
CHAPTER SEVEN

FORMAL DYNAMICS

We develop in greater generality the participator dynamics introduced in
special cases in chapter six.

1. Some fundamentals

In this chapter we develop the basic formalism for participator dynamics. Prop-
erly speaking, this is a dynamical system on a set of observers, namely the set B
of objects of perception for an environment supported by a reflexive framework
(X, Y , E, S, π•) (5–2.6). However, given certain special assumptions which
we review below, we can view the dynamics as taking place on E rather than
B. We are interested in the case where the reflexive framework is a symmetric
framework (X, Y , E, S, G, J , π) (5–5.1); when appropriate we will indicate
the special form that our emerging results and definitions take in this case.
For simplicity, when we consider a symmetric framework we assume throughout
this chapter that E is a principal homogeneous J-space, although J need not be
abelian.

We first define the concept of action kernel at this level of generality. In-
tuitively, as discussed in 6–2, an action kernel describes how a participator, at
a given moment of reference time, changes perspective in response to a chan-
neling. This change depends, in part, on the perspective of the participator,
so that an action kernel is actually a family of kernels, one for each point of
E. In the case of a symmetric framework we use the group action to define
the notion of a symmetric action kernel. Such a kernel is generated from a single
kernel on J , giving a symmetric description of the perspective-change law. In
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chapter six we studied a simplified version of this symmetric case.

Definition 1.1. (i) An action kernel on the reflexive framework (X, Y , E, S,
π•) is a family {Qe}e∈E of kernels on E such that, for each e, Qe is a markovian
kernel, Qe:E ×E → [0, 1], and satisfies Qe(e1, ·) = Qe(e2, ·) if πe(e1) = πe(e2).

(ii) A symmetric action kernel on the symmetric observer framework (X,
Y , E, S, G, J , π) is an action kernel {Qe}e∈E with the following property:
there exists a markovian kernel Q:J × J → [0, 1] such that Q(j, ·) = Q(j′, ·)
if π(j) = π(j′), and each Qe is deduced from Q by the formula Qe(e1,∆) =
Q(e1e

−1,∆e−1). We say that the symmetric action kernel is generated by Q.
Here, as usual, e1e

−1 denotes the element of J which sends e to e1; it
is unique since we assume E is principal homogeneous for J . Similarly, for
∆ ∈ E , ∆e−1 is the set of all elements of J which send e into ∆.

In general we simply use the notation Q for the entire action kernel, so
that Q stands for the whole family {Qe}e∈E . In the special case of symmetric
action kernels the symbol Q denotes both the action kernel itself (i.e., the
family of kernels {Qe}e∈E) and the kernel which generates it. However these
notions contain the same information, so this abuse of language will not cause
any problem. In the general case, i.e., part (i) of Definition 1.1, there are no
compatibility requirements within the family {Qe}e∈E . In practice, however,
the families that we consider have various kinds of internal consistency, but it
is inappropriate to incorporate these in the basic definition.

We can now use the notion of participator as in Definition 6–2.6. A partic-
ipator is a triple (ξ, {Q(n)}n, {η(n)}n), where ξ is a probability measure on E,
{Q(n)}n is a sequence of action kernels, and {η(n)}n is a sequence of families
of interpretation kernels for the reflexive framework. In this chapter we sup-
press mention of η(n); in particular we do not consider the crucial question of
the role played by the η(n) in some generalized notion of action kernel. (Thus
the dynamics we develop here is actually a preparticipator dynamics (6–2.6).)
However, our present formalism does permit a participator’s action kernel to
vary in time, and intuitively η(n) may be responsible in part for this evolution.

A participator manifests at each instant of reference time as an observer
in the framework. The manifestation is probabilistic, so that we can think of
the participator as a time sequence of random variables taking values in the
set of observers in the framework. Since we suppress the interpretation kernels
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η(n), only the perspectives of the observers vary. Therefore we can think of a
participator A as a sequence of random variables, say W1,W2, . . . taking values
in E. ξ is then the distribution of W0. Qe(n)(e1, ·) is the distribution of Wn+1

given that the value of Wn was e and given that the participator’s manifestion
at time n channeled with an observer in the framework whose perspective is
represented by e1 ∈ E (via the map Π defining the framework as in 5–2.2).
Therefore, the process W1,W2, . . . is not a Markov chain: the distribution of
Wn+1 depends not just on the value e of Wn, but also on π(e1).

However, if we consider collectively a “closed system” of participators
(6–2.9) and if we assume some regularity to the distribution of channelings,
then we can canonically associate certain Markov chains to the system. These
Markov chains contain complete information about the extended semantics for
each potential manifestation of the participators. These potential manifesta-
tions together constitute the set of distinguished objects of perception BE for
the environment (4–4.4, 6–2.7).

In this chapter we introduce and study certain Markov chains canonically
associated to discrete-time, participator dynamical systems. We make the
following restrictive assumptions:

1. The interpretation kernels η(n) of the various participators have no ex-
plicit role in the dynamical formalism, so that we can view the participa-
tors as being individuated only by their perspectives.

2. The participator dynamical systems are closed (6–2.9).
3. The independent action postulate holds (6–2.10).
4. The choice of channeling at each instant of reference time may be described

by a “τ -distribution” (defined in section two of this chapter).

To begin, we choose an integer k ≥ 1, and consider k participators

Ai = {(ξi, {Qi(n)}n)}, i = 1, . . . , k

on our framework. We assume that there is a discrete time, at each instant
of which each participator manifests as some observer in the framework, and
at each instant of which there is a channeling; this is the same as the reference
time of 6–2. In effect we are studying an extended semantics in which these
observer manifestations of the participators are the distinguished objects of
perception. We make the closed system assumption (6–2.9) that at each in-
stant the distinguished part of the channeling involves only observers which
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are participator manifestations at that instant. In other words, at any time
n the only channelings involving participator manifestations are channelings
between the participator manifestations themselves. Thus we assume that at
any instant n of a participator channeling sequence (6–2.8), the domain Dn of
the distinguished part of the channeling at that instant is a subset of the set of
participator manifestations at time n; hence, Dn contains at most k observers.
We need a consistent way to refer to the possible channelings among these
observers:

Notation 1.2. Denote by I(k) the set of all involutions on subsets of {1, . . . , k}.
Thus an element of I(k) is a pair consisting of a subset D ⊂ {1, . . . , k} and a
function χ:D → D such that χ2 ≡ χ ◦ χ = idD. More generally, if V is any
set we denote by I(V ) the set of all involutions of subsets of V . If V ′ and
V ′′ are disjoint subsets of V with χ′ ∈ I(V ′) and χ′′ ∈ I(V ′′), we denote by
χ′∪χ′′ the element of I(V ′∪V ′′) described by χ′ on V ′ and by χ′′ on V ′′. For
χ ∈ I(k), D(χ) denotes, as indicated above, the domain of χ.

Once we have fixed the integer k and the participators A1, . . . , Ak, the
element χ of I(k) refers to the channeling in which, for each i ∈ D(χ), the
manifestations of Ai and Aχ(i) channel to each other and in which, for j /∈
D(χ), the manifestation of Aj does not channel. Henceforth, for simplicity,
we will say “Ai and Aχ(i) channel to each other at time n” rather than the
correct but cumbersome “the manifestations of Ai and Aχ(i) at time n channel
to each other.” Similarly, we will simply say “Ai has perspective (or ‘position’)
ei at time n” rather than “the manifestation of Ai at time n has perspective
which is Π(ei).” Thus, to say “χ ∈ I(k) is the channeling at time n” means
that, for i ∈ D(χ), Ai and Aχ(i) channel at time n, and for j /∈ D(χ), Aj
does not channel at time n. This is the same as saying that in the participator
channeling sequence (Dn, χn) = (D(χ), χ). Thus, the I(k) notation permits us
to consider channelings in which some participators are inactive, some channel
to themselves, and so on.

As a result of a channeling at a given time t0, each active participator
changes its perspective, i.e., its position in E, in a manner dictated by its
action kernel at time t0. According to our participator notation the action
kernel of Ai at time t0 is Qi(t0). Suppose the channeling is represented by
χ ∈ I(k). Then if i ∈ D(χ), the position of Ai at t0 +1, i.e., at the next instant
of reference time, is a random variable with distribution Qiei(t0)(eχ(i), ·). As
in part (i) of Definition 1.1 above, Qiei(t0) denotes the markovian kernel that
governs the perspective change of Ai from time t0 to t0 + 1 given that Ai
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has perspective ei at t0. In action kernel notation this means the following:
for ∆i ∈ E , the probability that the perspective of Ai will be in ∆i at time
t0 + 1 is Qiei(t0)(eχ(i),∆i). According to the independent action postulate,
given the perspectives of the participators at time t0 and given the channeling
χ, the k E-valued random variables describing the next perspectives of the k
participators are independent. As a result we have the following proposition:

Proposition 1.3. Suppose we are given, at time t0, k participators A1, . . . , Ak
with action kernels Q1, . . . , Qk. Moreover suppose that, at time t0, Ai is at
ei, for i = 1, . . . , k. Let χ ∈ I(k) be the channeling at t0, so that Ai and Aχ(i)

channel to each other for each i ∈ D(χ) and so that Aj is inert if j /∈ D(χ). Let
∆1, . . . ,∆k ∈ E , and let Nt0,χ(e1, . . . , ek; ∆1× . . .×∆k) denote the probability
that, at time t0 + 1, Ai will have perspective in ∆i, for i = 1, . . . , k. Then

Nt0,χ(e1, . . . , ek; ∆1 × . . .×∆k) =
∏

i∈D(χ)

Qiei(t0)(eχ(i),∆i)
∏

j /∈D(χ)

1∆j
(ej).

In the case of symmetric action kernels the formula is∏
i∈D(χ)

Qi(t0)(eχ(i)e
−1
i ,∆ie

−1
i )

∏
j /∈D(χ)

1∆j (ej).

Proof. Straightforward. The independent action postulate justifies the prod-
ucts in the formulas above.

We frequently express the formulae of 1.3 in infinitesimal form, replacing each ∆i

with dyi and each 1∆j (ej) with εej (dyj). (Recall that εe(dy) is Dirac measure
concentrated at e.) The first formula becomes

Nt0,χ(e1, . . . , ek; dy1, . . . , dyk) =
∏

i∈D(χ)

Qiei(t0)(eχ(i), dyi)
∏

j /∈D(χ)

εej (dyj).

In the symmetric case this is∏
i∈D(χ)

Qi(t0)(eχ(i)e
−1
i , dyie

−1
i )

∏
j /∈D(χ)

εej (dyj).
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2. The τ -distribution

k participators, interacting via channeling, change their manifestations proba-
bilistically in a manner governed by their action kernels; intuitively the result
is a stochastic process indexed by reference time, with state space Bk (or more
precisely BkE ⊂ Bk). Since we focus only on the perspectives of the manifes-
tations, we can view this process as having state space Ek. We take our k
participators to be A1, . . . , Ak as above. Suppose we assume, artificially, that
the same channeling pattern, say χ ∈ I(k), occurs at each instant of reference
time. In other words, suppose we assume that the only participator channel-
ing sequence in the dynamics is the constant sequence with value χ: Ai always
channels with Aχ(i). Then Proposition 1.3 says, in effect, that our stochastic
process is a Markov chain whose transition probability from time t0 to t0 +1 is
the kernel Nt0,χ(·, ·). Recall that in 6–4 we treat a simple case of this artificial
situation for k = 2. We there assume that the system consists of two partici-
pators which channel to each other at each instant of reference time. Thus, of
the five elements of I(2), we assume, artificially, that the only relevant one is
χ, where χ(1) = 2.1

Although we consider in this book only systems where the number k of
participators is fixed, we believe it is unreasonable to build a general theory
on the further assumption that the channeling arrangement χ is also fixed.
But then on what does χ depend? One might suppose, for example, that each
participator comes equipped with a set of channeling affinities, one for each
participator in the ensemble. But this, too, seems artificial. For participa-
tors are individuated instantaneously by their perspectives, and it is natural
to suppose that the channeling affinities depend, at least in part, on these
perspectives. This idea suggests that channeling affinity is attached somehow
to E, wherein it describes “mutual perceptual accessibility” or “informational
conductivity” between pairs of perspectives. In symmetric frameworks the
affinity might depend only on the difference of perspectives, i.e., on the group
J .

What form should information on channeling affinities take in order that
we may use it to compute the transition probabilities for the markovian dy-

1 We do not use the kernel Nt0,χ form for the transition probability of the
dynamics in 6–4 although we could have done so. Instead, we there represent
the dynamics in a form which is “relativized with respect to the first par-
ticipator.” This means that we are looking at a chain whose states are the
displacements (in the group J) of the second participator with respect to the
first.
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namics in our participator ensemble? If we want to base our computations
on formulae like those in Proposition 1.3, we need to know the probabilities,
denoted τ(e1, . . . , ek; χ), of the various possible χ at time t0, conditioned by
the perspectives of the Ai at t0, i.e., conditioned by (e1, . . . ek). If we know
these τ(e1, . . . , ek; χ) we can take the weighted sum

Nt0(e1, . . . , ek; ∆1 × . . .×∆k)

=
∑

χ∈I(k)

τ(e1, . . . , ek; χ)Nt0,χ(e1, . . . , ek; ∆1 × . . .×∆k). (2.2)

Nt0(e1, . . . , ek; ∆1 × . . . ×∆k) is the probability of a perspective change
from (e1, . . . , ek) to ∆1 × . . . × ∆k from time t0 to t0 + 1, regardless of the
channeling pattern: it is the desired transition probability for the chain in Ek

generated by the participator ensemble A1, . . . , Ak.
One natural way to define the probabilities τ might be to utilize a met-

ric on E. Intuitively one could define the “elementary” probability that two
observers will channel to each other in terms of the distance in this metric
between the points of E representing their perspectives. τ(e1, . . . , ek; χ) could
then be computed in some canonical way using these elementary probabilities.
However, since the study of the Markov chains is our primary interest, we sim-
ply assume the existence of a τ satisfying certain formal properties. Thus we
do not consider the interesting question of the possible relation of τ to other
intrinsic data such as metrics on E.

We assume that the τ -distribution is attached to the reflexive framework
itself, and not to any particular set of participators. Therefore, τ should be
defined for any k, and its expression for various values of k should be consistent.
The following definition is a minimal one with these properties:

Definition 2.3. A τ -distribution is a family τ = {τk}∞k=1 where each τk is a
markovian kernel on Ek × 2I(k),2 i.e., a map

τk:Ek × 2I(k) → [0, 1]

satisfying the following conditions:
1. τk(· ;χ) ∈ Ek for all χ ⊂ I(k), and τk(y1, . . . , yk; ·) is a probability distri-

bution on I(k) for all (y1, . . . , yk) ∈ Ek.

2 This notation means that we are viewing I(k) as a measurable space with
σ-algebra 2I(k).
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2. Consistency condition. Given k′ < k, let S′ = {1, . . . , k′}, S = {1, . . . , k}.
Then, (with the notation of 1.2 above) for any

(y1, . . . , yk′ , zk′+1, . . . , zk) ∈ Ek, χ ∈ I(k′),

we have

τk′(y1, . . . , yk′ ; χ) =

∑
χ′′∈I(S−S′) τk(y1, . . . , yk′ , zk′+1, . . . , zk; χ ∪ χ′′)∑
χ′∈I(S′)

χ′′∈I(S−S′)

τk(y1, . . . , yk′ , zk′+1, . . . , zk; χ′ ∪ χ′′) .

3. Symmetry conditions. If our reflexive framework is a symmetric framework,
we consider two symmetry conditions on τ corresponding to two notions
of equivalence on Ek. First, we define two k-tuples, y = (y1, . . . , yk) and
x = (x1, . . . , xk) ∈ Ek, to be configuration equivalent if for every i and l

satisfying 1 ≤ i, l ≤ k we have xix−1
l = yiy

−1
l (notation as in 1.1). We

define them to be translation equivalent if there exists a j ∈ J with xi = jyi,
for all 1 ≤ i ≤ k. Then
(i) τ is configuration symmetric if τ(x; ·) = τ(y; ·) whenever x and y are

configuration equivalent;
(ii) τ is translation symmetric if τ(x; ·) = τ(y; ·) whenever x and y are

translation equivalent.

Intuitively, condition 2 states that the probability of any particular chan-
neling among a system S′ of observers is not affected by the addition of extra
observers to the system as long as there is no “cross-channeling,” i.e., as long
as one conditions the probability of channeling by those channelings which pair
no member of S′ with one of the added observers. It is this condition which
unites the separate τk’s for various k.

In condition 3, if J were commutative then configuration equivalence and
translation equivalence would be identical. In this case configuration symmetry
and translation symmetry would be identical conditions on τ . When J is
noncommutative, however, the two conditions are different. In fact the two
notions of equivalence on Ek may not even be comparable (in the sense that
an equivalence class from one relation is not necessarily a union of equivalence
classes from the other).

Except when we wish to emphasize a particular k, we omit the subscript
k of the τ ; we simply write τ(y1, . . . , yk; χ).

We do not require τ(y1, . . . , yk; ·) to be invariant under permutations of
y1, . . . , yk. Thus, the formalism permits the encoding of channeling affinities
between specific participators even though such affinities seem naturally at-
tached to the framework itself and not to specific participator ensembles.
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Remark 2.4. For each k, consider the product space Ek×I(k); denote it Êk.

Let Êk denote the σ-algebra on Êk which is generated by Ek = E ⊗ . . .⊗E and
the algebra of all subsets of I(k). Let p =pr1 denote projection on the first
factor of Êk, i.e., p: Êk → Ek. p is measurable, and each fibre of p is a copy of
I(k). As defined in 2.3, the τ -distribution is a kernel on Ek × 2I(k). We may

also view it as a kernel on Ek × Êk as follows. Let A ∈ Êk be a measurable set
in Êk and let (e1, . . . , ek) ∈ Ek. Define

τ̄(e1, . . . , ek; A) = τ(e1, . . . , ek; pr2[A ∩ p−1{(e1, . . . , ek)}]),

where pr2: Êk → I(k) is projection onto the second factor of Êk. pr2[A ∩
p−1{(e1, . . ., ek)}] consists of just those channelings χ such that (e1, . . . , ek; χ)
is in A.

It is clear from Definition 2.3 that τ̄ is a markovian kernel on Ek × Êk

such that τ̄(e1, . . . , ek; ·) is concentrated on p−1{(e1, . . . , ek)}. In the sequel,
we think of τ as this τ̄ , using the same symbol τ for both.

3. Augmented dynamics

In this section we discuss the underlying probabilistic framework for the par-
ticipator dynamics. In section two the τ distribution was motivated by the
need to compute the transition probability for the Markov chain whose states
are the positions in E of the k participators in a given ensemble. Thus the
state space of this chain is Ek, and it is called the (absolute) position chain of
the dynamics. (The word “absolute” here is sometimes used, in the context of
a symmetric framework, to distinguish this chain from other chains which ex-
press the positions relative to some fixed observer or to one of the participators;
these latter chains have state space Jk or Jk−1, respectively.)

Now a knowledge only of the positions of the participators in perspective
space is insufficient for many purposes; we need information not only about
positions, but also about channelings. The situation at any moment of refer-
ence time is most completely described, in our development, by a vector in Êk

(defined in 2.4 as Ek × I(k)). We may refer to the elements of Êk as being
“augmented” by the inclusion of the channeling involution in the description.
The stochastic process with state space Êk is then the underlying probabilistic
framework for all other processes discussed in this chapter and the next one.
We refer to the process in Êk as the augmented position chain.
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Before describing the augmented dynamics, we note that there are yet
other chains relevant to participator dynamics. For example, the symmetrized
perspective space is Ek/Sk (Sk being the symmetric group of permutations of
k objects). In this state space we are unconcerned with the identities of the
k participators and note only the set of perspectives assumed by them. The
corresponding stochastic process is called the “symmetrized position chain.”
On a different tack, we may to our dynamical situation associate “stopped
chains,” i.e., chains descended from the reference time chains via stopping times.
For example, we might stop the reference time chains when a given participator
A is channeled to, and note the positions of all participators only at such times.
Such a chain is clearly derived from the augmented position chain, to the study
of which we now turn.

3.1. Let Θ denote the reflexive observer framework (X, Y , E, S, π•). Sup-
pose we are given a τ -distribution on Θ as in Definition 2.3 above. We will
describe the augmented dynamics of an ensemble of k participators (ξ1, Q1(n)), . . . ,
(ξk, Qk(n)) on Θ. This is a Markov chain indexed by reference time t, with
state space Êk = Ek × I(k); a state of this chain encodes the location in E

of each of the participators at a given reference time, as well as specifying the
channeling relation among them at that time.

To describe a Markov chain it suffices to give a starting measure on the
state space, and a one-step transition probability for each time t. In our present
situation this transition probability will be a markovian kernel

N̂t: Êk × Ê
k → [0, 1].

Here Êk denotes the σ-algebra (defined in Remark 2.4) on Êk = Ek × I(k)
generated by all sets of the form ∆× {χ} where ∆ ∈ Ek and χ ∈ I(k). Thus
N̂t is completely determined once we express

N̂t(e1, . . . , ek, χ0; ∆× {χ1})

in terms of our given participators. This notation means the following: N̂t
is the probability that at time t + 1 our k-tuple of participators will have
perspectives represented by a point in ∆ ⊂ Ek and will channel to each other as
dictated by an involution χ1 in I(k), given that at time t they had perspectives
(e1, . . . , ek) and channeled to each other according to χ0 ∈ I(k).
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These considerations suggest the following definition:

Definition 3.2. Let (e, χ0) ∈ Ek×I(k), with e = (e1, . . . , ek). Let ∆×{χ1} ∈
Êk. Define

N̂t(e, χ0; ∆× {χ1}) =
∫

∆

Nt,χ0(e1, . . . , ek; dy1 . . . dyk)τ(y1, . . . , yk; χ1),

where Nt,χ0 is as in Proposition 1.3. In other words

N̂t(e, χ0; ∆× {χ1})

=
∫

∆

[ ∏
i∈D(χ0)

Qiei(t)
(
eχ0(i); dyi

) ∏
j /∈D(χ0)

εej (dyj)
]
τ(y1, . . . , yk;χ1).

If our participators are kinematical, i.e., time independent, then N̂t is in-
dependent of t, and we call it simply N̂ . In this case the augmented dynamical
chain is a homogeneous Markov chain with transition probability N̂ .

Notation 3.3. To stress the dependence of N̂t on the Qi(t) and τ , and for
other reasons to be discussed later, we sometimes use the notation 〈Q1(t), . . . , Qk(t)〉̂τ
instead of N̂t. Similarly, if the participators are kinematical we may use the
notation 〈Q1, . . . , Qk 〉̂τ instead of N̂ .

The action kernels of our k participators together with τ give rise to
the transition probabilities of the augmented dynamical chain. Similarly, the
initial measures ξi of these participators together with τ determine the starting
measure of this chain on Ek × I(k) as we now describe.

Notation 3.4. Let ξ be a measure on Ek. We denote by ξτ the measure on
Ek × I(k) given by

ξτ (∆1 × . . .×∆k × {χ}) =
∫

∆1×...×∆k

ξ(dy1 . . . dyk)τ(y1, . . . , yk; χ).
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If ξ is a probability measure, so is ξτ .

Proposition 3.5. Let p: Êk = Ek × I(k) → Ek be projection on the first
factor, i.e., p = pr1. Then p∗(ξτ ) = ξ, and mξτ

p = τ (using the notation of
2–1).
Proof. The proof is an exercise in the definition of the τ -distribution (see Re-
mark 2.4) and of a regular conditional probability distribution. The situation
is especially simple since the fibres of p are copies of the discrete space I(k).

Definition 3.6. The starting measure of the augmented dynamical chain of
the ensemble of participators (ξ1, Q1(t)), . . . , (ξk, Qk(t)) is (ξ1 ⊗ . . .⊗ ξk)τ .

The interpretation of this measure is straightforward: we assume that the
initial positions of the participators are distributed independently, so that

(ξ1 ⊗ . . .⊗ ξk)τ (∆1 × . . .×∆k × {χ})
is the probability that, at starting time t = 0, the k-tuple of perspectives of
our participators lie in ∆1× . . .×∆k ⊂ Ek and channel according to χ in I(k).

We summarize. On the reflexive framework Θ = (X, Y , E, S, π•) with
given τ -distribution, suppose we have an ensemble of participators (ξ1, Q1(t)),
. . ., (ξk, Qk(t)). Associated to this situation is a canonical Markov chain with
state space Êk = Ek × I(k), called the augmented dynamical chain of the
participator ensemble.

The state of this chain at time t is given by random variables y1(t), . . .,
yk(t) (with values in E) and χ(t) (with values in I(k)). yi(t) is the perspec-
tive of the ith participator, and χ(t) is the channeling relation among the k
participators, at time t. For fixed t these variables are not independent: the
dependence of χ(t) on the yi(t) is expressed by the τ -distribution. Moreover,
since the dynamics is markovian, the dependence of the distribution of the
yi(t + 1) and χ(t + 1) on previous values can be expressed entirely in terms
of the yi(t) and χ(t). This expression is contained in the one-step transition
probability at time t, denoted 〈Q1(t), . . ., Qk(t)〉̂τ or N̂t (the precise definition
is given in 3.2). The starting measure of the chain is (ξ1 ⊗ . . . ⊗ ξk)τ (using
Notation 3.4).

Notation 3.7. The “base space” of the augmented position chain is the prob-
ability space (Ω̂, F̂ , P̂ ) on which the random variables yi(t), χ(t) (for all i, t) are
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defined. Thus the “sample” space Ω̂ is the domain of these random variables;
we take it as the space (Êk)∞ of all trajectories t→ (y1(t), . . . , yk(t);χ(t)). If
we want to emphasize the number k of participators generating the chain, we
write (Ω̂k, F̂k, P̂ k) instead of just (Ω̂, F̂ , P̂ ). We write

ŷ(t) = (ŷ1(t), . . . , ŷk(t), χ(t)),

so that for each t, ŷ(t): Ω̂ → Ek × I(k). (We follow the usual probabilistic
convention of suppressing explicit mention of the sample points ω̂ ∈ Ω̂ unless
necessary.) By our choice of Ω̂ then, ŷ(t) is the “t”th coordinate vector of
the trajectory. The σ-algebra F̂ is taken to be that generated in Ω̂ by the
sequence of random variables {ŷ(t)}. The probability measure P̂ on the sample
space is developed from the initial measure (ξ1 ⊗ . . .⊗ ξk)τ and the transition
probabilities N̂t in canonical fashion. In this sense the augmented position
chain is presented as a “canonical” Markov chain3, with filtration {F̂n} where
F̂n = σ(ŷ(0), . . . , ŷ(n)).

4. Augmented dynamics and standard dynamics

Suppose that we are in a reflexive framework Θ with given τ -distribution and
that we have an ensemble of participators (ξ1, Q1(t)), . . . , (ξk, Qk(t)) as in the
previous section. Suppose further that for all χ in I(k) we know Nt,χ, as in
Proposition 1.3. (Recall that Nt,χ is the transition probability for the k-tuple
of perspectives from time t to time t+1 assuming that the particular channeling
relation χ occurred at time t.) Then, as in Equation 2.2, we can define the
kernel Nt on Ek.

Definition 4.1. For (e1, . . . , ek) ∈ Ek, ∆1 × . . .×∆k ∈ Ek,

Nt(e1, . . . , ek; ∆1 × . . .×∆k)

=
∑

χ∈I(k)

τ(e1, . . . , ek; χ)Nt,χ(e1, . . . , ek; ∆1 × . . .×∆k)

=
∑

χ∈I(k)

τ(e1, . . . , ek; χ)
∏

i∈D(χ)

Qi(t)(eχ(i)e
−1
i ; ∆ie

−1
i )

∏
j /∈D(χ)

1∆j
(ej).

3 See Remark 5.9 of this chapter.
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If all our participators are kinematical with fixed action kernels Qi, then we
can omit mention of t.

Notation 4.2. We sometimes use the notation 〈Q1(t), . . ., Qk(t)〉τ in place
of Nt, or 〈Q1, . . . , Qk〉τ in place of N in the kinematical case.

With notation and hypotheses as above, the following definition is natural:

Definition 4.3. The standard dynamical chain generated by an ensemble of partic-
ipators is the canonical Markov chain with state space Ek, one step transition
probabilities Nt = 〈Q1(t), . . . , Qk(t)〉τ , and starting measure ξ1 ⊗ . . .⊗ ξk.

Notation 4.4. We denote the base sample space of this standard dynamical
chain by Ω, or Ωk if we want to emphasize the particular value of k. Thus Ω
(= Ωk) = (Ek)∞. The chain, then, consists formally of the sequence of random
variables y(t): Ω→ Ek (t = 0, 1, . . .), where y(t) = (y1(t), . . ., yk(t)).

In this section we study certain aspects of the relationship between the
augmented dynamical chain and the standard dynamical chain for a given
ensemble of participators. The following diagram summarizes the basic setup:

augmented chain Êk N̂t

Ω̂ = (Ek × I(k))∞
ŷ(t)=(y1(t),...,yk(t),χ(t))−→ Ek × I(k)yp′ yp=pr1

Ω (Ek)∞
y(t)=(y1(t),...,yk(t))−→ Ek Nt

standard chain

(4.5)

p′ is induced by p. To exercise the notation, let ω̂ be an element of Ω̂. We can
view ω̂ as a sequence of elements of Ek × I(k) indexed by t, i.e.,

ω̂ = {(e1(t), . . . , ek(t), χ(t))}∞t=1.
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Then

ŷ(t)(ω̂) = (e1(t), . . . , ek(t), χ(t))

= (y1(t)(ω̂), . . . , yk(t)(ω̂), χ(t)(ω̂)).

p′(ω̂) = {(e1(t), . . . , ek(t))}∞t=1,

y(t)p′(ω̂) = (e1(t), . . . , ek(t)), etc.

The top and bottom rows of diagram 4.5 represent the augmented and
standard dynamical chains respectively, for which the one step transition prob-
abilities are, respectively, N̂t = 〈Q1(t), . . ., Qk(t)〉̂τ and Nt = 〈Q1(t), . . .,
Qk(t)〉τ .

Now there is an abstract characterization of the structural relationship
between N̂t and Nt, which does not follow merely from the simple relationship
between the state spaces of the two chains. It can be understood in terms of
general operations on kernels which we now introduce.

The first part of the following definition merely recalls the notion of “push-
down” of a measure, introduced in 2–1. The second part then generalizes this
notion to kernels.

Definition 4.6. Let (U,U) and (V,V) be measurable spaces and let h:U → V

be a measurable function.
(i) If µ is a measure on U , the pushdown of µ by h is the measure h∗µ on V ,

given by
h∗µ(A) = µ(h−1(A)), A ∈ V.

Alternatively, for any measurable g:V → R,∫
V

(h∗µ)(dv)g(v) =
∫
U

µ(du)(g ◦ h)(u).

(ii) If M is a kernel on U , the pushdown ofM by h is the kernel h∗M on U×V,
given by

(h∗M)(u,A) = M(u, h−1(A)), A ∈ V.

Again, we may restate this in terms of operations on functions:

(h∗Mg)(u) =
∫
U

M(u, du′) g ◦ h(u′), g ∈ V.
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If µ is a probability measure, so is h∗µ; if M is markovian, so is h∗M .
The notion of composition of a measure and a kernel, or of two kernels, was
introduced in 6–1. We generalize it here.

Definition 4.7. Let (U,U), (V,V) and (W,W) be measurable spaces. Let K
be a kernel on U × V.
(i) If µ is a measure on U , the measure µK on V is defined by

µK(A) =
∫
U

µ(du)K(u,A), A ∈ V.

(ii) If L is a kernel on W × U , the composition LK is the kernel on W × V
defined by

LK(w,A) =
∫
U

L(w, du)K(u,A), A ∈ V.

As in 4.7, we may easily write down the effect of these compositions on
functions g:V → R. Also, if µ is a probability measure and K and L are
markovian kernels, then µK is a probability measure and KL is markovian.

Combining these definitions we have the following:

Definition 4.8. Let (U,U) and (V,V) be measurable spaces with h:U → V

measurable. Let M be a kernel on U and L a kernel on V ×U . The L-pushdown
of M by h is then the kernel hL∗M on V , defined by

(hL∗M)(v,A) = (L(h∗M))(v,A)

=
∫
U

L(v, du)M(u, h−1(A)), u ∈ U,A ∈ V.

We wish to use this construction to relate the kernel N̂t on Êk (in place
of M on U) to the kernel Nt on Ek (where Ek replaces V ). The role of h is
played by p = pr1 on Êk, while that of L is played by τ̄ as in 2.4. As mentioned
in 2.4 we will, however, write just τ in place of τ̄ , viewing the τ -distribution
as a kernel on Ek × Êk. Pictorially,
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N̂t: Êk × Ê
k → [0, 1]

Ek × I(k) = Êk τ :Ek × Êk → [0, 1]ypr1=p

Ek pτ∗N̂t:E
k × Ek → [0, 1]

Using Definition 4.8 we get the kernel pτ∗N̂t on Ek:

pτ∗N̂t(e,A) =
∫
Êk
τ(e, dê)p∗N̂t(ê, A).

Intuitively, the above pushdown consists in averaging the values N̂t(·, p−1(A))
with respect to the measure τ(e, ·). Now the measure τ(e, ·) is concentrated
on the fibre p−1{e}; recall that this fibre may be viewed as a copy of I(k).
Thus pτ∗N̂t(e,A) is an expectation of the values p∗N̂t(e, χ0;A) with respective
weights τ(e, χ0). These values can, in turn, be related to the objects Nt,χ0

(Proposition 1.3) as follows. We claim that, for any A ∈ Ek,

p∗N̂t(e, χ0;A) = Nt,χ0(e;A). (4.9)

For (suppressing the subscript t)

p∗N̂(e, χ0;A) = N̂(e, χ0; p−1(A))

= N̂(e, χ0;
⋃

χ∈I(k)

A× {χ})

=
∑

χ∈I(k)

N̂(e, χ0;A× {χ})

=
∑

χ∈I(k)

∫
A

Nχ0(e; de′)τ(e′;χ)

=
∫
A

Nχ0(e; de′)τ(e′; I(k))

=
∫
A

Nχ0(e; de′) = Nχ0(e; A).

Taking the expectation of this over all χ0 ∈ I(k) with respect to the measure
τ(e; ·), we recover the transition probability Nt:

Proposition 4.10. pτ∗N̂t = Nt.
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Proof. τ(e, ·) is concentrated on p−1{e}, which is a copy of I(k), so that the
τ -pushdown of N̂t via p is a sum:

pτ∗(N̂)(e;A)

=
∑

χ0∈I(k)

τ(e;χ0)Nχ0(e; A) by (4.9)

= N(e; A) by Definition 4.1.

The previous proposition describes the “algebraic” relationship between
the kernels N̂ and N . However, this by itself does not completely clarify the
probabilistic relationship between the augmented and the standard chains. To
achieve this further understanding, we first recall from chapter two the notion
of regular conditional probability distribution, expressed in terms of the algebra
of pushdowns and compositions. Using the notation of 4.7, we may state the
criteria for a kernel K on V ×U to be a version of the rcpd of a measure µ on
U with respect to h:
(i) For h∗µ-almost all v, K(v, ·) is a probability measure concentrated on

h−1{v}.
(ii)

µ = (h∗µ) ·K. (4.11)

In this case we write K = mµ
h and

µ = (h∗µ) ·mµ
h. (4.12)

Now consider the measures N̂t(y, χ0; ·) on Êk for fixed y and χ0. Their rcpd
decomposition is, if it exists,

N̂t(y, χ0; ·) = [p∗N̂t(y, χ0; ·)][mN̂t(y,χ0;·)
p ]

= [Nt,χ0(y; ·)][mN̂t(y,χ0;·)
p ]

(4.13)

by 4.9. The measures Nt,χ0(y; ·) in general differ for different values of y and
χ0. However, the “orthogonal” parts of the decomposition do not depend on
y and χ0.

Proposition 4.14. For any ŷ ∈ Êk, mN̂(ŷ; ·)
p = τ . (As in Proposition 4.8,

for simplicity of notation we have suppressed the subscript t in N̂t; and we
continue to view τ as a kernel on Ek × Êk → [0, 1] as in 2.4.)
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Proof. In view of 4.11 and 4.13, we must show that, for ŷ = (y, χ0) ∈ Êk,

N̂(ŷ; ·) = N̂(y, χ0; ·)

=
∫
Ek
Nχ0(y; dw)

∫
p−1{w}

τ(w, ·)

by 4.8. It is enough to verify this formula applied to sets of the form A×{χ1},
with A ∈ Ek and χ1 ∈ I(k), since any measurable set in Ê is a finite union of
such sets. Thus, we are to show

N̂(ŷ; A× {χ1}) =
∫
Ek
Nχ0(y; dw)

∫
p−1{w}

τ(w; dẑ)1A×{χ1}(ẑ).

Recall now that τ(w; dẑ) = τ(w; χ)dχ where dχ denotes counting measure on
p−1{w} = {w} × I(k). Thus the right hand side of the last equation may be
written as ∫

Ek
Nχ0(y; dw)

∑
χ∈I(k)

τ(w; χ)1A×{χ1}(w, χ)

=
∫
A

Nχ0(y; dw)τ(w; χ1).

Thus our original equation is seen to be

N̂(ŷ; A× {χ1}) =
∫
A

Nχ0(y; dw)τ(w; χ1)

which is the same as Definition 3.2.

In the next section we consider the general setting in which the proba-
bilistic significance of 4.9 and 4.14 is clarified.

5. Descent of Markov chains

We now consider the concept of descent of a Markov chain. Suppose we have
a Markov chain whose base space is the probability space (B,B, ρ), whose
filtration is {Gt}, and whose state space is (U,U). The random variables of the
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chain are denoted by ut:B → U , t = 0, 1, 2, . . .. Now let h: (U,U)→ (V,V) be
a measurable function, and let vt = h ◦ ut.

B
ut−→ U

vt ↘
yh
V

The sequence {vt}, along with (B,B, ρ) and the natural filtrations {σ(v0, . . . , vt)},
forms a stochastic process.

Terminology 5.1. The Markov chain {ut} descends via h if the stochastic
process {vt} is also a Markov chain.

The distribution of vt is induced by h from the distribution of ut: If A ∈ V
then ρ(vt ∈ A) = ρ(ut ∈ h−1(A)). In particular, if the starting measure of the
chain {ut} is ν, that of {vt} is h∗ν. A well-known condition for the descent of
a chain is expressed in the following definition and theorem:

Definition 5.2. Given a bimeasurable h:U → V and a kernel M on U , we will
say that M is h-respectful if, for any A ∈ V, M(u1, h

−1(A)) = M(u2, h
−1(A))

whenever h(u1) = h(u2). Associated to such an M is a kernel on V , denoted
RhM and defined by

RhM(v,A) = M(u, h−1(A)) = h∗M(u,A)

for any u ∈ h−1{v}.

Remark 5.3. The bimeasurability of h ensures that RhM is indeed a kernel
on V . The h-respectfulness of M is equivalent to the condition that h∗M(·, A),
defined in 4.6, is constant on fibres of h: we have

h∗M(u,A) = RhM(h(u), A).
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Example 5.4. Suppose f :U → [0,∞] is measurable. This gives us a kernel
If on U defined as follows:

If (u, du′) = f(u)εu(du′).

These are the simplest kernels; in particular, f could be 1C for a measur-
able subset C of U (in which case we write IC for I1C ). The kernel If , then, is
h-respectful if and only if f is measurable with respect to the σ-algebra h∗V
of h, i.e., if and only if there is some measurable function g on V such that
f = g ◦ h.4 For then, if A ∈ V,

If (u, h−1(A)) = f(u)1h−1(A)(u)

= g(h(u))1A(h(u))

so that respectfulness holds. Furthermore,

RhIf ≡ RhIg◦h = Ig,

where Ig is thought of as a kernel on V . In the special case where f = 1C , the
condition for respectfulness amounts to saying that C = h−1(C ′) for some sub-
set C ′ of V ; the measurability of C ′ being a consequence of the bimeasurability
of h. In this instance

RhIC ≡ RhIh−1(C′) = IC′ .

Respectfulness allows us to prune the state space from U to V , a space
which more efficiently carries the essential information of the kernel.

Theorem 5.5. With notation as above, suppose that {ut} is a Markov chain
with respect to the family {Gt} of subσ-algebras of B on B. Suppose that the
one step transition probabilities Mt of the chain are h-respectful. Then the
chain {ut} descends via h; the one-step transition probabilities RhMt of the
chain {vt} are given, for v ∈ V and A ∈ V, by

RhMt(v,A) = Mt(u, h−1(A)),

4 See Parthasarathy (1977, Proposition 44.1) for a proof of this statement.
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where u is any element in h−1{v}. Moreover, {vt} is a Markov chain with
respect to the same sequence {Gt} of σ-algebras onB (and not just the sequence
{σ(v0, . . . , vt)}).

The condition of the h-respectfulness of the {Mt} is sufficient for the
chain {ut} to descend via h, but it is far from necessary. In fact, we now state
a different sufficient condition. In this case the chain descends in a slightly
weaker sense: The {vt} is now a Markov chain only with respect to the subσ-
algebras {σ(v0, . . . , vt)} of B, and only when the measure on B is of a special
type. It is worth mentioning that the two conditions on the {Mt} appear to be
completely independent, having in common only that they are both sufficient
for the descent of the chain.

As before, let (U,U) and (V,V) be measurable spaces and let h:U → V be
a measurable function. Suppose we are given a family {Mt}t=0,1,2,... of kernels
on U . In particular, for each t and each u ∈ U , Mt(u, ·) is a measure for U .
In principle we may then consider the rcpd’s of these various measures with
respect to h, i.e., we may consider the kernels

m
Mt(u,·)
h :V × U → [0, 1].

These rcpd’s may not exist in the most general situation, but they will exist,
for example, if (U,U) and (V,V) are standard Borel spaces.

Definition 5.6. The family of kernels M = {Mt} is h-decomposable if there
exists a single kernel m on V ×U which is, for each u ∈ U and t ≥ 0, a version
of the rcpd of Mt(u, ·) with respect to h. We will speak of m as a “common
rcpd” of M .

We also speak of the h-decomposability of a single kernel, with the obvious
meaning.

In case of h-decomposability, the kernels hm∗ Mt on V defined in Definition
4.8 are naturally associated to Mt; we will denote them also as DhMt when
there is no confusion regarding the version of common rcpd being used. Then

DhMt(v,A) = hm∗ Mt(v,A) =
∫
U

m(v, du)Mt(u, h−1(A)).

Example 5.7. The family of kernels {N̂t}, which are the one-step transition
probabilities of an augmented dynamical chain, is p-decomposable, where as
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usual

p: Êk → Ek

is projection. Indeed, by Proposition 4.14 all of the rcpd’s of the measures
N̂t(ŷ, ·) are equal to τ .

One might ask under what conditions the kernels If , defined in 5.4, are
h-decomposable. A calculation shows that this happens only in a somewhat
trivial case. Namely, the support of f must lie within the set of those u ∈ U
through which the fibre of h is the singleton {u} itself. In this case a common
rcpd m of If may be described as follows. Suppose h̄:V → U is a “measurable
section of the fibre bundle defined by h:U → V .” That is, h̄(v) ∈ h−1{v} for
all v ∈ V . Then a version of the common rcpd of the measures If (u, ·) is given
by

m(v, du′) = εh̄(v)(du
′).

The function f , supported as it is only within the singleton fibres of h, is an
h-measurable function. As such, there is some measurable function g on V

such that f = g ◦ h. A computation then shows that in fact

DhIf = RhIf = Ig.

However, we will see in Proposition 8–4.15 that the h-decomposability of a
kernel K implies the h-decomposability of the product IfK for any f ≥ 0.

In general, suppose we have a family {Mt} of markovian kernels which
we are interpreting as the one-step transition probabilities of a Markov chain
{ut} with state space U . Thus ut:B → U , for t = 0, 1, 2, . . ., is a random
variable defined on the base probability sample space B. In this case Mt(ut, ·)
is the conditional distribution of ut+1 given ut, and so the h-decomposability
of {Mt} has the following interpretation: for all t, the conditional expectation
of ut+1 given h(ut+1) is independent of ut. In statistical terminology, we can
say that for each t the statistic h of the random variable ut+1 is sufficient for
the “parameter” ut.

From this point of view the p-decomposability of the {N̂t}, and, indeed,
the conclusion of Proposition 4.14 itself, becomes intuitively clear given the
definition of the τ -distribution. Namely, the fibres of p: Êk → Ek are all copies
of I(k). At any time t the measure on I(k) which describes the conditional
distribution of the augmented state êt+1 = (et+1, χt+1), given p(êt) = et, is
τ(p(êt), ·) = τ(et, ·). And this depends only on the value et in Ek, and not on
χt per se.
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Theorem 5.8. 5 Let (B,B, ρ) be a probability space and let (U,U) and (V,V)
be measure spaces. Let {ut}, t = 0, 1, 2, . . . be a Markov chain in U with base
B, and with one-step transition probabilities given by the family of kernels
{Mt}. Let h:U → V be measurable and let vt = h ◦ ut. Suppose that the
family {Mt} is h-decomposable; let ψ denote their common rcpd with respect
to h. Let ν denote the starting measure of the chain, i.e., ν = u0∗(ρ), the
distribution of u0. Suppose that ψ is also the rcpd of ν with respect to h.
Then {vt} is a Markov chain in V with base (B,B, ρ), transition probabilities
hψ∗ (Mt), and initial measure h∗ν.

Remark 5.9. The terminology means that {ut} is a Markov chain with
respect to the increasing family {σ(u0, . . . , ut)} of subσ-algebras of B, while
{vt} is a Markov chain with respect to {σ(v0, . . . , vt)}.

Before turning to the proof of Theorem 5.8 we will first recall some basic
facts about the canonical chain.

Let Ω = U×U×. . .; a typical element of Ω will be denoted ω = (x0, x1, . . .).
Let F denote the σ-algebra of Ω generated by “measurable rectangles,” i.e., by
sets of the form A0×A1× . . ., where the Ai are in U and only finitely many of
them are different from U . Given the kernels {Mt} and the starting measure
ν on U , we construct a measure Mν on (Ω,F) as follows:

Mν(A0 ×A1 × . . .)

=
∫
A0

ν(dx0)
∫
A1

M0(x0, dx1) . . .
∫
An

Mn−1(xn−1, dxn) . . . .
(5.10)

Let Xt: Ω → U denote projection onto the tth factor, t = 0, 1, . . .. Let
F t = σ(X0, . . . , Xt) be the smallest σ-algebra on Ω with respect to which
the X0, . . . , Xt are measurable. F t is then the subσ-algebra of F generated by
those measurable rectangles of the form A1× . . .×At×U ×U × . . .. Then we
have

Proposition 5.11. With these hypotheses and notation:
1. The distribution of X0 is ν.
2. {Xt} is a Markov chain with base (Ω,F ,Mν) (with respect to the subσ-

algebras F t) with one-step transition probabilities {Mt}. It is called the
canonical chain for those Mt with the given starting measure ν.

5 We are indebted to D. Revuz for informing us that a related result for
continuous time may be found in Pitman and Rogers (1981).
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3. Suppose (B,B, ρ) is a probability space and {ut}:B → U is a Markov
chain with the same transition probabilities {Mt} and starting measure
u0∗(ρ) = ν. Then there is a unique (ρ-a.s.) measurable function φ:B → Ω
such that Xt ◦φ = ut (ρ-a.s.) and φ∗(ρ) = Mν . This is called the universal
property of the canonical chain.

Proof of Theorem 5.8. In view of the universal property of the canonical
chain, we may assume that (B,B, ρ) = (Ω,F ,Mν). We will still use the nota-
tion {ut} to denote the random variables defining the chain; ut: Ω→ U is now
projection on the tth factor. We still denote vt = h◦ut. Let Gt now denote the
subσ-algebra σ(v0, . . . , vt) of F . Concretely, Gt is generated by all measurable
rectangles of the form h−1(A0)× . . .×h−1(At)×U ×U × . . ., Ai ∈ V. We will
temporarily denote hψ∗Mt by Kt. Pictorially,

Mν Ω ut−→ U ν, Mt

vt ↘
yh
V Kt = hψ∗Mt = DhMt

Under the assumption that all the rcpd’s of the Mt(u, ·), as well as that
of ν, are equal to ψ, we are going to show that {vt} is a Markov chain with
one step transition probabilities {Kt}. Thus we must show that for any t ≥ 1
and any V-measurable function f on V ,

(Kt−1f)(vt−1) = E[f(vt)|Gt−1] Mν − a.s. (5.12)

where E = EMν
denotes expectation with respect to the measure Mν on Ω. To

prove this, since (Kt−1f)(vt−1) is clearly Gt−1-measurable, it is enough to show
that for any A ∈ Gt−1 of the form A = h−1(A0)× . . .×h−1(At−1)×U×U× . . .,∫

A

Mν(dω) (Kt−1f) (vt−1(ω)) =
∫
A

Mν(dω)f (vt(ω)) . (5.13)

Now f(vt(ω)) = (f ◦ h)(ut(ω)). Since A ∈ Gt−1 ⊂ F t−1, the right side of 5.13
may be written∫

A

Mν(dω)(f ◦ h)(ut(ω)) =
∫
A

Mν(dω)E[(f ◦ h)(ut)|F t−1](ω).

But since the Markov chain {ut} has transition probabilities {Mt}, 5.13 be-
comes
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∫
A

Mν(dω) (Kt−1f) (h ◦ ut−1(ω)) =
∫
A

Mν(dω)Mt−1 (f ◦ h) (ut−1(ω)) .

(5.14)

In view of the definition of the measure Mν (as in (5.10)) and the set A,
the integrals in (5.14) can be written as iterated integrals in the variables
u0, . . . , ut−1 successively. Since the integrands involve only ut−1, to show the
integrals are equal it suffices to consider only the last iteration on each side,
i.e., it suffices to show∫

h−1(At−1)

Mt−2(ut−2, dut−1) (Kt−1f) (h(ut−1))

=
∫
h−1(At−1)

Mt−2(ut−2, dut−1)(Mt−1f ◦ h)(ut−1)

where At−1 ∈ V and ut−1, ut−2 ∈ U are arbitrary. Note that if t − 1 = 0 we
must be careful to interpret the symbol Mt−2(ut−2, ·) (which is then, a priori,
meaningless) to be the measure ν(·). In other words, we must prove

∫
h−1(C)

Mt−2(u, dx) (Kt−1f) (h(x)) =
∫
h−1(C)

Mt−2(u, dx)Mt−1 (f ◦ h) (x),

(5.15)
where C ∈ V, u ∈ U , x is a variable on U , and Mt−2(u, ·) is defined to be ν(·)
if t− 1 = 0.

We now evaluate the left side of 5.15. Recalling Definition 4.6(ii), we see
that ∫

h−1(C)

Mt−2(u, dx) (Kt−1f) (h(x))

=
∫
Mt−2(u, dx)1C(h(x))(Kt−1f)(h(x))

=
∫
h∗Mt−2(u, dv) (Kt−1f) (v)1C(v)

=
∫
h∗Mt−2(u, dv)

(
hψ∗Mt−1f

)
(v)1C(v)

by definition of Kt−1. By Definition 4.8, this is the same as∫
C

h∗Mt−2(u, dv)
∫

1C(v)

ψ(v, dx)Mt−1(f ◦ h)(x).
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Now we use the fact that, for any u, ψ is the rcpd of Mt−2(u, ·) with respect
to h. Since ψ(v, ·) is supported on h−1{v}, 1C(v)ψ(v, dx) is the same as

ψ(v, dx)1h−1(C)(x).

Thus the above integral is∫
h−1(C)

Mt−2(u, dx)Mt−1(f ◦ h)(x).

But this is just the right hand side of (5.15) above.

The conditions of h-respectfulness and h-decomposability thus allow us
to compute the transition probabilities of the descended chain. In case of
descent via h, the distribution of vt = h(ut) is given by h∗(νM0M1 . . .Mt);
if the descent is respectful or decomposable we may explicitly express this
as h∗ν · RhM0 · RhM1 . . . RhMt or h∗ν ·DhM0 ·DhM1 . . . DhMt respectively.
Further discussion of the descent conditions may be found in 8–3.

6. Summary of formulae

A. Pushdowns
h∗µ(A) = µ(h−1(A)) (4.6(i))

h∗M(u,A) = M(u, h−1(A)) (4.6(ii))

hL∗M(v,A) = (L · h∗M)(v,A) (4.8)

B. Descents
(1) Respectful

RhM(v,A) = h∗M(u,A), u ∈ h−1{v} (5.2)

(2) Decomposable

DhM(v,A) = m · h∗M, m = m
M(u,·)
h , ∀u (5.6)
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C. Initial measures
(1) Standard

ξ(A) = (ξ1 ⊗ . . .⊗ ξk)(A)

=
∫
ξ1(dy1) . . . ξk(dyk)1A(y1, . . . , yk), A ∈ Ek

(4.3)

(2) Augmented

ξτ (A× {χ}) =
∫
Ek
ξ(dy)1A(y)τ(y;χ), A ∈ Ek, χ ∈ I(k) (3.4)

D. Transition probabilities
(1) Fixed channeling

Nt,χ(e,A) =
∫
A

∏
i∈D(χ)

Qi,ei(t)(eχ(i); dyi)
∏

j /∈D(χ)

εej (dyj) (1.3)

(2) Augmented

N̂t(e, χ0;A× {χ1}) =
∫
Ek
Nt,χ0(e; dy)1A(y)τ(y;χ1),

e ∈ Ek; A ∈ Ek; χ0, χ1 ∈ I(k)
(3.2)

(3) Standard

Nt(e;A) =
∑

χ∈I(k)

τ(e;χ)Nt,χ(e;A), e ∈ Ek, A ∈ Ek (4.1)

Nt = pτ∗N̂t = DpN̂t (4.14)


