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Parsing silhouettes: The short-cut rule

Manish Singh Gregory D. Seyranian Donald D. Hoffman
Department of Cognitive Sciences
University of California
Irvine, California 92697-5100

Many researchers have proposed that, for the purpose of recognition, human vision parses shapes
into component parts. Precisely how is not yet known. The minima rule for silhouettes (Hoffman &
Richards, 1984) defines boundary points at which to parse, but does not tell how to use these points to
cut silhouettes, and therefore does not tell what the parts are. In this paper, we propose the short-cut
rule, which states that, other things being equal, human vision prefers to use the shortest possible cuts
to parse silhouettes. We motivate this rule, and the well-known Petters rule for modal completion,
by the principle of transversality. We present five psychophysical experiments that test the short-cut
rule, show that it successfully predicts part cuts which connect boundary points given by the minima
rule, and show that it can also create new boundary points.

Introduction

The ease with which we recognize visual objects is de-
ceptive: chess programs can now compete with chess mas-
ters, but no computer-vision system can compete with the vi-
sion of a toddler. Object recognition is complex and compu-
tationally demanding, and typically uses cues such as shape,
color, texture, motion, and context. However, the ease with
which we can, in many cases, recognize an object without
any cues but shape suggests that shape is a key aspect
recognition. This raises the question: How does human vi-
sion represent shape for the purpose of recognition?

One proposal is that human vision uses parts combined
into structural representations (Biederman, 1987; 1990; Bie- (a) (b)
derman & Cooper, 1991; Hoffman & Richards, 1984; Marr
& Nishihara, 1978; Palmer, 1977). It represents a shaperigure 1  Part cut on a silhouette. The silhouette in (a) is unam-
terms of (i) the shapes of its component parts and (ii) tBgjuously parsed in (b) with a part cut (depicted by a dashed line).
spatial relationships between these parts.

On this approach, representing a shape involves parsing

it into sub-units—not unlike parsing a sentence in natural
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language—and describing the relationships between these
subunits—again, not unlike the syntactical structure of a sen-
tence. And, just as some sentences admit multiple parses,
so too do some shapes. For example, compare the shape in
Figure 1a (which is nicely parsed by the part cut, indicated
by a dashed line, in Figure 1b) with the one in Figure 2a
(which can be parsed either by the part cuts shown in Figure
2b, or by the part cuts shown in Figure 2c¢). The parsing of
shapes, when it occurs, is quick and effortless—perhaps even
preattentive (Baylis & Driver, 1994; 1995a; 1995a; Driver & (@) (b)
Baylis, 1995; Hoffman & Singh, 1997).

Part-based representations have been studied extensiviglyre 3 Minima rule gives part boundaries which are (a) points
by psychologists and computer scientists. Parts, unlike on 2D shapes, and (b) curves on 3D shapes.
template and Fourier approaches, can deal effectively with
occlusion, self-occlusion, and certain types of non—rigidi?éI

le provides boundary curves on the surface of the shape
rough which part cuts must pass (see Figure 3b). However,
Re minima rule does not define the part cuts themselves—it

in which rigid parts move relative to each other (Hoffman
Richards, 1984; Pinker, 1985). They can explain the C|EE
sic visual phenomenon, first noted by Mach, that symmeorxly constrains them by requiring them to pass through the

is easier to detect than repetition (Baylis & Driver, 1995%;0undary points it provides

Driver & Baylis, 1995; Mach, 1885/1959), and the phe- deal h v with th . ¢ silh ¢
nomenon discovered by Attneave that a piece of curve IookS V\r/1e ea Tf]re 0? y_W't h't ekszarsmg?(’)Dgh ouettes,dnq;[ho
different depending on which side is taken to be “figur shapes. The relationship between shapes and sifnou-

(Attneave, 1971; Hoffman & Richards, 1984; see Figure ttes is_complex, and beyond the scope of this paper (but see,
They can also alter the perception of transparency (Singtf&-+ Richards, Koenderink, & Hoffman, 1987). However,
Hoffman, in press). However, parts may be less import man subjects do see parts in silhouettes—so the parsing

in the visual recognition of faces (Farah, 1996; Tanaka sHhoqettes is of psychological interest. . .

Farah, 1993; Turk & Pentland, 1991; Yuille, 1991). In this paper, we propose that human vision parses sil-
A natural question arises: How does human vision paf@uettes according to the short-cut rule.

shapes into parts? Some theorists postulate that there is &ggft-cut rule: Divide silhouettes into parts using the short-

of basic shapes, or primitives, which human vision search&g possible cuts.

for in images—primitives such as generalized cones (Bin- _ . o .

ford, 1971; Marr, 1977) or geons (Biederman, 1987). Ac- In otherwords, if boundary points can be joined in more

cording to these theories, human vision parses a shapeh®p one way to parse a silhouette, human vision prefers that

finding these primitives in the shape. Hence the primitiv@grsing which uses the shortest cuts. For the shape in Figure

are responsible for (i) finding parts, and (ii) describing therd@. for instance, the short cut rule gives the cuts shown in
Other theorists postulate that there are rules, based onfggure 2b rather than the cuts shown in Figure 2c. In this pa-

ometric properties alone, by which human vision comput8§' @ cutis (1) a straight line which (2) crosses an axis of lo-

the boundaries between parts for any given shape. The nf-Symmetry (see section entitled Short Cuts), (3) joins two

ima rule (Hoffman & Richards, 1984) is a step in that dire®oints on the outline of a silhouette, such that (4) at least one

tion. For a 2D silhouette, the minima rule provides boun@f the o points has negative curvature. For some shapes

ary points on the silhouette outline, through which part cuﬁECh as elbows, the short-cut rule can create boundary points

must pass (see Figure 3a). And for 3D shapes, the miniffigt @ré not negative minima of curvature.
We begin by reviewing the minima rule and related re-

1 - ] ] . _ search on shape partitioning. We then motivate the short-cut
A partial list includes Baylis & Driver (1994; 1995a; 1995b)15 pyy the geometry of transversal intersections, and relate it

Bennett and Hoffman (1987), Beusmans, Hoffman, and Benngtt, , : . ;
(1987), Biederman (1987), Biederman and Cooper (1991), Brant% Petter’s rule for modal completion (Petter, 1956; Kanizsa,

stein, Hoffman, and Saidpour (1989), Driver & Baylis (1995), Hof?—lrb?Q' p. 40). Finally, we present five experiments that test,
man ((1983a); (1983b)), Hoffman and Richards (1984), Hoffmawd support, the short-cut rule.
and Singh (1997), Marr ((1977); (1982)), Marr & Nishihara, 1978), A few caveats and disclaimers. There is much to the
Palmer, 1977), Pentland, 1986), Stevens & Brookes, 1988), Tparsing of visual shapes that we cannot explore here. First,
zopoulos, Witkin, & Kass (1987),Todd, Koenderink, van Doorripop-down factors can influence visual parsing (e.g., Schyns,
and Kappers (1995), Tversky and Hemenway (1984). Goldstone, & Thibaut, 1998; Schyns & Murphy, 1994;
2A partial list includes Binford (1971, December), Brook$Chyns & Rodet, 1997; Singh & Landau, 1998). These
(1981), Dickinson, Pentland, & Rosenfeld (1992), Guzman (197&ye no less important than the short-cut rule that we exam-
Siddigi and Kimia (1995), Winston (1975). ine. But to keep this work to manageable size, we focus
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here on the short-cut rule. Once geometric factors like the
short-cut rule are understood we have a better chance to in-
tegrate them with the top-down. Second, as mentioned ear-
lier, many factors besides parts influence visual recognition.
Motion, texture, color, and surface characteristics can also
be important (Biederman, Glass, & Stacy, 1973; Bruce &

Humphreys, 1994). These cannot be ignored. Ultimately we
want to know how these interact with geometric factors in

visual parsing and object recognition. Third, parts appear at
many spatial scales. Smaller parts nest within larger ones @)
to form hierarchies. Information at multiple scales affects

(b)

the cutting of parts. The issue of scale and how it affects P
part cuts is complex and important. But here we assume that +
some scale of resolution, and some piecewise continuous ap- B
proximation of the shapes, has been fixed. A
The Minima Rule -
+

Our starting point is the minima rule (Hoffman &
Richards, 1984). In this section we briefly review the min- © @
ima rule, its philosophy, strengths, and motivations. We then o _
discuss its limitations. These limitations are the point of dE9ure 4 Geometry related to the minima rule. In (a) is shown a
silhouette with "figure” indicated by stippling. Regions of positive
parture for our work here. , N )
and negative curvature are indicated-byand — respectively. The

The minima rule embodies a fundamental shift in p J:'usp labeled A is concave, i.e., pointing into the figure. The cusp

losophy toward the problem of object parts. As noted @lpejed B is convex, i.e., pointing into the ground. In (b) the nega-

lier, the dominant philosophy of most researchers has b@g& minima of curvature are indicated by dots. These are the part
to specify the shapes that parts may take, and then to lg@kindary points according to the minima rule. In (c) is shown the

for these shapes in images. We call this the shape prigame silhouette as in (a), but with figure and ground reversed. Note
itives approach. Among the part shapes that have béenchange in signs of curvature. Now the cusp labeled A is convex
proposed are polyhedra (Roberts, 1965; Waltz, 1975; Wimhereas B is concave. In (d) the new negative minima of curvature
ston, 1975), generalized cylinders and cones (Binford, 1971 indicated by dots. A reversal of figure and ground changes the
Marr & Nishihara, 1978), geons (Biederman, 1987), afg'tboundaries.

superquadrics (Pentland, 1986). Each such proposal works

well on a special class of objects. None comes close to cfyguage of differential geometry and therefore applies to
turing the variety and complexity of object parts in generginy shape defined by a piecewise differentiable function. In
And each, if viewed as a general theory of the human pgther words, it applies quite generally. We will discuss its
ception of parts, is clearly ad hoc. limitations shortly.

The minima rulg §eparates the issue of finding pa}rts from But first we examine the rule, its motivations, and its
the ISsue Of. describing the_m. In th? shape. pr|m!t|ves aQFengths. The minima rule comes in two versions, one for
proach, f!ndlng gnd 'de.s.cnbmg parts |s_done na ;mgle Pifrtitioning 3D shapes and one for partitioning 2D silhou-
cess: trying to fit primitives to a given Image. This enta|l_ tes. Here we need only the version for silhouettes, since
however, that parts whose shapes are not in the predefiggp,qy is to define part cuts on silhouettes. We need not

set of primitives cannot be found. Hoffman_ & Rich_ard iscuss the 3D version, which can be found elsewhere (Hoff-
(1984) have argued, instead, that the mechanisms which 11983: Hoffman & Richards, 1984: Bennett & Hoffman,

parts are more basic, and operate regardless of the sh . Beusmans et al., 1987; Hoffman & Singh, 1997) and

of the parts. The minima rule thus has different streng ich requires prior discussion of the differential geometry

and Iimitation_s. Rather than defining part shapes it deﬁrﬁ’fssurfaces. The version for silhouettes is as follows.
part boundaries. And rather than looking for part shapes in

images, it looks for part boundariésOne advantage is thatMinima Rule for Silhouettes: Cut each silhouette into parts
its definition of part boundaries is expressed solely in tlging concave cusps and negative minima of curvature of its
bounding contour.

3This is what makes the minima rule a “boundary-based” ap- . . . .
proach. The “boundaries” in question are boundaries between Figure 4 illustrates this rule. Figure 4a shows a silhou-

parts—regions where one part ends and another begins. Theye4@, with regions of pOSitiVe.CU"\_/atU.re and negative curva-
not the bounding contours that define 2D silhouettes—an easy niige marked. (The shaded side is “figure,” and the white is
interpretation (see Siddigi & Kimia, 1995, p. 239-240). “ground.”) Note that positive regions are convex and neg-
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@€

(@ (b)

@) (b) ()

Figure 5 A demonstration of the minima rule. The two wiggles
on the right look different even though they are identical. Why3,re 6  The minima rule does not say to form part cuts by con-
According to the minima rule you break them into parts differentlyecting consecutive negative minima of curvature. It is clear that

doing so can produce very strange parts, as in (a), (b). Sometimes,

ative regions concave. This figure also has two cusps orf s d0€s not even give legitimate part cuts, as in (C).

one concave and labeled A, one convex and labeled B. Figure

4b shows the boundary points, as defined by the minima ridgean magnitude of curvature—and is therefore a positive
between parts. If figure and ground reverse, as in Figure 4gantity. Attneave’s observation that information along a
then regions of negative curvature become positive and vigstour is concentrated at points of ‘'maxima of curvature’
versa. Moreover concave cusps become convex, and Vic@ statement, in our framework, about the visual impor-
versa. This entails, according to the minima rule, that thaeggce of both negative minima and positive maxima of cur-
are now different boundary points, as shown in Figure 4d.vature. Within the context of parsing, however, the minima

This shift of boundary points, when figure and ground rgdle makes a disti.nct.ion betwegn these two kinds of.curv:?\—
verse, can explain some interesting perceptual effects. GHEE extrema, assigning a special status to the negative min-
discussed by Attneave (1971), is shown in Figure 5. On thga.
left is a disk with a wiggle through it. On the right the two  The minima rule is distinct from the theory of codons
halves are pulled apart at the wiggle. By construction ea@tichards & Hoffman, 1985; Richards, Dawson, & Whit-
half has an identical wiggle. But notice that the two wiggldihgton, 1986). The domain of codons is plane curves,
look quite different—a fact easily confirmed by experimenthereas the domain of the minima rule is, as we have seen,
(Hoffman, 1983a). The reason, according to the minima ru#houettes and three-dimensional shapes. The theory of
is this: The two halves induce opposite assignments of figuxgons uses minima of curvature, both positive and nega-
and ground on the two wiggles. Therefore regions of posiive, to parse plane curves. The minima rule, by contrast,
tive curvature for one wiggle have negative curvature for thges only negative minima of curvature as boundary points
other, and vice versa. And therefore the parts, whose bouod-silhouettes. The theory of codons parses any given plane
aries are (by the minima rule) at negative minima of curvedrve into ‘codons’, and then represents that curve using a
ture, must be different for the two wiggles. Thus the reafassification scheme for codons. The minima rule for sil-
son the wiggles look different is that you divide them diffelouettes, by contrast, only provides boundary points through
ently into parts. A similar account can be given for the welvhich part-cuts must pass. It does not define the cuts—and
known face-goblet illusion, and for some 3D illusions as welence the parts—themselves. In particular, it does not join
(Hoffman & Richards, 1984; Hoffman & Singh, 1997). Theonsecutive minima to form parts. Indeed, doing so can give
minima rule has also fared well in several psychophysigttange parts (Figure 6a, b) or no parts at all (Figure 6c).
tests of its implications for the perception of shape similarity The minima rule is based on a principle from the field of

(qufman, 1983a), shortl-term. memory for shapes (Brau@iﬁerential topology called transversality (Guillemin & Pol-
stein et al., 1989), naming pictures with deleted contoys, 1974; Hoffman & Richards, 1984). The relevant case
(Biederman & Cooper, 1991), the detection of symmetgy o nqyersality is shown in Figure 7. On the left are two
and repetition (Baylis & Driver, 1994, 1995a; 1995b; Drive thitrary shapes in 3D, labeled S1 and S2. On the right S1

& Baylis, 1995), structure from motion (Saidpour, 1983844 52'interpenetrate to form a single composite object. S1

figure-ground perception in 2D and 3D (Hoffman & Singfhy 4 55 are distinct elements of the (sparse) visual scene on
1997), the perception of transparency (Singh & Hoffman, {Ae left, and would be natural candidates for parts of the com-

press), and preattentive popout (Wolfe & Bennett, 1997). ,qjta ohject on the right, if only we could distinguish them.
Itis clear from the above treatment that we are using clransversality says that we can—if S1 and S2 are generic

vature as a signed quantity. This differs, for example, froshapes and if they interpenetrate at random. In this generic

Attneave’s (1954) treatment in which curvature is taken ¢ase, at almost every point where the surface of S1 intersects
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(a) (b)

Figure 7. Transversality and concave creases. On the left are D
two generic surfaces. On the right they interpenetrate generically
to form a composite object. By transversality, their surfaces form
(d)

concave creases (depicted by dashed curves) at almost every point
where they intersect.

that of S2 the tangent planes to the two surfaces have differ- ©

ent orientations in space. Therefore the two surfaces meet, o o )

at each such point, in a concave crease. These pointsFé\q re 8 A limitation of the minima rule_. The_t\_/vo crosses in (a)
indicated by the dashed curve on the composite object. T (b) have the same number of negative minima, and at roughly

. b it points into the obiect (i .thte same locations. However, their natural partitionings, as given
crease is concave because it points into the object (i.e., i ?c) and (d), are very different. Clearly, some property other than

the “figure”). By Contrast,_the edges of a CUb? are convgg presence of negative minima of curvature is required to explain
creases, because they point out of the cube (i.e., out of §i€qifference in partitionings of these crosses.
“figure”). Another way to understand it is this: If S1 and

S2 each have smooth surfaces, then the dashed contour indi- _ _ o _
cates the only points on the surface of the composite obji@ Same locations. And in both cases, the minima rule sim-
that are not smooth. Thus transversality directly motivatBy Provides these four negative minima as boundary points,
a strategy for dividing 3D shapes into parts along conca¥@d is silent about how to connect them to form part éuts.
creases. Combining this with processes of smoothing gi&@wvever, the natural perceptual organizations of these two
the minima rule for 3D shapes, and combining it further wifthapes are different—see Figures 8c and 8d. The shape in

projection onto an image plane leads to the minima rule & iS most naturally perceived as a small central core sur-
silhouettes (Hoffman & Richards, 1984). rounded by four small parts, whereas the shape in 8b is most

T litv. h ) ; naturally perceived as a large vertical body with two small
ransversality, however, Is not an account of part ge%ﬁrts protruding on the sides. Hence the minima rule, in

SIS. .A.S we have seen, it aPp“eS Wh?” two separate obj i%télf, is unable to account for the difference in perceptual
are joined to form a new ObJECt', But it applies equally Weé)rganizations of the two shapesThere are two reasons.

in sn;ootheg forrr;}, when an ol?cject pro'tfl_JI_des from ‘T,nOt,thrst, the minima rule uses only properties of the contour
az when a ra_mlc ggrowshout ota ste(rjn. ranslyersa ity :;tﬁgt outlines the silhouette. And second, the minima rule
abstract principle of mathematics and so applies regardigsgg only differential properties of the contour (hamely, the

of the genesis of the part. presence of negative minima of curvature). To define part
The minima rule explains some aspects of our percequts, we must add to the minima rule (i) properties of the

tions of parts. But it has notable limitations. As we memegion enclosed by the contour, and (ii) properties that are

tioned earlier, for a silhouette the minima rule gives precisore global to the shape.

boundary points at which to cut. But, as noted by Beusmans another limitation of the minima rule is that it does not

et al. (1987), the minima rule does not tell how to pair theggjicate which points in addition to negative minima of cur-

boundary points to define part cuts. Consider, for instanggture are good part boundaries, even though there are surely
the two shapes in Figures 8a and 8b—versions of which ap-

pear in Rom and Medioni (1993), Siddigi & Kimia (1995);
and Kimia, Tannenbaum, and Zucker (1991; 1995). The 4Considerations of genericity, however, allow us to rule out part
shape in Figure 8b can be seen as the result of pulling €t that cross each other—see Beusmans et al. (1987).

shape in Figure 8a outwards and to each side. Clearly, such &js important to note, however, that since the minima rule does
transformation has little effect on the negative minima of th@t make cuts, it cannot, a fortiori, make unnatural ones (cf. Kimia
shape: There are still four negative minima and at roughdyal., 1995, p. 212).
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Figure 9 Another limitation of the minima rule: Some part @) (b)
boundaries are not negative minima of curvature.

Figure 11 (a) Some geons, and (b) some objects made by com-
bining geons. Adapted from Biederman (1987).

times in concave or convex regions. The precise position of
the endpoints is chosen to minimize the portion of the silhou-
ette’s contour left unmatched by the qualitative symmetries.
Marr’s analysis is elegant. But as he was well aware the
assumptions it requires are restrictive: The silhouette must
be the image of generalized cones whose axes are coplanar,
Figure 10 The definition of a generalized cone. and the viewing direction must not significantly foreshorten
the axes of the generalized cones. A more general account is

needed.
such points (Hoffman & Richards, 1984, p. 72). Figure 9, for

instance, shows an elbow which can be naturally cut as indi- Geons

cated by the dotted line. This line terminates at one end in

a negative minimum of curvature, and at the other in a point To explain the speed and accuracy with which human vi-

with zero curvature. sion recognizes objects at the entry-level—for example, as a
The short-cut rule, as we shall see, augments the minifalle, a horse, or a car—Biederman (1987, 1990) proposed a

rule in a way that repairs some of these limitations. But thefeory called recognition-by-components or RBC. RBC pos-

is relevant prior work on parts and part cuts by Marr (1977}llates 24 primitive volumetric shapes, called géo(see

Biederman (1987, 1990), and by Siddigi & Kimia (1995), tigure 11a for some examples), and claims that any visual

which we now turn. object can be represented as an arrangement of these geons
in specific spatial relationships (see Figure 11b). Further-
Generalized Cones more, the geon representations are, by construction, stable

over changes in viewpoint, so that the same representation is

A silhouette can convey a rich sense of shape in thraetivated from almost any viewing direction.
dimensions. To explain this, Marr (1977) suggested that RBC faces the same difficulties that primitive-based
human vision interprets silhouettes as being the imagessohemes typically face, viz., limited generality. However,
generalized cones (first defined by Binford, 1971). A geit-has the advantage that geons derive from the principle of
eralized cone is the three-dimensional surface “swept out‘dpnaccidental properties” (Lowe, 1985; Witkin & Tenen-
moving a simple smooth cross-section along some axisbatim, 1983), whereas polyhedra, superquadrics, and gener-
the same time magnifying or contracting it in a smoothilized cones make no appeal to a first principle. Nonacciden-
varying way” (Marr, 1977, p. 447)—see Figure 10. Martal properties are properties of 3D shape which, generically,
showed that generalized cones are a powerful tool for intsurvive projection onto an image plane. An example is the
preting simple silhouettes. Marr further suggested that hiistinction between straight and curved: a curved edge in
man vision interprets complex silhouettes as the composit@D will, generically, project to a curved edge in the image
of two or more generalized cones. To do so it must cut thiane. It takes a special viewpoint to make a curved edge
silhouette into parts, each of which corresponds to a singie3D project to a straight edge in an image—and if such a
generalized cone, and then analyze each cone. special viewpoint happens to occur, human vision often mis-

These cuts, Marr proposed, are straight lines that lie énterprets the resulting image because it interprets the im-
tirely within the silhouette and divide it into regions. Eachge as arising from a generic, rather than special, viewpoint
such region has a qualitative symmetry whose axis is the im

age of the axis of the corresponding generalized cone. TheéfThe 1987 version of RBC had 36 geons, but the 1990 version
endpoints of each cut are at curvature inflections, and sorhas 24.
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0 C ™
(a) (b) ©

Figure 14 Siddigi & Kimia’s (1995) definition of limb. In (a) the

limb is depicted by the dashed curve. The cocircular tangents are
@ (:O depicted by arrows. In (b) and (c) are examples where the definition

of limb fails, since the tangents are not cocircular. This failure of

cocircularity is generic.

and others not? No principle has been given for choosing
some nonaccidental properties and not others.

(©) (d)

Figure 12  The four nonaccidental properties used in deriving Limbs and Necks

the set of geons: (a) curved versus straight cross section; (b) con-siddigi and Kimia (1995), building on the work of Kimia

stant versus expanding only versus expanding and then contracéing (1991; 1995), recognized the limits of the minima rule,

cross-section; (c) symmetrical versus asymmetrical cross-secti&qd proposed that silhouettes are parsed in two ways: limbs
(d) curved versus straight axis.

and necks. Siddigi & Kimia (1995) define a limb as fol-
lows: “A limb is a part-line going through a pair of negative
curvature minima with co-circular boundary tangents on (at

least) one side of the part-line” (p. 243). A “part-line” is a
part cut. Two tangent vectors are “co-circular” if both are
tangent to one circle (Parent & Zucker, 1989, p. 829). Fig-

ure 14a illustrates their definition of limb, with the part cut
@) (b) © depicted by a dashed line, and co-circular tangents depicted
by arrows. This definition almost never applies to real parts

Figure 13 Geons have (a) pointed tips, or (b) truncated tips, bB1C€ its requirement of co-circular tangents almost strely
not (c) rounded tips, even though the difference pointed, truncaté@ver holds. Figures 14b and c, for instance, show examples
and rounded tips is one which survives projection, and is therefdievhich tangents at negative minima of curvature are not co-
a nonaccidental property. circular. Itis easy to concoct such examples since the failure
of co-circularity is generié. This means that allowing tol-
grance in the computation of co-circularity, which is useful
In"other contexts (e.g., Parent & Zucker, 1989), cannot fix
ol ~ the problem here: limbs would just go from measure zero to
Although geons appeal to the principle of nonacmdenmbmy unlikely.
properties, they are not the complete set of shape primitives the gefinition of limb, furthermore, has a counterintu-
that follow from this principle. As an example, geons engle implication: many part cuts that one normally calls
¢|th¢r in pointed tips (as in Figure 13a_) orin truncayons (_ﬁﬁ1bs, e.g., cuts for the arms and legs of the human body
in Figure 13D); there are no geons with rounded tips (Figsigure 15), fail both the co-circularity condition and the
ure 13c). But clearly the distinction between rounded tips,
tr.uncated. tip;, and po.inted tips is one that_generically S“r'7Something is said to be true “almost surely” if it is true “every-
vives projection—and is therefore a nonaccidental propeff\ere except possibly on sets of measure zero.” See, for example,
Indeed it is required for the proper recognition of toes, figuillemin & Pollack (1974) and Halmos (1950).

gers, peeled bananas, and aircraft fuselages, which cannot bé?A simple proof of this is the following: Pick at random two

approx.lmated by_geons (I'e'.' with trunc_ated or pointed tip ziints in the plane. Pick at random a line passing through the first
One might say this problem is easy_to fix: Just a‘?'d tothel int. Draw the circle passing through both points and tangent to
of geons a couple more shapes with rounded tips. And @ jine (this circle is defined uniquely). Then, of the countless

doubt this is easy to do. But there are many other nonaggies through the second point, just one will be tangent to this cir-
dental properties that have been omitted from the list as welb. Thus cocircularity obtains with measure zero, and limbs almost
Why are some nonaccidental properties used to define geansly don't occur.

(Freeman, 1994). Figure 12 shows the four nonaccide
properties used to generate the set of geons.
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L
Z X L ba A X
y y A
(@) (b)

Figure 17 The distance factor. In both (a) and (b) the gyis
preferred to the cutzbecausey s shorter.
Figure 15 Siddiqgi & Kimia’s (1995) definition of limb excludes

human (and animal) limbs; such limbs are not cocircular, and many ) ) . ) )
do not contain two negative minima. that the circle cannot be inscribed: the cut is the diameter of

the circle, but the circle is too big to be inscribed. Thus the

- ) ) o definition of neck is too restrictive.
condition of passing through two negative minima of cur-

vature, and thus fail to be limbs according to the above defi- Short Cuts
nition. The definition of limb, therefore, is much too restric-
tive. The cuts it defines are almost surely never found on any The situation seems to be this. Negative minima of cur-
real shape. vature are powerful geometric determinants of perceived part
Siddigi & Kimia (1995) define a neck as follows: “Aboundgrles on 2D silhouettes. But. they are not the only such
) : O . determinants. And a comprehensive (bottom-up) account of
neck is a part-line which is also a local minimum of the di- : . . .
. : L ) : art perception must describe all geometric factors and their
ameter of an inscribed circle” (p. 243). Figure 16a illustrat S . . . : .
this definition, as does the central cut in Figure 16b and |neeract|ons In determining not just boundary points, but en-
L gure iré part cuts. Here, we propose an important such factor: cut
two cuts in Figure 16c¢. Unfortunately the definition of ne ngth
given by S'dd'q'.& Kimia fails foral_arge class of shapes tha Consider the elbow depicted in Figure 17a. Which cut
should be classified as necks. In Figure 16d, for example, the . )
NN ms most natural—culy or cut xz? Casual inspection
dashed line indicates a natural cut, and should be made. 0t . L
I N suggests that xy is by far more natural. (This is also, as we
it is not captured by the definition of a neck. The problem s, ; . ) : .
will see shortly in our experiments, the verdict of subjects in
experiments with similar figures.)
\/ Why is xy the preferred cut? Even in a shape as simple
- as this elbow, several factors are at play. We have designed
L this elbow, however, to minimize the effects of most factors
/M\ other than cut length. For example, the two lengths labeled L
in Figure 17a are identical, so that this length is not a factor.
(a) (b) The pointsy andz both have identical curvature (viz., zero),
so that this also is not a factor. One difference is the area
of the two parts defined by the two cuts, but this difference
is eliminated in Figure 17b, and still the cxy is preferred.
This suggests that a key factor here is that the Euclidean dis-
tance fromx to y is shorter than that fromto z
Therefore it appears that the goodness of a cut joining
two points x and y involves the Euclidean distartkg =
|x—y|. We say the goodness “involves the distance” rather
than “is the distance.” There is more to this factor. In some
cases closer is not better, as shown in Figure 18. Poetsl
(©) (d) w in this figure are certainly close to each other, but we are
not tempted to cut the figure frorito w.
Figure 16 Siddigi & Kimia’s (1995) definition of neck. In (@) the ~ Why? Figure 18 suggests that the answer lies in the ge-
neck is depicted by the dashed curve. In (b) the middle dashed @metry of the silhouette betweenandw. In this figure it
is a neck. In (c) both dashed lines are necks (Siddiqi et al., 19963ems that pointsandz could have a cut between them, but
In (d) is an example where the definition of neck fails, since thg)intsx andw could not, even though the distance between
dashed line is not the diameter of an inscribed circle. x andw is smaller than that betweenandz So Euclidean
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Figure 18 Closer is not always better: A part cut must also cross
an axis of local symmetry.

@) (b)

Figure 20  The two kinds of transversal intersections for two
cylinders withunequalradii of cross section: (a) complete inter-
section, and (b) partial intersection.

tersection, in 3D space, of two cylinders such that the radius
of cross section of one cylinder is larger than that of the other
(see Figure 20). Only two kinds of transversal intersections
@ (b) are possible that will produce ambiguities in parsing the pro-

jected silhouette: a complete intersection, as shown in Fig-

Figure 19 The axes of local symmetry for two shapes.  yre 20a, and a partial intersection, as shown in Figure 20b.
A complete intersection can be characterized by the property

distance alone is not the key to determine how close tit it leads to two contours of intersection, whereas a partial
points must be before a cut between should be impossitiikersection leads to a single contour of intersection.
One consideration, of course, is that the xzinvolves two Let us consider the relative probability of obtaining these
negative minima, whereas cut xw involves only one. B{WO kinds of intersections, as a function of the ratio of the
there is another factor at play here. To state it, we need taéii of the two cylinders (larger to smaller). As this ratio
notion of local symmetry. Local symmetry is a weak form d#ets larger (say, as we keep the radius of the thicker cylinder
symmetry that allows for the axes of symmetry to be curvefixed, and gradually decrease the radius of the thinner one),
and also for axes that span only local subshapes of an eriti& Probability of obtaining a partial intersection gradually
shape. What the axes of local symmetry provide, in effeggcreases to 0, and the probability of obtaining a complete
is the skeletal axial structure of any given 2D shape. Figtersection increases to 1. (The limiting case, of course, is
ure 19 displays the axes of symmetry for two silhouetteéxchieved when the thin cylinder is just a line piercing through
Various schemes have been proposed to compute the dkeghicker cylinder.) On the other hand, as this ratio gets
of local symmetry (Blum & Nagel, 1978; Brady & Asadasmaller and approaches 1 (say, as we keep the radius of the
1984; Leyton, 1992). We will use Brady & Asada’s (19841j~|icker cylinder fixed, and gradually increase the radius of
definition. the thinner one), the probability of obtaining a partial inter-
What seems to be key in Figure 18, then, is that tgection gradually increases to 1, and the probability of ob-
straight-line cut betweer andz passes through an axis ofaining a complete intersection decreases to 0. In the limiting
local symmetry of the silhouette, whereas the straight &@&Se, where both cylinders have the same radius (see Figure
betweerx andw does not. A cut that fails to cross a local21). the probability of obtaining a complete intersection is,
symmetry axis simply does not chop off a region naturd fact, 0. In other words, the set of relative orientations and
enough to be considered for parthood. In other words, tghslations that give rise to a complete intersection (shown
long as a cut crosses a local symmetry axis, shorter cutsifr&igure 21a) has measure zero in the set of all possible
(other things being equal) better. If a cut does not cross @ientations and translations that yield an intersection.
axis of local symmetry, it is simply no good. This is not Consider now the shape of the concave creases produced
a differential-geometric property of the contour of the siin €ach of the two intersection types. In the case of a com-
houette, but rather a more global geometric property of tAi¢te intersection, so long as the two cylinders have unequal
region enclosed by it. radii, the concave creases always encircle the thinner cylin-
Why should cut length be such an important factor in
determining part cuts on a silhouette? The answer lies in the®Recall that our current discussion includes only those intersec-
geometry of transversal intersections. Consider a generictions that produce ambiguities in parsing the projected silhouette.
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is not restricted to measuring distances only along diameters
of inscribed circles, but instead takes into account distances
between all pairs of points on the contour of the silhouette
which are separated by an axis of local symmetry. For exam-
ple, in Figure 17a and b the short-cut rule can explain why
subjects prefer the cut xy over the cut xz; however neither
cut is a limb or a neck (Siddigi & Kimia, 1995), so limbs
and necks cannot explain this preference.

This ecological motivation for the short-cut rule also mo-
tivates the well-known Petter’s rule (Petter, 1956; Kanizsa,
1979, p. 40) for modal completion of contours, which states
that human vision prefers to make modal completions as
short as possible. For instance, for the cross in Figure 23b
Figure 21  The two kinds of transversal intersections for thWhICh is rendered in a homogenous color), human vision
cylinders with equal radii of cross section: (a) complete interse‘%':(afers to make a modal complgtlon along contour y rather
tion, and (b) partial intersection. t an conto_ur X, so that th_e vertical bar is seen as occlud-

ing the horizontal one. This rule has been motivated by the

heuristic that, due to perspective projection, closer objects
der, and never the thicker one (see Figure 20a). In the cag®, ceteris paribus, to have larger retinal images (Shipley &
of a partial intersection, the concave crease encircles neitkeliman, 1992b; Stoner & Albright, 1993). But this motiva-
of the two cylinders (see Figure 20b)—so in this case thign is admittedly very rough (Tommasi, Bressan, & Vallor-
parsing of the projected image is left ambiguous. tigara, 1995). However, the ecological motivation we have

The outcome of this analysis, then, is as follows: As thgready given for the short-cut rule can be applied to Pet-
ratio of the radii of the two cylinders (larger to smaller) inter’s rule as follows. When human vision is presented with
creases, the probability that the two cylinders will meet ingstimulus, like Figure 23b, of homogeneous color, it finds
complete intersection gets closer to 1. Therefore, the proi@e negative minima of curvature and pairs them using the
bility that the concave crease of the intersection goes arown@rt-cut rule. Because the color is homogeneous, it is ini-
the thinner cylinder gets closer to 1. Hence, a projected $ikily ambiguous whether these pairings should be taken to
houette of this intersection should be naturally parsed usi@part cuts or modal contours (since it is not known whether
the shorter cuts (which correspond to the projections of tii silhouette arises from a single object with parts, or from
concave creases produced by the intersection). On the of@f different objects separated in depth). Further processing,
hand, as the ratio of the radii of the cylinders approachespbssibly going on in parallel with the pairing process, is re-
there is a high probability that the cylinders will meet in guired to make this decision. Once this decision is made, the
partial intersection—therefore, the parsing of the projectggiring decided on by the short-cut rule is then taken to be
silhouette is ambiguous. either a part cut or a modal contour. In this way, Petter’s rule

Given any silhouette, whether cylindrical or not, whos@r modal contours inherits the ecological motivation for the
corresponding 3D geometry is unknown, the principle ehort-cut rule.
genericity (in the form used by Freeman, 1994) dictates that
the silhouette should be interpreted as deriving from a 3D
shape that is roughly as deep as it is wide in the image.
Therefore, as we saw with the cylinders above, the concave e chose two classes of shapes for the experiments:
crease will generically go around the part with the thinngfosses (see Figure 22a) and elbows (see Figures 22b and
silhouette. For this reason, we hypothesize that: 22¢). These are natural candidates because, as we have seen,

L gven ashoute i i te par boundaries ca [ 2% SO, 1Y iy e ialors o e minime
p_a|red_|n more than one way to yield cuts, human vi- The crosses have four negative minima of curvature.
sion will prefer to make the shorter cuts, and . . .

While the minima rule states that these are part boundaries,

2. the probability of making the shorter cuts will increasé does not specify how they should be joined. The short-

as the ratio of the longer to the shorter cut gets motet rule predicts that subjects will join these part bound-
extreme. aries so as to make the shortest cuts possible. Because these

figures have straight lines and @angles, they are easily
The short-cut rule differs from necks (Siddigi & Kimiaparametrized and thus allow us to test a truly representative
1995) in that the short-cut rule, unlike necks, does not mample of crosses, not just those that might favor the short-
quire the use of an inscribed circle, a requirement that wet rule. The elbows have but one negative minimum. The
noted earlier is quite restrictive. Therefore the short cut rut@nima rule states that this point must be a part boundary

@ (b)

The Experiments
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@ (b) (©)
] ] ] ) ) Figure 23 (a) The parameters of the cross-shaped figures used in
Figure 22 Some simple figures used in our experiments.  Experiments 1 and 2. The stimuli were drawn with black outlines

and gray interiors in order to suppress the perception of illusory

but does not indicate what the other part boundary should %ontours’ which are quite striking in (b), for example. We wanted
SL%jects to perceive a single object with parts, and not two object-

The short-cut rule predicts that subjects will choose that Palhe partially occluding the other
boundary which will create the shortest possible cut. These
figures, like the crosses, are easily parametrized and thus al-

low us to test a representative sample of elbows. T\
Experiments 1 and 3 required subjects to hand draw cu

on shapes, and contained fewer trials, whereas Experimen

2, 4, and 5 involved a 3AFC task on a computer, and con-

tained many more trials. These experiments do not test

whether the subjects would spontaneously parse such shapes
if not asked to do so: Our task required subjects either to () (b) ©)
draw a fixed number of cuts, or to choose among a few
given cuts. However, as we note in the Introduction, therelg'I ure 24 Three types of cuts on a cross: (@yrizontal, (b)
prior empirical work which suggests that human vision do@éz]rtical,and (©)multiple. '
parse shapes spontaneously (Biederman, 1987; Biederman
& Cooper, 1991; Braunstein et al., 1989; Hoffman, 1983a;
1983b; Hoffman & Singh, 1997), and perhaps even prea8. horizontal protrusiont®
tentively (Baylis & Driver, 1995a; 1995b). What our cur- h — length of horizontal part w

. , ) . width of horizontal part™ vy
rent experiments investigate is how the preferred cuts change
with various parameters of the shapes. The ‘Crosses’ Exper-Note that the area ratigZ, is orthogonal to the two other
iments The crosses were symmetric about the vertical argliables and is scale invariant. We chose this variable, in-
horizontal axes. This allows them to be parametrized by fastead ofZ, for its more intuitive and geometric interpretation.
(orthogonal) parametess y, z, andw (see Figure 23a). TheFor example, it allows us to test whether the area of a part
space of such crosses thus has four parameters. Howeyeted by a given cut influences parsing.
since we assume, for now, that the parsing of shapes is scaleBased on the minima rule, the short-cut rule, the prin-
invariant, we do not wish to distinguish between a cross agidle of genericity (e.g., Beusmans et al., 1987), and con-
scaled versions of it. Therefore, we can factor out scalingderations of symmetry, we expected three ways of parsing
so that the space of such (scale-invariant) crosses has thregoss to be most natural. We called these horizontal cuts
parameters—for example, the three (orthogonal) paramei@igure 24a: two horizontal cuts, both passing through neg-

yr v andy. _ ~ ative minima), vertical cuts (Figure 24b: two vertical cuts,
The independent variables we chose to parametrize Hagh passing through negative minima), and multiple cuts
space of crosses were: (Figure 24c: both horizontal and vertical cuts are present).
1. distance ratio, We predicted t_hat subjects would make the shor_test.cuts
q— length of horizontal cut . between parse points. As an example, for the cross in Figure
~ “length of vertical cut — v’
. 10We are using the term “protrusion” somewhat loosely. See
2. area ratio, : Hoffman & Singh (1997) f ise definition that appli
A area of part produced by horizontal cut . offman ingh ( ) for a precise definition that applies gen-

area of part produced by vertical cut wy’ erally.
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23a, the vertical cuts are shortest and seem most natural.
The stimuli were drawn with a black outline and gray in-
terior, as illustrated in Figure 23a. This was done to suppress 1/2
the perception of illusory contours—which are quite strik- N
ing, for example, when the figures are filled uniformly with < 1/2
black, as in Figure 23b (see, for example, Kanizsa, 1979, and!
Shipley & Kellman, 1992, for work on self-splitting figures). g
We wanted subjects to perceive a single object, and not twow

rectangular objects—one partially occluding the other.

Distance Ratio

Area Ratio

Protru

Experiment 1

As discussed above, we expected the crosses to be parsed 2
with vertical cuts, horizontal cuts, or a combination of these.
To check this, the first experiment tested whether subjects
would use any other cuts to parse the crosses, in a free-
drawing task. L
Method

Subjects. Forty-five undergraduate students at the Uni- -
versity of California, Irvine, volunteered to participate for
course credit. Data from two subjects were excluded from
analysis because they failed to follow instructions.

Materials. The stimulus set consisted of a packet of 113
sheets of paper (27 different stimuli, each repeated 4 times,
plus 5 practice trials.) Each sheet had a cross-shaped figure
printed on it, that was symmetric about both of its axes. To
avoid any vertical or horizontal biasing effects, half of the
figures were presented with a tilt of 15 degrees to the left of |
vertical, and the other half with a tilt of 15 degrees to the <
right of vertical. The first five sheets were practice.

Design.This experiment was a:33 x 3 within-subjects
factorial design. The three independent variables were: (i)
The distance ratio, d, (ii) the area ratio, A, and (iii) the hori-
zontal protrusion, h. Each of the three independent variables
had three levels: 1/2 , 1, and 2. Figure 25 illustrates all the
stimuli used for the experiment. The dependent measure was
the percentage of vertical cuts. (“Multiple cuts” was not an ) ) ) )
option in this experiment.) The short cut rule predicts thigure 25 .A” figures _used in Experiments 1 ar.'d 2 organized by

. . . stance ratio, area ratio, and horizontal protrusion.
as d increases the percentage of vertical cuts increases, e
cause as d increases the vertical cuts become shorter than the
horizontal. monitored continuously to make sure they were following

Procedure. The experiment was run in Six separate segstructions. Subjects were debriefed and thanked for their
sions. Each subject was seated at a desk, in a separate cupéafécipation.
room. On the desk was the stimulus set packet (placed fage its and Discussion
down), a pencil, and a ruler. The subjects were instructed i _ )
to (a) pick up the top sheet from the packet, (b) turn it face Each response was classified as a vgr_ncal cut, hqnzop—
up, (c) decide how they would cut the figure most naturaﬁ?l cut, or other. A response was classmed_a§ vertical if
into three parts, and (d) draw two straight-line cuts, with tHi9th cuts made were vertical, and passed within 5 mm of
ruler and pencil provided, to achieve this partitioning. (V\;Qe negative minima. It was classified as horlzontal if both
limited subjects to two cuts because this is the simplest t&3§S made were horizontal, and passed within 5 mm of the
that adequately tests our theoretical expectations.) After tfggative minima (see Figure 24). It was classified as other if
were done with a figure, they were to place that sheet fallavas neither hqnzontal, nor vertical. Qut of all responses
down, in a separate stack. It was stressed that they shd(f the 43 subjects whose data were included in the anal-
not look forward or backward in the two stacks. The first fiysSiS: €SS than 0% were other. These were excluded from

sheets were practice trials. The ordering of the experimerif analysis.
trials was randomized for each subject. The subjects were An alpha level of .05 was used for all statistical tests.
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. . variables were d, A, and h, and each had the levels 1/2, 1, and
Distance Ratio . . . . S
10 2. Each stimulus figure was repeated in 24 trials, resulting in
=o-d =2 a total of 648 (+ 5 practice) trials. There were two dependent
measures: the percentage of vertical cuts responses, and the
percentage of multiple cuts responses.
- —a—qd=1/2 Procedure. The subjects were seated at a desk, 0.6 me-
Tt ters from a computer screen. The computer displayed the
instructions for the experiment. The subjects pushed a key
0.4 to indicate that they were done with the instructions. Each
trial that followed was structured as follows: First there ap-
peared on the screen, for 2 seconds, a cross-shaped figure,
presented either with a tilt of 15 degrees to the left of vertical,
0.0 - - - or 15 degrees to the right of vertical. During this time, the
1/2 1 2 subjects were to decide how they would partition the shape
Area Ratio most naturally into parts. There followed a blank screen for
500 ms, and then a screen with the initial cross-shaped fig-
Figure 26 The proportion of vertical cuts made by subjects igre (in its original location) along with three possible par-
Experiment 1, as a function of distance ratio and area ratio. titionings of that figure presented, in small, at the bottom
of the screen, and numbered 1, 2, and 3. The subjects in-

A three-way analysis of variance (ANOVA) showed a mailicated, by pressing the corresponding number key, which
effect of the distance ratic (2,84) = 44.743 p < .0001 of the three choices corresponded to their partitioning. The
but no main effect of the e;reél rati6,(2,84) = 1.839 ﬂS’ three choices were vertical cuts, horizontal cuts, and multi-

and no main effect of the horizontal protrusidh(2, 84) = ple cuts (see Figure 24). The numbering of the three different

0.933ns There was a significant interaction between tl{@rt.itioning choices was counterbalgnced across trials. The

distance ratio and the area ratfo(4,168) = .381 p < .05, Subjects response terminated the trial. _ .

Post-hoc comparisons revealed that the area ratio had an ef1 N€ first S trials were practice. The experimental trials

fect only when the distance ratio was 1—and for these stiltf¢re divided into 4 blocks, each consisting 9f26 = 162

uli, subjects preferred to cut parts with larger areas. (See Ffi!s, for a total of 648 trials.

ure 26 for a graphed summary of the results.) These resfigsults and Discussion

suggest that in these stimuli the distance ratio is the domi- Subjects’ data were initially analyzed for internal con-

nant geometric factor used by human vision for parsing. Aistency. Data for the first 12 instances of each figure were

predicted, shorter cuts are much preferred to longer. correlated to data for the last 12. Prior to the experiment we
These results also indicate that in forced-choice expegfose to reject all data from any subject whose correlation

ments on crosses it is legitimate to restrict the alternatives\@s less than 0.5. No data were eliminated. Subjects’ data

horizontal cuts, vertical cuts, or a combination of these. Were analyzed individually. First the multiple cuts responses
were analyzed. In general, subjects made few multiple cuts

Experiment 2 (mean= 4.23%), and did so primarily when the distance
ratio and area ratio were both 1. Five of the ten subjects
Because of the tedious task in Experiment 1, each stifiade virtually no multiple cuts (meaa 1.48%). The re-
ulus was presented only 4 times to each subject. This pigaining five subjects made multiple cuts only when both d
cluded reliable modeling of individual subjects’ data, @{nd A were 1 (mean- 6.98%). Because of the low overall
comparing of trends across subjects. However the seconddgturrence of the multiple cuts responses, the percentage of
periment used a forced-choice task on a computer, allowipgtical cuts responses was taken as the primary dependent
many more trials, and allowing us to model each subjectfeasure.
data individually. Linear Regression.For vertical cuts responses, each sub-
Method ject’'s data was fitted to a number of linear regression mod-
Subjects. Ten graduate students at the University of Cadis. The percentage of vertical cutg, was transformed to a
ifornia, Irvine, volunteered to participate. Subjects were ngéw variableg,, using an arc sine function (Kendall & Stu-
paid and received no course credit. art, 1963) to improve the normality of its distribution. The
Materials. The experiment was run on a Macintosprecise transform was
Quadra 840AV, using the program SuperLab. The stimuli
used were the same 27 cross-shaped figures as in Experiment ¢, =2 Sinfl\/c_V (1)
1 (see Figure 25), but each was presented 24 times.
Design. This experiment had the samex3 x 3 within- The terms corresponding to the distance rdtiand the area
subjects factorial design as Experiment 1: the independeatto A, were taken to be, respectivelpg(d), andlog(A),

9
$

0.8 =) -e-d=1

0.6

0.2

Proportion of Vertical Cuts
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(instead of simplyd and,A).1? ¢y = Bg * Bqlog(d) + Bylog(A)
From some preliminary modeling, it was clear that the
distance ratio was doing most of the work. The models
we tested, therefore, all included the distance ratio—along 4|
with all possible combinations of the other two independent 71
variables. In these models, the horizontal protrusion, h, ex- |
plained almost none of the variability in the data. (This re0-2f
mained true, also, when we replaced h wag(h).) B
Therefore, we needed to consider only those models %@fo
involved the variablesog(d), andlog(A). Also, in almost
every case, addinipg(A) to the model containing only the

distance ratio did significantly improve the model’s fit. 0.2
For these reasons, our conclusion was that the linear re- |
gression equation, -0.4}
¢ = Bo +Balog(d) + Bolog(A), 06
provided the best model for our data. Figure 27 shows the . '
summary of this model, with thg; andf3, parameters plot- 0.9 0.6 -0.3

ted along thex-axis andy-axis, respectively, with 95% con-
fidence intervals for the estimates of these parameters, and
with r2-values of the model's fit to each individual's data. Figure 27 A plot of the coefficierg b 1 and b 2 for the final linear

In sum, distance was again the strongest factor, with sutedelc = By -+ B1log(d) + B2log(A) in Experiment 2. Each point
jects preferring shorter, rather than longer, cuts as predict@gresents a different subject. Also shown are 95% confidence in-
Although area was also used by individual subjects (out 'fvals, and?-values for the model.
10 subjects, 8 had a coefficient for A that was significantly
different from zero), it was used differently by different sub-
jects: 7 our of the 10 subjects cut off parts with the smallest
area, while 3 cut off parts with the largest area. Overall, z
however, there was no main effect of area.

11The reason for this is as follows: When a cross-shaped figure [ ;
with distance ratia@ly, and area ratidy, is rotated through an angle Vi
of 9P, the distance and area ratios of the resulting cross become,
respectively, -, and 4. At the same time, by our very convenigure 28 The parameters of the L-shaped figures used in Exper-
tion, vertical cuts on the original cross become horizontal cuts pRents 3—5.
the rotated cross, and vice versa. Also (ignoring multiple cuts), we
have,

c=1-c, The ‘Elbows’ Experiments
where ¢, is percent vertical cuts, and, is percent horizontal EXperiment 3

cuts. Now, if our model were, for example, = By + B1log(d) + . ) .
Bolog(A), (i.e., without thelog's), the equation above would gi\,eUnllke the crosses from Experiments 1 and 2, the elbow in

us,Bo+ B1do+B2Ao =1~ (Bo+ By +PB2 & ), which cannot hold, Figure 22b has but one negative minimum of curvature, la-

except in the degenerate case whege= Ay = 1. On the other beledg. The minima rule states that this point is one end of a
hand, ifd and A, are replaced bipg(d) andlog(A) respectively, part cut, but does not state which point is the other end. Sev-
this problem is solved: eral cuts seem plausible. Joining at point i seems reasonable

as this is the only other extremum of curvature in the fig-

Bo -+ B1log(do) + Bolog(Ag) = 1— (Bo+ B 1 +B2 ), ure, albeit a positive maximum (we call this a diagonal cut).

log(do) 109(A0)”"  However, joining at eithej or h also seems reasonable as

In fact, this equation now tells us that for a perfect equality, we m%teSe are the locally shortest cuts possible that pass through

haveb0 = 0.5. (This argument, however, is clearly not applicabl e figurg’s axis of symmetry (we call these horizontal cut
to the horizontal protrusior,) and vertical cut, respectively). The short-cut rule makes a

The assumption behind this argumeng £ 1 — c;) holds for clear prediction: subjects will choose the shortest part cut,

about half of the subjects. For the others, the transform canit®, the cuigh. Experiment 3, like Experiment 1, studies the
thought of as a simple fitting technique. cuts subjects make in a free-hand task. Experiment 4, like
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Experiment 2, studies cuts in more detail. As in Experiments
1 and 2, three factors are systematically varied: the distance Distance Ratio
ratio, d, the area ratioA, and the horizontal protrusiot, 1/2
(see Figure 28). Experiment 5 investigates whether smoothz\l
ing the cusps affects the short-cut rule. In this experiment= 1/2
the horizontal protrusion is held constant, but a new vari-
able, level of curvatures, is added. For all experiments we <
expect the distance ratio to be a strong factor, with subjects%
preferring to make shorter as opposed to longer cuts. 3
Based on the theoretical considerations discussed abovegy
we expected the elbows to be parsed with three kinds of cutsg
vertical, horizontal, and diagonal. To check this, Experiment
3, like Experiment 1, allowed subjects to make freehand cuts. 2
Method
Participants. Twenty five undergraduates at the Uni-
versity of California, Irvine, volunteered to participate for
course credit. The data of one subject, who failed to follow
instructions, was eliminated. )
Materials. Testing and design were as in Experiment
1, with one difference: the stimuli were elbows rather than
crosses. The values for distance ratio and area ratio wer
as in Experiment 1. Figures were randomly rotated between
positive 15- 35 degrees and negative-185 degrees to min-
imize orientation effects. Subjects saw each figure 4 times.
Design.This experiment was a:33 x 3 within-subjects
factorial design. The three independent variables of the ex-
periment were: (i) The distance ratid, (i) the area ratio, N 1/2
A, and (iii) the horizontal protrusiorh. Each of the three I
independent variables had three levels: 1/2, 1, and 2. Theg
dependent measure was the number of vertical cuts. Figurétg
29 illustrates all the stimuli used for Experiment 3. =
Procedure. Each subject was seated at a desk, in a sepa-2
rate cubicle. On the desk was a ruler, a pencil, and a stack of-
113 sheets of§ by 11 inch paper. Each sheet displayed an
elbow from the set shown in Figure 29. The stack was face
down. Subjects were instructed to (a) pick up the top sheet
from the stack, (b) turn it face up, (c) decide how they would Figure 29 All elbow stimuli used in Experiments 3 and 4.
cut the figure into two parts most naturally, and (d) draw that
cut with the ruler and pencil provided. After they were dongere hoth equal to 1, as illustrated in Figure 31. Therefore,
with a figure, they were instructed to place that sheet faggs analyzed the percentage of vertical cuts.
down, in a separate stack. The first five sheets were practice
trials. The ordering of experimental trials was randomized A three-way ANOVA showed a main effect of the dis-
for each subject. The subjects were monitored continuougdyice ratioF (2,46) = 74.46, p < .0001, and a main effect
to make sure they were following instructions. Subjects wesethe area ratioF (2,46) = 5.65, p < .01, but no main ef-
debriefed and thanked for their participation. fect of the horizontal protrusiork (2,46) = 0.06,ns Post-
Results and Discussion hoc comparisons with a Tukey’s HSD revealed that, as pre-
Each response was classified as a vertical cut, horizomtigked by the short-cut rule, subjects made significantly more
cut, or diagonal cut. Any cut with an endpoint more than\grtical cuts when the distance ratio was 2 than when 1, or
mm away from a “perfect” example of each cut (see Figut¢2. The number of vertical cuts made at a distance ratio
30) was classified as other. Out of 2700 cuts made by @illl was significantly greater than at a distance ratio of 1/2.
subjects, only 88 could be classified as other. Of these B8rthermore, subjects made significantly more vertical cuts
seventy-four were made by one subject, and 12 by anotlvenen the area ratio was 1/2 than when 1 or 2. There was
Out of all 24 subjects whose data were included in the analt interaction between the distance ratio and the area ratio,
ysis, only 24% were diagonal. Furthermore, diagonal cufs(4,92) = 4.50, p < .01. (See Figure 32 for a graphed sum-
were made primarily when the distance ratio and area ratiary of the results.) As in Experiment 1, post-hoc analysis
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Figure 30 Examples of aertical, horizontalanddiagonalcut in
Experiments 3 and 4. 0.2
Distance Ratio 0.0 L I I
2 03 _ 1/2 1 2
= —-d=2 )
O Area Ratio
g -e-d=1
S 0.2} Figure 32 The proportion of vertical cuts made by subjects in
-‘DE —a—d=1/2 Experiment 3, as a function of distance ratio and area ratio.
B /’ \\
_5 0.1F ," \\ tal, vertical and diagonal choices in the key were counterbal-
o} /’ \\ anced for each figure. We presented subjects with each of
5‘ / * the 27 figures 24 times, 12 mirrored and 12 non-mirrored,
o 00 for a total of 648 trials. The procedure was identical to that
1/2 1 2 . ! . ) :
_ in Experiment 2. On each trial subjects saw one large figure.
Area Ratio Subjects were instructed to cut the figure into two parts most

naturally, as quickly and carefully as possible. A key then
Figure 31  The proportion of diagonal cuts made by subjects ippeared below the figure. Subjects were to select the option
Experiment 3, as a function of distance ratio and arearatio.  that best represented their choice. We limited the choices to

these three cuts based on our findings in Experiment 3. The

revealed that the area ratio had an effect only when the dftStructions were designed to encourage subjects to decide
tance ratio was 1; for these stimuli, subjects preferred to &@W they would parse the figure before the key appeared.
parts with larger areas. As predicted, subjects preferred@sults and Discussion
make shorter cuts for these figures. Subjects’ individual data were first analyzed for inter-
nal consistency. Responses to the first 12 instances of each
figure were correlated to those for the last 12. Prior to the
experiment we chose to reject data from any subject whose
Experiment 3, as in Experiment 1, had only 4 repetitiog®rrelation was less than® One subject’s data was elim-
per stimulus per subject. This meant that we could not igated. The diagonal cut responses were analyzed first. As
liably model individual subjects’ data, or compare trends Experiment 3, subjects made few diagonal cuts and did so
across subjects. However, in Experiment 4, as in Expgsiimarily when the distance ratio and area ratio were both 1.
ment 2, we used a 3AFC design presented by computer. M¢min, we chose to analyze only the percentage of vertical
therefore had many more trials. cuts.
Method Linear Regression Analysissach subjects’ data was fitted
Participants. Twelve graduate students volunteered to several linear models as in Experiment 2. We performed
participate. Subjects were not paid and received no cousadeg transform of each factor (distance ratio, area ratio and
credit. horizontal protrusion) for the same reason as in Experiment
Design and Procedure. Testing and design were as ir2 (see footnote 11). The percentage of vertical artswas
Experiment 2. Stimuli were the same as those used in Evansformed to a new variabl€,, using the arc sine function
periment 3. Values for the distance ratio, area ratio, and hior-Equation 1 to improve the normality of its distribution.
izontal protrusion were the same as those used in Experinidiotdel comparisons revealed that the horizontal protrusion
3. Figures were randomly rotated between positive-Bb was a significant factor for only 2 of the 12 subjects. There-
degrees and negative 35 degrees to minimize orientatiorfore, the final model used was:
effects. Figures were presented mirrored about the vertical
axis to control for left/right bias. The display of horizon-

Experiment 4

¢, = Bo+Balog(d) -+ Bolog(A).
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c, = By + Bylog(d) + B,log(A) Experiment 5

i In Experiment 5 we sought to determine if the short-cut
! rule still holds when part-boundaries are smooth (not cusps
1] .63{ as in all our previous experiments). We smoothed the el-
! bows of Experiments 3 and 4 by using two hyperbolic func-
! 78 tions with identical curvature, as illustrated in Figure!34,
! l 83 The distance and area ratios can therefore be precisely com-
puted!® Smoothing the elbows has an interesting effect: the
.89 positive maximum becomes the unique point locally sym-
87 metric to the negative minimum (see Figure 22c). By con-
trast, in the cusp case (see Figure 22b), the negative min-
.88/ 1.86 imum, g, is locally symmetric to all points betwednand
j- We chose to study smoothing on elbows rather than on
crosses because smoothing crosses does not change the local
symmetry relationships between the part boundaries. Hori-
zontal protrusion remained the samg, However, because
this variable proved insignificant in Experiments 1, 2, 3 and
1 0 1 2 3 4, we chose to hold this variable constant at a value of 2.
This allowed for a larger factorial design with the remaining
By variables. In addition to the distance ratio and area ratio, we
included a variable for level of curvatune, with the values
Figure 33  Plot of the coefficients b1 and b2 for the linear modebf ‘high’, ‘low’, and ‘cusp’ (or infinite).
¢, = Bo+ B1log(d) + Bolog(A) in Experiment 4. Each point repre-pethod
sentséa different subject. Also shown are 95% confidence intervals, Participants. Ten graduate students volunteered to par-
andr®-values for the model. ticipate. Subjects were not paid and received no course
credit. Four of these subjects had previously participated
in either Experiment 4 or Experiment 2, but had not been
debriefed.

Design and Procedure. Testing and design were as in
Experiment 4. This experiment was ax3 x 3 within-
subjects factorial design. The three independent variables
of the experiment were as followéi) The distance ratiaj,

(i) the area ratioA, and(iii ) the level of curvatureg. Dis-
tance and area ratios were the same as in Experiments 3 and

. . 4, viz., levels of}, 1, and2. The horizontal protrusion was
Figure 34  An example of a smoothed elbow used in Experi-

ment 5. The elbows were created by two hyperbolic functionslz_l_he functions were as follows:
yi=£% and y2:ﬁ+)\. :

£ £
yi= and yz_7x+[3+)\'

Figu_re 33 summgr?zes the indivic_iual fits to the first mpdel kthhese figures the negative minimum occurs at point:
plotting the coefficients for the distance and area ratios. Co-

efficients for the distance ratios are plotted on the abscissa, a=(Ve+B,vVe+N),

and coefficients for the area ratio are plotted on the ordinate. N )

Error bars are given for 95% confidence intervals. Factdtd! the positive maximum at:

whose confidence intervals include 0 are not significant. The b= (VE, VE).

r2 for the model is also given near each plot point. As can be ’

seen, the models are quite predictive for almost all subjects.

Averager? for the distance and area ratio model WaB7®,  13The functions were:

SD=0.199. This includes one outlying of 0.197. Without

this score, the average rises t829. Distance Ratic= VE+p and

VEHN
Z € €
Jver ey TM Ve
v .
Jerp vem T B+ Jamamdx

The distance ratio was by far the most important factor,
with significant coefficients ranging from.®to 22. The
coefficients are all positive, indicating that subjects prefer
shorter cuts as predicted.

Area Ratio=
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held constant at 2, a value previously used in Experiments 3
and 4. Figure 35 illustrates all the stimuli that were used for
Experiment 5. The forced choices for cut types remained the 1/2 1 2
same as in Experiments 3 and 4: horizontal, vertical, and di-
agonal. Each cut originated at the negative minimum of cug, 1/2 L s C=
vature. Diagonal cuts were joined to the positive maximunig
horizontal cuts were drawn parallel to the horizontal axis (Gfg
the picture plane), and vertical cuts were drawn parallel t& L
the vertical axis. Figures were then randomly rotated bg
tween positive 15- 35 degrees and negative 435 degrees
to minimize orientation effects. Figures were also presented
mirrored about the vertical axis to control for left/right bias— 2
The display of horizontal, vertical and diagonal choices in
the key were counterbalanced across the presentation of each
figure. We presented subjects with each figure 24 times, 12
mirrored and 12 non-mirrored for a total of 648 trials. Fig- L 1/2
ures were displayed on a Macintosh Quadra 840 AV runnin
SuperLab for Macintosh. S
Results and Discussion =

Subjects’ data were initially analyzed for internal con-O
sistency. Data for the first 12 instances of each figure wer%
correlated to data for the last 12. Prior to the experiment W&
chose to reject all data from any subject whose correlation 2
was less than.B. No data were eliminated.

The diagonal cut responses were analyzed first. Only 2
of 10 subjects made more than 3% diagonal cuts. As in Ex- g

Distance Ratio

Area Ratio

—

7

Area Ratio
[EEY
—

r

periments 3 and 4, diagonal cuts were made primarily when 1/2
the distance ratio and area ratio were both 1.

Linear Regression Analysis. Subjects’ data were fitted t%
the following model: =

[EEY

O

Area Ratio

¢ = Bo+PB1log(d) + Bolog(A).

FWE — r r | r

P PP

The term for curvature was not found to be significant for 2 L
any subject and was therefore not included in the final. As
in previous modeling, an arc sine transform was performed
on the percentage of vertical cuts. Figure 36 summarizes
the individual fits to the vertical cuts model by plotting the
coefficients for the distance-ratio and area-ratio terms. Ggart cuts. In this paper, we examine a geometric rule for
efficients for the distance ratio are plotted on the abscisgatermining part cuts: the short-cut rule. This rule follows
and coefficients for the area ratio are plotted on the ordingiem the geometry of transversal intersections in three di-
Error bars are plotted for 95% confidence intervals. Facter@nsions, and is supported by our experiments. In experi-
whose confidence intervals include 0 are not significant. Thnts with crosses, subjects prefer to join negative minima
r2 for the model is also given near each plot point. This graphcurvature so as to produce the shortest cuts possible. In ex-
demonstrates that, even for the smoothed elbows, subjeeiments with elbows, subjects prefer the shortest cut pass-

Figure 35 All elbow stimuli used in Experiment 5.

preferred to make shorter cuts. ing through the single negative minimum of curvature; thus
) the short-cut rule not only joins existing boundary points
Concluding Remarks given by the minima rule, but it also creates new boundary

Human vision constructs visual objects, including the‘ﬁDints t.hat are not hegative minima of curvature. Indeed, as
shapes and surface properties (Hoffman, in press: Sing Ig,pwn_ln F|gur¢ 37a, the short—cut rqle can d|c.tate a natural
Hoffman, 1997). Decomposing these shapes into parts fag t which term.ma'te_s at.neflther end in a negative minimum
itates the recognition and manipulation of objects. To da(}H:urvature (S|dc_j|q| &Kimia, 1995); the short-cut rule puI_Is
there is no comprehensive theory of shape parsing. The niiie _boundary paints of the cut shghtly away from negatl\_/e
imarule, for instance, gives precise boundary points at whigima of curvature that have low salience. Sharp negative
to parse, but does not state how to join these points to fofApima of curvature are stronger attractors of part cuts than
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Cy = Bo + Bylog(d) + Bylog(A)

Figure 37. (a) An example of a part cut in which neither end is
a negative minimum of curvature (Siddigi & Kimia, 1995). This

§ 82 84 @ (b)
*“jTH I u example shows that the short-cut rule can sometimes pull the end-

points of a part cut slightly away from negative minima of curva-
J ture that have low salience (Hoffman & Singh, 1997). However, as

shown in (b), the short-cut rule might fail to pull the endpoints of
part cuts away from negative minima of curvature that have high
salience.

By rule can also agree, rather than compete, as in Figure 16c.
Here the part cut indicated at the top of the shape is longer
Figure 36 Plot of the coefficients b1 and b2 for the linear modefind connects negative minima with weaker salience, whereas
¢, = Bo -+ B1log(d) + Bolog(A) in Experiment 5. Each point repre-the part cut indicated at the bottom is shorter and connects
sents a different subject. Also shown are 95% confidence interv@legative minima of higher (normalized) curvature and there-
andr-values for the model. fore higher salience. As a result, subjects prefer the bottom
cut (Siddiqi, Tresness, & Kimia, 1996).
weak negative minima (Hoffman & Singh, 1997). So while Our motivation for the short-cut rule can also motivate
the short-cut rule might pull the boundary points of a pdrgetter's (1956) rule. Recall that the short-cut rule can be
cut away from weak negative minima, as in Figure 37a,rglated to Petter's rule because, given a chromatically ho-
might not when the negative minima are sharp, as in Figgogeneous silhouette, it is initially ambiguous whether the
ure 37b. The interaction between the short-cut rule and giouette arises from a single 3D object with parts, or from
salience of negative minima is an interesting topic for furthwo different 3D objects separated in space. Hence, given
research. Another example of this interaction can be seesigh a silhouette, human vision finds the negative minima
the dumbbell of Figure 16b, which has a neck in the midd® curvature and pairs them using the short-cut rule. De-
of the shape. The center region of the dumbbell is compognding on further processing, these pairings may become
of concave arcs of circles. Since each concave arc of a ciigiéer part cuts or modal completions. Under this assump-
is a region of negative minima of curvaturethe minima tion, the results of our experiments suggest that the “larger
rule does not, by itself, pick out a unique point of the arc &eans closer” heuristic (Shipley & Kellman, 1992; Stoner &
a part boundary. Moreover, the magnitude of (normalize@ijoright, 1993) fails to provide an adequate motivation for
curvature in these arcs is low, so that they have low salierRgiter’s rule: Recall that with the crosses, the distance ra-
as part boundaries. At the ends of each arc are sharp risgeonsistently predicted subjects’ preferred choices of cuts,
ative minima of curvature, which have high salience. Thugereas the area ratio failed to do so. However, further work
salience would dictate that part cuts should join these shigpequired to confirm this result for modal completions.
points (cutting off the ends of the dumbbell), whereas the The short-cut rule and the salience of negative minima of
short-cut rule would dictate a part cut in the middle of theurvature together determine many part cuts on silhouettes;
dumbbell. In this competition the short-cut rule loses (sdzyt there are undoubtedly other factors as well. Part bound-
e.g., Braunstein et al., 1989, figure 6); subjects prefer to autes that are locally symmetric to each other might be better
at the salient sharp points. In other competitions, salierndidates for part cuts. Cuts that have “good continuation”
might lose to the short-cut rule. Salience and the short-gvith tangents at part boundaries might be preferred to those
that do not (Kellman & Shipley, 1991; Siddiqi et al., 1996;
14Circular concavities are nongeneric: Almost any infinitesimgl_ngh & Hoffman, in press). The orlenta_ltlon of a silhouette
perturbation of such a concavity induces in it a locally unique negidnt affect part cuts. One set of cuts might be preferred be-
ative minimum of curvature. So examples like Figure 16b aimdsgUSe it yields fewer parts, or parts with no negative minima
surely never appear in nature. Hence, it is not surprising that [ their contours, or just simpler descriptions. And for some
man treats circular concavities no differently than negative minirsapes, subjects might see no part cuts at all. Future work on
of curvature. part cuts will need to address these issues.
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