
CHAPTER TWO

DEFINITION OF OBSERVER

In this chapter we define the concept observer. The previous chapter intro-
duced this notion by concrete examples. We now abstract from these examples
a formal definition. We discuss the definition, discuss under what conditions
an observer is ideal, and give an example.

1. Mathematical notation and terminology

The definition of observer given in the next section makes use of several math-
ematical concepts from probability and measure theory. In this section we
collect basic terminology and notation from these fields for the convenience of
the reader.1

Let X be an arbitrary abstract space, namely a nonempty set of elements
called “points.” Points are often denoted generically by x. A collection X of
subsets of X is called a σ-algebra if it contains X itself and is closed under the
set operations of complementation and countable union (and is therefore closed
under countable intersection as well). The pair (X, X ) is called a measurable
space and any set A in X is called an event. If (X,X ) is a measurable space and
Y ⊂ X is any subset, we define a σ-algebra Y on Y as follows: Y = {A∩Y |A ∈
X}. This measurable structure on Y is called the induced measurable structure.
A map π from a measurable space (X, X ) to another measurable space (Y, Y),
π:X → Y , is said to be measurable if π−1(A) is in X for each A in Y; this is
indicated by writing π ∈ X/Y. In this case the set σ(π) = {π−1(A)|A ∈ Y}

1 For more background, beginning readers might refer to Breiman (1969) or
Billingsley (1979). For advanced readers we suggest Chung (1974) and Revuz
(1984).
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is a subσ-algebra of X , called the σ-algebra of π. It is also denoted π∗Y. A
measurable function π is said to be bimeasurable if, moreover, π(A) is in Y for
all A ∈ X . A measurable function whose range is R or R̄ = R ∪ {−∞, ∞} is
also called a random variable; the symbol X also denotes the random variables
on X. (The σ-algebra on R or R̄ is described in the next paragraph.) A measure
on the measurable space (X, X ) is a map µ from X to R∪{∞}, such that the
measure of a countable union of disjoint sets in X is the sum of their individual
measures. A measure µ is positive if the range of µ lies in the closed interval
[0,∞]. A measure µ is called σ-finite if the space X is a countable union of
events in X , each having finite measure. A property is said to hold “µ almost
surely” (abbreviated µ a.s.) or “µ almost everywhere” (µ a.e.) if it holds
everywhere except at most on a set of µ-measure zero. A support of a measure
is any measurable set with the property that its complement has measure zero.
If X is a discrete set whose σ-algebra is the collection of all its subsets, then
counting measure onX is the measure µ defined by µ({x}) = 1 for all x ∈ X. A
probability measure is a measure µ whose range is the closed interval [0, 1] and
that satisfies µ(X) = 1. A Dirac measure is a probability measure supported
on a single point. If ν and µ are two measures defined on the same measurable
space, we say that ν is absolutely continuous with respect to µ (written ν ¿ µ)
on a measurable set E if ν(A) = 0 for every A ⊂ E with µ(A) = 0. A measure
class on (X,X ) is an equivalence class of positive measures on X under the
equivalence relation of mutual absolute continuity. Given a measure space
(X, X , µ) and a mapping p from (X, X , µ) to a measurable space (Y, Y), one
can induce a measure p∗µ on (Y, Y) by (p∗µ)(A) = µ(p−1(A)). Then p∗µ is
called the distribution of p with respect to µ, or the projection of µ by p, or the
pushdown of µ by p.

If X and Y are two topological spaces, a map f :X → Y is continuous if
f−1(U) is an open set of X whenever U is an open set of Y . A continuous
f is a homeomorphism if it has a continuous inverse. A basis for a topology is
any collection of sets that are open and such that any open set is a union of
sets in the basis. A topological space is called separable if it has a countable
basis. The smallest σ-algebra containing the open sets of a topology (and
therefore also the closed sets) is called the σ-algebra generated by the topology
or the associated measurable structure of the topology. A metric on a set X is a
function d:X × X → R+ = [0,∞) such that for all x, y, z ∈ X, d(x, y) = 0
iff x = y, d(x, y) = d(y, x), and d(x, y) + d(y, z) ≥ d(x, z). Given ε > 0, the
set Bd(x, ε) = {y| d(x, y) < ε} is called the ε-ball centered at x. A topological
space is metrizable if there is a metric on the space such that the open balls in
the metric are a basis for the topology. A standard Borel space is a separable
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metrizable topological space with a σ-algebra generated by the topology. The
topology on R or R̄ is here taken to be that generated by the open intervals.
The associated measurable structure constitutes the Borel sets. Lebesgue measure
λ is the unique measure on the Borel structure such that λ((a, b)) = b− a for
b ≥ a. The Lebesgue structure is the smallest σ-algebra containing all Borel sets
and all subsets of measure zero Borel sets. Lebesgue measure λ then extends
to a measure with the same name on the Lebesgue structure.

Let µ be a finite measure on X. LetM denote the set of functions from X

to R̄. The relation ∼ on M defined by f ∼ g iff f = g, µ-almost everywhere,
is an equivalence relation. Let M̄ be the collection of equivalence classes of
M under ∼. M̄ is a vector space which has a distinguished subspace L1(X,µ)
and a linear function

L1(X,µ) −→ R

f 7→
∫
fdµ

with the following three properties (by an abuse of notation we do not distin-
guish between functions and their equivalence classes):
(i) L1(X,µ) contains all indicator functions 1A, for A ∈ X ;

(ii) For all A ∈ X ,
∫

1Adµ = µ(A);
(iii) If {fi} is an increasing sequence of nonnegative functions in L1(X,µ) and

if f(x) = limi→∞ fi(x), then f ∈ L1(X,µ) iff limi→∞
∫
fidµ < ∞. In

that case
∫
fdµ = limi→∞

∫
fidµ.

Let (X, X ), (Y, Y) be measurable spaces. A kernel on X relative to Y or a
kernel on Y ×X is a mapping N :Y ×X → R ∪ {∞}, such that
(i) for every y in Y , the mapping A→ N(y, A) is a measure on X, denoted

by N(y, ·);
(ii) for every A in X , the mapping y → N(y, A) is a measurable function on

Y , denoted by N(· , A).
N is called positive if its range is in [0,∞] and markovian if it is positive and,
for all y ∈ Y , N(y,X) = 1. If X = Y we simply say that N is a kernel on
X . In what follows, all kernels are positive unless otherwise stated. If N is a
kernel on Y × X and M is a kernel on X ×W, then the product NM(y,A) =∫
X
N(y, dx)M(x,A) is also a kernel.

Let (X, X ) and (Y, Y) be measurable spaces. Let p:X → Y be a mea-
surable function and µ a positive measure on (X, X ). A regular conditional
probability distribution (abbreviated rcpd) of µ with respect to p is a kernel
mµ
p :Y ×X → [0, 1] satisfying the following conditions:

(i) mµ
p is markovian;

(ii) mµ
p (y, ·) is supported on p−1{y} for p∗µ-almost all y ∈ Y ;
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(iii) If g ∈ L1(X,µ), then
∫
X
gdµ =

∫
Y

(p∗µ)(dy)
∫
p−1{y}m

µ
p (y, dx)g(x).

It is a theorem that if (X, X ) and (Y, Y) are standard Borel spaces then
an rcpd mµ

p exists for any probability measure µ (Parthasarathy, 1968). In
general there will be many choices for mµ

p any two of which will agree a.e. p∗µ
on Y (that is, for almost all values of the first argument). If p:X → Y is a
continuous map of topological spaces which are also given their corresponding
standard Borel structures one can show that there is a canonical choice of mµ

p

defined everywhere.

2. Definition of observer

Definition 2.1. An observer is a six-tuple,
(
(X,X ), (Y,Y), E, S, π, η

)
, satis-

fying the following conditions:
1. (X,X ) and (Y,Y) are measurable spaces. E ∈ X and S ∈ Y.
2. π:X → Y is a measurable surjective function with π(E) = S.
3. Let (E, E) and (S, S) denote the measurable spaces on E and S respec-

tively induced from those of X and Y . Then η is a markovian kernel on
S × E such that, for each s, η(s, ·) is a probability measure supported in
π−1{s} ∩ E.

A five-tuple
(
(X,X ), (Y,Y), E, S, π

)
satisfying the first two conditions is called

a preobserver. An observer
(
(X,X ), (Y,Y), E, S, π, η

)
completes the preobserver(

(X,X ), (Y,Y), E, S, π
)
. The constituents of an observer have the following

names:
X — configuration space
Y — premise space
E — distinguished configurations
S — distinguished premises
π — perspective
η — conclusion kernel, or interpretation kernel

We also say that, for s ∈ S, η(s, ·) is a conclusion measure.

Discussion
In what follows, we sometimes write X for (X,X ) and Y for (Y,Y) when the
meaning is clear from the context.

Fundamentally, an observer makes inferences with one notable feature:
the premises do not, in general, logically imply the conclusions. In the defini-
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FIGURE 2.2. Illustration of an observer.

tion of observer, the possible premises are represented by Y and the possible
conclusions by the measures η(s, ·).

An observer O works as follows. When O observes, it interacts with its
object of perception. It does not perceive the object of perception, but rather a
representation of some property of the interaction. X represents all properties
of relevance to O. Suppose some point x ∈ X represents the property that
obtains in the present interaction. Then O, in consequence of the interaction,
receives the representation y = π(x), where y ∈ Y . Informally, we say that
y “lights up” for O. If x is in E, then y is in S; if x is not in E and not in
π−1(S)−E, then y is in Y − S. All O receives is y, not x. O must guess x. If
y is not in S, then O decides that x is not in E and does nothing. If y is in
S, then O decides that x is in E. But O does not, in general, know precisely
which point of E. Instead, O arrives at a probability measure η(s, ·) supported
on E. This measure represents O’s guess as to which point of E is x. If there
is no ambiguity, then O’s measure is simply a Dirac measure supported on the
appropriate point of E.

From this description we see that an observer deals solely with represen-
tations: x and y are elements of the representations X and Y respectively, and
η(s, ·) is a measure on X. What these representations signify we discuss in
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chapter four. In these discussions we use the term preobserver to refer to sets
of observers having the same (X,X ), (Y,Y), E, S, and π, but having different
conclusion kernels.

One notes at once that the definition of observer is quite general. The
class of observers is large, almost surely containing observers for which there is
no human, even no biological, counterpart. Given this, of what use is observer
theory to those interested in human perception?

Roughly, it is of the same use as formal language theory is to those in-
terested in human, or “natural,” languages. That is, formal language theory
provides a framework within which one can formulate precisely the question,
“What are the human languages?” Similarly, observer theory provides a frame-
work within which one can formulate precisely the question, “What are the ob-
servers of relevance to human or, more generally, biological perception?” And
just as the answer in the case of language has not come from formal language
theory alone, so one would expect that the answer in the case of perception
will not come from observer theory alone. In both cases the theory provides
not an answer but a framework within which to seek an answer.

The framework should, of course, allow one to describe concrete instances
of relevance to human perception. Therefore in section five we present several
such examples. Moreover the framework should guide one in the construction
of new results. Therefore in 5–6 and 9–4 we present an example of this.

The conditions on observers
We discuss the three conditions listed in the definition of observer.
Condition 1: (X,X ), (Y,Y) are measurable spaces. E ∈ X and S ∈ Y .

X is a representation in which E is defined. X itself is not the “real world,”
but a mathematical representation. Y represents all premises from which the
observer can make inferences. We stipulate that X and Y are measurable
spaces because this is the least restrictive assumption that always allows us
to discuss the measures of events in these spaces. It would be unnecessarily
restrictive to specify that X must be, say, a Euclidean space or a manifold.
(Indeed the requirement of measurability itself, because of its Boolean nature,
may need to be generalized.)

Condition 2: π:X → Y is a measurable surjective function with π(E) = S.
π must be surjective, for otherwise there would be premises in Y unrelated

to the configurations in X: the observer would have premises that were gra-
tuitous. π must be measurable for the premises Y must, at the very least, be
syntactically compatible with the configurations X. π(E) = S is a necessary
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condition for the distinguished premises to be good evidence for the conclusion
measures.

Condition 3: η is a markovian kernel on S × E such that, for each s, η(s, ·) is a
probability measure supported on π−1{s} ∩ E.

η represents the conclusions reached by an observer for premises repre-
sented by S. For each s ∈ S, η assigns a probability measure whose support
is π−1{s} ∩ E; the measure has this support because, from the perspective π
of the observer, only the distinguished configurations in the fibre π−1{s} are
compatible with the premise represented by s. (The requirement that conclu-
sions be probability measures on fibres may be too restrictive; perhaps, for
instance, some type of order relation may suffice.)

Morphisms of preobservers and observers
Definition 2.3. Let P = (X,Y,E, S, π) and P ′ = (X ′, Y ′, E′, S′, π′) be two pre-
observers with completionsO = (X,Y,E, S, π, η) andO′ = (X ′, Y ′, E′, S′, π′, η′)
respectively. A morphism between preobservers P and P ′ is a pair of maps f and
g which make the following diagram commute.2

X
f−→ X ′yπ yπ′

Y
g−→ Y ′

If, moreover, the maps f and g make the following diagram commute, they are
a morphism between observers O and O′.

X f∗←− X ′yη yη′
S g∗←− S ′

Here we interpret the spaces X , X ′, S and S ′ to consist of random vari-
ables on X, X ′, S and S′ respectively. Then if h ∈ X ′, f∗h is the function
h ◦ f on X; similarly for g∗. If k ∈ X , ηk is the function on S given by
ηk(s) =

∫
X
η(s, dx)k(x). If the maps f and g are bimeasurable bijections, each

morphism is called an isomorphism.

2 To say that this diagram commutes means that all paths from the same
origin to the same destination, following the directions indicated by the arrows,
are equivalent. In the case of this diagram it means π′ ◦ f = g ◦ π.
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3. Ideal observers

Let µX denote a measure class on (X,X ) that is “unbiased”: its definition
makes no reference to properties of E or π. We think of µX as expressing an
abstract uniformity of X which exists prior to the notion of the distinguished
configurations E. For example, µX might be a measure class invariant for some
group action on X (cf. 5–1). µX provides an unbiased background measure
class by which one can determine if an observer is an “ideal decision maker”
(discussed below), and to which one can compare the actual probabilities of
obtaining configuration events in some concrete universe.

By an abuse of notation, we sometimes use the same symbol, µX , to denote
both a measure class and a representative measure in the class.

Definition 3.1. An observer satisfying the condition

µX(π−1(S)− E) = 0

is called an ideal observer.

This condition states that the measure of “false targets” is zero. A false
target is an element of F = π−1(S) − E. False targets “fool” the observer;
they lead the observer to perceptual illusions. Here is why. Note that since
F is a subset of π−1(S), π(F ) is a subset of S. Now suppose that some point
x ∈ X represents the property of relevance to the observer that obtains in the
interaction of the observer with the object of perception. Call such a point
the true configuration. Assume that the true configuration is in F . Then the
observer receives a premise s = π(x) ∈ S and arrives at the conclusion measure
η(s, ·). However, this measure is supported off F (and on E), and therefore
gives no weight to the true configuration x in F . The conclusion measure
represents, in this case, a misperception.

An ideal observer is an ideal decision maker in the following sense: Given
that the true configuration is not in E, an ideal observer almost surely recognizes
this. We emphasize the “almost surely.” We claim not that observers, ideal
or otherwise, are free of perceptual illusions; to the contrary, we claim that
perceptual illusions, such as the cosine surface and 3-D movies, illustrate im-
portant properties of observers. But illusions are of two kinds: those that arise
from a true configuration of relevance to the observer, i.e., from E itself, and
those that do not. For an ideal observer the latter kind of illusion is rare, in a
sense described formally by µX .
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Also true is the following: Given that the true configuration is inE, an observer,
ideal or otherwise, always recognizes this. True configurations in E always lead an
observer to reach a conclusion measure (which measures are always supported
on E), simply because π(E) = S and η assigns a measure on E for every point
in S.

Figure 3.2 summarizes these ideas in a decision diagram. The diagram
displays two kinds of true configurations across the top: E, which indicates
that the true configuration is in E, and -E, which indicates that the true con-
figuration is in X −E. The diagram displays the two possible decisions of the
observer along the left side. Inside each box in the right column is a number
which is a conditional probability, namely the unbiased (µX) conditional prob-
ability that an ideal observer arrives at the decision indicated to the left side
of the diagram given that the true configuration is in X −E. Inside each box
in the left column is a number; in this left column the number 1 is a shorthand
for “certainly” and 0 for “certainly not.” The numbers in this left column hold
simply by the definition of observer; if the true configuration is in E, then
since S = π(E) and the observer always decides that the true configuration is
in E given a premise in S, the observer always decides correctly. Also inside
each box is a label in quotes which describes the type of decision represented
by that box.

As an example of how to read this diagram, consider the box labelled
“false alarm.” It contains a 0. This means that the conditional probability
is zero that an ideal observer will decide that the true configuration is in E

given that in fact it is not. (The one in the box labelled “correct reject” is the
complementary conditional probability).

A sufficient condition for an observer to be ideal is the following:

π∗µX(S) = 0. (3.3)

This condition states that µX(π−1(S)) = 0, which implies that µX(π−1(S) −
E) = 0, and therefore that the observer is ideal. This condition often ob-
tains in observers whose distinguished configurations are defined by algebraic
equations.

The definition of an ideal observer makes essential use of the measure
µX , a measure defined without regard to properties of any external world.
Therefore an ideal observer is ideal regardless of the relationship between the
ideal observer and any external world. However, µX may not accurately reflect
the measures of events in the appropriate world external to the observer. We
discuss this in later chapters.

That aspect of the inference presented in Figure 3.2 is not the only one
of interest. An observer decides not only if the true configuration is in E;
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FIGURE 3.2. Decision diagram for ideal observers.

it produces in addition a probability measure supported on E which is its
best guess as to which events in E are likely to have occurred, together with
their likelihoods. One can ask if this measure is accurate. The answer to
this requires the establishment of a formal framework in which observer and
observed can be discussed. This is the subject of chapter five. The issue of
perceptual accuracy can then be understood in terms of stabilities of dynamics
of participators on these frameworks. In particular, we can ask whether the
conclusion kernel η of the observer is compatible with these stabilities; this
leads to “perception=reality” equations, discussed in chapter eight.

4. Noise

Thus far we have considered only observer inferences whose premises are rep-
resented by single points s ∈ S. Such inferences are free of noise in the sense
that the premise is known precisely. But if there is noise, if the premise is not
known precisely but only probabilistically, what conclusions can an observer
reach?

A natural way to represent a noisy premise is as a probability measure
λ on Y . A precise premise s ∈ S is then the special case of a Dirac measure
supported on s. λ models noise or measurement error as follows: for B ∈ Y,
λ(B) is the probability that the set of premises B contains the “true premise.”

Given a probability measure λ on Y the natural conclusion for the observer
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to reach is the following:{
with probability λ(Y − S) there is no interpretation;
with probability λ(S) the distribution of interpretations is ν,

where, for ∆ ∈ E ,

ν(∆) = λ(S)−1

∫
S

η(s,∆ ∩ π−1(s))λ(ds). (4.1)

Intuitively, λ(S) is the probability of having received a “signal,” i.e., a dis-
tinguished premise, and λ(Y − S) is the probability of not having received a
signal.

Thus the definition of observer provides a formalism which, by means of
the interpretation kernel η, unifies perceptual inferencing “policies” in the pres-
ence of noise. Moreover the effects of various kinds of noise can be analyzed
within a given inferencing system. (For example, there may be regularities of
the noise worth exploiting. A common approach to noise represents the set of
noisy signals as a markovian kernel K on Y ×Y, where K(y, ·) is computed by,
say, convolving a fixed gaussian distribution with the Dirac measure εy(·) lo-
cated at y.) These ideas need to be studied systematically and to be compared
with the ideas of signal detection theory and various decision theories.

5. Examples of observers

In this section we consider several current explanations of specific perceptual
capacities and exhibit these explanations as instances of the definition of ob-
server.

Example 5.1. Structure from motion (Ullman 1979). One can devise dynamic
visual displays for which subjects, even when viewing monocularly, report see-
ing motion and structure in three dimensions. This perceptual capacity to
perceive three-dimensional structure from dynamic two-dimensional images is
often called “structure from motion.”3 To explain this capacity, Ullman pro-
poses what he calls the rigidity assumption:

3 Among the formal studies of structure from motion are Ullman (1979,
1981, 1984), Longuet-Higgins and Prazdny (1980), Webb and Aggarwal (1981),
Hoffman and Flinchbaugh (1982), Hoffman and Bennett (1985, 1986), and
Koenderink and van Doorn (1986).
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“ Any set of elements undergoing a two-dimensional transforma-
tion which has a unique interpretation as a rigid body moving in
space should be interpreted as such a body in motion.”4

Moreover, he proves a theorem which allows one to determine whether a given
collection of moving elements has a unique rigid interpretation. This structure
from motion theorem states:

“ Given three distinct orthographic views of four noncoplanar points
in a rigid configuration, the structure and motion compatible with
the three views are uniquely determined [up to reflection].”5

The observer corresponding to Ullman’s theorem has a configuration space
consisting of all three sets of four points, where each point lies in R3. Since
Ullman takes one of the four points to be the origin, we find that the configura-
tion space X is R27. The premise space is the space of all triples of four points,
where each point lies in R2 (i.e., in the image plane). We find that the premise
space Y is R18. Now denoting a point in R3 by (x, y, z) and recalling that the
map p: R3 → R2 given by (x, y, z) 7→ (x, y) is an orthographic projection, we
find that the perspective π of Ullman’s observer is the map π:X → Y induced
by p. E, the distinguished configurations, consists of those three sets of four
points, each point in R3, such that the four points in each set are related to
the four points in every other set of the triple by a rigid motion. One can write
down a small set of simple algebraic equations to specify this (uncountable)
subset of X, but this is unnecessary here. It happens that E has Lebesgue
measure zero in X. S, the distinguished premises, consists simply in π(E).
Intuitively, S consists of all three views of four points that are compatible with
a rigid interpretation. S happens to have Lebesgue measure zero in Y ; there-
fore the Lebesgue measure of “false targets”, i.e., elements of π−1(S) − E, is
also zero. Finally, for each s ∈ S, η(s, ·) can be taken to be the measure that
assigns a weight of 1

2 to each of the two points of E which, according to the
structure from motion theorem, project via π to s. This would correspond to
an observer that saw each interpretation with equal frequency. If one inter-
pretation was seen, e.g., 90% of the time then the appropriate measure would
assign weights of .9 and .1.

Example 5.2. Stereo (Longuet-Higgins 1982). Because one’s eyes occupy dif-

4 Ullman (1979), p. 146.
5 Ullman (1979), p. 148. The comment in brackets is ours; there are actually

two solutions which are mirror images of each other, as Ullman points out
elsewhere.
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ferent positions in space, the images they receive differ subtly. Using these
differences, one’s visual system can recover the three-dimensional properties
of the visual environment. This capacity to infer the third dimension from
disparities in the retinal images is called stereoscopic vision.6 To explain this
capacity, Longuet-Higgins assumes that the planes of the horizontal meridians
of the two eyes accurately coincide. He then proves several results, of which
we consider the following:

“ If the scene contains three or more nonmeridional points, not all
lying in a vertical plane, then their positions in space are fully de-
termined by the horizontal and vertical coordinates of their images
on the two retinas.”7

The observer corresponding to Longuet-Higgins’ explanation has a config-
uration space consisting of all two sets of three points, where each point lies
in R3. Longuet-Higgins does not take one of the three points to be the origin,
so the configuration space X is R18. The premise space is the space of all two
sets of three points, where each point lies in R2. Therefore the premise space
Y is R12. The perspective of Longuet-Higgins’ observer is the map π:X → Y

induced by the map p of Example 5.1. E, the distinguished configurations,
consists of all pairs of sets of three points, each point in R3, such that the
three points in each set are related to the three points in the other set by a
rigid motion whose rotation is about an axis parallel to the vertical axes of the
two retinal coordinate systems. One can write down straightforward equations
to specify this (uncountable) subset of X. S, the distinguished premises, is
π(E). And for each s ∈ S, η(s, ·) is Dirac measure on the unique (generically,
according to Longuet-Higgins’ result) point of E that projects via π to s.

Example 5.3. Velocity fields along contours in 2-D (Hildreth 1984). Because of
the ubiquity of relative motion between visual objects and the viewer’s eye,
retinal images of occluding contours (and other salient visual contours) almost
perpetually translate and deform. For smooth portions of a contour, attempts
to measure precisely the local velocity of the contour must face the so-called
“aperture problem”: if the velocity of the curve at a point s is V(s), only the
component of velocity orthogonal to the tangent at s, v⊥(s), can be obtained
directly by local measurement. The tangential component of the velocity field,

6 Among the formal studies of stereoscopic vision are Koenderink and van
Doorn (1976), Marr and Poggio (1979), Grimson (1980), Longuet-Higgins
(1982), Mayhew (1982), and Richards (1983).

7 Longuet-Higgins (1982).
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viz., Vt(s), is lost by local measurement. The visual system apparently over-
comes the aperture problem and can recover a unique velocity field for a moving
curve. This capacity to infer a complete velocity field along a two-dimensional
curve given only its orthogonal component is called the measurement of con-
tour velocity fields.8 To explain this capacity, Hildreth proposes that the vi-
sual system chooses the “smoothest” velocity field (precisely, one minimizing∫
|∂V
∂s |2ds) compatible with the given orthogonal component. She then proves

the following result:

“ If v⊥(s) is known along a contour, and there exists at least two
points at which the local orientation of the contour is different,
then there exists a unique velocity field that satisfies the known

velocity constraints and minimizes
∫
|∂V
∂s |2ds.”9

The observer corresponding to Hildreth’s explanation has a configuration
space X consisting of all velocity fields along all one-dimensional contours em-
bedded in R2. Y , the space of premises, consists of all velocity fields along
one-dimensional contours such that the velocity vector assigned to each point
of the contour is orthogonal to the local tangent to the contour. The dis-
tinguished premises S are those contours-cum-orthogonal-velocity-fields where
the contour is not straight. The perspective of Hildreth’s observer is the map
π:X → Y which takes each contour-cum-full-velocity-field in X to its corre-
sponding contour-cum-orthogonal-velocity-field in Y by simply stripping off
the tangential component of the full velocity field. For each premise y′ ∈ Y ,
π−1(y′) is all velocity fields which have y′ as their orthogonal component. Ac-
cording to Hildreth’s result, for each distinguished premise s′ ∈ S (i.e., each
contour-cum-orthogonal-velocity field where the contour is not straight) the
fibre π−1(s′) contains a unique contour-cum-velocity-field e′ which minimizes
her measure of smoothness. E, the distinguished configurations, is the union
of all such e′. For each s′ ∈ S, η(s′, ·) is Dirac measure on the corresponding
e′.

Example 5.4. Visual detection of light sources (Ullman 1976). The visual system
is adept at detecting surfaces which, rather than simply reflecting incident
light, are themselves luminous. This perceptual capacity is called the visual
detection of light sources. To explain this capacity, Ullman proposes that

8 Among the formal studies of optical flow are Koenderink and van Doorn
(1975, 1976, 1981), Marr and Ullman (1981), Horn and Schunck (1981), Wax-
man and Wohn (1987).

9 Hildreth (1984).
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it is unnecessary to consider the spectral composition of the light and the
dependence of surface reflectance on wavelength. He considers the case of two
adjacent surfaces, A and B, with reflectances rA and rB . (The reflectance of a
surface, under Ullman’s proposal, is a real number between 0 and 1 inclusive,
which is the proportion of incident light reflected by the surface.)10 He assumes
that the light incident to surface A at some distinguished point 0 has intensity
I0 and that the intensity of the incident light varies linearly with gradient
K. Thus a point 1 on surface B at distance d from 0 receives an intensity
I1 = I0 + Kd. (Ullman restricts attention to a one-dimensional case and
stipulates that d is positive if 1 is to the right of 0.) If A is also a light source
with intensity L, then the retinal image of the point 0 receives, on Ullman’s
model (which ignores foreshortening), a quantity of light e0 = rAI0 + L. On
the assumption that the light source, if any, is at A (which can be accomplished
by relabelling the surfaces if necessary) the retinal image of point 1 receives a
quantity of light e1 = rBI1. The gradient of light in the image of surface A is
SA = rAK, whereas in the image of surface B it is SB = rBK. Ullman then
argues that the visual system detects a light source at A when the quantity
L̂ = e0 − e1(SA/SB) + SAd is greater than e1(SA/SB)− SAd; furthermore, L̂
is the perceived intensity of the source.

The observer corresponding to Ullman’s explanation has a configuration
space consisting of all six-tuples

(rA, rB , I0, d,K,L),

where
rA, rB ∈ [0, 1], K, d ∈ R, I0, L ∈ [0,∞),

and L is the light source intensity. Thus

X = [0, 1]× [0, 1]× [0,∞)× R× R× [0,∞).

The premise space consists of all five-tuples

(e0, e1, SA, SB , d),

where
e0, e1 ∈ [0,∞), SA, SB , d ∈ R.

10 Among the formal theories of shading are Horn (1975), Koenderink and
van Doorn (1980), Ikeuchi and Horn (1981) and Pentland (1984). Among
the formal theories of reflectance are Land and McCann (1971), Horn (1974),
Maloney (1985), and Rubin and Richards (1987). For reviews see Horn (1985)
and Ballard and Brown (1982).
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Thus
Y = [0,∞)× [0,∞)× R× R× R.

The perspective of Ullman’s observer is the map π:X → Y defined by

(rA, rB , I0, d,K,L) 7→ (rAI0 + L, rB(I0 +Kd), rAK, rBK, d).

S, the distinguished premises, consists of that subset of Y satisfying

L̂ > e1(SA/SB)− SAd.

Similarly E, the distinguished configurations, consists of that subset of X
satisfying

L > rA(I0 +Kd)− rAKd.

For each distinguished premise s = (e0, e1, SA, SB , d) ∈ S, η(s, ·) can be taken
to be any probability measure supported on those distinguished configurations
in π−1(s) satisfying L = e0 − e1(SA/SB) + SAd (since Ullman’s explanation
seeks to recover only the light source intensity, not the other aspects of the
configuration).

Example 5.5. Regularization (Poggio et al. 1985). According to Poggio, Torre,
and Koch, early vision problems such as edge detection, shape from shading,
and surface reconstruction, have a common structure: they are ill-posed prob-
lems, a notion first defined by Hadamard (1923). A problem is well-posed if it
has a solution, the solution is unique, and the solution depends continuously
on the initial data. A problem is ill-posed if it fails to satisfy one or more of
these conditions.

Poggio et al. denote by the term regularization any method that makes
an ill-posed problem well-posed. Usually regularization involves bringing to
bear a priori knowledge, often expressed in variational principles that con-
strain the possible solutions or statistical properties of the solution space. In
standard regularization theory, developed by Tikhonov (1963, 1977), there are
two primary methods for solution, as Poggio et al. describe:

“ The regularization of the ill-posed problem of finding z from the
‘data’ y

Az = y (1)

requires the choice of norms ‖ · ‖ and of a stabilizing functional
‖Pz‖. In standard regularization theory, A is a linear operator,
the norms are quadratic and P is linear. Two methods that can be
applied are: (1) among z that satisfy ‖Az − y‖ ≤ ε find z that
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minimizes (ε depends on the estimated measurement errors and
is zero if the data are noiseless)

‖Pz‖2 (2)

(2) find z that minimizes

‖Az − y‖2 + λ‖Pz‖2 (3)

where λ is a so-called regularization parameter.”11

Although several early visual processes have explanations fitting nicely
into the methods of standard regularization theory, Poggio et al. note that
others do not, primarily because no quadratric functional can express the a
priori constraints. In this case there are usually many local minima in addition
to the global one that is the desired solution, and stochastic regularization
techniques become attractive. Simulated annealing, for instance, can be used
to search for the global solution, or the search can be done using the technique
of Markov random fields. In the latter case the a priori knowledge is represented
in terms of probability distributions; a solution is chosen that maximizes some
likelihood criterion.

The space of possible solutions for an ill-posed problem correspond to the
configuration space of an observer. Those z that minimize the stabilizer corre-
spond to its distinguished configurations. The possible data y correspond to its
distinguished premises. A corresponds to its perspective map. Since by defini-
tion a regularization method gives unique solutions, the class of explanations
described by regularization techniques (standard, stochastic, or otherwise) cor-
respond to a subclass of observers satisfying the following:

∀s ∈ S, π−1(s) ∩ E contains one point.

For these observers, therefore, η(s, ·) must be a Dirac measure (for all s ∈
S). As Poggio et al. are well aware, many visual capacities do not arrive
at unique interpretations and are therefore not described by regularization
methods. That is, when given some initial data y the visual system often
reaches not one solution z but two or more. The multistable visual figures,
such as the Necker cube, are well known examples. Another example is the
visual perception of structure from motion (Example 5.1). Human observers
routinely perceive at least two distinct interpretations, and in some cases many
more, when presented with the appropriate motion displays. No interpretation

11 Poggio et al. (1985).
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is the global one with the rest being local; all are equally solutions and all are
perceived (usually sequentially). For this reason, Poggio et al. are correct
in being careful to propose regularization as a technique only for early vision
problems.

However the regularization approach might be extended to cover more
perceptual problems by using distinct stabilizers for the distinct perceptual in-
terpretations. To tie these distinct regularizations together one could associate
with each a probability indicating, for each initial datum y, the relative weight
the perceptual system gives to the associated solutions. This is accomplished
in observer theory through the interpretation kernels η.

Since a regularization technique always gives, by definition, a unique so-
lution point z, it follows that the precision of this solution is independent of
the precision of the initial data. Certainly the particular z picked out by a
regularization algorithm can depend on the precision of the initial data. But
a single precise point z is, by definition, picked out whether the measurement
error in the initial data is zero or infinite. For example, given the initial data
y0 with error ε0 = 0 the solution might be z0 whereas given the initial data
y1 with error ε1 = ∞ the solution might be the point z1. But the solution
z1 is still a precise point even though the error is infinite. Taken seriously as
a model of early human vision, then, regularization predicts that in no case
should blurring or otherwise corrupting the visual stimuli lead to any loss of
clarity in the resulting percept. That is, as one increases the corruption of the
visual stimuli there should be no increase in the variance of subject responses
to any early vision task. There may be a shift in the percept, but no increase
of variance about that percept. This prediction is clearly false. Regularization
theory, by its very definition, cannot have a realistic treatment of noise.

Example 5.6. Rigid fixed-axis motion (Hoffman and Bennett 1986). In chapter
one we constructed a “biological motion” observer with a bias toward perceiv-
ing rigid planar motion in certain visual displays. We now construct an ideal
observer with a bias toward perceiving rigid fixed-axis motion, a bias more
general than the previous one. This observer addresses a problem of interest
to vision researchers: most human subjects, when shown certain visual dis-
plays in two dimensions, report perceiving rigid fixed-axis (RFA) motion in
three dimensions. Let us call such perceptions of the two-dimensional displays
RFA interpretations. To construct this observer we make use of the following
result:

(i) Assume one is given three distinct orthographic projections of three
points in R3, which points move rigidly about a fixed axis. Then generi-
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cally these projections restrict to two the number of possible RFA interpre-
tations. (ii) Assume one is given three distinct orthographic projections
of three points in R3, which points move arbitrarily in three dimensions.
Then generically these projections restrict to zero the number of possible
RFA interpretations.12

Because of this result we can construct an observer that, when possible, reaches
RFA interpretations when given three distinct parallel projections of three
points moving in three dimensions. Without loss of generality, we assume
that the observer takes one of the points, O, to be the origin of a cartesian
coordinate system in three dimensions, and represents the positions of the
other two points, A1 and A2, relative to that origin. This is illustrated in
Figure 5.7.

In this case the configuration space X is the space of all triples of pairs of
points, where each point lies in R3. That is,

X = {(aij)| aij = (xij , yij , zij); i = 1, 2; j = 1, 2, 3} = R18.

The premise space Y is the set of all triples of pairs of points in R2, i.e.,

Y = {(bij)|bij = (xij , yij); i = 1, 2; j = 1, 2, 3} = R12.

The perspective is then π: R18 → R12 induced by (xij , yij , zij) 7→ (xij , yij).
The σ-algebras X and Y are the appropriate Borel algebras. It is reasonable
to take, as an underlying uniformity of X, the group of rigid motions on it.
Thus, the unbiased measure class µX (required for an ideal observer) can be
taken to be that of Lebesgue measure. The measure class of π∗µX is also that
of Lebesgue measure on Y = R12.

To define the distinguished configurations E, we use notation as illustrated
in Figure 5.7. The three points are O, A1, and A2. As above, let aij denote
the vector in three dimensions between points O and Ai in view j (j = 1, 2, 3).
E is that subset of X consisting of three pairs of points, each point of the pair
lying in R3, such that there is a rigid translation and rigid rotation about a
single axis relating each pair plus the origin point to the others. It happens
in this case that E is an algebraic variety (the solution set of a collection of
polynomial equations) defined by the following eight vector equations:

a11 · a11 − a12 · a12 = 0, (5.8)

12 This is stated and proved in Hoffman and Bennett (1986). The term
“generically” here refers to Lebesgue measure class in (ii) and to a natural
transporting of Lebesgue measure class to an appropriate set in (i). This set
will be discussed shortly.
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Frame 1 Frame 2 Frame 3

O O O

a11 a21 a12 a22 a13 a23

A1

A2
A2

A1

A1

A2

FIGURE 5.7. Rigid fixed-axis motion: Three arrangements of three points in 3-D.

a11 · a11 − a13 · a13 = 0, (5.9)

a21 · a21 − a22 · a22 = 0, (5.10)

a21 · a21 − a23 · a23 = 0, (5.11)

a11 · a21 − a12 · a22 = 0, (5.12)

a11 · a21 − a13 · a23 = 0, (5.13)

(a11 − a12) · [(a11 − a13)× (a21 − a22)] = 0, (5.14)

(a11 − a12) · [(a11 − a13)× (a21 − a23)] = 0. (5.15)

In these equations the operation · indicates scalar (dot) product and × in-
dicates vector (cross) product. The first six equations specify that the three
points move rigidly. The last two specify that the points rotate about a fixed
axis. E so defined has dimension less than that ofX; the distinguished premises
S = π(E) have dimension less than Y . Therefore S has Lebesgue measure zero
in Y . Since the measure class π∗µX on Y is that of Lebesgue measure, S has
π∗µX measure zero in Y . We conclude from 3.3 that this is an ideal observer.

With effort it can be shown that, generically on S, the fibre π−1{s} of π
over a point s ∈ S contains two points of E. We can chose η(s, ·) to be the
probability distribution on E which gives weight, say, of one half to each of
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the two points. This ideal observer is as follows:

X = R18 ⊃ E = rigid fixed-axis motionsyπ yπ
Y = R12 ⊃ S

(5.16)

Example 5.7 Parsing sentences of a language (Hopcroft and Ullman 1969). When
you read or hear a sentence such as John hit the ball you perceive, according
to current psycholinguistic theory, not just the individual words and their
meanings, but also the syntactic structural relationships between the words:
e.g., you perceive that John hit the ball has two major parts (the noun phrase
John and the verb phrase hit the ball) and that the second part itself has subparts
(the verb hit and the noun phrase the ball). A convenient way to display these
constituents of a sentence is the “bracket” notation; in the case of our example
sentence this notation yields [[John] [[hit] [the ball]]], where matched brackets
indicate the boundaries of constituents; e.g., the brackets about hit the ball
indicate the verb phrase, and the brackets about the ball indicate a noun phrase
nested within the verb phrase.

Of course sentences do not come with their brackets neatly displayed;
the brackets must be inferred. And such an inference must, in general, be
nondemonstrative: given a sentence of, say, English having n words there are
many distinct possible ways of assigning matched brackets, of which only one,
or at most a very few, are inferred by speakers of English. Clearly, such
speakers employ powerful assumptions, assumptions that greatly reduce the
number of bracket interpretations for each string of English words. These
assumptions are known as the rules of grammar for English.

It is common to specify a grammar for a language L as a four-tuple (T ,
N , R, S), where T is the “terminal vocabulary” (e.g., in the case of English,
words like John, ball, the, and hit), N is the “nonterminal vocabulary” (e.g.,
vocabulary like “noun phrase” (NP), “verb” (V), or “verb phrase” (VP)), R
is a collection of “rewrite rules” (e.g., rules like VP→[V] [NP]), and S, the
“start symbol” is an element of N always used as the first step in a sequence
of rewrite rules leading to a sentence in the language L.

The corresponding “parsing observer” takes strings of symbols from T
and infers all appropriate bracketings. Specifically, its premise space Y is T ∗,
the set of all strings composed of symbols from the terminal vocabulary. Its
set of distinguished premises S is the language L. For each premise y in Y

the collection of compatible configurations π−1(y) is the set of all possible
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bracketings for y; if y is a string of n symbols then there are at least(
2n
n

)
n+ 1

elements of π−1(y).13 (For a string of 10 symbols this works out to at least
16,796 elements and for a string of 20 symbols to at least 6.5 billion.) The
configuration space X is the union of all these collections of compatible con-
figurations; i.e., X = ∪y∈Y π−1(y). The distinguished configurations E are
sentences in L together with brackets that properly specify, according to the
grammar of L, their constituent structure. For each premise in S there may,
of course, be more than one appropriate bracketing (corresponding to syntac-
tically ambiguous sentences); the interpretation kernel η gives a probability
distribution over these bracketings. π takes a configuration consisting of a
string together with matched brackets, and simply strips away the brackets.

6. Transduction

In this section we apply the definition of observer to the problem of defining
“transduction.” We begin with some questions.

Whence come the premises for perceptual inferences? As conclusions of
other inferences? Or as consequences of noninferential processes? “Both,” ap-
pears to be the answer from perceptual theorists of the information processing
persuasion (see, e.g., Marr 1982, Zucker 1981). Marr, for instance, proposes
that vision involves, in effect, a hierarchy of inferences. In Marr’s proposal, the
conclusions of early perceptual inferences about edges and their terminations
contribute to the contents of a “primal sketch.” This primal sketch, in turn,
provides premises for intermediate perceptual inferences such as stereovision
and structure from motion. The conclusions of these inferences contribute, in
their turn, to the contents of a “21

2 -D sketch.” And the 2 1
2 -D sketch provides

premises for inferences that eventuate in “3-D models.” Such a proposal has
proven fruitful as a program for research on human vision.14 It also suggests
the interesting project of constructing observers for the perceptual inferences

13 This formula gives the number of unlabelled, ordered, rooted, trivalent
trees with n leaves (Catalan, 1838). Parsing, of course, is not restricted to
producing trivalent trees, but there does not seem to be a formula for the total
number of trees that have n leaves. We thank Ronald Vigo for discussions on
this point.

14 Vision researchers debate the specifics of Marr’s proposal; whether, for
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at each level of the hierarchy, and then finding precisely how the conclusions
of observers at one level contribute to the premises of those at the next.

But most computational theorists also suggest that this hierarchy of per-
ceptual inferences must have a bottom; that while it may be typical, say in
the case of vision, for premises of visual inferences to derive from conclusions
of other visual inferences, there must be some inferences whose premises are
detected directly, i.e., as the result of a noninferential process called “transduc-
tion.” Transduction is typically defined as a mechanical process that converts
information from one physical form to another, e.g., from an optic array to a
pattern of rod and cone activity. But, as Fodor and Pylyshyn (1981) point
out, this definition is far too broad for purposes of cognitive theorizing, for it
is compatible with the entire visual system, indeed the entire organism, being
a transducer for any stimulus to which it can selectively respond. Indeed, it
has proved quite difficult to give any adequate definition of transducer. As
an example of the problems that arise consider, for instance, the definition
proposed by Fodor and Pylyshyn (1981, p. 161):

Here, then, is the proposal in a nutshell. We say that the systemS is a detector
(transducer) for a property P only if (a) there is a state Si of the system that
is correlated with P (i.e., such that if P occurs, then Si occurs); and (b) the
generalization if P then Si is counterfactual supporting—i.e., would hold
across relevant employments of the method of differences.

Recall that to say that a generalization “if P then Si” is counterfactual sup-
porting is (1) to specify a collection of “possible worlds,” usually chosen such
that the laws of science obtain in each possible world, and (2) to claim that
in each such world in which P obtains it is the case that Si obtains. The
method of differences can be used to check whether “if P then Si” is, indeed,
counterfactual supporting: one arranges worlds in which P obtains and checks
if Si obtains as well. If Si does not obtain in some world in which P does, one
concludes that “if P then Si” is not counterfactual supporting. To say that
the employment of the method of differences is “relevant” is to say that the

example, some perceptual capacities whose conclusions contribute to the 2 1
2 -

D sketch (say, shape from shading) might take premises not from the primal
sketch but directly from an image. These debates are, for our current purposes,
irrelevant. What is interesting is that these researchers agree, by and large,
with Marr’s general notion that the conclusions of some visual capacities serve
as premises for others. A similar conclusion, and similar debates, arise in
theories of language processing; among the levels of representation proposed
are (in hierarchical order) the phonetic, phonological, lexical, syntactic, and so
on.
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world one arranges is in the collection of “possible worlds.”
Fodor and Pylyshyn use their definition to conclude, contrary to certain

claims of Gibson (1966, 1979), that properties of light, but not properties of
the layout (the environment), are directly detected. Here in paraphrase is their
story. Suppose that you are looking at a layout (e.g., the inside of an office)
and that the state of your retinal receptors is correlated with properties of the
light from that layout; as the light varies, so too, in an appropriate manner,
does the state of your receptors. On this assumption it follows that the state
of your receptors is also correlated with properties of the layout. Now suppose
that you want to find out if layout properties are directly detected. According
to the counterfactual support condition (b) you must do an experiment: you
present the layout without the light and then the light without the layout.
In the first case you turn out the lights, and the layout disappears. In the
second case you present, say, a hologram, and an illusory layout appears. You
conclude that layout properties are not directly detected; if they were (1) you
could not have layout illusions, and (2) removing the light would not preclude
seeing the layout.

Of course Fodor and Pylyshyn want it to come out that properties of the
light are directly detected under their definition of transduction, even though
properties of the layout are not. The story would be that certain properties
of light are directly detected and that these properties of the light specify
properties of the layout for the perceiver, i.e., the perceiver uses the light to
infer the layout. It is reasonable to ask, then, if any properties of the light
are directly detected. Fodor and Pylyshyn suggest that relevant employments
of the method of differences would reveal that some are, and that one should
not, therefore, be able to construct light illusions. We should not, according to
them, be able to dismiss the hypothesis that properties of the light are directly
detected in the same manner that they dismiss the hypothesis that properties
of the layout are directly detected. This is an empirical claim of some interest.

To check it, let us recall the normal etiology of receptor activity in, say,
rod vision. Each rod contains a visual pigment, rhodopsin, consisting of two
parts: a protein molecule called opsin and a chromophore called retinal1. In
the resting state, retinal1 is in its 11-cis form and fits snugly in the opsin. When
a photon wanders too close it is absorbed by the chromophore causing it to iso-
merize (change structurally), straightening out into the all-trans configuration
and, in the process, releasing energy. Thereafter occurs a rapid succession of
energy-releasing reactions which eventuate, if physiologic conditions are nor-
mal and sufficient numbers of rods are stimulated, in the perception of light.
The only role of light in this process is to isomerize the chromophore from the
11-cis to the all-trans configuration.
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So we have two kinds properties correlated with each other and correlated
with our perception of light: viz., properties of the light and properties of chro-
mophores. This suggests a relevant employment of the method of differences
for light that parallels the one given by Fodor and Pylyshyn for the layout:
present the light without the isomerization and then the isomerization without
the light. Presumably a physicist or biochemist could tell us how to construct
the first case, perhaps by cooling the rods and cones a bit. But the second case
is easy: turn out the light and rub your eyes. The resulting phosphenes, i.e.,
illusory perceptions of light, are commonplace and, for lucky individuals, quite
entertaining. One can get similar results, though we cannot recommend doing
it, by putting a small electric current across the eye. One can even get light
illusions without functioning eyes: Brindley and Lewin (1971, 1968) and Button
and Putnam (1962), for instance, have produced them in blind subjects by
direct electrical stimulation of primary visual cortex.

But light illusions are, on Fodor and Pylyshyn’s criteria, incompatible with
properties of the light being transduced. So if something is transduced (i.e.,
directly detected) in visual perception it is not, on their definition, properties
of the light.15 Perhaps, then, it is chromophore isomerization? A moment’s
thought, however, suggests this cannot be right either. Recall that, according
to Fodor and Pylyshyn’s definition, a system S is a transducer for a property P
only if there is a state Si of the system that is correlated with P , i.e., such that
if P occurs, then Si occurs. But the cortical stimulation experiments indicate
that the entire retina is unnecessary for the sensation of light, that even when
a subject has no retina the subject can still have sensations of light. So the
directly detected properties cannot be retinal properties, and a fortiori cannot
be properties of the chromophores. And anyhow, logical considerations aside,
the chromophore gambit would be a strange move, indeed: all this time we
have thought we were detecting light; in fact, we were detecting not light but
isomerization. Science can be surprising, but this conclusion would tax our
credulity.

Science can also lead us to revise our definitions. And in view of all dif-

15 It might be protested that rubbing the eyes or passing current through
them is not a relevant employment of the method of differences. But it seems
hardly less relevant than constructing holograms. Until one specifies what
counts as relevant the issue is moot. The real point is this: one can have
sensations of light even in total darkness, just as one can perceive layouts even
in their absence. Light illusions are as easy to produce as layout illusions. If
one claims that layout illusions preclude the direct detection of layouts then it
is unjustified to deny that light illusions preclude the direct detection of light.



2–6 DEFINITION OF OBSERVER 45

ficulties just considered, transduction seems a good candidate for redefinition.
We suggest the following rather old idea, but in new dress: let us relativize the
notion of transduction to observers, so that what is directly detected depends
on which observer is in question. Specifically, given an observer O with space
of premises Y , let us say that an observer Oi is an immediate transducer rela-
tive to O if and only if the conclusions of Oi, or deductively valid consequences
of these conclusions, are among the premises in Y . What is directly detected,
relative to O, are its premises Y .

On this account, for example, what is directly detected relative to Hil-
dreth’s contour-velocity observer are contours with orthogonal velocity fields.
The corresponding immediate transducers are observers whose nondemonstra-
tive inferences reach conclusions about such contours. However, relative to
these latter observers it is not contours with orthogonal velocity fields that
are directly detected but rather, say, properties of light. (The precise answer
here awaits, of course, well-confirmed accounts of the observer(s) that infer the
contours-cum-velocity-fields which serve as premises for Hildreth’s observer.)
And, relative to an observer that infers 3-D motion from 2-D curves with
smooth velocity fields, it may be that what is directly detected are the con-
clusions of Hildreth’s observer and that Hildreth’s observer therefore counts
as a transducer. In short, inference permeates even direct detection. What
is directly detected relative to one level is always, relative to another “lower”
level, the result of an inference; the premise, the “appearance,” at a given level
arises as the conclusion of an inference at a previous level.

We have not yet defined a transducer, only an “immediate transducer.”
Let us do so. Suppose that O1 is an immediate transducer for O2 and O2 is an
immediate transducer for O3; it does not follow that O1 is an immediate trans-
ducer for O3: the relation “immediate transducer” is not transitive. However,
we can use the relation “immediate transducer” to generate a new relation
that is transitive, and this new relation will be our definition of “transducer.”
To wit, let be given a collection, O, of observers. Suppose that O contains
some observers, say O1, O2, . . ., On, such that Oi is an immediate transducer
for Oi+1. Then we say that Oi is a transducer for every Oj such that i < j.16

16 More formally, the relation “transducer” is the minimal transitive relation
that contains the relation “immediate transducer.” Recall that a relation on a
set O is a subset of O×O. If R is a relation, we can consider the collection of
all transitive relations R′ such that R′ contains R (as a subset of O×O). This
collection contains the full relation O × O itself and is therefore nonempty.
The minimal transitive relation that contains R is then the intersection of all
the R′’s in this nonempty collection.
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Intuitively, the relation “transducer” is to “immediate transducer” as the re-
lation “ancestor” is to “parent.” Again intuitively, Oi is a transducer for Oj
if there is some path of information flow whereby the conclusions of Oi affect
the premises for Oj .

Using this account of transduction and immediate transduction, we can
put in new perspective some of the disagreement between Gibson’s (1966, 1979)
ecological optics and Fodor and Pylyshyn’s “establishment” theory. Gibson in-
sists that higher-level visual entities, e.g., 3-D shapes, are directly detected.
We agree. Relative to an observer with the appropriate premise space Y , 3-D
shapes are directly detected. Fodor and Pylyshyn insist that 3-D shapes are
inferred. We agree. Relative to an observer with the appropriate configura-
tion space X, 3-D shapes are inferred. On our view where Gibson erred was
in denying that inference ever took place in vision. And where Fodor and
Pylyshyn erred was in asserting that there is a noninferential bottom to the
hierarchy of inferences in perception, that inferential processes are ipso facto
not transductive, and that only properties of light can be directly detected in
vision. Choosing, as we propose, to relativize the definition of transduction
to the observer leads, in some good measure, to a rapprochement of these
theories.

It also leads to some claims about psychophysical laws: e.g., that psy-
chophysical laws not only can, but invariably do, involve perceptual concepts
whose tokenings are inferentially mediated. This is perhaps no news to a
psychophysicist busy studying the lawful relationship between stereo disparity
and inferred depth, or to one studying the lawful relationship between param-
eters of structure-from-motion displays and inferred depth, or to one studying
the lawful relationship between interaural phase lags and inferred locations in
space of a sound source. But it is bad news for theories that attempt to pro-
vide a naturalized (i.e., nonintentionally specified) semantics for observation
terms based on the contrary assumption: viz., based on the assumption that
psychophysical laws only involve perceptual concepts whose tokenings are not
inferentially mediated (see, e.g., Fodor 1987, p. 112ff). Unfortunately for these
theories, psychophysical “laws” simply are not counterfactual supporting—not
even the laws pertaining to the most elementary of sensations in vision, au-
dition, or somesthesis. All such sensations can be produced even when the
physical properties to which they (are assumed to) normally correspond are
absent.

7. Theory neutrality of observation

In this section we apply the definition of observer to the problem of defining
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what it means for observation to be theory neutral. We begin by discussing
some current conceptions of theory neutrality from the philosophy of science.

Science progresses through the interplay of theory and observation. Pre-
cisely how, and towards what, is, to put it mildly, not yet generally agreed
upon. What does seem uncontroversial, however, is that an adequate philos-
ophy of science awaits an adequate theory of observation, and here several
issues loom large. Perhaps the foremost issue is this: is observation itself
theory laden or theory neutral? Or, to put it another way, can the scientific
theories we hold affect the character of our perceptual experience? Inevitably,
one’s answer depends upon one’s precise definitions of theory neutrality and
theory ladenness; and here there seems little consensus. Churchland (1988),
for instance, suggests that “an observation judgment is theory neutral just in
case its truth is not contingent upon the truth of any general empirical as-
sumptions, just in case it is free of potentially problematic presuppositions”
(p. 170). Evidence that observation is inferential (i.e., requires background
knowledge) would, on Churchland’s definition, imply that it is theory laden.
Fodor (1984) argues, on the other hand, that to conclude that observation
is theory dependent “you need not only the premise that perception is prob-
lem solving, but also the premise that perceptual problem solving has access
to ALL (or, anyhow, arbitrarily much) of the background information at the
perceiver’s disposal” (p. 35). To get the theory ladenness of observation, on
Fodor’s definition, one needs not only evidence that observation is inferential
but also evidence that it is cognitively penetrable: i.e., that all of one’s back-
ground knowledge and theories (e.g., one’s scientific theories) can affect the
appearance of what one observes—the appearance of colors, shapes, motion,
textures, sounds, and the like. Fodor and Churchland agree that observation
is inferential, i.e., that some background knowledge is required. But they dis-
agree about its degree of cognitive penetration, Churchland arguing for a very
high degree and Fodor for almost none. Whereas Churchland (and New Look
psychology) suggests that our scientific theories can change our observational
experience, Fodor suggests that our scientific theories leave our experience
alone, changing only the descriptions we give to experience and, thereby, the
beliefs we hold in consequence of experience.

One focus of the debate on cognitive penetrability are the multistable
visual figures, such as the Necker cube, the rabbit/duck, and the face/vase.
Regarding these illusions Churchland suggests that “in all of these cases one
learns very quickly to make the figure flip back and forth at will between the
two or more alternatives, by changing one’s assumptions about the nature of
the object or about the conditions of viewing” (p. 172). Fodor responds that
“It may be that you can resolve an ambiguous figure by deciding what to
attend to. But (a) which figures are ambiguous is not something you decide;
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(b) nor can you decide what the terms of the ambiguity are” (1988, p. 191).
So they each draw a different conclusion from the same examples, Churchland
impressed that there are alternative perceptions and Fodor that there are so
few and that we have no choice in what they are. We can see what is at
issue more clearly in the language of observers. Multistable perceptions are
possible for an observer O = (X,Y,E, S, π, η) only if for some points s in S
(i.e., for some of O’s distinguished premises) the sets π−1(s) ∩ E (i.e., the
distinguished interpretations compatible with s) each contain more than one
interpretation. For each such premise s, O’s conclusion is a probability measure
giving weight to the two or more distinguished interpretations compatible with
s. What Churchland is arguing, in essence, is that one can switch between the
interpretations in π−1(s) ∩ E for a given s, and that this is evidence for the
cognitive penetration of O. Fodor, on the other hand, when he points out
that you cannot decide what are the terms of the ambiguity, is arguing that
multistable figures are not evidence that one can change η, and that therefore
they are not evidence for the cognitive penetration of O. The question we must
answer, then, is: what is a natural definition of the cognitive penetration of
O? Shall we say, with Churchland, that selection among the interpretations
given nonzero weight by O constitutes cognitive penetration of O? Or shall
we say, with Fodor, that altering η (i.e., the “theory” used by O to interpret
its premises) is necessary for the cognitive penetration of O? Of the two
alternatives, the latter is by far the most invasive of O. The first definition only
requires that higher cognitive processes select among the outputs of O, whereas
the latter requires that higher cognitive processes alter the internal structure of
O. In light of these considerations, we are inclined to adopt the latter definition
(though we shall be more precise shortly) and therefore to agree with Fodor
that multistable figures do not give evidence for the cognitive penetration of
perception. There may or may not be evidence for the synchronic or diachronic
penetration of perception, but multistable figures are not such evidence.

Well, is observation theory neutral? If we adopt Churchland’s defini-
tion, viz., that inductive risk in perception implies its theory ladenness, then
observer theory would agree with Churchland that observation is not theory
neutral. Fodor would also agree, if he adopted Churchland’s definition. But
the real debate between them seems to be not about the presence of inductive
risk in perception, both acknowledge the risk, but about whether cognition—
especially a scientific theory one believes—can penetrate perception. If it can,
then the theories we hold can change the data we get from our senses, and this
seems troublesome for the objectivity of science.

Can cognition penetrate perception? To answer this we must, of course,
first consider the question: what is the distinction between perception and
cognition? Again, there is no general consensus. New Look theorists, e.g.,
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Bruner (1973), suggest that both are a matter of inference and that any dis-
tinction between them is at best heuristic. Fodor (1983) suggests that both are
a matter of inference, but that there is an important distinction: cognition is
isotropic and relatively domain neutral whereas perceptual input systems are
domain specific and informationally encapsulated. This requires some spelling
out, so here is what we propose to do. First we will briefly describe Fodor’s ac-
count of domain specificity, informational encapsulation, isotropy, and domain
neutrality. Next we will translate these notions into the language of observer
theory, both as a way to make them more precise and as a way to exercise the
definition of observer. Something will get lost in the translation: we will find
that these notions, like the notion of transducer, are not absolute, but make
sense only when relativized to an observer. And this will dictate our definition
of “cognitive.” In fact, it will turn out that if observer O1 is transductive
relative to O2 then O2 is “cognitive” relative to O1. Then, getting back to
the cognitive penetration issue, we will define the penetration of one observer
by others. And finally, with a relativized notion of “cognitive” in hand, we
will be able to propose a definition of the theory neutrality of a collection of
observers: a collection of observers O is theory neutral iff O is an irreflexive
partially ordered set under the relation “cognitive.” We will leave open the
empirical question as to whether there are any theory neutral collections of
observers in the human perceptual systems.

Now to begin this program. Fodor (1983) proposes a trichotomous func-
tional taxonomy of mental processes: transducers, input systems, and central
processors. In Fodor’s account transducers provide, as we have discussed, a
noninferential interface between mental processes and certain properties of the
physical world. Thereafter information flows first through the input systems
and thence to central processors. Both input systems and central processors
are, according to Fodor, inferential, but with this important distinction: input
systems are modular whereas central systems are not.

Definitions now commence to come fast and thick. First, modularity
amounts, in essence, to input systems being domain specific and, more impor-
tantly, informationally encapsulated. An inferential system is informationally
encapsulated if it is constrained “in respect of the body of data that can be
consulted in the evaluation of any given hypothesis” (p. 122). It is domain
specific if it is constrained “in respect of the class of hypotheses” to which it
has access (p. 122). For example, your visual perception of 3-D shapes via
stereovision appears to use data about the disparities of the images in your
two eyes and, arguably, nothing else. Thus stereovision is informationally en-
capsulated; other knowledge you may have, e.g., that you are watching a 3-D
movie and the screen is flat, simply are not among the data available to your
stereovision inference. Furthermore, turning now to domain specificity, the
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kinds of hypotheses available for confirmation via stereovision are restricted
to propositions, roughly, of the type “the 3-D position of this feature in the
visual field is such and such relative to that feature,” and, arguably, no other
type. Thus stereovision is domain specific; other interesting hypotheses about
the visual world, such as that an elephant is walking by and that this fea-
ture corresponds to part of its trunk, simply are not in the repertoire of the
stereovision processor.

Let us translate a bit. For any observer O = (X,Y,E, S, π, η) the premise
space Y specifies all possible data that can be consulted by O, and, thereby,
the informational encapsulation of O. Moreover the σ-algebra (i.e., collection
of events) on the configuration space X, viz., X , specifies, roughly, all possible
hypotheses to which O has access, and, thereby, the domain specificity of O.
More precisely, the possible hypotheses are not X itself, but rather the possible
markovian kernels on Y ×X .

Getting back to Fodor, a central processor, in contrast to an input system,
is an inferential system that is isotropic and relatively domain neutral. An
inferential system is isotropic (as opposed to informationally encapsulated) if
it is not constrained in respect of the body of data that can be consulted in the
evaluation of any given hypothesis. As Fodor puts it, “isotropy is the principle
that any fact may turn out to be (ir)relevant to the confirmation of any other”
(p. 109). An inferential system is relatively domain neutral (as opposed to
domain specific) if it has access to a relatively large class of hypotheses. The
idea here seems to be that whereas each input system is specialized to one mode
of inference, say to inferences about the syntactic structures of utterances or to
inferences about the 3-D structures of rigid bodies in motion, central processors
are multimodal in the hypotheses that they can entertain and (dis)confirm. A
central processor can, with equal facility, consider hypotheses about syntax,
3-D structure, politics, and so on; an input system cannot.

While Fodor allows that central processors are relatively domain neutral,
he does not allow that they are completely domain neutral. An inferential
system that is completely domain neutral he calls “epistemically unbounded”;
such a system has “no interesting endogenous constraints on the hypotheses
accessible to intelligent problem-solving” (p. 122). Epistemic boundedness
holds for central processors and input systems (and, so far as we can tell, for
observers); but input systems, being domain specific, are more bounded than
central processors.

To translate these notions into the language of observers, consider a col-
lection, O, of observers which are immediate transducers relative to an observer
O′ = (X ′, Y ′, E′, S′, π′, η′). Recall that this means that the conclusions of each
observer Oi = (Xi, Yi, Ei, Si, πi, ηi) in O, or deductively valid consequences of
these conclusions, are among the premises, Y ′, of O′. Now note that while
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each Oi in O may have its own idiosyncratic domain of accessible hypotheses
(viz., kernels on Yi × X i), and may therefore be quite domain specific, the
domains of distinct such Oi need not overlap at all; e.g., O1 might have 3-D
motions as its domain whereas O2 might have certain olfactory properties in
its domain. Since the conclusions of these diverse inferential domains all fig-
ure among the premises Y ′ of O′, it follows that O′ is isotropic relative to its
immediate transducersO. O′ is not constrained, relative to its immediate trans-
ducers, in respect of the body of data that it can consult in the evaluation
of its hypotheses; whereas each immediate transducer Oi traffics in its own
idiosyncratic modality, O′ traffics in the modalities of all.

The isotropy of O′ relative to its immediate transducers also implies that
O′ is domain neutral relative to these transducers. For, in the typical case,
the perspective π′:X ′ → Y ′ is many to one and, in any case, it is surjective;
therefore a richer collection of premises Y ′ implies a richer collection of configu-
rations X ′ and this, in turn, implies a richer collection of accessible hypotheses,
viz., markovian kernels on Y ′ ×X ′.

Since O′ is isotropic and domain neutral relative to its immediate trans-
ducers O, and since isotropy and domain neutrality are, in Fodor’s story, the
essence of central, or “cognitive,” processors, we are led to stipulate: if O is a
collection of observers that are immediate transducers relative to an observer
O′, we will say that O′ is “immediately central” or “immediately cognitive”
relative to O.

Since the relation “immediate transducer” is intransitive so is the relation
“immediately cognitive.” However, just as we used the relation “immediate
transducer” to generate the transitive relation “transducer” so we can use the
relation “immediately cognitive” to generate a transitive relation “cognitive.”
Perhaps this is the simplest way to define “cognitive”: if O is a transducer (not
necessarily immediate) relative to O′ then O′ is cognitive relative to O. “Cog-
nitive” includes “immediately cognitive” as a special case, just as “transducer”
includes “immediate transducer” as a special case.

It is quite possible, given this definition, that O′ is cognitive relative to
a collection, O, of observers, and that O′ is also transductive relative to some
other observer O′′ that is not in O. In this case O′′ is cognitive relative to
O′. Transduction and cognition are, on this story, opposite sides of the same
coin, and both are defined only relative to an observer. There is no such thing
as the transductive level or the cognitive level. What is cognitive and what is
transductive depends on which observer you ask.

We are now in a position to define the cognitive penetration of one observer
by another. The definition is simple. Let O and O′ be two observers with O′

cognitive relative to O. Then we will say that O′ cognitively penetrates O if O′

is also transductive relative to O.
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Why? Because if O′, being cognitive relative to O, is also transductive
relative to O this means that the conclusions of O′ are among the data used
by O to (dis)confirm its hypotheses; that is, the conclusions of O′ penetrate
the inferences of O. Notice that, according to this definition, if O′ cognitively
penetrates O then O also cognitively penetrates O′.

We are, finally, in a position to propose a definition of the theory neu-
trality of a collection of observers. Again the definition is simple. We will say
that a collection of observers is theory neutral if no observer in the collection
cognitively penetrates any other in the collection. (More formally, a collection
of observers is theory neutral if the collection forms a partially ordered set
under the relation “cognitive.”) What theory neutrality demands, according
to this definition, is that there be no cycles in the collection of observers; that
if O is a transducer for O′ then O′ is not also a transducer for O.

What seems to be emerging here is a picture of the mind that acknowl-
edges the role of transductive and cognitive processes without being forced to
introduce a fundamental trichotomy. Given an observer O, some observers are
transductive relative to O, and others are cognitive relative to O. There seems
to be no need to postulate three distinct denizens of the mind: transducers,
input systems, and central processors. Postulate, instead, observers in hier-
archical relationships, and the properties we want, the ones that led to the
postulation of a trichotomy in the first place, just fall out. We will discuss the
hierarchical nature of perception more thoroughly in chapter nine, where we
introduce the notion of “specialization.”


