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Parsing silhouettes: The short-cut rule
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Many researchers have proposed that, for the purpose of recognition, human vision parses shapes
into component parts. Precisely how is not yet known. The minima rule for silhouettes (Hoffman &
Richards, 1984) defines boundary points at which to parse, but does not tell how to use these points to
cut silhouettes, and therefore does not tell what the parts are. In this paper, we propose the short-cut
rule, which states that, other things being equal, human vision prefers to use the shortest possible cuts
to parse silhouettes. We motivate this rule, and the well-known Petters rule for modal completion,
by the principle of transversality. We present five psychophysical experiments that test the short-cut
rule, show that it successfully predicts part cuts which connect boundary points given by the minima
rule, and show that it can also create new boundary points.

Introduction

The ease with which we recognize visual objects is de-
ceptive: chess programs can now compete with chess mas-
ters, but no computer-vision system can compete with the vi-
sion of a toddler. Object recognition is complex and compu-
tationally demanding, and typically uses cues such as shape,
color, texture, motion, and context. However, the ease with
which we can, in many cases, recognize an object without
any cues but shape suggests that shape is a key aspect of
recognition. This raises the question: How does human vi-
sion represent shape for the purpose of recognition?

One proposal is that human vision uses parts combined
into structural representations (Biederman, 1987; 1990; Bie-
derman & Cooper, 1991; Hoffman & Richards, 1984; Marr
& Nishihara, 1978; Palmer, 1977). It represents a shape in
terms of (i) the shapes of its component parts and (ii) the
spatial relationships between these parts.

On this approach, representing a shape involves parsing
it into sub-units—not unlike parsing a sentence in natural
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(a) (b)

Figure 1. Part cut on a silhouette. The silhouette in (a) is unam-
biguously parsed in (b) with a part cut (depicted by a dashed line).

(b) (c)(a)

Figure 2. A silhouette with more than one parse. The silhouette
in (a) is naturally parsed as in (b) or in (c).
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language—and describing the relationships between these
subunits—again, not unlike the syntactical structure of a sen-
tence. And, just as some sentences admit multiple parses,
so too do some shapes. For example, compare the shape in
Figure 1a (which is nicely parsed by the part cut, indicated
by a dashed line, in Figure 1b) with the one in Figure 2a
(which can be parsed either by the part cuts shown in Figure
2b, or by the part cuts shown in Figure 2c). The parsing of
shapes, when it occurs, is quick and effortless—perhaps even
preattentive (Baylis & Driver, 1994; 1995a; 1995a; Driver &
Baylis, 1995; Hoffman & Singh, 1997).

Part-based representations have been studied extensively
by psychologists1 and computer scientists.2 Parts, unlike
template and Fourier approaches, can deal effectively with
occlusion, self-occlusion, and certain types of non-rigidity
in which rigid parts move relative to each other (Hoffman &
Richards, 1984; Pinker, 1985). They can explain the clas-
sic visual phenomenon, first noted by Mach, that symmetry
is easier to detect than repetition (Baylis & Driver, 1995b;
Driver & Baylis, 1995; Mach, 1885/1959), and the phe-
nomenon discovered by Attneave that a piece of curve looks
different depending on which side is taken to be “figure”
(Attneave, 1971; Hoffman & Richards, 1984; see Figure 5).
They can also alter the perception of transparency (Singh &
Hoffman, in press). However, parts may be less important
in the visual recognition of faces (Farah, 1996; Tanaka &
Farah, 1993; Turk & Pentland, 1991; Yuille, 1991).

A natural question arises: How does human vision parse
shapes into parts? Some theorists postulate that there is a set
of basic shapes, or primitives, which human vision searches
for in images—primitives such as generalized cones (Bin-
ford, 1971; Marr, 1977) or geons (Biederman, 1987). Ac-
cording to these theories, human vision parses a shape by
finding these primitives in the shape. Hence the primitives
are responsible for (i) finding parts, and (ii) describing them.

Other theorists postulate that there are rules, based on ge-
ometric properties alone, by which human vision computes
the boundaries between parts for any given shape. The min-
ima rule (Hoffman & Richards, 1984) is a step in that direc-
tion. For a 2D silhouette, the minima rule provides bound-
ary points on the silhouette outline, through which part cuts
must pass (see Figure 3a). And for 3D shapes, the minima

1A partial list includes Baylis & Driver (1994; 1995a; 1995b),
Bennett and Hoffman (1987), Beusmans, Hoffman, and Bennett
(1987), Biederman (1987), Biederman and Cooper (1991), Braun-
stein, Hoffman, and Saidpour (1989), Driver & Baylis (1995), Hoff-
man ((1983a); (1983b)), Hoffman and Richards (1984), Hoffman
and Singh (1997), Marr ((1977); (1982)), Marr & Nishihara, 1978),
Palmer, 1977), Pentland, 1986), Stevens & Brookes, 1988), Ter-
zopoulos, Witkin, & Kass (1987),Todd, Koenderink, van Doorn,
and Kappers (1995), Tversky and Hemenway (1984).

2A partial list includes Binford (1971, December), Brooks
(1981), Dickinson, Pentland, & Rosenfeld (1992), Guzman (1971),
Siddiqi and Kimia (1995), Winston (1975).

(a) (b)

Figure 3. Minima rule gives part boundaries which are (a) points
on 2D shapes, and (b) curves on 3D shapes.

rule provides boundary curves on the surface of the shape
through which part cuts must pass (see Figure 3b). However,
the minima rule does not define the part cuts themselves—it
only constrains them by requiring them to pass through the
boundary points it provides.

We deal here only with the parsing of silhouettes, not of
3D shapes. The relationship between 3D shapes and silhou-
ettes is complex, and beyond the scope of this paper (but see,
e.g., Richards, Koenderink, & Hoffman, 1987). However,
human subjects do see parts in silhouettes—so the parsing
of silhouettes is of psychological interest.

In this paper, we propose that human vision parses sil-
houettes according to the short-cut rule.

Short-cut rule: Divide silhouettes into parts using the short-
est possible cuts.

In other words, if boundary points can be joined in more
than one way to parse a silhouette, human vision prefers that
parsing which uses the shortest cuts. For the shape in Figure
2a, for instance, the short cut rule gives the cuts shown in
Figure 2b rather than the cuts shown in Figure 2c. In this pa-
per a cut is (1) a straight line which (2) crosses an axis of lo-
cal symmetry (see section entitled Short Cuts), (3) joins two
points on the outline of a silhouette, such that (4) at least one
of the two points has negative curvature. For some shapes
such as elbows, the short-cut rule can create boundary points
that are not negative minima of curvature.

We begin by reviewing the minima rule and related re-
search on shape partitioning. We then motivate the short-cut
rule by the geometry of transversal intersections, and relate it
to Petter’s rule for modal completion (Petter, 1956; Kanizsa,
1979, p. 40). Finally, we present five experiments that test,
and support, the short-cut rule.

A few caveats and disclaimers. There is much to the
parsing of visual shapes that we cannot explore here. First,
top-down factors can influence visual parsing (e.g., Schyns,
Goldstone, & Thibaut, 1998; Schyns & Murphy, 1994;
Schyns & Rodet, 1997; Singh & Landau, 1998). These
are no less important than the short-cut rule that we exam-
ine. But to keep this work to manageable size, we focus
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here on the short-cut rule. Once geometric factors like the
short-cut rule are understood we have a better chance to in-
tegrate them with the top-down. Second, as mentioned ear-
lier, many factors besides parts influence visual recognition.
Motion, texture, color, and surface characteristics can also
be important (Biederman, Glass, & Stacy, 1973; Bruce &
Humphreys, 1994). These cannot be ignored. Ultimately we
want to know how these interact with geometric factors in
visual parsing and object recognition. Third, parts appear at
many spatial scales. Smaller parts nest within larger ones
to form hierarchies. Information at multiple scales affects
the cutting of parts. The issue of scale and how it affects
part cuts is complex and important. But here we assume that
some scale of resolution, and some piecewise continuous ap-
proximation of the shapes, has been fixed.

The Minima Rule

Our starting point is the minima rule (Hoffman &
Richards, 1984). In this section we briefly review the min-
ima rule, its philosophy, strengths, and motivations. We then
discuss its limitations. These limitations are the point of de-
parture for our work here.

The minima rule embodies a fundamental shift in phi-
losophy toward the problem of object parts. As noted ear-
lier, the dominant philosophy of most researchers has been
to specify the shapes that parts may take, and then to look
for these shapes in images. We call this the shape prim-
itives approach. Among the part shapes that have been
proposed are polyhedra (Roberts, 1965; Waltz, 1975; Win-
ston, 1975), generalized cylinders and cones (Binford, 1971;
Marr & Nishihara, 1978), geons (Biederman, 1987), and
superquadrics (Pentland, 1986). Each such proposal works
well on a special class of objects. None comes close to cap-
turing the variety and complexity of object parts in general.
And each, if viewed as a general theory of the human per-
ception of parts, is clearly ad hoc.

The minima rule separates the issue of finding parts from
the issue of describing them. In the shape primitives ap-
proach, finding and describing parts is done in a single pro-
cess: trying to fit primitives to a given image. This entails,
however, that parts whose shapes are not in the predefined
set of primitives cannot be found. Hoffman & Richards
(1984) have argued, instead, that the mechanisms which find
parts are more basic, and operate regardless of the shapes
of the parts. The minima rule thus has different strengths
and limitations. Rather than defining part shapes it defines
part boundaries. And rather than looking for part shapes in
images, it looks for part boundaries.3 One advantage is that
its definition of part boundaries is expressed solely in the

3This is what makes the minima rule a “boundary-based” ap-
proach. The “boundaries” in question are boundaries between
parts—regions where one part ends and another begins. They are
not the bounding contours that define 2D silhouettes—an easy mis-
interpretation (see Siddiqi & Kimia, 1995, p. 239–240).
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Figure 4. Geometry related to the minima rule. In (a) is shown a
silhouette with ”figure” indicated by stippling. Regions of positive
and negative curvature are indicated by+ and− respectively. The
cusp labeled A is concave, i.e., pointing into the figure. The cusp
labeled B is convex, i.e., pointing into the ground. In (b) the nega-
tive minima of curvature are indicated by dots. These are the part
boundary points according to the minima rule. In (c) is shown the
same silhouette as in (a), but with figure and ground reversed. Note
the change in signs of curvature. Now the cusp labeled A is convex
whereas B is concave. In (d) the new negative minima of curvature
are indicated by dots. A reversal of figure and ground changes the
part boundaries.

language of differential geometry and therefore applies to
any shape defined by a piecewise differentiable function. In
other words, it applies quite generally. We will discuss its
limitations shortly.

But first we examine the rule, its motivations, and its
strengths. The minima rule comes in two versions, one for
partitioning 3D shapes and one for partitioning 2D silhou-
ettes. Here we need only the version for silhouettes, since
our task is to define part cuts on silhouettes. We need not
discuss the 3D version, which can be found elsewhere (Hoff-
man, 1983; Hoffman & Richards, 1984; Bennett & Hoffman,
1987; Beusmans et al., 1987; Hoffman & Singh, 1997) and
which requires prior discussion of the differential geometry
of surfaces. The version for silhouettes is as follows.

Minima Rule for Silhouettes: Cut each silhouette into parts
using concave cusps and negative minima of curvature of its
bounding contour.

Figure 4 illustrates this rule. Figure 4a shows a silhou-
ette, with regions of positive curvature and negative curva-
ture marked. (The shaded side is “figure,” and the white is
“ground.”) Note that positive regions are convex and neg-
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(a) (b)

Figure 5. A demonstration of the minima rule. The two wiggles
on the right look different even though they are identical. Why?
According to the minima rule you break them into parts differently.

ative regions concave. This figure also has two cusps on it,
one concave and labeled A, one convex and labeled B. Figure
4b shows the boundary points, as defined by the minima rule,
between parts. If figure and ground reverse, as in Figure 4c,
then regions of negative curvature become positive and vice
versa. Moreover concave cusps become convex, and vice
versa. This entails, according to the minima rule, that there
are now different boundary points, as shown in Figure 4d.

This shift of boundary points, when figure and ground re-
verse, can explain some interesting perceptual effects. One,
discussed by Attneave (1971), is shown in Figure 5. On the
left is a disk with a wiggle through it. On the right the two
halves are pulled apart at the wiggle. By construction each
half has an identical wiggle. But notice that the two wiggles
look quite different—a fact easily confirmed by experiment
(Hoffman, 1983a). The reason, according to the minima rule,
is this: The two halves induce opposite assignments of figure
and ground on the two wiggles. Therefore regions of posi-
tive curvature for one wiggle have negative curvature for the
other, and vice versa. And therefore the parts, whose bound-
aries are (by the minima rule) at negative minima of curva-
ture, must be different for the two wiggles. Thus the rea-
son the wiggles look different is that you divide them differ-
ently into parts. A similar account can be given for the well-
known face-goblet illusion, and for some 3D illusions as well
(Hoffman & Richards, 1984; Hoffman & Singh, 1997). The
minima rule has also fared well in several psychophysical
tests of its implications for the perception of shape similarity
(Hoffman, 1983a), short-term memory for shapes (Braun-
stein et al., 1989), naming pictures with deleted contours
(Biederman & Cooper, 1991), the detection of symmetry
and repetition (Baylis & Driver, 1994, 1995a; 1995b; Driver
& Baylis, 1995), structure from motion (Saidpour, 1983a),
figure-ground perception in 2D and 3D (Hoffman & Singh,
1997), the perception of transparency (Singh & Hoffman, in
press), and preattentive popout (Wolfe & Bennett, 1997).

It is clear from the above treatment that we are using cur-
vature as a signed quantity. This differs, for example, from
Attneave’s (1954) treatment in which curvature is taken to

(a) (b) (c)

Figure 6. The minima rule does not say to form part cuts by con-
necting consecutive negative minima of curvature. It is clear that
doing so can produce very strange parts, as in (a), (b). Sometimes,
this does not even give legitimate part cuts, as in (c).

mean magnitude of curvature—and is therefore a positive
quantity. Attneave’s observation that information along a
contour is concentrated at points of ’maxima of curvature’
is a statement, in our framework, about the visual impor-
tance of both negative minima and positive maxima of cur-
vature. Within the context of parsing, however, the minima
rule makes a distinction between these two kinds of curva-
ture extrema, assigning a special status to the negative min-
ima.

The minima rule is distinct from the theory of codons
(Richards & Hoffman, 1985; Richards, Dawson, & Whit-
tington, 1986). The domain of codons is plane curves,
whereas the domain of the minima rule is, as we have seen,
silhouettes and three-dimensional shapes. The theory of
codons uses minima of curvature, both positive and nega-
tive, to parse plane curves. The minima rule, by contrast,
uses only negative minima of curvature as boundary points
on silhouettes. The theory of codons parses any given plane
curve into ‘codons’, and then represents that curve using a
classification scheme for codons. The minima rule for sil-
houettes, by contrast, only provides boundary points through
which part-cuts must pass. It does not define the cuts—and
hence the parts—themselves. In particular, it does not join
consecutive minima to form parts. Indeed, doing so can give
strange parts (Figure 6a, b) or no parts at all (Figure 6c).

The minima rule is based on a principle from the field of
differential topology called transversality (Guillemin & Pol-
lack, 1974; Hoffman & Richards, 1984). The relevant case
of transversality is shown in Figure 7. On the left are two
arbitrary shapes in 3D, labeled S1 and S2. On the right S1
and S2 interpenetrate to form a single composite object. S1
and S2 are distinct elements of the (sparse) visual scene on
the left, and would be natural candidates for parts of the com-
posite object on the right, if only we could distinguish them.
Transversality says that we can—if S1 and S2 are generic
shapes and if they interpenetrate at random. In this generic
case, at almost every point where the surface of S1 intersects
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S1

S2

Figure 7. Transversality and concave creases. On the left are
two generic surfaces. On the right they interpenetrate generically
to form a composite object. By transversality, their surfaces form
concave creases (depicted by dashed curves) at almost every point
where they intersect.

that of S2 the tangent planes to the two surfaces have differ-
ent orientations in space. Therefore the two surfaces meet,
at each such point, in a concave crease. These points are
indicated by the dashed curve on the composite object. This
crease is concave because it points into the object (i.e., into
the “figure”). By contrast, the edges of a cube are convex
creases, because they point out of the cube (i.e., out of the
“figure”). Another way to understand it is this: If S1 and
S2 each have smooth surfaces, then the dashed contour indi-
cates the only points on the surface of the composite object
that are not smooth. Thus transversality directly motivates
a strategy for dividing 3D shapes into parts along concave
creases. Combining this with processes of smoothing gives
the minima rule for 3D shapes, and combining it further with
projection onto an image plane leads to the minima rule for
silhouettes (Hoffman & Richards, 1984).

Transversality, however, is not an account of part gene-
sis. As we have seen, it applies when two separate objects
are joined to form a new object. But it applies equally well,
in smoothed form, when an object protrudes from another,
as when a branch grows out of a stem. Transversality is an
abstract principle of mathematics and so applies regardless
of the genesis of the part.

The minima rule explains some aspects of our percep-
tions of parts. But it has notable limitations. As we men-
tioned earlier, for a silhouette the minima rule gives precise
boundary points at which to cut. But, as noted by Beusmans
et al. (1987), the minima rule does not tell how to pair these
boundary points to define part cuts. Consider, for instance,
the two shapes in Figures 8a and 8b—versions of which ap-
pear in Rom and Medioni (1993), Siddiqi & Kimia (1995),
and Kimia, Tannenbaum, and Zucker (1991; 1995). The
shape in Figure 8b can be seen as the result of pulling the
shape in Figure 8a outwards and to each side. Clearly, such a
transformation has little effect on the negative minima of the
shape: There are still four negative minima and at roughly

(a) (b)

(c) (d)

Figure 8. A limitation of the minima rule. The two crosses in (a)
and (b) have the same number of negative minima, and at roughly
the same locations. However, their natural partitionings, as given
in (c) and (d), are very different. Clearly, some property other than
the presence of negative minima of curvature is required to explain
the difference in partitionings of these crosses.

the same locations. And in both cases, the minima rule sim-
ply provides these four negative minima as boundary points,
and is silent about how to connect them to form part cuts.4

However, the natural perceptual organizations of these two
shapes are different—see Figures 8c and 8d. The shape in
8a is most naturally perceived as a small central core sur-
rounded by four small parts, whereas the shape in 8b is most
naturally perceived as a large vertical body with two small
parts protruding on the sides. Hence the minima rule, in
itself, is unable to account for the difference in perceptual
organizations of the two shapes.5 There are two reasons.
First, the minima rule uses only properties of the contour
that outlines the silhouette. And second, the minima rule
uses only differential properties of the contour (namely, the
presence of negative minima of curvature). To define part
cuts, we must add to the minima rule (i) properties of the
region enclosed by the contour, and (ii) properties that are
more global to the shape.

Another limitation of the minima rule is that it does not
indicate which points in addition to negative minima of cur-
vature are good part boundaries, even though there are surely

4Considerations of genericity, however, allow us to rule out part
cuts that cross each other—see Beusmans et al. (1987).

5It is important to note, however, that since the minima rule does
not make cuts, it cannot, a fortiori, make unnatural ones (cf. Kimia
et al., 1995, p. 212).
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Figure 9. Another limitation of the minima rule: Some part
boundaries are not negative minima of curvature.

Figure 10. The definition of a generalized cone.

such points (Hoffman & Richards, 1984, p. 72). Figure 9, for
instance, shows an elbow which can be naturally cut as indi-
cated by the dotted line. This line terminates at one end in
a negative minimum of curvature, and at the other in a point
with zero curvature.

The short-cut rule, as we shall see, augments the minima
rule in a way that repairs some of these limitations. But there
is relevant prior work on parts and part cuts by Marr (1977),
Biederman (1987, 1990), and by Siddiqi & Kimia (1995), to
which we now turn.

Generalized Cones

A silhouette can convey a rich sense of shape in three
dimensions. To explain this, Marr (1977) suggested that
human vision interprets silhouettes as being the images of
generalized cones (first defined by Binford, 1971). A gen-
eralized cone is the three-dimensional surface “swept out by
moving a simple smooth cross-section along some axis, at
the same time magnifying or contracting it in a smoothly
varying way” (Marr, 1977, p. 447)—see Figure 10. Marr
showed that generalized cones are a powerful tool for inter-
preting simple silhouettes. Marr further suggested that hu-
man vision interprets complex silhouettes as the composition
of two or more generalized cones. To do so it must cut the
silhouette into parts, each of which corresponds to a single
generalized cone, and then analyze each cone.

These cuts, Marr proposed, are straight lines that lie en-
tirely within the silhouette and divide it into regions. Each
such region has a qualitative symmetry whose axis is the im-
age of the axis of the corresponding generalized cone. The
endpoints of each cut are at curvature inflections, and some-

(a) (b)

Figure 11. (a) Some geons, and (b) some objects made by com-
bining geons. Adapted from Biederman (1987).

times in concave or convex regions. The precise position of
the endpoints is chosen to minimize the portion of the silhou-
ette’s contour left unmatched by the qualitative symmetries.

Marr’s analysis is elegant. But as he was well aware the
assumptions it requires are restrictive: The silhouette must
be the image of generalized cones whose axes are coplanar,
and the viewing direction must not significantly foreshorten
the axes of the generalized cones. A more general account is
needed.

Geons

To explain the speed and accuracy with which human vi-
sion recognizes objects at the entry-level—for example, as a
table, a horse, or a car—Biederman (1987, 1990) proposed a
theory called recognition-by-components or RBC. RBC pos-
tulates 24 primitive volumetric shapes, called geons6 (see
Figure 11a for some examples), and claims that any visual
object can be represented as an arrangement of these geons
in specific spatial relationships (see Figure 11b). Further-
more, the geon representations are, by construction, stable
over changes in viewpoint, so that the same representation is
activated from almost any viewing direction.

RBC faces the same difficulties that primitive-based
schemes typically face, viz., limited generality. However,
it has the advantage that geons derive from the principle of
“nonaccidental properties” (Lowe, 1985; Witkin & Tenen-
baum, 1983), whereas polyhedra, superquadrics, and gener-
alized cones make no appeal to a first principle. Nonacciden-
tal properties are properties of 3D shape which, generically,
survive projection onto an image plane. An example is the
distinction between straight and curved: a curved edge in
3D will, generically, project to a curved edge in the image
plane. It takes a special viewpoint to make a curved edge
in 3D project to a straight edge in an image—and if such a
special viewpoint happens to occur, human vision often mis-
interprets the resulting image because it interprets the im-
age as arising from a generic, rather than special, viewpoint

6The 1987 version of RBC had 36 geons, but the 1990 version
has 24.
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(a)

(c)

(b)

(d)

Figure 12. The four nonaccidental properties used in deriving
the set of geons: (a) curved versus straight cross section; (b) con-
stant versus expanding only versus expanding and then contracting
cross-section; (c) symmetrical versus asymmetrical cross-section;
(d) curved versus straight axis.

(a) (b) (c)

Figure 13. Geons have (a) pointed tips, or (b) truncated tips, but
not (c) rounded tips, even though the difference pointed, truncated,
and rounded tips is one which survives projection, and is therefore
a nonaccidental property.

(Freeman, 1994). Figure 12 shows the four nonaccidental
properties used to generate the set of geons.

Although geons appeal to the principle of nonaccidental
properties, they are not the complete set of shape primitives
that follow from this principle. As an example, geons end
either in pointed tips (as in Figure 13a) or in truncations (as
in Figure 13b); there are no geons with rounded tips (Fig-
ure 13c). But clearly the distinction between rounded tips,
truncated tips, and pointed tips is one that generically sur-
vives projection—and is therefore a nonaccidental property.
Indeed it is required for the proper recognition of toes, fin-
gers, peeled bananas, and aircraft fuselages, which cannot be
approximated by geons (i.e., with truncated or pointed tips).
One might say this problem is easy to fix: Just add to the list
of geons a couple more shapes with rounded tips. And no
doubt this is easy to do. But there are many other nonacci-
dental properties that have been omitted from the list as well.
Why are some nonaccidental properties used to define geons

(a) (b) (c)

Figure 14. Siddiqi & Kimia’s (1995) definition of limb. In (a) the
limb is depicted by the dashed curve. The cocircular tangents are
depicted by arrows. In (b) and (c) are examples where the definition
of limb fails, since the tangents are not cocircular. This failure of
cocircularity is generic.

and others not? No principle has been given for choosing
some nonaccidental properties and not others.

Limbs and Necks

Siddiqi and Kimia (1995), building on the work of Kimia
et al. (1991; 1995), recognized the limits of the minima rule,
and proposed that silhouettes are parsed in two ways: limbs
and necks. Siddiqi & Kimia (1995) define a limb as fol-
lows: “A limb is a part-line going through a pair of negative
curvature minima with co-circular boundary tangents on (at
least) one side of the part-line” (p. 243). A “part-line” is a
part cut. Two tangent vectors are “co-circular” if both are
tangent to one circle (Parent & Zucker, 1989, p. 829). Fig-
ure 14a illustrates their definition of limb, with the part cut
depicted by a dashed line, and co-circular tangents depicted
by arrows. This definition almost never applies to real parts
since its requirement of co-circular tangents almost surely7

never holds. Figures 14b and c, for instance, show examples
in which tangents at negative minima of curvature are not co-
circular. It is easy to concoct such examples since the failure
of co-circularity is generic.8 This means that allowing tol-
erance in the computation of co-circularity, which is useful
in other contexts (e.g., Parent & Zucker, 1989), cannot fix
the problem here: limbs would just go from measure zero to
highly unlikely.

The definition of limb, furthermore, has a counterintu-
itive implication: many part cuts that one normally calls
limbs, e.g., cuts for the arms and legs of the human body
(Figure 15), fail both the co-circularity condition and the

7Something is said to be true “almost surely” if it is true “every-
where except possibly on sets of measure zero.” See, for example,
Guillemin & Pollack (1974) and Halmos (1950).

8A simple proof of this is the following: Pick at random two
points in the plane. Pick at random a line passing through the first
point. Draw the circle passing through both points and tangent to
this line (this circle is defined uniquely). Then, of the countless
lines through the second point, just one will be tangent to this cir-
cle. Thus cocircularity obtains with measure zero, and limbs almost
surely don’t occur.
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Figure 15. Siddiqi & Kimia’s (1995) definition of limb excludes
human (and animal) limbs; such limbs are not cocircular, and many
do not contain two negative minima.

condition of passing through two negative minima of cur-
vature, and thus fail to be limbs according to the above defi-
nition. The definition of limb, therefore, is much too restric-
tive. The cuts it defines are almost surely never found on any
real shape.

Siddiqi & Kimia (1995) define a neck as follows: “A
neck is a part-line which is also a local minimum of the di-
ameter of an inscribed circle” (p. 243). Figure 16a illustrates
this definition, as does the central cut in Figure 16b and the
two cuts in Figure 16c. Unfortunately the definition of neck
given by Siddiqi & Kimia fails for a large class of shapes that
should be classified as necks. In Figure 16d, for example, the
dashed line indicates a natural cut, and should be made. But
it is not captured by the definition of a neck. The problem is

(a) (b)

(d)(c)

Figure 16. Siddiqi & Kimia’s (1995) definition of neck. In (a) the
neck is depicted by the dashed curve. In (b) the middle dashed line
is a neck. In (c) both dashed lines are necks (Siddiqi et al., 1996).
In (d) is an example where the definition of neck fails, since the
dashed line is not the diameter of an inscribed circle.

(a) (b)

x L

L

A

A
z

y

xz

y

Figure 17. The distance factor. In both (a) and (b) the cutxy is
preferred to the cutxzbecausexy is shorter.

that the circle cannot be inscribed: the cut is the diameter of
the circle, but the circle is too big to be inscribed. Thus the
definition of neck is too restrictive.

Short Cuts

The situation seems to be this. Negative minima of cur-
vature are powerful geometric determinants of perceived part
boundaries on 2D silhouettes. But they are not the only such
determinants. And a comprehensive (bottom-up) account of
part perception must describe all geometric factors and their
interactions in determining not just boundary points, but en-
tire part cuts. Here, we propose an important such factor: cut
length.

Consider the elbow depicted in Figure 17a. Which cut
seems most natural—cutxy or cut xz? Casual inspection
suggests that xy is by far more natural. (This is also, as we
will see shortly in our experiments, the verdict of subjects in
experiments with similar figures.)

Why is xy the preferred cut? Even in a shape as simple
as this elbow, several factors are at play. We have designed
this elbow, however, to minimize the effects of most factors
other than cut length. For example, the two lengths labeled L
in Figure 17a are identical, so that this length is not a factor.
The pointsy andz both have identical curvature (viz., zero),
so that this also is not a factor. One difference is the area
of the two parts defined by the two cuts, but this difference
is eliminated in Figure 17b, and still the cutxy is preferred.
This suggests that a key factor here is that the Euclidean dis-
tance fromx to y is shorter than that fromx to z.

Therefore it appears that the goodness of a cut joining
two points x and y involves the Euclidean distancedx,y =
|x− y|. We say the goodness “involves the distance” rather
than “is the distance.” There is more to this factor. In some
cases closer is not better, as shown in Figure 18. Pointsx and
w in this figure are certainly close to each other, but we are
not tempted to cut the figure fromx to w.

Why? Figure 18 suggests that the answer lies in the ge-
ometry of the silhouette betweenx andw. In this figure it
seems that pointsx andzcould have a cut between them, but
pointsx andw could not, even though the distance between
x andw is smaller than that betweenx andz. So Euclidean
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xz w

Figure 18. Closer is not always better: A part cut must also cross
an axis of local symmetry.

(b)(a)

Figure 19. The axes of local symmetry for two shapes.

distance alone is not the key to determine how close two
points must be before a cut between should be impossible.
One consideration, of course, is that the cutxz involves two
negative minima, whereas cut xw involves only one. But
there is another factor at play here. To state it, we need the
notion of local symmetry. Local symmetry is a weak form of
symmetry that allows for the axes of symmetry to be curved,
and also for axes that span only local subshapes of an entire
shape. What the axes of local symmetry provide, in effect,
is the skeletal axial structure of any given 2D shape. Fig-
ure 19 displays the axes of symmetry for two silhouettes.
Various schemes have been proposed to compute the axes
of local symmetry (Blum & Nagel, 1978; Brady & Asada,
1984; Leyton, 1992). We will use Brady & Asada’s (1984)
definition.

What seems to be key in Figure 18, then, is that the
straight-line cut betweenx andz passes through an axis of
local symmetry of the silhouette, whereas the straight cut
betweenx andw does not. A cut that fails to cross a local-
symmetry axis simply does not chop off a region natural
enough to be considered for parthood. In other words, as
long as a cut crosses a local symmetry axis, shorter cuts are
(other things being equal) better. If a cut does not cross an
axis of local symmetry, it is simply no good. This is not
a differential-geometric property of the contour of the sil-
houette, but rather a more global geometric property of the
region enclosed by it.

Why should cut length be such an important factor in
determining part cuts on a silhouette? The answer lies in the
geometry of transversal intersections. Consider a generic in-

(a) (b)

Figure 20. The two kinds of transversal intersections for two
cylinders withunequalradii of cross section: (a) complete inter-
section, and (b) partial intersection.

tersection, in 3D space, of two cylinders such that the radius
of cross section of one cylinder is larger than that of the other
(see Figure 20). Only two kinds of transversal intersections
are possible that will produce ambiguities in parsing the pro-
jected silhouette: a complete intersection, as shown in Fig-
ure 20a, and a partial intersection, as shown in Figure 20b.
A complete intersection can be characterized by the property
that it leads to two contours of intersection, whereas a partial
intersection leads to a single contour of intersection.

Let us consider the relative probability of obtaining these
two kinds of intersections, as a function of the ratio of the
radii of the two cylinders (larger to smaller). As this ratio
gets larger (say, as we keep the radius of the thicker cylinder
fixed, and gradually decrease the radius of the thinner one),
the probability of obtaining a partial intersection gradually
decreases to 0, and the probability of obtaining a complete
intersection increases to 1. (The limiting case, of course, is
achieved when the thin cylinder is just a line piercing through
the thicker cylinder.) On the other hand, as this ratio gets
smaller and approaches 1 (say, as we keep the radius of the
thicker cylinder fixed, and gradually increase the radius of
the thinner one), the probability of obtaining a partial inter-
section gradually increases to 1, and the probability of ob-
taining a complete intersection decreases to 0. In the limiting
case, where both cylinders have the same radius (see Figure
21), the probability of obtaining a complete intersection is,
in fact, 0. In other words, the set of relative orientations and
translations that give rise to a complete intersection (shown
in Figure 21a) has measure zero in the set of all possible
orientations and translations that yield an intersection.9

Consider now the shape of the concave creases produced
in each of the two intersection types. In the case of a com-
plete intersection, so long as the two cylinders have unequal
radii, the concave creases always encircle the thinner cylin-

9Recall that our current discussion includes only those intersec-
tions that produce ambiguities in parsing the projected silhouette.
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(a) (b)

Figure 21. The two kinds of transversal intersections for two
cylinders with equal radii of cross section: (a) complete intersec-
tion, and (b) partial intersection.

der, and never the thicker one (see Figure 20a). In the case
of a partial intersection, the concave crease encircles neither
of the two cylinders (see Figure 20b)—so in this case the
parsing of the projected image is left ambiguous.

The outcome of this analysis, then, is as follows: As the
ratio of the radii of the two cylinders (larger to smaller) in-
creases, the probability that the two cylinders will meet in a
complete intersection gets closer to 1. Therefore, the proba-
bility that the concave crease of the intersection goes around
the thinner cylinder gets closer to 1. Hence, a projected sil-
houette of this intersection should be naturally parsed using
the shorter cuts (which correspond to the projections of the
concave creases produced by the intersection). On the other
hand, as the ratio of the radii of the cylinders approaches 1,
there is a high probability that the cylinders will meet in a
partial intersection—therefore, the parsing of the projected
silhouette is ambiguous.

Given any silhouette, whether cylindrical or not, whose
corresponding 3D geometry is unknown, the principle of
genericity (in the form used by Freeman, 1994) dictates that
the silhouette should be interpreted as deriving from a 3D
shape that is roughly as deep as it is wide in the image.
Therefore, as we saw with the cylinders above, the concave
crease will generically go around the part with the thinner
silhouette. For this reason, we hypothesize that:

1. given a silhouette in which the part boundaries can be
paired in more than one way to yield cuts, human vi-
sion will prefer to make the shorter cuts, and

2. the probability of making the shorter cuts will increase
as the ratio of the longer to the shorter cut gets more
extreme.

The short-cut rule differs from necks (Siddiqi & Kimia,
1995) in that the short-cut rule, unlike necks, does not re-
quire the use of an inscribed circle, a requirement that we
noted earlier is quite restrictive. Therefore the short cut rule

is not restricted to measuring distances only along diameters
of inscribed circles, but instead takes into account distances
between all pairs of points on the contour of the silhouette
which are separated by an axis of local symmetry. For exam-
ple, in Figure 17a and b the short-cut rule can explain why
subjects prefer the cut xy over the cut xz; however neither
cut is a limb or a neck (Siddiqi & Kimia, 1995), so limbs
and necks cannot explain this preference.

This ecological motivation for the short-cut rule also mo-
tivates the well-known Petter’s rule (Petter, 1956; Kanizsa,
1979, p. 40) for modal completion of contours, which states
that human vision prefers to make modal completions as
short as possible. For instance, for the cross in Figure 23b
(which is rendered in a homogenous color), human vision
prefers to make a modal completion along contour y rather
than contour x, so that the vertical bar is seen as occlud-
ing the horizontal one. This rule has been motivated by the
heuristic that, due to perspective projection, closer objects
tend, ceteris paribus, to have larger retinal images (Shipley &
Kellman, 1992b; Stoner & Albright, 1993). But this motiva-
tion is admittedly very rough (Tommasi, Bressan, & Vallor-
tigara, 1995). However, the ecological motivation we have
already given for the short-cut rule can be applied to Pet-
ter’s rule as follows. When human vision is presented with
a stimulus, like Figure 23b, of homogeneous color, it finds
the negative minima of curvature and pairs them using the
short-cut rule. Because the color is homogeneous, it is ini-
tially ambiguous whether these pairings should be taken to
be part cuts or modal contours (since it is not known whether
the silhouette arises from a single object with parts, or from
two different objects separated in depth). Further processing,
possibly going on in parallel with the pairing process, is re-
quired to make this decision. Once this decision is made, the
pairing decided on by the short-cut rule is then taken to be
either a part cut or a modal contour. In this way, Petter’s rule
for modal contours inherits the ecological motivation for the
short-cut rule.

The Experiments

We chose two classes of shapes for the experiments:
crosses (see Figure 22a) and elbows (see Figures 22b and
22c). These are natural candidates because, as we have seen,
they are simple, they display key limitations of the minima
rule, and they allow a clean test of the short-cut rule.

The crosses have four negative minima of curvature.
While the minima rule states that these are part boundaries,
it does not specify how they should be joined. The short-
cut rule predicts that subjects will join these part bound-
aries so as to make the shortest cuts possible. Because these
figures have straight lines and 90o angles, they are easily
parametrized and thus allow us to test a truly representative
sample of crosses, not just those that might favor the short-
cut rule. The elbows have but one negative minimum. The
minima rule states that this point must be a part boundary
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Figure 22. Some simple figures used in our experiments.

but does not indicate what the other part boundary should be.
The short-cut rule predicts that subjects will choose that part
boundary which will create the shortest possible cut. These
figures, like the crosses, are easily parametrized and thus al-
low us to test a representative sample of elbows.

Experiments 1 and 3 required subjects to hand draw cuts
on shapes, and contained fewer trials, whereas Experiments
2, 4, and 5 involved a 3AFC task on a computer, and con-
tained many more trials. These experiments do not test
whether the subjects would spontaneously parse such shapes
if not asked to do so: Our task required subjects either to
draw a fixed number of cuts, or to choose among a few
given cuts. However, as we note in the Introduction, there is
prior empirical work which suggests that human vision does
parse shapes spontaneously (Biederman, 1987; Biederman
& Cooper, 1991; Braunstein et al., 1989; Hoffman, 1983a;
1983b; Hoffman & Singh, 1997), and perhaps even preat-
tentively (Baylis & Driver, 1995a; 1995b). What our cur-
rent experiments investigate is how the preferred cuts change
with various parameters of the shapes. The ‘Crosses’ Exper-
iments The crosses were symmetric about the vertical and
horizontal axes. This allows them to be parametrized by four
(orthogonal) parametersx, y, z, andw (see Figure 23a). The
space of such crosses thus has four parameters. However,
since we assume, for now, that the parsing of shapes is scale
invariant, we do not wish to distinguish between a cross and
scaled versions of it. Therefore, we can factor out scaling,
so that the space of such (scale-invariant) crosses has three
parameters—for example, the three (orthogonal) parameters
x
y, z

y, andw
y .

The independent variables we chose to parametrize the
space of crosses were:

1. distance ratio,

d = length of horizontal cut
length of vertical cut = x

y;

2. area ratio,

A = area of part produced by horizontal cut
area of part produced by vertical cut=

xz
wy;

x
y

z

w

(a) (b)

Figure 23. (a) The parameters of the cross-shaped figures used in
Experiments 1 and 2. The stimuli were drawn with black outlines
and gray interiors in order to suppress the perception of illusory
contours, which are quite striking in (b), for example. We wanted
subjects to perceive a single object with parts, and not two object-
sone partially occluding the other.

(a) (b) (c)

Figure 24. Three types of cuts on a cross: (a)horizontal, (b)
vertical,and (c)multiple.

3. horizontal protrusion,10

h = length of horizontal part
width of horizontal part=

w
y .

Note that the area ratio,xz
wy, is orthogonal to the two other

variables and is scale invariant. We chose this variable, in-
stead ofzy, for its more intuitive and geometric interpretation.
For example, it allows us to test whether the area of a part
created by a given cut influences parsing.

Based on the minima rule, the short-cut rule, the prin-
ciple of genericity (e.g., Beusmans et al., 1987), and con-
siderations of symmetry, we expected three ways of parsing
a cross to be most natural. We called these horizontal cuts
(Figure 24a: two horizontal cuts, both passing through neg-
ative minima), vertical cuts (Figure 24b: two vertical cuts,
both passing through negative minima), and multiple cuts
(Figure 24c: both horizontal and vertical cuts are present).

We predicted that subjects would make the shortest cuts
between parse points. As an example, for the cross in Figure

10We are using the term “protrusion” somewhat loosely. See
Hoffman & Singh (1997) for a precise definition that applies gen-
erally.
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23a, the vertical cuts are shortest and seem most natural.
The stimuli were drawn with a black outline and gray in-

terior, as illustrated in Figure 23a. This was done to suppress
the perception of illusory contours—which are quite strik-
ing, for example, when the figures are filled uniformly with
black, as in Figure 23b (see, for example, Kanizsa, 1979, and
Shipley & Kellman, 1992, for work on self-splitting figures).
We wanted subjects to perceive a single object, and not two
rectangular objects—one partially occluding the other.

Experiment 1

As discussed above, we expected the crosses to be parsed
with vertical cuts, horizontal cuts, or a combination of these.
To check this, the first experiment tested whether subjects
would use any other cuts to parse the crosses, in a free-
drawing task.
Method

Subjects. Forty-five undergraduate students at the Uni-
versity of California, Irvine, volunteered to participate for
course credit. Data from two subjects were excluded from
analysis because they failed to follow instructions.

Materials. The stimulus set consisted of a packet of 113
sheets of paper (27 different stimuli, each repeated 4 times,
plus 5 practice trials.) Each sheet had a cross-shaped figure
printed on it, that was symmetric about both of its axes. To
avoid any vertical or horizontal biasing effects, half of the
figures were presented with a tilt of 15 degrees to the left of
vertical, and the other half with a tilt of 15 degrees to the
right of vertical. The first five sheets were practice.

Design.This experiment was a 3×3×3 within-subjects
factorial design. The three independent variables were: (i)
The distance ratio, d, (ii) the area ratio, A, and (iii) the hori-
zontal protrusion, h. Each of the three independent variables
had three levels: 1/2 , 1, and 2. Figure 25 illustrates all the
stimuli used for the experiment. The dependent measure was
the percentage of vertical cuts. (“Multiple cuts” was not an
option in this experiment.) The short cut rule predicts that
as d increases the percentage of vertical cuts increases, be-
cause as d increases the vertical cuts become shorter than the
horizontal.

Procedure. The experiment was run in six separate ses-
sions. Each subject was seated at a desk, in a separate cubicle
room. On the desk was the stimulus set packet (placed face
down), a pencil, and a ruler. The subjects were instructed
to (a) pick up the top sheet from the packet, (b) turn it face
up, (c) decide how they would cut the figure most naturally
into three parts, and (d) draw two straight-line cuts, with the
ruler and pencil provided, to achieve this partitioning. (We
limited subjects to two cuts because this is the simplest task
that adequately tests our theoretical expectations.) After they
were done with a figure, they were to place that sheet face-
down, in a separate stack. It was stressed that they should
not look forward or backward in the two stacks. The first five
sheets were practice trials. The ordering of the experimental
trials was randomized for each subject. The subjects were
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Figure 25. All figures used in Experiments 1 and 2 organized by
distance ratio, area ratio, and horizontal protrusion.

monitored continuously to make sure they were following
instructions. Subjects were debriefed and thanked for their
participation.

Results and Discussion

Each response was classified as a vertical cut, horizon-
tal cut, or other. A response was classified as vertical if
both cuts made were vertical, and passed within 5 mm of
the negative minima. It was classified as horizontal if both
cuts made were horizontal, and passed within 5 mm of the
negative minima (see Figure 24). It was classified as other if
it was neither horizontal, nor vertical. Out of all responses
from the 43 subjects whose data were included in the anal-
ysis, less than 0.1% were other. These were excluded from
the analysis.

An alpha level of .05 was used for all statistical tests.
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Figure 26. The proportion of vertical cuts made by subjects in
Experiment 1, as a function of distance ratio and area ratio.

A three-way analysis of variance (ANOVA) showed a main
effect of the distance ratio,F(2,84) = 44.743, p < .0001,
but no main effect of the area ratio,F(2,84) = 1.839,ns,
and no main effect of the horizontal protrusion,F(2,84) =
0.933,ns. There was a significant interaction between the
distance ratio and the area ratio,F(4,168) = .381, p< .05.
Post-hoc comparisons revealed that the area ratio had an ef-
fect only when the distance ratio was 1—and for these stim-
uli, subjects preferred to cut parts with larger areas. (See Fig-
ure 26 for a graphed summary of the results.) These results
suggest that in these stimuli the distance ratio is the domi-
nant geometric factor used by human vision for parsing. As
predicted, shorter cuts are much preferred to longer.

These results also indicate that in forced-choice experi-
ments on crosses it is legitimate to restrict the alternatives to
horizontal cuts, vertical cuts, or a combination of these.

Experiment 2

Because of the tedious task in Experiment 1, each stim-
ulus was presented only 4 times to each subject. This pre-
cluded reliable modeling of individual subjects’ data, or
comparing of trends across subjects. However the second ex-
periment used a forced-choice task on a computer, allowing
many more trials, and allowing us to model each subject’s
data individually.
Method

Subjects.Ten graduate students at the University of Cal-
ifornia, Irvine, volunteered to participate. Subjects were not
paid and received no course credit.

Materials. The experiment was run on a Macintosh
Quadra 840AV, using the program SuperLab. The stimuli
used were the same 27 cross-shaped figures as in Experiment
1 (see Figure 25), but each was presented 24 times.

Design.This experiment had the same 3×3×3 within-
subjects factorial design as Experiment 1: the independent

variables were d, A, and h, and each had the levels 1/2, 1, and
2. Each stimulus figure was repeated in 24 trials, resulting in
a total of 648 (+ 5 practice) trials. There were two dependent
measures: the percentage of vertical cuts responses, and the
percentage of multiple cuts responses.

Procedure. The subjects were seated at a desk, 0.6 me-
ters from a computer screen. The computer displayed the
instructions for the experiment. The subjects pushed a key
to indicate that they were done with the instructions. Each
trial that followed was structured as follows: First there ap-
peared on the screen, for 2 seconds, a cross-shaped figure,
presented either with a tilt of 15 degrees to the left of vertical,
or 15 degrees to the right of vertical. During this time, the
subjects were to decide how they would partition the shape
most naturally into parts. There followed a blank screen for
500 ms, and then a screen with the initial cross-shaped fig-
ure (in its original location) along with three possible par-
titionings of that figure presented, in small, at the bottom
of the screen, and numbered 1, 2, and 3. The subjects in-
dicated, by pressing the corresponding number key, which
of the three choices corresponded to their partitioning. The
three choices were vertical cuts, horizontal cuts, and multi-
ple cuts (see Figure 24). The numbering of the three different
partitioning choices was counterbalanced across trials. The
subject’s response terminated the trial.

The first 5 trials were practice. The experimental trials
were divided into 4 blocks, each consisting of 27 x 6 = 162
trials, for a total of 648 trials.
Results and Discussion

Subjects’ data were initially analyzed for internal con-
sistency. Data for the first 12 instances of each figure were
correlated to data for the last 12. Prior to the experiment we
chose to reject all data from any subject whose correlation
was less than 0.5. No data were eliminated. Subjects’ data
were analyzed individually. First the multiple cuts responses
were analyzed. In general, subjects made few multiple cuts
(mean= 4.23%), and did so primarily when the distance
ratio and area ratio were both 1. Five of the ten subjects
made virtually no multiple cuts (mean= 1.48%). The re-
maining five subjects made multiple cuts only when both d
and A were 1 (mean= 6.98%). Because of the low overall
occurrence of the multiple cuts responses, the percentage of
vertical cuts responses was taken as the primary dependent
measure.
Linear Regression.For vertical cuts responses, each sub-
ject’s data was fitted to a number of linear regression mod-
els. The percentage of vertical cuts,cv, was transformed to a
new variable,c′v, using an arc sine function (Kendall & Stu-
art, 1963) to improve the normality of its distribution. The
precise transform was

c′v = 2 Sin−1√cv (1)

The terms corresponding to the distance ratiod, and the area
ratio A, were taken to be, respectively,log(d), and log(A),
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(instead of simplyd and,A).11

From some preliminary modeling, it was clear that the
distance ratio was doing most of the work. The models
we tested, therefore, all included the distance ratio—along
with all possible combinations of the other two independent
variables. In these models, the horizontal protrusion, h, ex-
plained almost none of the variability in the data. (This re-
mained true, also, when we replaced h withlog(h).)

Therefore, we needed to consider only those models that
involved the variableslog(d), and log(A). Also, in almost
every case, addinglog(A) to the model containing only the
distance ratio did significantly improve the model’s fit.

For these reasons, our conclusion was that the linear re-
gression equation,

c′v = β0 + β1log(d)+ β2log(A),

provided the best model for our data. Figure 27 shows the
summary of this model, with theβ1 andβ2 parameters plot-
ted along thex-axis andy-axis, respectively, with 95% con-
fidence intervals for the estimates of these parameters, and
with r2-values of the model’s fit to each individual’s data.

In sum, distance was again the strongest factor, with sub-
jects preferring shorter, rather than longer, cuts as predicted.
Although area was also used by individual subjects (out of
10 subjects, 8 had a coefficient for A that was significantly
different from zero), it was used differently by different sub-
jects: 7 our of the 10 subjects cut off parts with the smallest
area, while 3 cut off parts with the largest area. Overall,
however, there was no main effect of area.

11The reason for this is as follows: When a cross-shaped figure
with distance ratiod0, and area ratioA0, is rotated through an angle
of 90o, the distance and area ratios of the resulting cross become,
respectively, 1

d0
, and 1

A0
. At the same time, by our very conven-

tion, vertical cuts on the original cross become horizontal cuts on
the rotated cross, and vice versa. Also (ignoring multiple cuts), we
have,

cv = 1−ch,

where cv is percent vertical cuts, andch is percent horizontal
cuts. Now, if our model were, for example,c′v = β0 + β1log(d) +
β2log(A), (i.e., without thelog’s), the equation above would give
us,β0+β1d0+β2A0 = 1−(β0+β1

1
d0

+β2
1
A0

),which cannot hold,
except in the degenerate case whered0 = A0 = 1. On the other
hand, ifd and A, are replaced bylog(d) and log(A) respectively,
this problem is solved:

β0 +β1log(d0)+β2log(A0) = 1− (β0 +β1
1

log(d0)
+β2

1
log(A0)

),

In fact, this equation now tells us that for a perfect equality, we must
haveb0 = 0.5. (This argument, however, is clearly not applicable
to the horizontal protrusion,h.)

The assumption behind this argument (cv = 1− ch) holds for
about half of the subjects. For the others, the transform can be
thought of as a simple fitting technique.
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Figure 27. A plot of the coefficients b 1 and b 2 for the final linear
modelc′v = β0 +β1log(d)+β2log(A) in Experiment 2. Each point
represents a different subject. Also shown are 95% confidence in-
tervals, andr2-values for the model.
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Figure 28. The parameters of the L-shaped figures used in Exper-
iments 3–5.

The ‘Elbows’ Experiments

Experiment 3

Unlike the crosses from Experiments 1 and 2, the elbow in
Figure 22b has but one negative minimum of curvature, la-
beledg. The minima rule states that this point is one end of a
part cut, but does not state which point is the other end. Sev-
eral cuts seem plausible. Joining at point i seems reasonable
as this is the only other extremum of curvature in the fig-
ure, albeit a positive maximum (we call this a diagonal cut).
However, joining at eitherj or h also seems reasonable as
these are the locally shortest cuts possible that pass through
the figure’s axis of symmetry (we call these horizontal cut
and vertical cut, respectively). The short-cut rule makes a
clear prediction: subjects will choose the shortest part cut,
i.e., the cutgh. Experiment 3, like Experiment 1, studies the
cuts subjects make in a free-hand task. Experiment 4, like
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Experiment 2, studies cuts in more detail. As in Experiments
1 and 2, three factors are systematically varied: the distance
ratio, d, the area ratio,A, and the horizontal protrusion,h
(see Figure 28). Experiment 5 investigates whether smooth-
ing the cusps affects the short-cut rule. In this experiment
the horizontal protrusion is held constant, but a new vari-
able, level of curvature,κ, is added. For all experiments we
expect the distance ratio to be a strong factor, with subjects
preferring to make shorter as opposed to longer cuts.

Based on the theoretical considerations discussed above,
we expected the elbows to be parsed with three kinds of cuts:
vertical, horizontal, and diagonal. To check this, Experiment
3, like Experiment 1, allowed subjects to make freehand cuts.
Method

Participants. Twenty five undergraduates at the Uni-
versity of California, Irvine, volunteered to participate for
course credit. The data of one subject, who failed to follow
instructions, was eliminated.

Materials. Testing and design were as in Experiment
1, with one difference: the stimuli were elbows rather than
crosses. The values for distance ratio and area ratio were
as in Experiment 1. Figures were randomly rotated between
positive 15−35 degrees and negative 15−35 degrees to min-
imize orientation effects. Subjects saw each figure 4 times.

Design.This experiment was a 3×3×3 within-subjects
factorial design. The three independent variables of the ex-
periment were: (i) The distance ratio,d, (ii) the area ratio,
A, and (iii) the horizontal protrusion,h. Each of the three
independent variables had three levels: 1/2, 1, and 2. The
dependent measure was the number of vertical cuts. Figure
29 illustrates all the stimuli used for Experiment 3.

Procedure.Each subject was seated at a desk, in a sepa-
rate cubicle. On the desk was a ruler, a pencil, and a stack of
113 sheets of 812 by 11 inch paper. Each sheet displayed an
elbow from the set shown in Figure 29. The stack was face
down. Subjects were instructed to (a) pick up the top sheet
from the stack, (b) turn it face up, (c) decide how they would
cut the figure into two parts most naturally, and (d) draw that
cut with the ruler and pencil provided. After they were done
with a figure, they were instructed to place that sheet face-
down, in a separate stack. The first five sheets were practice
trials. The ordering of experimental trials was randomized
for each subject. The subjects were monitored continuously
to make sure they were following instructions. Subjects were
debriefed and thanked for their participation.
Results and Discussion

Each response was classified as a vertical cut, horizontal
cut, or diagonal cut. Any cut with an endpoint more than 5
mm away from a “perfect” example of each cut (see Figure
30) was classified as other. Out of 2700 cuts made by all
subjects, only 88 could be classified as other. Of these 88,
seventy-four were made by one subject, and 12 by another.
Out of all 24 subjects whose data were included in the anal-
ysis, only 2.4% were diagonal. Furthermore, diagonal cuts
were made primarily when the distance ratio and area ratio
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Figure 29. All elbow stimuli used in Experiments 3 and 4.

were both equal to 1, as illustrated in Figure 31. Therefore,
we analyzed the percentage of vertical cuts.

A three-way ANOVA showed a main effect of the dis-
tance ratio,F(2,46) = 74.46, p< .0001, and a main effect
of the area ratio,F(2,46) = 5.65, p< .01, but no main ef-
fect of the horizontal protrusion,F(2,46) = 0.06,ns. Post-
hoc comparisons with a Tukey’s HSD revealed that, as pre-
dicted by the short-cut rule, subjects made significantly more
vertical cuts when the distance ratio was 2 than when 1, or
1/2. The number of vertical cuts made at a distance ratio
of 1 was significantly greater than at a distance ratio of 1/2.
Furthermore, subjects made significantly more vertical cuts
when the area ratio was 1/2 than when 1 or 2. There was
an interaction between the distance ratio and the area ratio,
F(4,92) = 4.50, p< .01. (See Figure 32 for a graphed sum-
mary of the results.) As in Experiment 1, post-hoc analysis
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(a) (b) (c)

Figure 30. Examples of avertical, horizontal,anddiagonalcut in
Experiments 3 and 4.
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Figure 31. The proportion of diagonal cuts made by subjects in
Experiment 3, as a function of distance ratio and area ratio.

revealed that the area ratio had an effect only when the dis-
tance ratio was 1; for these stimuli, subjects preferred to cut
parts with larger areas. As predicted, subjects preferred to
make shorter cuts for these figures.

Experiment 4

Experiment 3, as in Experiment 1, had only 4 repetitions
per stimulus per subject. This meant that we could not re-
liably model individual subjects’ data, or compare trends
across subjects. However, in Experiment 4, as in Experi-
ment 2, we used a 3AFC design presented by computer. We
therefore had many more trials.
Method

Participants. Twelve graduate students volunteered to
participate. Subjects were not paid and received no course
credit.

Design and Procedure.Testing and design were as in
Experiment 2. Stimuli were the same as those used in Ex-
periment 3. Values for the distance ratio, area ratio, and hor-
izontal protrusion were the same as those used in Experiment
3. Figures were randomly rotated between positive 15−35
degrees and negative 15−35 degrees to minimize orientation
effects. Figures were presented mirrored about the vertical
axis to control for left/right bias. The display of horizon-
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Figure 32. The proportion of vertical cuts made by subjects in
Experiment 3, as a function of distance ratio and area ratio.

tal, vertical and diagonal choices in the key were counterbal-
anced for each figure. We presented subjects with each of
the 27 figures 24 times, 12 mirrored and 12 non-mirrored,
for a total of 648 trials. The procedure was identical to that
in Experiment 2. On each trial subjects saw one large figure.
Subjects were instructed to cut the figure into two parts most
naturally, as quickly and carefully as possible. A key then
appeared below the figure. Subjects were to select the option
that best represented their choice. We limited the choices to
these three cuts based on our findings in Experiment 3. The
instructions were designed to encourage subjects to decide
how they would parse the figure before the key appeared.
Results and Discussion

Subjects’ individual data were first analyzed for inter-
nal consistency. Responses to the first 12 instances of each
figure were correlated to those for the last 12. Prior to the
experiment we chose to reject data from any subject whose
correlation was less than 0.5. One subject’s data was elim-
inated. The diagonal cut responses were analyzed first. As
in Experiment 3, subjects made few diagonal cuts and did so
primarily when the distance ratio and area ratio were both 1.
Again, we chose to analyze only the percentage of vertical
cuts.
Linear Regression Analysis.Each subjects’ data was fitted
to several linear models as in Experiment 2. We performed
a log transform of each factor (distance ratio, area ratio and
horizontal protrusion) for the same reason as in Experiment
2 (see footnote 11). The percentage of vertical cuts,cv, was
transformed to a new variable,c′v, using the arc sine function
in Equation 1 to improve the normality of its distribution.
Model comparisons revealed that the horizontal protrusion
was a significant factor for only 2 of the 12 subjects. There-
fore, the final model used was:

c′v = β0 + β1log(d)+ β2log(A).
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Figure 33. Plot of the coefficients b1 and b2 for the linear model,
c′v = β0 + β1log(d)+ β2log(A) in Experiment 4. Each point repre-
sents a different subject. Also shown are 95% confidence intervals,
andr2-values for the model.
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Figure 34. An example of a smoothed elbow used in Experi-
ment 5. The elbows were created by two hyperbolic functions
y1 = ε

x and y2 = ε
x+β + λ.

Figure 33 summarizes the individual fits to the first model by
plotting the coefficients for the distance and area ratios. Co-
efficients for the distance ratios are plotted on the abscissa,
and coefficients for the area ratio are plotted on the ordinate.
Error bars are given for 95% confidence intervals. Factors
whose confidence intervals include 0 are not significant. The
r2 for the model is also given near each plot point. As can be
seen, the models are quite predictive for almost all subjects.
Averager2 for the distance and area ratio model was 0.772,
SD= 0.199. This includes one outlyingr2 of 0.197. Without
this score, the average rises to 0.829.

The distance ratio was by far the most important factor,
with significant coefficients ranging from 0.4 to 2.2. The
coefficients are all positive, indicating that subjects prefer
shorter cuts as predicted.

Experiment 5

In Experiment 5 we sought to determine if the short-cut
rule still holds when part-boundaries are smooth (not cusps
as in all our previous experiments). We smoothed the el-
bows of Experiments 3 and 4 by using two hyperbolic func-
tions with identical curvature, as illustrated in Figure 34.12

The distance and area ratios can therefore be precisely com-
puted.13 Smoothing the elbows has an interesting effect: the
positive maximum becomes the unique point locally sym-
metric to the negative minimum (see Figure 22c). By con-
trast, in the cusp case (see Figure 22b), the negative min-
imum, g, is locally symmetric to all points betweenh and
j. We chose to study smoothing on elbows rather than on
crosses because smoothing crosses does not change the local
symmetry relationships between the part boundaries. Hori-
zontal protrusion remained the same,w

y . However, because
this variable proved insignificant in Experiments 1, 2, 3 and
4, we chose to hold this variable constant at a value of 2.
This allowed for a larger factorial design with the remaining
variables. In addition to the distance ratio and area ratio, we
included a variable for level of curvature,κ, with the values
of ‘high’, ‘low’, and ‘cusp’ (or infinite).
Method

Participants. Ten graduate students volunteered to par-
ticipate. Subjects were not paid and received no course
credit. Four of these subjects had previously participated
in either Experiment 4 or Experiment 2, but had not been
debriefed.

Design and Procedure.Testing and design were as in
Experiment 4. This experiment was a 3× 3× 3 within-
subjects factorial design. The three independent variables
of the experiment were as follows:(i) The distance ratio,d,
(ii) the area ratio,A, and(iii ) the level of curvature,κ. Dis-
tance and area ratios were the same as in Experiments 3 and
4, viz., levels of1

2, 1, and2. The horizontal protrusion was

12The functions were as follows:

y1 =
ε
x

and y2 =
ε

x+ β
+ λ.

In these figures the negative minimum occurs at point:

a = (
√

ε + β,
√

ε + λ),

and the positive maximum at:

b = (
√

ε,
√

ε).

13The functions were:

Distance Ratio=
√

ε + β√
ε + λ

, and

Area Ratio=

∫ z√
ε+λ

ε√
ε+y

+ λ + ε√
ε+y+β dy∫ w√

ε+β
ε√
ε+x

+ β + ε√
ε+x+λ dx

.
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held constant at 2, a value previously used in Experiments 3
and 4. Figure 35 illustrates all the stimuli that were used for
Experiment 5. The forced choices for cut types remained the
same as in Experiments 3 and 4: horizontal, vertical, and di-
agonal. Each cut originated at the negative minimum of cur-
vature. Diagonal cuts were joined to the positive maximum,
horizontal cuts were drawn parallel to the horizontal axis (of
the picture plane), and vertical cuts were drawn parallel to
the vertical axis. Figures were then randomly rotated be-
tween positive 15−35 degrees and negative 15−35 degrees
to minimize orientation effects. Figures were also presented
mirrored about the vertical axis to control for left/right bias.
The display of horizontal, vertical and diagonal choices in
the key were counterbalanced across the presentation of each
figure. We presented subjects with each figure 24 times, 12
mirrored and 12 non-mirrored for a total of 648 trials. Fig-
ures were displayed on a Macintosh Quadra 840 AV running
SuperLab for Macintosh.
Results and Discussion

Subjects’ data were initially analyzed for internal con-
sistency. Data for the first 12 instances of each figure were
correlated to data for the last 12. Prior to the experiment we
chose to reject all data from any subject whose correlation
was less than 0.5. No data were eliminated.

The diagonal cut responses were analyzed first. Only 2
of 10 subjects made more than 3% diagonal cuts. As in Ex-
periments 3 and 4, diagonal cuts were made primarily when
the distance ratio and area ratio were both 1.

Linear Regression Analysis. Subjects’ data were fitted to
the following model:

c′v = β0 + β1log(d)+ β2log(A).

The term for curvature was not found to be significant for
any subject and was therefore not included in the final. As
in previous modeling, an arc sine transform was performed
on the percentage of vertical cuts. Figure 36 summarizes
the individual fits to the vertical cuts model by plotting the
coefficients for the distance-ratio and area-ratio terms. Co-
efficients for the distance ratio are plotted on the abscissa,
and coefficients for the area ratio are plotted on the ordinate.
Error bars are plotted for 95% confidence intervals. Factors
whose confidence intervals include 0 are not significant. The
r2 for the model is also given near each plot point. This graph
demonstrates that, even for the smoothed elbows, subjects
preferred to make shorter cuts.

Concluding Remarks

Human vision constructs visual objects, including their
shapes and surface properties (Hoffman, in press; Singh &
Hoffman, 1997). Decomposing these shapes into parts facil-
itates the recognition and manipulation of objects. To date
there is no comprehensive theory of shape parsing. The min-
ima rule, for instance, gives precise boundary points at which
to parse, but does not state how to join these points to form
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Figure 35. All elbow stimuli used in Experiment 5.

part cuts. In this paper, we examine a geometric rule for
determining part cuts: the short-cut rule. This rule follows
from the geometry of transversal intersections in three di-
mensions, and is supported by our experiments. In experi-
ments with crosses, subjects prefer to join negative minima
of curvature so as to produce the shortest cuts possible. In ex-
periments with elbows, subjects prefer the shortest cut pass-
ing through the single negative minimum of curvature; thus
the short-cut rule not only joins existing boundary points
given by the minima rule, but it also creates new boundary
points that are not negative minima of curvature. Indeed, as
shown in Figure 37a, the short-cut rule can dictate a natural
cut which terminates at neither end in a negative minimum
of curvature (Siddiqi & Kimia, 1995); the short-cut rule pulls
the boundary points of the cut slightly away from negative
minima of curvature that have low salience. Sharp negative
minima of curvature are stronger attractors of part cuts than
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Figure 36. Plot of the coefficients b1 and b2 for the linear model,
c′v = β0 + β1log(d)+ β2log(A) in Experiment 5. Each point repre-
sents a different subject. Also shown are 95% confidence intervals,
andr2-values for the model.

weak negative minima (Hoffman & Singh, 1997). So while
the short-cut rule might pull the boundary points of a part
cut away from weak negative minima, as in Figure 37a, it
might not when the negative minima are sharp, as in Fig-
ure 37b. The interaction between the short-cut rule and the
salience of negative minima is an interesting topic for further
research. Another example of this interaction can be seen in
the dumbbell of Figure 16b, which has a neck in the middle
of the shape. The center region of the dumbbell is composed
of concave arcs of circles. Since each concave arc of a circle
is a region of negative minima of curvature,14 the minima
rule does not, by itself, pick out a unique point of the arc as
a part boundary. Moreover, the magnitude of (normalized)
curvature in these arcs is low, so that they have low salience
as part boundaries. At the ends of each arc are sharp neg-
ative minima of curvature, which have high salience. Thus
salience would dictate that part cuts should join these sharp
points (cutting off the ends of the dumbbell), whereas the
short-cut rule would dictate a part cut in the middle of the
dumbbell. In this competition the short-cut rule loses (see,
e.g., Braunstein et al., 1989, figure 6); subjects prefer to cut
at the salient sharp points. In other competitions, salience
might lose to the short-cut rule. Salience and the short-cut

14Circular concavities are nongeneric: Almost any infinitesimal
perturbation of such a concavity induces in it a locally unique neg-
ative minimum of curvature. So examples like Figure 16b almost
surely never appear in nature. Hence, it is not surprising that hu-
man treats circular concavities no differently than negative minima
of curvature.

(a) (b)

Figure 37. (a) An example of a part cut in which neither end is
a negative minimum of curvature (Siddiqi & Kimia, 1995). This
example shows that the short-cut rule can sometimes pull the end-
points of a part cut slightly away from negative minima of curva-
ture that have low salience (Hoffman & Singh, 1997). However, as
shown in (b), the short-cut rule might fail to pull the endpoints of
part cuts away from negative minima of curvature that have high
salience.

rule can also agree, rather than compete, as in Figure 16c.
Here the part cut indicated at the top of the shape is longer
and connects negative minima with weaker salience, whereas
the part cut indicated at the bottom is shorter and connects
negative minima of higher (normalized) curvature and there-
fore higher salience. As a result, subjects prefer the bottom
cut (Siddiqi, Tresness, & Kimia, 1996).

Our motivation for the short-cut rule can also motivate
Petter’s (1956) rule. Recall that the short-cut rule can be
related to Petter’s rule because, given a chromatically ho-
mogeneous silhouette, it is initially ambiguous whether the
silhouette arises from a single 3D object with parts, or from
two different 3D objects separated in space. Hence, given
such a silhouette, human vision finds the negative minima
of curvature and pairs them using the short-cut rule. De-
pending on further processing, these pairings may become
either part cuts or modal completions. Under this assump-
tion, the results of our experiments suggest that the “larger
means closer” heuristic (Shipley & Kellman, 1992; Stoner &
Albright, 1993) fails to provide an adequate motivation for
Petter’s rule: Recall that with the crosses, the distance ra-
tio consistently predicted subjects’ preferred choices of cuts,
whereas the area ratio failed to do so. However, further work
is required to confirm this result for modal completions.

The short-cut rule and the salience of negative minima of
curvature together determine many part cuts on silhouettes;
but there are undoubtedly other factors as well. Part bound-
aries that are locally symmetric to each other might be better
candidates for part cuts. Cuts that have “good continuation”
with tangents at part boundaries might be preferred to those
that do not (Kellman & Shipley, 1991; Siddiqi et al., 1996;
Singh & Hoffman, in press). The orientation of a silhouette
might affect part cuts. One set of cuts might be preferred be-
cause it yields fewer parts, or parts with no negative minima
on their contours, or just simpler descriptions. And for some
shapes, subjects might see no part cuts at all. Future work on
part cuts will need to address these issues.
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