 runs over E, kj−1 runs over J , so that all
elements of S are represented.

E = Jx0 ⊂ Xyπe|E yπe
S = π(J) ⊂ G/H = Y

Let Σe denote the stabilizer of e (i.e., the subgroup of G which leaves e fixed).
In view of (i) above we may identify X with G/Σe; under this identification
x ∈ X corresponds to the coset gΣe where g ∈ G is any element such that
ge = x. For g, g′ ∈ G, ge = g′e if and only if g and g′ are in the same left
coset of Σe. Thus (ii) above is equivalent to the assertion that every coset of
Σe is contained in one H-class, or equivalently that each H-class is a union of
cosets of Σe. We can then associate to each e ∈ E a natural map

X = G/Σe → G/H = Y

as follows. If x ∈ X with x = ge, x is identified as above with gΣe in G/Σe
which is then mapped to the element of G/H which represents the H-class
containing gΣe. But, since g here is one choice for xe−1, this map from X to
G/H is just our πe defined above.

Example 4.4 generalizes 4.2 in two respects. First, the equivalence relation
H on G which gives the canonical map π need not arise from the orbits of a
group action. Secondly, the action of G on X need not be faithful: for example,
whereas in 4.2 X = G, here we can have X = G/Σ where Σ is a non-normal
subgroup of G. However the action of G on X still must be transitive.

Example 4.5. We show how to get a class of generalizations of Example
4.1, where H is still a subgroup of G acting by translation, but now X is a
measurable, transitive G-set for which the action is not faithful. This means
that X may be identified with G/Σ, the left cosets of the stabilizer Σ of some
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fixed x0 ∈ X (as we saw in Example 4.4). We assume that the measurable
structure of X is given by the quotient structure of G/Σ.

As in 4.1, let Y = G/H. We assume
1. Σ ⊂ H

and by so doing get a canonical surjective (and measurable) map π:X → Y

given by π(gΣ) = gH.
Let J be a measurable subgroup of G and set E = Jx0. We think of E as

JΣ/Σ: the left cosets of Σ by J . Then the map π restricts to π|E :JΣ/Σ →
JH/H. We set S = π(E) = JH/H.

Example 4.4 tells us that we can define the map Π of a reflexive framework
if its assumption (ii) is satisfied: gΣe ⊂ gH for all e ∈ E and g ∈ G. If e ∈ E,
then e = jx0 for some j ∈ J and Σe = jΣj−1. We therefore impose another
condition.

2. For all j ∈ J , jΣj−1 ⊂ H.
(For example, J may be contained in the normalizer of Σ, i.e., jΣj−1 = Σ, or
j may be contained in the normalizer of H.) We have

E = Jx0 = JΣ/Σ ⊂ G/Σ = Xyπ|E yπ
S = JH/H ⊂ G/H = Y

The maps πe are well-defined as follows: if e = jΣ and x = gΣ (i.e., e = jx0,
x = gx0), then

πe(x) = (gj−1)H.

If Σ = {ı} this example reduces to 4.1, and in any case it shares with 4.1
the property that all the maps πe, e ∈ E, have the same set of fibres, namely
the cosets of H (mod Σ). In order that we get a nontrivial situation, we must
assume

3. J 6= Σ (otherwise E is a singleton),
J 6= G (otherwise E = X and S = Y ),
J 6⊂ H (otherwise S is a singleton).

5. Symmetric observer frameworks

All of our examples of reflexive frameworks have involved groups, although
this is certainly not required by Definition 2.2. In every example in section
three, X is a G-set for some group G in such a way that E is a J-set for a



5–5 REFLEXIVE FRAMEWORKS 93

subgroup J of G; the actions are transitive. Moreover, in each case the maps
πe in the framework are deduced “by translation” from some fixed measurable
map π:G→ Y = G/H, H being an equivalence relation on G. In fact πe(x) =
π(xe−1), where xe−1 denotes any element of G such that (xe−1)e = x. In other
words xe−1 is the difference between x and e measured in terms of G. This
means (using the terminology of 2.8) that the observations by an observer O
with perspective e in the framework depend only on the structure of X relative
to e (in the sense of the action of G.)

Consider Example 4.4. It is not misleading to think of each e ∈ E
as the center of a “frame for observation” which consists of the structure
(G, Y, J, S, π) “translated” to e, where translation here refers to the action of
G. This frame provides the syntax for the perceptual representations of any
observer in the framework relative toO; the notion “relative” is grounded in the
G-space structure of X. This is the basis for a symmetric theory of observer
interaction; the symmetry in question is that of the group G. When we present
the dynamics in the subsequent chapters we focus on this symmetric setting.
One can certainly construct examples of reflexive observer frameworks which
are not of this type and then study interaction dynamics on them in depth,
but we will not do so explicitly in this book.

Definition 5.1. A symmetric observer framework is a reflexive observer frame-
work (X, Y, E, S, π•) for which there exists a measurable group G, a measur-
able subgroup J ⊂ G, and a measurable surjective map π:G → Y satisfying
two requirements:
(i) G acts transitively and measurably on X, inducing a transitive action of

J on E (which is automatically measurable).
(ii) For all e ∈ E and x ∈ X, πe(x) = π(g), where g is any element in G such

that ge = x (i.e., g = “xe−1.”)
The requirements on the maps πe:X → Y in a reflexive framework, namely

that πe is surjective and πe(E) = S, impose nontrivial conditions on the map
π. However, the best way to understand the whole definition is to realize the
following:

Proposition 5.2. The definition of symmetric observer framework is equiva-
lent to the Example 4.4 of the previous section.
Proof. The fibres of the map π of 5.1 form a partition of G. The relation of
joint membership in a fibre is an equivalence relation: call it H. Then Y is
identified with G/H. Since the action of J on E is transitive, E is identified
with Je0 for any e0 ∈ E. It remains to verify (ii) of 4.4, but this is implicit in
(ii) of 5.1.
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Terminology 5.3. We will use the notation (X, Y, E, S, G, J, π) for a sym-
metric observer framework; the notation πe will refer to the maps from X to
Y defined in terms of π as in (ii) of the definition. The structure (G, Y, J, S, π)
is called the fundamental frame of the framework. π is the fundamental map,
G and J are the configuration group and the distinguished subgroup respec-
tively; we retain our original terminology for X,Y,E, S, namely configuration
space, premise space, distinguished configurations, distinguished premises. We will
frequently use the informal terminology “symmetric framework” rather than
“symmetric observer framework.”

In Definition 5.1 it is necessary only for group actions to exist at the level
of X and E, not Y and S. Furthermore, the fundamental map π:G → Y
need not arise in any particular group-theoretic way. Y can be G/H for any
equivalence relation H on G for which the notation “π(xe−1)” makes sense (so
that the πe’s are well-defined by (ii) of 5.1). As we have seen in 4.4, this is
tantamount to saying that for all e ∈ E and g ∈ G, gΣe is contained in a single
H equivalence class. (The equivalence relation H here is just the set of fibres
of π.)

An important special case is when X is a principal homogeneous space for
G. This means that G acts faithfully as well as transitively on X; in other
words, all the stabilizers Σx are trivial. In this case, given any x ∈ X we
can identify X with a copy of G “centered at x,” i.e., the element g ∈ G is
identified with gx ∈ X. Moreover when x = e ∈ E, this identification of X
with G also identifies E with J . When X is a principal homogeneous G space,
then for any x and e in X the element xe−1 is uniquely determined. In this
case the condition (ii) in Definition 5.1 does not impose any requirements on
π. We therefore have

5.4. Let G be a measurable group and J ⊂ G a measurable subgroup. Let X
be a principal homogeneous space for G on which the action of G is measurable.
Suppose E ⊂ X is a measurable J-invariant subset (so that the G-principal
homogeneous structure of X induces a J-principal homogeneous structure for
E). Let Y be a measurable space and π:G→ Y be any measurable, surjective
function; this is equivalent to saying that Y = G/H where H is an equivalence
relation onG for which the equivalence classes are measurable subsets ofG. Let
S = π(J). Then (X,Y,E, S,G, J, π) is a symmetric observer framework. For
each e ∈ E we define πe:X → Y by πe(x) = π(xe−1), where xe−1 denotes the
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unique element g ∈ G such that ge = x. We call these “principal homogeneous
symmetric frameworks,” or “principal frameworks” for short.

Example 5.5. This is the same as Example 4.3, where we now make explicit
its structure as a principal framework: Let G = (Rn,+), J = (Zn,+) ⊂ G. Let
X = Rn and E = Zn. We think of G acting on X by translation; it is obvious
that X is principal homogenous for this action and that E is J-invariant. (In
4.3 we identified G with X at the outset, so that E is itself a subgroup of G and
there is no need to introduce J . However here we are making the distinction
in principle between G and X; the point is that while one can always identify
a group G with a principal homogeneous G-space X, the identification is not
canonical.) Let Y = Sn−1 ∪ {s0}, where Sn−1 denotes the n − 1-dimensional
sphere and s0 is a point (which we can visualize at the center of the sphere).
We now define the map π. To do this, let e0 ∈ E denote the the origin in
G. Identify the Sn−1 in Y with the unit sphere centered at e0. With this
identification, for any x ∈ X, x 6= e0, let π(x) be the point of Y which is
the intersection of Sn−1 with the line joining e0 and x. Let π(e0) = s0. It
is evident that the maps πe in 4.3 can be defined in terms of this π by the
formula πe(x) = π(x− e) (where we use the additive notation “x− e” instead
of xe−1).

Finally, we elaborate the notion of a family of interpretation kernels (2.10)
in the special case of symmetric frameworks.

Definition 5.6. A family {ηe}e∈E of interpretation kernels for the symmetric
observer framework (X, Y, E, S, G, J, π) is said to be symmetric if there exists
a markovian kernel η:S ×J → [0, 1] such that for all e ∈ E, s ∈ S and γ ∈ E ,

η(s, π−1{s} ∩ J) = 1,

and ηe(s, Γ) = η(s, Γe−1).

η is then called the fundamental kernel of the family ηe.

One way a family can be symmetric is as follows. Suppose we are given
a symmetric observer framework (X, Y, E, S, G, J, π) and a measure ν on
J . Since J acts transitively on E, given any e ∈ E we get a surjective map
ce:J → E by sending ı to e. (ı denotes the identity element of J .) ce identifies
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E with the quotient space J/Σe ∩ J , where Σe is the stabilizer of e in G. Let
νe = (ce)∗(ν); this is the measure ν transported to E by “centering a copy of
J at e.”

Terminology 5.7. With the hypotheses and notation of the previous para-
graph, if ν is a measure on J , the family of measures νe on E is called the
symmetric family of measures associated to ν; ν is called the fundamental measure
of the family. Concretely, if Γ ∈ E , then νe(Γ) = ν(c−1

e (Γ)) = ν{j ∈ J | je ∈ Γ}.

Now given a probability measure ν, and its associated symmetric family
{νe}, we can define a family of kernels ηe:S × E → [0, 1] which are the rcpd’s
of the νe, i.e., we can let

ηe(s, Γ) = mνe
πe(s, Γ)

(notation as in 2–1). Another way to describe this family of kernels is as
follows: Let η = mν

π|J , where π|J is the fundamental map of our symmetric
framework restricted to the subgroup J of G.

ν J mν
π|J :S × J → Ryπ|J J = the Borel sets of J.

S

We have the diagram

ν, η J
ce−→ E νe, ηe

π|J ↘ ↙ πe|E
S

which commutes (i.e., π|J = πe|E ◦ ce) by definition of the πe. From this and
the fact that νe = (ce)∗(ν), it follows from the meaning of rcpd that for Γ ∈ E
and s ∈ S, ηe(s, Γ) = η(s, c−1

e (Γ)). Note that c−1
e (Γ) = {j ∈ J | je ∈ Γ}; so it

is consistent with our previous notation to write c−1
e (Γ) = Γe−1.

Notation 5.8. Given a symmetric family of kernels {ηe} (respectively, mea-
sures {νe}), then η (respectively, ν) will always denote the fundamental kernel
(respectively, measure).



5–6 REFLEXIVE FRAMEWORKS 97

Note that the measure ν never appears in the Definition 5.6; intuitively
only its rcpd appears, in the form of the fundamental kernel η. Thus in order
to determine ν we would need to know the measure π∗ν on S. The precise
statement is

5.9. A symmetric family ηe of interpretation kernels, together with a measure
λ on S, uniquely determine a symmetric family of measures νe on E (and
conversely) via the relation:

η = mν
π|J , λ = (π|J)∗(ν).

The definition of symmetric framework expresses the role of groups in creating
a theory of observer interactions which permits “relativization.” The reflexive
frameworks we study in this book are primarily principal frameworks. These
include the framework of instantaneous rotation observers presented in the next
section, the frameworks for which we develop the theory of true perception in
chapter eight, those employed in the investigation of hierarchical perceptual
organization in chapter nine, and the frameworks which arise in our discussion
of the applications of observer theory to physics in chapter ten. However,
the general theory of participator dynamics developed in chapter seven is not
restricted to the principal homogeneous case.

6. Example: Instantaneous rotation

We now study one example of the visual perception of structure in three dimen-
sions given image motion in two dimensions, namely the perception of rigid,
fixed-axis motion from a premise consisting of two views of n + 1 points. For
this purpose n can be any integer ≥ 3. We think of these views as occurring
in successive instants of some underlying discrete time.

Given n + 1 points moving arbitrarily in R3, let (P0, P1, . . ., Pn) and
(Q0, Q1, . . ., Qn) be their positions at two successive instants of time. Let
us assume that the viewer is using a moving coordinate system in which P0 =
Q0 = (0, 0, 0). Then this data (viz., the Pi’s and Qi’s) is equivalent to the
array a = (a11, a21, . . ., an1; a12, a22, . . ., an2) of 2n vectors in R3, where
ai1 = Pi − P0, ai2 = Qi − Q0, i = 1, . . . , n. To say that Q0, Q1, . . ., Qn
are obtained from P0, P1, . . ., Pn by a rigid motion of R3 is equivalent to
saying that a12 . . . an2 are obtained from a11 . . . an1 by a rotation about an axis
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through the origin. We call this an instantaneous rotation since two successive
positions of an object in discrete time corresponds to instantaneous motion.
Thus to infer an arbitrary rigid motion of n + 1 points from two views is the
same thing as inferring an instantaneous rotation of n vectors from two views.

We will define a symmetric framework Θ = (X,Y,E, S,G, J, π) in which
the observers are instantaneous rotation observers. It turns out that in order
to get the group structure here, the observer must utilize configurations which
are pairs (A, a), where a is a 2n-tuple of vectors in R3 as above, and A is a
“reference axis”:

Terminology 6.1. An axis in R3 is an oriented line through the origin, i.e.,
a line with its positive direction specified. We will denote the set of such axes
by A.

The set A of axes corresponds to the set of points on the unit sphere S2

centered at the origin: each such point determines a line through the origin,
whose positive direction is taken to be the direction from the origin to the
point.

The axis-body configuration (A, a) represents the motion

a11 . . . an1 → a12 . . . an2

“referred” to the axis A. Since we do not detect rotational motion of points
on the axis itself, we consider only those axis-body configurations (A, a) such
that none of the the vectors a11, . . ., an2 lie on the line through A. By an
abuse of notation, we express this assumption simply by a /∈ A. Let

X = {(A, a)| A ∈ A, a ∈ (R3)2n, a /∈ A}. (6.2)

X is the configuration space of our framework Θ. Explicitly,

X =
{

(A; a11, . . . , an1; a12, . . . , an2)| A ∈ A, aij ∈ R3, aij /∈ A
}
. (6.3)

Let Y be the set of ordered pairs of n-tuples of vectors in R2, so that

Y = (R2)2n.

We denote the elements of Y explicitly by

Y =
{

(b11, . . . ,bn1; b12, . . . ,bn2)|bij ∈ R2
}
. (6.4)
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Let us fix a coordinate system, say (x, y, z) on R3. Let

p:X → Y

be the map which forgets the axis A, and which associates to each of the
vectors aij ∈ R3 its projection onto the (x, y)-plane viewed as a copy of R2.
Thus

p(A; a11, . . . , an1; a12, . . . , an2) = (b11, . . . ,bn1; b12, . . . ,bn2),

where
aij = (xij , yij , zij), bij = (xij , yij). (6.5)

We will see below how to define the fundamental map π of our framework in
terms of this p.

Let E be the set of those elements of X in which the two n-tuples of
vectors (a11, . . . , an1) and (a12, . . . , an2) of R3 are related by a rotation of R3

about the given axis A. Thus

E ={
(A; a11, . . . , an1; a12, . . . , an2) ∈ X|σ(ai1) = ai2; 1 ≤ i ≤ n;

where σ ∈ SO(3,R) is a rotation about A
}
.

(6.6)

Remark 6.7. For n ≥ 3, (Lebesgue) almost all n-tuples (a11, . . . , an1) of
points of R3 do not lie in any proper linear subspace of R3. Since the rotation
σ in 6.6 is a linear map it is therefore uniquely determined by where it sends
these aij . Moreover, the axis of the rotation σ is uniquely determined up to
orientation. We conclude: For almost all points of E the σ in 6.6 is uniquely
determined. Moreover, for almost all points e = (A, a) ∈ E (where A ∈ A and
a ∈ (R3)2n) there is exactly one other point e′ = (A′, a′) ∈ E such that a = a′.
In that case A and A′ differ only in their orientation.

To recapitulate, we can think of X as the set of configurations which
correspond to two successive positions of n vectors moving arbitrarily in R3,
together with a choice of reference axis A; “successive” refers to some partic-
ular discrete time scale. We will call such a configuration an “axis-referenced
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instantaneous motion of n vectors in R3,” or just an “instantaneous motion”
for short. Then E consists of those instantaneous motions which are in fact
(rigid) rotations about their respective reference axes. Finally, we let

S = p(E) ⊂ Y. (6.8)

We now have a preobserver (X,Y,E, S, p). For this preobserver, the two n-
tuples of vectors in R2, which comprise a premise y ∈ Y , are interpreted as
two successive two-dimensional projections via p of n + 1 fixed feature points
on an object moving in three dimensions. Each projection is a “view” of the
object; the two n-tuples in a premise y represent the images on the observer’s
“retina” resulting from the two views. In other words, the interpretation of the
preobserver is that the premise y ∈ Y arises from some instantaneous motion
x ∈ X such that p(x) = y. (Strictly speaking there is no interpretation unless
the premise y is in S. Furthermore it is observers—not preobservers—that
make interpretations.)

Each point x of X includes a reference axis A as part of the motion it
represents, even though for general points of X this motion is not a fixed-axis
motion, much less a rigid fixed-axis motion about A. Only when p(x) = y

is in S is it possible to infer that the instantaneous motion being viewed is
a rigid rotation about its reference axis; the interpretations consistent with
this inference correspond to configurations x in p−1(y) ∩ E. Is it necessary to
include the reference axis as part of the configuration? Not if we simply want
to describe a single instantaneous rotation observer. However it is necessary
in order define the group actions of a symmetric framework. Moreover it
seems clear that one’s perception, when one is presented with the appropriate
displays, includes a direction of rotation; this is equivalent mathematically to
choosing an orientation for the axis.

For the sake of intuition, we state without proof some facts about the
geometry of (X,Y,E, S, π). Details may be found in Bennett et al. (1989).

6.9. S is contained in the solution set in Y = (R2)2n of a family of polyno-
mial equations (in 4n variables). The dimension of S is 3n + 2. Thus if µY
denotes Lebesgue measure on Y , µY (S) = 0. (This implies by 2–3.3 that the
preobserver (X, Y , E, S, p) is ideal.) The dimension of E is 3n + 3. For al-
most all s ∈ S, p−1(s)∩E is a 1-dimensional manifold. This manifold has four
connected components, corresponding to the two types of “reflections” which
act on the fibre: the first is the reversal of orientation of the reference axis A
(but leaving the points in the configuration fixed) and the second is a reflection
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of the entire structure about the image plane. Thus, up to choice of orienta-
tion of the reference axis and reflection in the image plane, every distinguished
premise s is compatible with a one-parameter family of instantaneous-rotation
interpretations. Two such interpretations for a given premise are illustrated in
Figure 6.9.1. In the figure, each interpretation is represented by a system of n
ellipses with the same eccentricity; the ith ellipse contains the image vectors
b1i and b2i, i = 1, . . . , n. The minor axes of the ellipses in each system lie on
the same line through the origin, namely the projection into the image plane
of the actual axis of rotation of the corresponding interpretation. In the figure
the system of ellipses for one interpretation is drawn with solid lines, and for
the other interpretation with dotted lines. Note that the projected axis of ro-
tation is the same (M) for the two interpretations. This holds true in general:
For any s ∈ S, the axes of all of the distinguished configurations compatible
with s project to the same line in the image plane.

Since we have defined X,Y,E and S, in order to describe the symmetric
framework Θ we need to define the groups G and J and to define their actions
on X and E. We also need to define the fundamental map π. For these
purposes we give an alternate description of X and E in terms of which the
group actions can be clearly expressed. We represent each element x ∈ X in
the form

x =

 v, c21, . . . , cn1 h11, . . . , hn1 l11, . . . , ln1

A
c12, c22, . . . , cn2 h12, . . . , hn2 l12, . . . , ln2



(6.10)

where we have fixed a coordinate system in R3, and where

A is an oriented line through the origin in this coordinate system, i.e., an
axis;

v is a unit vector at the origin, perpendicular to A;
cji are angles with 0 ≤ cji < 2π;
hji are arbitrary real numbers; and
lji are strictly positive real numbers.
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M

FIGURE 6.9.1. Two rigid interpretations from the one-parameter family.
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6.10 is essentially a “cylindrical coordinate” representation of the original con-
figuration

x = (A; a11, . . . , an1; a12, . . . , an2)

as follows. Let Pji denote the point at the tip of vector aji. Given A, imagine
the point Pji as being connected to A by a vector rji which is perpendicular
to A (see Figure 6.11). lji is the length of rji; hji is the coordinate on A at the
point where A meets rji; and v is the direction of the projection of r11 in the
plane L through the origin and perpendicular to A. Then cji((i, j) 6= (1, 1))
describes the angular displacement of rji relative to r11; it is the counter-
clockwise angle between v and the projection of Pji in L. Here the notion of
“counterclockwise” is determined using the right-hand rule by the orientation
of A.

By the requirement that a /∈ A in 6.2, the vectors rji are all non-zero, so
that the unit vector v and the angles cji are well-defined.

We can think of (cji, hji, lji) as cylindrical coordinates of Pji with respect
to the axis A and the vector v.

The representation of X given in (6.10) and illustrated in Figure 6.11
shows that X is a “good” configuration space in the sense that it is coordina-
tized by a set of geometric descriptors, namely cji, hji, lji, which are directly
adapted to the perception of the geometry of arrays of points relative to a fixed
axis. In particular, the instantaneous rotations may be described within X in
a very natural way as the solution set of equations which are linear in these
coordinates.

Proposition 6.12. E is the subset of X consisting of those elements x whose
representation in the form (6.10) has the following properties:
(i) c12 = c22 − c21 = . . . = cn2 − cn1.
(ii) hj1 = hj2 for each j = 1, . . . , n.
(iii) lj1 = lj2 for each j = 1, . . . , n.
Proof. Let e denote an element of X for which these conditions are satisfied.
Let us denote by θ the common value of c22 − c21, . . . , cn2 − cn1. For each
j = 1, . . . , n denote by hj and lj the common values of hj1 = hj2 and lj1 = lj2.
If also we drop the superscripts on the c21, . . . , cn1 then we can write e in the
form

e = (A,v, c2, . . . , cn, θ, h1, . . . , hn, l1, . . . , ln). (6.13)

As before, let Pj1 be the point of R3 whose cylindrical coordinates relative to
A are (cj , hj , lj), where the angle c1 is measured with respect to v (so that
c1 = 0). Let σ denote the rotation about the axis A through the angle θ. Then

e = (A, P11, . . . , Pn1;P12, . . . , Pn2) ∈ E. (6.14)



104 REFLEXIVE FRAMEWORKS 5–6

L

A
Pji

P11
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h11

hji r11

l11
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proj of P11 in L

proj of Pji in L

cji

FIGURE 6.11. Cylindrical coordinate representation of a configuration (A, a11, . . .,
an1; a12, . . ., an2). Pji is the tip of the vector aji.
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We now introduce the groups G and J .

G = SO(3,R)× (S1)n−1 × (S1)n × Rn × Rn × (R∗)n × (R∗)n.

J = SO(3,R)× (S1)n−1 × S1 × Rn × (R∗)n.
(6.15)

S1 is the circle group, namely the additive group R/2πZ, and R and R∗ are
the additive and multiplicative real number groups respectively. Let us denote
elements g of G in the form

g =

 γ21, . . . , γn1 ζ11, . . . , ζn1n λ11, . . . , λn1

β
γ12 γ22, . . . , γn2 ζ12, . . . , ζn2 λ12, . . . , λn2


(6.16)

with β ∈ SO(3,R), the γ’s in S1, the ζ’s in R, and the λ’s in R∗. We will write
elements  of J in the form

 = (β, γ2, . . . , γn, δ, ζ1, . . . , ζn, λ1, . . . , λn) (6.17)

We view J as a subgroup of G by identifying  in (6.17) with the element g of
G given by

g =

 γ2, . . . , γn ζ1, . . . , ζn λ1, . . . , λn
β

δ γ2 + δ, . . . , γn + δ ζ1, . . . , ζn λ1, . . . , λn

 .

We now describe the action of G on X. Let x ∈ X be as in (6.10) and g ∈ G
as in (6.16). Then

gx =

(
βv (c21 + γ21), . . . , (cn1 + γn1)

βA
c12 + γ12 (c22 + γ22), . . . , (cn2 + γn2)

(h11 + ζ11), . . . , (hn1 + ζn1) λ11l11, . . . , λn1ln1

(h12 + ζ12), . . . , (hn2 + ζn2) λ12l12, . . . , λn2ln2

)
. (6.18)
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Here βA and βv denote the axis and vector in R3 which are the images of A
and v under the rotation β. This induces an action of J on E which may then
be described as follows: If e is as in (6.13) and  is as in (6.17), then

e = (βA, βv,(c2 + γ2), . . . , (cn + γn),

θ + δ, (h1 + ζ1), . . . , (hn + ζn), λ1l1, . . . , λnln).
(6.19)

We can now see that, given any pair (x, x̄) of elements of X, there is a unique
g ∈ G such that x̄ = gx. For suppose x is as in 6.10 and x̄ has components
Ā, v̄, c̄21 etc. Given any two pairs (A,v) and (Ā, v̄), each consisting of an
oriented axis and a unit vector orthogonal to it, there is a unique β such that
(Ā, v̄) = (β(A), β(v)). This gives us the coordinate β of the required g ∈ G.
Referring to Figure 6.11 and Equation 6.18, it is clear that the remaining
coordinates are fixed by the requirements that

γji = c̄ji − cji (mod 2π),

ζji = h̄ji − hji,
λji = l̄ji/lji.

Therefore, X is a principal homogeneous space for G, and E is a principal
homogeneous space for J . (It follows from this that the dimension of E is the
same as the dimension of J which is 3 + 3n, as is easily seen from 6.15.)

To complete the description of our symmetric framework Θ = (X, Y , E,
S, G, J , π) we need to define the fundamental map π:G → Y ; the definition
uses the map p:X → Y of (6.5). Actually, there is no single canonical choice
of π here, but rather a canonical set of π’s, and the relations between them
can be stated precisely.

For each x0 ∈ X, we have a bijective map fx0 :G→ X defined by fx0(g) =
g(x0). That is, we identify X with G by displaying it as the orbit, under the
action of G, of a distinguished element x0 ∈ X. Then, for x0 ∈ E, we let

πx0 = p ◦ fx0 :G→ Y. (6.20)

Thus,
G

πx0−→ Y

is the composition

G
fx0−→X p−→Y.

Since x0 ∈ E, then fx0(J) = Jx0 = E so that πx0(J) = p(E) = S by definition
of S (6.8). We summarize:
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6.21. With notation as above, for each choice of x0 ∈ E,

Θ = (X,Y,E, S,G, J, πx0)

is a symmetric observer framework with fundamental map πx0 .

We then get a reflexive framework

{(X,Y,E, S, πx0
e )| e ∈ E}.

Recall that the perspective maps πx0
e :X → Y are defined from the fundamental

map πx0 by the formula
πx0
e (x) = πx0(xe−1)

where xe−1 denotes the unique element of G sending e to x. Suppose, for
example, that x = ke, i.e., xe−1 = k. Then, by definition of πx0 this formula
may be written

πx0
e (ke) = p(kx0). (6.22)

This may be interpreted as saying that the use of πx0 as the fundamental map
of the framework means that each observer in the framework “thinks of itself”
as having configuration x0 and perspective p. To understand this, view group
elements in G as indicating “displacement.” Then 6.22 says the following: the
premise acquired by an observer with configuration e (in the framework whose
fundamental map is πx0) when interacting with an observer displaced from it
by k, is the same as the premise acquired by an observer with fixed perspective
p:X → Y , when interacting with an observer displaced from it by k.

Finally, we note that a straightforward calculation shows that the depen-
dency of this structure on the noncanonical choice of x0 can then be stated as
follows:

6.23. For e, x0, x′0 ∈ E

πx0
e = π

x′0
(x′0x

−1
0 )e

.

In chapter nine we use this framework to give a participator-dynamical in-
terpretation of “incremental rigidity schemes” for the human visual perception
of rigid motion.


