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Abstract The holographic principle (HP) has become a mainstay of quantum
cosmology, but its relation to the rest of physics remains poorly understood.
Here we show that the HP is a geometric special case of a more general principle
that restricts the classical information transferred between any two subsystems
of a physical system to the information that can be encoded on the boundary
between them. This more general principle has its origins in the 18th century
and has been formulated in a number of disciplinary contexts. We formulate
this generalized holographic principle precisely, derive the HP a special case,
and examine three consequences for physics: 1) that gauge invariance is a con-
sequence of restricting classical information transfer between subsystems; 2)
that environmental decoherence is holographic encoding; and 3) that compli-
ance with the generalized holographic principle suggests a resolution of the
black-hole information paradox.
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1 Introduction

The Holographic Principle (HP) for physical systems was first stated by ’t
Hooft [1]: “given any closed surface, we can represent all that happens inside
it by degrees of freedom on this surface itself.” The HP extends to a general,
qualitative principle the area law (in Planck units) S = A/4, where S is the
entropy and A the horizon area, derived by Bekenstein [2] for black holes.
Observers external to any closed system, the HP tells us, are in a position
formally analogous to that of observers outside a black hole: they can know no
more about what is happening inside the system than what they can observe
happening on its exterior surface.

The HP is at first sight quite counterintuitive: whatever is going on inside
some bounded volume of space can, the HP tells us, be completely described
given what is happening on its boundary. Suppose the bounded volume of
space is a memory encoding some quantity of information: the HP tells us
that the information it encodes can, as far external observers are concerned,
be fully specified on its surface. This restriction of accessible information to
surface degrees of freedom hugely simplifies the description of physical systems
by making their purely “interior” degrees of freedom, however numerous or
complex they may be, irrelevant. As ’t Hooft pointed out ([1] p. 289, italics in
original):

“The fact that the total volume inside is irrelevant may be seen as
a blessing, since it implies that we do not have to worry about the
metric inside. The inside metric could be so much curved that an entire
universe could be squeezed inside our closed surface, regardless how
small it is. Now we see that this possibility will not add to the number
of allowed states at all.”

If not even the number of interior degrees of freedom matters to the physical
description of a system, their existence is irrelevant; as ’t Hooft put it, “we
suspect that there simply are not more degrees of freedom to talk about than
the ones one can draw on a surface” (p. 289, italics in original). Even if an
entire universe with all of its degrees of freedom is confined within the closed
system, these confined degrees of freedom are confined in principle, and can
be safely ignored by external observers.

It is important to emphasize that the HP holds only from the perspective
of an external observer. Bousso ([3], Sect. IV) provides several examples of
closed volumes that in fact contain more information than can be encoded
on their boundaries, showing that any observer-independent claim that “the
entropy contained in any spatial region will not exceed the area of the region’s
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boundary” fails. Rovelli [4] shows that radiating black holes must, in partic-
ular, contain more degrees of freedom than can be encoded on their horizon
surfaces, concluding that “what is bound by the area of the boundary of a
region is not the number of possible states in the region, but only the number
of states distinguishable from observations outside the region.” We provide an
additional demonstration along these lines below.

Following its subsequent elaboration by Susskind [5] and the discovery
by Maldecena [6] of an important special case, the duality between a string
quantum gravity on a d-dimensional anti de Sitter (AdS) spacetime and a
conformal quantum field theory (CFT) on its (d−1)-dimensional boundary, the
HP rapidly became a guiding principle of quantum cosmology (for reviews see
[3] [7]). The physical motivation for the HP, however, remains its motivation for
’t Hooft: the observational impenetrability of a black hole that is formalized
by the Bekenstein area law. While subsequent work has suggested that the
HP is completely general, it remains unclear why it should be completely
general. Hence the HP remains counterintuitive, with Bousso, for example,
characterizing it as “an apparent law of physics that stands by itself, both
uncontradicted and unexplained by existing theories” that “may still prove
incorrect or merely accidental, signifying no deeper origin” ([3] p. 826).

Here we broaden the motivation for, and also the evidence supporting, the
HP by showing that it is a geometric special case of a more general principle
that restricts the classical information transferred between any two subsystems
of a physical system to the information that can be encoded on the boundary
between them. Informally, this generalized holographic principle (GHP) states
that 1) inter-system boundaries are classical information channels and 2) there
are no other classical information channels. The GHP predates ’t Hooft’s for-
mulation of the HP by at least four decades, having been clearly articulated
in the classical cybernetics literature of the 1950s, but both its conceptual and
its formal origins are in the 18th century. The GHP cannot, therefore, be re-
garded as a novel or surprising principle, though its implications for physics as
well as other sciences have yet to be thoroughly explored. We review three in-
dependent formulations of the GHP, from classical cybernetics [8], the theory
of Markov processes [9], and perceptual psychology [10] as background be-
fore stating it more formally in Hilbert-space language, showing that it arises
naturally in any state space with an associative decomposition operator, and
deriving the HP as a special case. We then consider three consequences of
the GHP for physics: 1) that gauge invariance follows from the GHP; 2) that
environmental decoherence of a quantum system is an instance of holographic
encoding; and 3) that strict compliance with the GHP resolves the black-hole
information paradox (BHIP), an apparent incompatibility between unitary
evolution and general covariance (for review see [11]. We conclude by suggest-
ing that holographic encoding via the GHP captures the full meaning of the
troublesome term “observation” in physics.
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Fig. 1 Photons escape from holes in an opaque spherical shell of radius r. The maximal
information obtainable by an external observer at some time t is 4πr2 in Planck units,
achieved if each Planck area contains a hole.

2 Example: Photons escaping through a spherical boundary

As a simple illustration of the HP, consider an opaque, perfectly-insulating
spherical shell of radius r containing at its center a point light source with
intensity I. Information about photon degrees of freedom inside the shell can
be obtained by an external observer only if holes are made in the shell that
allow some of the photons to escape. No more information about the state
at time t of the internal degrees of freedom can be obtained by an external
observer than can be encoded by the photons escaping through the holes at t
(Fig. 1). The dimensions of these holes are bounded by the wavelength of the
escaping photons, with the Planck area l2P as the lower limit. At this limit,
only the presence or absence of a photon conveys information [2]. The maximal
information obtainable by an exterior observer is then given by the maximum
possible number of Planck-area holes, i.e. by the area 4πr2 of the sphere in
Planck units.

Fixing r and hence the number Nr ≤ 4πr2 of photons emitted from the
sphere, consider an observer stationed at some R > r. Here the available in-
formation is spread over the larger surface area 4πR2. The number of photons
emitted per unit area of the observer’s radius-R sphere (i.e. the intensity of
the Poynting vector) falls as 1/R2, the same inverse-square law discovered
by Newton for gravity and Coulomb for electrostatics. That the flux of any
infinite-range, point-source field through a convex boundary in three dimen-
sions satisfies this “area law” was recognized as a general principle by Gauss
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Fig. 2 Non-convex boundaries potentially lead to double-counting of information; hence
HP area laws refer to convex hulls and suitably-distant observers.

[12]. Gauss did not have the idea of a finitely-pixelated boundary, so obtained
non-physical infinite fluxes as r → 0.

It is important to emphasize that, as in Bekenstein’s formulation [2], the
“area law” in this case concerns the information that can be obtained by an
observer external to the enclosed volume. It does not refer to an observer-
independent “god’s eye” [13] measure of the number of photon degrees of free-
dom (and hence entropy) within the volume, though this distinction between
observer-dependent and “objective” measures is not always explicitly made
(cf. [3] [4]). In the example above, the spherical shell contains more photons
than can be observed escaping it whenever I > Nr.

The above example also makes it clear that the relevant area must be con-
vex – or alternatively, the considered observer must be located outside of a
convex shell containing the system – to avoid double-counting the escaping
photons and hence the encoded bits (Fig. 2). In the case of a non-convex
boundary, it is the area of the convex hull of the boundary on which infor-
mation transferred from inside to a suitably external observer is effectively
encoded.

3 The GHP as a limit on inter-system information transfer

Principled limitations on information transfer between systems have been char-
acterized from a number of distinct disciplinary perspectives. Before formulat-
ing the GHP precisely as a general physical principle, we examine three such
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characterizations, each illustrating how inter-system information transfer is re-
stricted to information encodable on an inter-system boundary. “Information”
here is classical information – what Bartlett, Rudolph and Spekkens [14] call
fungible information – information that can be written down as a finite bit
string and shared with another observer.

3.1 Black box formulation

The classical cybernetics literature of the 1950s introduced the engineer’s con-
cept of a black box (BB) as a system for which observers have no interior
access. In the canonical picture, a BB is a literal “box” on which knobs and
dials, input and output registers, or some other means of bidirectional inter-
action are mounted. The box is sealed to prevent access to its interior, or is of
such nature – e.g. is a bomb – that opening the box may be catastrophic. The
interior of a BB can, therefore, be regarded as comprising whatever degrees
of freedom the engineer is prevented from or chooses not to measure directly.
As Ashby and others recognized, this way of defining the interior renders any
physical system a BB for an engineer limited to finite observational means:
“The theory of the Black Box is merely the theory of real objects or systems,
when close attention is given to the question, relating object and observer,
about what information comes from the object, and how it is obtained” ([8]
p. 110).

The BB model formally restricts observers to finite resources and hence
the exchange of finite bit strings with the BB at each unit time t. Under
this restriction, Moore [15] proved that no finite number of observations of
any BB is sufficient to determine the machine table, i.e. the rule generating
outputs from inputs, executed by the BB. Moore’s proof is disarmingly simple,
merely pointing out that any finite set of observations is consistent with an
arbitrarily large number of distinct machine tables (for review see [16]). The
information specifying the machine table is thus contained within the BB, but
inaccessible in principle to external observers. Observers can only obtain, at
each t, the finite number of bits displayed by the knobs and dials, input and
output registers, or other encodings of input/output data on the “exterior”
of the BB. This exterior is the complement of the interior: it comprises the
degrees of freedom that the engineer does directly measure.

The notion of a BB as a system with behavior that cannot be fully charac-
terized by finite measurements translates into practical terms the realization
of Church [17], Turing [18] and others that formal systems exist that can exe-
cute any finitely-specified computation, and hence display any finite sequence
of behaviors. Should a physical implementation of such a formal system be
enclosed within a box, it would ipso facto be a BB. Present-day computers,
with their layers of virtual machines specifically designed to render lower-lying
degrees of freedom inaccessible, are precisely such physical implementations
(e.g. [19] [20] [21]). No finite sample of its input-output behavior is, in par-
ticular, sufficient to determine what algorithm a general-purpose computer is
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Fig. 3 An observer (Alice) interacts with a BB (Bob) by exchanging information across
the surface S that separates them. The exchanged information is encoded by the degrees of
freedom of the surface, e.g. the pointer positions of knobs and dials or the digits displayed
by input and output registers mounted on the surface. Alice and Bob together comprise a
closed system: there are no other information channels between them.

running, not just at the hardware level but at any virtual machine level. An
important special case is the unsolvability of the halting problem: no finite
sample of input-output behavior is sufficient to determine that a halting state
has or will be reached [22].

The exchange of information between an external observer and a BB clearly
satisfies the first clause of the GHP informally defined above. The only infor-
mation about the BB available to the observer is the information encoded
by its “exterior” degrees of freedom: the values indicated by the knobs and
dials, input and output registers, or other encodings of input/output data.
These exterior degrees of freedom constitute, by definition, the information
channel connecting the BB to the observer; their possible values constitute
the information that can be communicated through this channel. Consistent
with the picture of a BB as a literal box, these channel degrees of freedom
can be thought of as being displayed on – just as the knobs and dials, digital
displays, etc. are physically mounted on – the surface S of the BB. The only
information about the observer available to the BB is likewise encoded on this
surface (Fig. 3).

The information exchange between observer and BB also satisfies the sec-
ond clause of the GHP: there is no alternative or “back” information channel
between them. This follows from the definition of a BB. Let ξ be any arbi-
trary degree of freedom. The observer either measures ξ directly or does not.



8 Chris Fields et al.

If the former, ξ is by definition part of the “exterior” of the BB and hence
has values encoded on S. If the latter, ξ is, again by definition, part of the
“interior” of the BB and hence inaccessible. Moore’s result prevents any de-
termination by finite observation that any such ξ, whether observed or not, is
irrelevant to the dynamics and hence the possible future behavior of the BB
[15]. Any informally-characterized “surrounding environment” is thus obser-
vationally indistinguishable from the BB that it surrounds; to the extent that
this “environment” is not directly measured, it is part of the interior of the
BB. Mere stipulation that some assumed “environment” is a distinct entity
with its own degrees of freedom cannot physically constrain such degrees of
freedom from being or interacting with the interior degrees of freedom of the
BB, the identities of which are unknown by definition. This point is discussed
further below in the context of decoherence.

The interaction between an observer and a BB need not, and in the clas-
sic presentations of [8] [15] does not, involve any spatial degrees of freedom.
While the “surface” S of the BB is traditionally regarded as a panel on which
knobs and dials are mounted and hence as itself spatial, the locations on S
of the knobs and dials are irrelevant to the input or output data values that
they indicate. Nothing is changed, in particular, if the input or output data
values are regarded written down as a data table or encoded into any other
classical data structure; their physical implementation is entirely irrelevant to
their communicative function. The spatial degrees of freedom associated with
S are, in other words, not part of the information channel connecting the ob-
server to the BB; they are merely a conceptual tool, a pictorial device, for
separating and hence distinguishing the input and output data values. This
use of the spatial degrees of freedom of a surface to distinguish encoded data
values has been carried over into present-day computer interfaces, in which
the collapsibility and movability of display windows makes their spatial lo-
cation entirely arbitrary. The same can be said for traditional print media.
Here the temporal order of characters encodes the transferred information;
the characters are printed in different locations, not on top of each other in
a character-sized palimpsest, only as an aid to readability. Compliance with
the GHP does not, therefore, require the spatiality assumed by the HP; any
spatial degrees of freedom associated with S are a practical convenience, not
a theoretical necessity.

As with Gauss’ anticipation of the Bekenstein-Hawking area law, the in-
tellectual roots of the BB model can be traced to the 18th century. The epis-
temic position it assigns to the observer is that described by the Empiricist
philosophical tradition, the tradition claiming that knowledge of the world is
obtained via the senses, with no possibility of going “beyond” the senses to
learn more than they reveal [23]. Ashby and Moore further operationalized
Kant’s [24] insight that space and time are not characteristics of the world,
but rather structures imposed on sensory data by human perceptual systems
(they are “forms of intuition” for Kant). From this perspective, the surface of a
black box becomes an interface that humans automatically employ to organize
and interpret the perceived behavior of the world.
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Fig. 4 a) the Markov blanket around a node X in an ergodic network comprises the parents
of X, the children of X, and any parents other than X of X’s children. All nodes outside the
blanket constitute the “environment” E. b) The interaction between X and E is mediated
by the Markov blanket between them, which renders their states conditionally independent.
Adapted from [27] Fig. 2.

3.2 Markov blanket formulation

The fundamental insight of the BB model was reformulated in the language
of ergodic systems by Pearl [9]. Let G be a directed graph in which nodes
represent subspaces of states and arrows represent Markov processes. Pearl
defines the Markov blanket around a node X as the set of nodes containing
the parent nodes of X (nodes with arrows to X), the child nodes of X (nodes
with arrows from X), and any parents other than X of X’s children. All causal
connections between X and the nodes “outside” the blanket must flow through
the Markov blanket; hence the blanket renders the states of X and those of the
“environment” E comprising these external nodes conditionally independent.
Markov blankets provide natural models of processing layers in brains [25]
and signal transduction in cells and multicellular systems [26], among other
phenomena.

Information transfer between any nodes X and E of a graph G that are
separated by a Markov blanket satisfies both clauses of the GHP: 1) any in-
formation transferred between X and E must be encoded, at the time of its
transfer, by the state of the blanket, and 2) there are, by definition, no nodes
or arrows outside of the blanket via which information could be transferred
between X and E. As in the BB model, the “information” being transferred
across the blanket is classical information. A Markov blanket thus serves the
same function as the surface of a BB: it limits classical information flow be-
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tween the subsystems that it separates to the classical information that it can
encode. As with the surface of a BB, there is no requirement that a Markov
blanket have or represent spatial degrees of freedom.

The Markov blanket formulation makes explicit two features of inter-system
boundaries that the BB model leaves implicit. First, such boundaries can them-
selves be sophisticated information processors. This is clearly true in the case
of virtual-machine layers in computers; it is also true of processing layers in
neural networks [25] or cellular signal transduction pathways [26] [27] [28]. It
is also clearly true of BBs in practice. Nothing says that the knobs and di-
als on an uncharacterized device cannot contain microchips that arbitrarily
transform their inputs into their outputs; if isolated such components are, as
Ashby pointed out, themselves black boxes.

Second, and more importantly for what follows, the Markov blanket for-
mulation makes it explicit that system, environment and blanket must be re-
garded as separable in the technical sense of having separately-definable states
if they are to be regarded as exchanging classical information. If, in particu-
lar, X, E and the blanket B between them are treated as quantum systems,
then their joint state must be the separable |XEB〉 = |X〉 |E〉 |B〉. Entan-
glement, therefore, cannot be a “back channel” for classical information in
this formalism. Entanglement and hence separability are, however, themselves
observer-relative concepts [29] [30] [31]. The only “observer” that can see all
of three of X, E, and B and hence define their separate states is the “god’s
eye” observer, i.e. the stipulating theorist. Each of the component systems
can only “see” the system(s) with which it interacts. Hence X (respectively
E, B) cannot demand that E and B (respectively X and B, X and E) not be
entangled, just as the observer of a BB cannot demand that its interior not
be entangled with the input-output degrees of freedom on its exterior. The
requirement of separability can, therefore, always be relativized to the compo-
nent system regarded as “the observer.” As discussed further below, the locus
at which information is regarded, from some relevant perspective, as classically
encoded is the only locus at which separability can be enforced.

3.3 Perceptual psychology formulation

Perceptual psychologists generally assume that evolution has tuned higher
mammals, particularly humans, to perceive the world veridically under nor-
mal circumstances. Trivers, for example, argues that “our sensory systems are
organized to give us a detailed and accurate view of reality, exactly as we
would expect if truth about the outside world helps us to navigate it more
effectively” ([32] p. xxvi). Pizlo, Sawada and Steinman similarly claim that
“veridicality is an essential characteristic of perception and cognition. It is
absolutely essential. Perception and cognition without veridicality would be
like physics without the conservation laws” ([33] p. 227; emphasis in original).
Hoffman, Singh and Prakash review both empirical evidence and theoretical
arguments demonstrating that veridical perception is a highly-improbable out-
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come of any evolutionary process [10]. The “interface theory of perception”
(ITP) that they develop as an alternative postulates instead that perceptual
experience functions as an interface – much like the user interface of a com-
puter – that encodes the fitness consequences of actions while hiding the states
and dynamics that produce those consequences (see also [34] [35]).

The function of the perceptual interface, as it is defined within ITP, is to
encode information transferred from the perceiver’s world to the perceiver; it
thus satisfies the first clause of the GHP. As in the case of a BB or a Markov
blanket, the interface is by definition the only information channel from the
world to the perceiver; hence it also satisfies the second clause. The only foun-
dational assumption made about this interface is that it is a measurable space
and hence supports probability distributions over its possible states. Computa-
tions can be built into the interface to support short- and long-term memory
and the recognition of distinct “objects” as correlated sets of fitness conse-
quences [36]; however, the existence of such correlations imposes no structural
requirements on the perceiver’s world beyond a lower limit on its number of
degrees of freedom [10]. As in both the BB and Markov blanket formulations,
no requirement that the interface has or encodes spatial degrees of freedom
is imposed; we have suggested elsewhere that the role of spatial degrees of
freedom in ITP is to provide an error correction mechanism for the encoded
fitness consequences [37].

4 Formal statement of the GHP

4.1 Hilbert space formulation

Let A and B be distinct, non-overlapping physical systems, the possible states
of which compose Hilbert spaces HA and HB, HA ∩HB = ∅, and assume the
joint system S = A⊕B with states in HS = HA ⊗HB is closed. Let HA and
HB be Hamiltonian operators acting separately on A and B respectively; in
this case the Hamiltonian HS = HA ⊗ IB + IA ⊗HB + HAB, where IA and
IB are the identity operators on A and B respectively and HAB represents
the A – B interaction. Consistently with S being closed, we assume that the
time-evolution operator e−(i/~)HSt is unitary, where t is the time dimension
associated with S. The generalized holographic principle is then:

GHP: No more classical information can be transferred between two
distinct, jointly-closed physical systems A and B than can be encoded
by the eigenvalues of their interaction Hamiltonian HAB.

The GHP is not a statement about the “objective” classical correlation
between A and B as observed by some hypothetical “god’s eye” observer
external to S, nor does it concern the entanglement between A and B produced
by the unitary evolution of S, which is similarly only observable by an observer
external to S. It is rather a statement about classical information transfer
within the closed system S, i.e. about the “observational outcomes” A can
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obtain from B or vice versa. If the eigenvalues of HAB are continuous, the
GHP places no limit on classical information transfer between A and B; the
GHP becomes interesting only if HAB has a finite number of eigenvalues, each
of which is defined with finite precision. In this case, the eigenvalues can be
specified, assuming some complete basis and an ordering, by a finite sequence of
bits. The GHP is, therefore, an intrinsically quantum principle: it is significant
only when the A – B interaction is both finite and discrete. As all physically-
realizable detectors are limited to finite resolution, this seemingly-limited case
is the only one of interest in practice; it is analogous to the restriction to
finite observational resources found in classical cybernetics. It will, therefore,
be assumed in what follows.

The GHP effectively defines the interaction Hamiltonian HAB as the ex-
clusive classical information channel between the distinct systems A and B.
This channel can be represented as an N -dimensional discrete space, where
N is the number of bits in a bit-sequence representation of the eigenvalues of
HAB. As the A – B information channel is the locus of the A – B interaction,
it can also be considered the “boundary” between A and B. It is then natu-
rally interpreted as the subspace of HS on which HAB is non-zero, which has
dimensionality smaller than that of HS provided HAB 6= HS. The encoding of
information on this boundary is, in this case, “holographic” in a natural sense.
Thinking of the boundary as a discrete array of bits makes the “encoding”
function of the boundary explicit. Provided A and B are distinct as required,
it is clear from the definition of HAB that the A – B boundary is the only
classical information channel between A and B. Hence the statement above
formalizes both clauses of the informal GHP exemplified by the BB model,
the Markov blanket formalism, and ITP.

4.2 The GHP forbids inter-system transfer of mereological information

The interaction HAB is well-defined only if it is invariant under further decom-
positions of either A or B into subsystems, an invariance that is guaranteed,
for Hilbert spaces, by the associativity of the tensor product operator ⊗. The
eigenvalues of HAB must similarly be invariant under decompositions of either
A or B into subsystems. These eigenvalues cannot, therefore, encode informa-
tion that depends on a specific decomposition of either A or B into subsystems;
they cannot, in other words, encode mereological information, i.e. information
specifying part-whole relationships, about either A or B. The GHP therefore
forbids any transfer of mereological information, in particular any transfer
of information specifying decomposition into subsystems or interactions be-
tween subsystems of either A or B across the A – B boundary. The GHP
thus embodies the linearity requirement, for any observable O, decomposition

A1 ⊗A2 = A, and basis transformation [ci
′j′

ij ] : A1 ⊗A2 → A′1 ⊗A′2 = A,
that:
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< O >A = Tr[ρAO] = ρijkjl〈A1iA2j |O|A1kA2l〉

= ρijkjl[c∗i
′j′

ij ][ck
′l′

kl ]〈A′1i′A′2j′ |O|A′1k′A′2l′〉 .
(1)

Similarly, for any basis transformation [di
′j′

ij ] : B1 ⊗B2 → B′1 ⊗B′2 = B, it
must hold that

< O >B = Tr[ρBO] = ρijkjl〈B1iB2j |O|B1kB2l〉

= ρijkjl[d∗i
′j′

ij ][dk
′l′

kl ]〈B′1i′B′2j′ |O|B′1k′B′2l′〉 .
(2)

The irrelevance of mereological or internal-interaction information enforced
by the GHP formalizes the inaccessibility of internal “parts” or “mechanisms”
familiar from the classical BB model; it similarly formalizes the “shielding”
of information by Markov blankets and inaccessibility of structural or dynam-
ical information about the “world” found in ITP. The GHP thus imposes a
powerful symmetry on any physical description based solely on the informa-
tion available on an inter-system boundary: no such description can depend
on subsystem separability, and hence subsystem identity, on either side of the
boundary [16]. If the interaction between A and B satisfies the GHP, no de-
scription of the interaction can require either A or B to occupy a separable
state. If A is regarded as “observing” B, in particular, A’s description of B
cannot require that B’s state is separable. Here again the intrinsically quan-
tum nature of the GHP becomes clear: by generating entangled states, unitary
evolution effectively erases subsystem identity and hence mereological informa-
tion within both A and B. Such information cannot, therefore, be considered
observer-independent in any quantum-theoretic description.

4.3 The HP is a special case of the GHP

As in its exemplars reviewed above, no assumption of spatial degrees of free-
dom has been made in stating the GHP or in characterizing the inter-system
boundary that it implicitly defines. There are, in particular, no spatial de-
grees of freedom (or any other degrees of freedom) “between” A and B on
which their interaction can depend; A and B are “separated” only by the no-
tional decompositional boundary at which HAB is defined. This interaction is,
moreover, confined by definition to this decompositional boundary; it cannot
depend on any spatial degrees of freedom purely within the “bulk” of either A
or B. We can, therefore, assume without loss of generality that HS includes no
spatial degrees of freedom. If, however, we add d ancillary spatial dimensions
on which HS and therefore HAB do not depend to both HA and HB, and
hence to HS, an ancillary, compact (d − 1)-dimensional spatial structure is
induced on the boundary. Adding such ancillary spatial degrees of freedom is,
to continue the analogy to the classical BB, attaching the input and output
devices of the BB to an instrument panel that provides them with a spatial
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Fig. 5 Three ways of adding spatial dimensionality to the A – B boundary (dashed line).
As S = A⊕B is by assumption closed, these are equivalent.

layout. As S is by assumption closed, the spatial boundary of S, including
the boundary between A and B formed by these ancillary spatial dimensions,
must also be closed (Fig. 5). As the A – B boundary must still function as a
classical information channel, we can envision it as “encoding” the transmitted
information or as has having “punctures” through which the transmitted bits
can flow.

The HP as originally formulated by ’t Hooft follows immediately in this
setting. Consider B to be the “system of interest” and A to be the observer.
From A’s perspective, B has a closed spatial boundary. All information about
B accessible to A is encoded on this boundary byHAB; the “degrees of freedom
of B” to which A has access are those represented by the eigenvalues of HAB.
These eigenvalues tell A nothing about B’s internal “bulk” structure or about
the “bulk” interaction HB; from A’s external perspective, the internal degrees
of freedom of B may as well not exist. In particular, A can determine nothing
about the metric structure inside B, or even whether such a metric structure
exists.

The physical meaning of the Bekenstein-Hawking area law also becomes
clear in this setting. The physics represented by HAB is by assumption in-
dependent of the ancillary spatial dimensions added to the A – B boundary;
therefore the spatial locations on the boundary at which eigenvalues are en-
coded are arbitrary. The amount of information encoded on the boundary
remains invariant under any shuffling of eigenvalue-encoding locations. No
spatial property of the boundary except its overall area can, therefore, be cor-
related with its information content. Its overall area, on the other hand, must
be correlated with its information content if the ancillary spatial dimensions
are independent of the encoded eigenvalues, i.e. independent of HAB. The
area law for a sphere follows, as Bekenstein originally derived it, from Gauss’
theorem together with the assumption of a minimal area l2P to encode each
nat (i.e. 1/ln2 bit) of information.
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5 Consequences of the GHP for physics

5.1 The GHP implies gauge invariance

In §4.2, we employed coordinate transformations (Eq. (1), (2)) to represent
decompositional changes. Elaborating more on this, we may extend the invari-
ance under choice of bases to develop the concept of invariance of extended
systems (i.e. fields) under gauge transformations. As an exploratory exam-
ple, we consider two physical systems, A representing bosonic particles, in
our case photons, and B representing fermionic particles, which can exchange
information only through the interaction Hamiltonian.

If we disregard the gravitational interaction, mathematically the system A
can be described by a real vector field Aµ(x) in the four dimensional Minkowski
space-timeM4 that satisfies the covariant Maxwell equations1. The system B
is instead described by a Dirac field ψ, which is an element of C4 that carries
internal spinorial indices and transforms under the fundamental representation
of SUL(2)×SUR(2). The invariance with respect to the choice of basis can be
generalized to the local gauge freedom for the choice of the field Aµ. This is
defined for the abelian vector field under scrutiny by

Aµ(x)→ A′µ(x) = Aµ(x)− ∂µλ(x) , (3)

where λ(x) denotes a scalar function that is C1, i.e. continuous with its first
derivatives. Eq. (3) introduces a redundancy in the description of the system
that does not affect the physics. In absence of sources, the Maxwell theory
specifies the meaning of the latter statement: picking Cartesian coordinates
and denoting Aµ = {φ,A}, the electric field2 reads E = Ȧ − ∇φ while the
magnetic field is B = ∇∧A. These are the observable fields of the system A,
which are gauge invariant under Eq. (3).

A gauge fixing for the vector field Aµ of the system A can be thought as
a choice of observers, in analogy to the choice of basis for the system consid-
ered in §4.2. In the language of field theory, the independence of the system’s
description under the choice of observers corresponds to an invariance under
gauge transformations of the system of photons and fermions. Therefore we ar-
gue that in addition to forbidding the transfer of mereological information, the
GHP also leads naturally to the principle of gauge invariance for the two sys-
tems considered. Even more, we can show that the application of the GHP to
this system of fields dictates the form of their interaction. This is the greatest
success of the principle of gauge symmetry.

1 The gauge Aµ(x) is endowed with a U(1) symmetry. In general, we can think at the
gauge group as being provided by a hypercharge sector. Alternatively, we may directly focus
on the specific example of QED, and imagine that the hypercharge U(1) is mixed with the
third component of the isospin symmetry group SU(2). In the latter case, the U(1) we are
dealing with represents the electromagnetic sector. As customary, greek letters µ, ν label
space-time indices, while with x := xµ we denote a chart of coordinates on M4.

2 With dots we denote time derivatives.
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We start by writing the partition function for the system A, namely the
U(1) gauge sector.

ZA[A] =

∫
DAµ eıS(A) , (4)

in which DAµ denotes the path integral measure over the copies of the gauge
field and S(A) stands for the classical action. The GHP now implies that
for different observers, related by different choices of the gauge fixing, the
expectation value in the path integral of any functional observable O[A] is
invariant under gauge transformation, and by choices of gauge fixing. The
first statement is easily recovered, if we factor out the redundancy due to the
gauge transformations, by fixing the gauge functional G and then imposing
gauge invariance. Mathematically the statement reads

1 =

∫
Dλδ(G(Aλ))

∣∣∣∣det
δG(Aλ)

δλ(x)

∣∣∣∣ , (5)

in which we have denoted Aλµ(x) = Aµ(x) + ∂µλ(x). The Lorentz functional
G(A) = ∂µA

µ provides the simplest choice of gauge functional we can resort
to in order to implement gauge invariance of the path integral. Under gauge
transformations

G(A) = ∂µA
µ → G(Aλ) = ∂µA

µ + 2λ . (6)

The invariance of the path-integral is then recovered

ZA[A] = N
∫
DAµ eıSA(A)

∫
Dλδ(G(Aλ))

∣∣∣∣det
δG(Aλ)

δλ(x)

∣∣∣∣
= N |det2|

∫
DAµ eıSA(A)

∫
Dλδ(G(Aλ))

= N ′
∫
DλDAµ eıSA(A) δ(G(A))

= N ′′
∫
DAµ eıSA(A) δ(G(A)) , (7)

in which N , N ′ and N ′′ are normalization functions that can be neglected.
We may parametrize the gauge condition employing an arbitrary function

f , so that
Gf (A) = ∂µA

µ − f (8)

represents a family of gauge-fixing terms to be considered. Since no physical
observables must depend on the gauge fixing, we can further average the dif-
ferent gauge fixing terms by means of the factor exp(− ı

2ξ

∫
d4xf2(x)), with ξ

a positive parameter, and an integration over f . The expression for the path
integral in Eq. (7) then becomes

ZA[A] = N
∫
Df DAµ eıSA(A)− ı

2ξ

∫
d4x f2(x)

= N
∫
DAµ eıSA(A)− ı

2ξ

∫
d4x(∂µA

µ(x))2 . (9)



Why holography? 17

Invariance under different choices of the gauge fixing condition, i.e. different
choices of f , extends the result found in Eq. (1), as it can now be recast for
the expectation value of the observables O,

〈O[A]〉f = N
∫
Df DAµ eıSA(A)− ı

2ξ

∫
d4x f2(x)O[A]

= N
∫
DAµ eıSA(A)− ı

2ξ

∫
d4x(∂µA

µ(x))2 O[A]

= N
∫
DgDAµ eıSA(A)− ı

2ξ

∫
d4x g2(x)O[A]

= 〈O[A]〉g , (10)

having denoted with f and g two different gauge-fixings.
We now consider the system B, which is composed by Dirac fields. For

simplicity, we restrict our focus to only one fermionic species ψ, and write the
path integral formulation of the system, i.e.

ZB[ψ, ψ̄] =

∫
DψDψ̄ eıSD(ψ,ψ̄) , (11)

in which

SD(ψ, ψ̄) =

∫
d4x ψ̄ (ıγµ∂µ −m)ψ . (12)

Observable quantities, which we denote withO[ψ, ψ̄], are bilinear in the fermionic
fields ψ and ψ̄,

O[ψ, ψ̄] = ψ̄ O(ΓI)ψ ,

in which the matrix O, for which spinorial indices are suppressed, depends
on the elements of the Clifford algebra ΓI , with I = 1 . . . 16. A local gauge
transformation that does not change the values of O can be introduced:

ψ(x)→ ψ′(x) = eıqλ(x)ψ(x) , ψ̄(x)→ ψ̄′(x) = e−ıqλ(x)ψ̄(x) , (13)

with q a charge parameter. The generator of the transformation, which is
U(1), clearly commutes with the matrix O, and invariance of any observable
O under Eq. (13) is immediately recovered. Selecting an infinitesimal global
transformation, for instance by λ(x) = α ∈ R, the conserved charge

Q =

∫
Σ

d3xψ†ψ ,

with Σ a spatial hypersurface, can be introduced. This generates U(1) trans-
formations U = eıαQ acting on the Hilbert space of the theory.

Notice however that the dynamics of the system B as specified by the
Dirac Lagrangian in Eq. (12) is not yet gauge invariant. The introduction of
a covariant derivative

∂µ → Dµ = ∂µ − ıqAµ
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is required, which in turn introduces the interaction Lagrangian density

LAB := Lint = eAµ ψ̄γ
µψ . (14)

At the level of the path integral formulation, the theory for the joint system
S = A⊕B is defined by

ZS[A,ψ, ψ̄] =

∫
DAµDψDψ̄ eıSA(A)+SD(ψ,ψ̄)+Sint(A,ψ,ψ̄) . (15)

Averaging over the spatial hypersurface, we obtain the interaction Hamiltonian

HAB = − e
∫
Σ

d3xAµ ψ̄γ
µψ, (16)

through which the two systems A and B exchange quanta and vary their
internal particle numbers. Once Eq. (16) is taken into account, the Hamiltonian
HS = HA ⊗ IB + IA ⊗ HB + HAB becomes gauge invariant. Naturally, the
only possible A – B interaction is through the boundary defined by Eqs. (14)-
(16). But the source of this interaction is just the necessity to hold the two
systems A and B gauge invariant. The eigenvalues of HAB must be invariant
under gauge transformations acting on the fields, whether we are focusing on
the system A or on the system B. Mutatis mutandis, a similar statement as
the one enunciated in §4.2 concerning the transfer of mereological information
can be put forward: the eigenvalues of HAB cannot encode information that
depends on a specific gauge fixing of either the system A or the system B.
The requirement of gauge invariance can, therefore, be seen as equivalent to
the requirement of invariance under changes in subsystem decomposition. A
gauge invariant field cannot encode information specifying decompositional
boundaries.

5.2 Decoherence = holography

Since its introduction by Zeh [38] [39] [40] and Zurek [41] [42], environmental
decoherence has been widely, though not universally, regarded as explaining
the “collapse” of quantum states into effectively classical states. The mech-
anism of decoherence combines entanglement with selective observation: en-
tangling a system of interest X with an environment E removes quantum
coherence from (“decoheres”) X for an observer O that measures the state of
X but not the state of E (Fig. 6a; see [43] [44] for reviews). Environmental
decoherence may also be regarded, in the “environment as witness” formula-
tion, as redundantly encoding the eigenvalues of the X – E interaction HXE

into the state of E for any O that measures the state of E but not the state
of X (Fig. 6b; [45] [46]). Such “state broadcasting” has been offered as an
explanation of the classical appearance of the macroscopic world [47] [48] [49].
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Fig. 6 Environmental decoherence in a) the original formulation of [38], b) the environment
as witness formulation of [45], and c) a single-boundary formulation consistent with the GHP.
Adapted from [37] Fig. 2.

From a more practical perspective, environmental decoherence poses a major
design obstacle to quantum computing3.

Both standard formulations of environmental decoherence, however, re-
quire the transfer of mereological information across inter-system boundaries
and hence violate the GHP. In Zeh’s original formulation (see [54] for a re-
cent and explicit example), O interacts separately with both X and E, and is
able to determine from this interaction (or stipulate a priori) both the loca-
tion of the decompositional boundary between X and E and their interaction
HXE. In the environment as witness formulation, O interacts only with E, and
this interaction transfers information about both the decompositional bound-
ary between X and E and their interaction HXE. As seen in §4.2, however,
the GHP forbids any physical interaction from transferring such information.
The eigenvalues of HOE, in particular, cannot specifically encode information
about the eigenvalues of HXE without violating the fundamental assumption
that the relevant Hilbert spaces are associatively decomposable.

Consistency with the GHP requires a formulation of environmental deco-
herence in which all available information is encoded by the eigenvalues of
one cross-boundary interaction and no cross-boundary transmission of mere-
ological information is assumed (Fig. 6c). The most natural such formulation
embeds X into E and considers information transfer across the O – E bound-
ary; embedding O into E and considering information transfer across the X –
E boundary is also possible, and corresponds to observation by a “witnessing”
environment. Treating decoherence at the O – E boundary makes explicit the
fact that X and E must be entangled from O’s perspective for decoherence to
occur. As in the environment as witness formulation, an effective or apparent

3 Environmental decoherence as a physical mechanism is to be distinguished from more
abstract conceptions of decoherence between Everett branches [50] [51] or histories of mea-
surements [52] [53].
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state of X may be deduced by O if, but only if, it is encoded by the eigenval-
ues of HEO. As mereological information cannot be transmitted by HEO, any
such effective state information must be arbitrarily ambiguous about both the
location of the boundary of X within E and the eigenvalues of HXE.

When decoherence is reconceptualized in this way, it becomes clear that
the “encoding” that results – what Zurek [41] [42] termed “einselection” – is
holographic encoding on the single specified (e.g. O – E) boundary. Suppose
O interacts with E by deploying n binary-outcome measurements Mi with an
average energetic cost per outcome bit recorded of ckBT, c > ln2, with kB
Boltzmann’s constant and T tempertaure. The O – E interaction can then be
written:

(1/ckBT )HOE(t) =

n∑
i

αi(t)Mi (17)

where the functions αi(t),
∑n
i αi(t) = 1 at each t, determine which measure-

ment is performed at each t. Choosing the Mi is, in effect, choosing a gauge
or equivalently by the reasoning above, a (stipulated) decomposition of E into
“observed” or “apparent” systems. An apparent system X can, in this case,
be considered to be a subset of m < n outcome values obtained by acting
on E with the Mi. For X to be re-identifiable at multiple observation times,
a subset of m(id) < m of these outcome values must be fixed as “identifying
criteria” of X ; the remaining m−m(id) values can vary with time and hence
indicate “degrees of freedom” of X . The apparent “environment” X̄ of X is
everything else observable, i.e. the complementary subset of n −m outcome
values. Decoherence of X by X̄ corresponds, in this case, to X and X̄ being
observationally distinguishable, i.e. to the m(id) outcome values that serve to
identify X being encoded by HOW . Coherence between X and X̄ corresponds
to observational indistinguishability of X and X̄ , as is required if their joint
state is non-separable.

Reconceptualizing decoherence in this way relocates the “quantum-to-classical
transition” from the objective world to the merely-notional decompositional
boundary between O and E. “Systems” as well as their “states” become en-
tirely relative to the choice of measurement operators Mi, where in this case
the Mi are themselves only defined at the O – E decompositional boundary.
Strict compliance with the GHP, in other words, reformulates physics in en-
tirely device-independent, operational terms, as has already been suggested
by Grinbaum [55].

5.3 Symmetry across the horizon boundary resolves the BHIP

The BHIP was introduced by Hawking [56], who argued that under intuitively-
reasonable assumptions evaporating black holes (BH) destroy information and
hence violate unitarity. The HP was originally formulated, in part, to address
this problem by showing that the “missing” information could be found on the
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surface of the horizon. Since the work of Susskind and Thorlacius [57], much
discussion of the BHIP has focused on the relationship between observations
made by asymptotic observers of Hawking radiation from a BH and those
made by an observer falling freely into the same BH. The possibility that
the same quantum-state information could be obtained by both observers,
thus violating the no-cloning theorem and hence unitarity, was sharpened by
Almheiri, Marolf, Polchinski and Sully [58], who argued that this possibility
exists for a single observer, the infalling one.

We show here that strict compliance with the GHP imposes a symmetry
that resolves the BHIP; indeed the BHIP can be seen as a consequence of
not taking sufficiently seriously ’t Hooft’s remark that nothing can be known
about the metric inside a BH. Let S be the horizon surface of a sufficiently
large BH and consider two asymptotic observers, Alice and Bob, stationed
outside and inside the BH respectively. Assume that Alice and Bob are each
equipped with quantum reference frames (i.e. local physical systems encoding
non-fungible reference information [14]) for mass, charge and angular momen-
tum. Strictly speaking, the GHP requires us to view these reference frames
as internal to Alice and Bob, respectively [16] and indeed to view S as the
Alice-Bob boundary as discussed above; we will, however, continue to use the
conventional language in what follows.

The Bekenstein-Hawking area law fixes the entropy and hence coding ca-
pacity of S to A/(4 ln2) bits. Alice on the outside interprets A/(4 ln2) as the
(classical) instantaneous information content of the BH and the specific bit
pattern as encoding the instantaneous state of the BH. Similarly, Bob on the
inside interprets A/(4 ln2) as the (classical) instantaneous information content
of the outside (i.e. Alice’s) universe and the specific bit pattern as encoding its
instantaneous state. Alice and Bob have, in other words, complementary inter-
pretations of the single data structure S: Alice sees S as the horizon surface of
a BH, and so does Bob. As ’t Hooft emphasized, the metric gµν(inside) inside
the BH is unobservable by and cannot matter to Alice; similarly gµν(outside)
is unobservable by and cannot matter to Bob. Neither Alice nor Bob can, in
particular, require that the geometry on the other side of S be a Schwartzschild
singularity, even though an analytic continuation of the geometry observed on
their side of the horizon may indicate this. Bob, in particular, is in the vicinity
of a singularity only according to Alice’s analytic continuation of the behav-
ior of her outside metric; from Bob’s internal perspective, it is Alice who is
in the vicinity of a singularity. The geometry of the situation, can, therefore,
be represented as completely symmetrical (Fig. 7). This symmetric geometry
corresponds to the “exterior” components of two Schwartzschild solutions for
which the respective horizons have been identified; it differs from standard
wormhole geometries by having one horizon, not two. This construction con-
firms Rovelli’s result that BHs contain more information than can be encoded
on their horizon surfaces [4]; here the BH observed by Bob contains all of the
information in Alice’s universe and vice-versa.

In the symmetric geometry of Fig. 7, covariance requires that both asymp-
totic observers be regarded as making equivalent observations. Alice observes
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Fig. 7 Symmetric representation of observations of a horizon surface S made by asymptotic
observers on either side of S. “Stuff” (matter) falls into the horizon from both sides. The
S-matrix from infalling matter to outgoing radiation can be viewed as acting from one side
of the horizon to the other. The GHP forbids either observer knowing the S-matrix.

matter falling into the BH and Hawking radiation being emitted. For this
Hawking radiation to be detectable by Alice, it must be (mostly) matter.
Bob similarly observes matter falling into the BH and Hawking radiation be-
ing emitted. For this Hawking radiation to be detectable by Bob, it must be
(mostly) matter. In either case, however, the antimatter partners of the emit-
ted matter fall into the BH; Bob’s Hawking-radiation matter must, therefore,
be Alice’s Hawking-radiation antimatter and vice-versa. The effective change
in the signature of the metric while passing through the horizon can thus be
thought of as being reabsorbed in the energy of the anti-particle produced at
the horizon. These are, equivalently, requirements for both observers to have
positive time coordinates. The sign of the time coordinate must, therefore,
be flipped when passing through the horizon, a situation that is allowed by
each observer’s ignorance of the other’s metric. Alice’s and Bob’s other refer-
ence frames must similarly be CPT symmetric. This CPT symmetry at S is
reminiscent of that obtained in a field-theoretic construction (e.g. [11]) but,
except for the existence of Hawking radiation, without explicit field theoretic
considerations.

Covariance requires that if Alice abandons her asymptotic station and falls
freely into the BH, she will observe nothing unusual. This is indeed the case
in a symmetric geometry: her mass reference frame shows the local curvature,
which is CPT-symmetric inside S, continuing to increase toward a singularity
as she would expect on the basis of her (Schwartzschild) analytical contin-
uation. Consistent with Susskind-Thorlacius horizon complementarity, Alice
cannot send information about entangled states observed near or beyond the
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horizon back to an asymptotic colleague in her universe. Nor can she com-
municate with Bob; their mutually CPT-symmetric reference frames would
instead annihilate.

We can now ask whether Alice, using her reference frames, can observe a
violation of no-cloning, and hence whether a high-energy firewall is required to
prevent Alice’s approach to the horizon. Almheiri, Marolf, Polchinski and Sully
[58] begin by assuming a unitary S-matrix from infalling matter to outgoing
Hawking radiation and further assume, critically, that Alice can know both the
initial state and this S-matrix. This latter assumption, however, immediately
violates the GHP. Unitarity for the BH plus exterior system requires that the
S-matrix can equivalently be represented as transforming, with time reversal,
particles incident on the horizon from the inside to particles evaporated from
the horizon on the outside and vice-versa (Fig. 7). In this representation,
the GHP forbids knowledge of the S-matrix for either observer. Equivalently,
knowing the S-matrix would require Alice to access reference frames at past
and future null infinity, as only these could measure all soft hair correlations
across S [59] [60].

Setting this problem of knowledge aside and assuming that Alice has ob-
served entanglement between subsystems comprising late and early Hawking
radiation as Almheiri, Marolf, Polchinski and Sully propose, Alice can observe
a no-cloning violation only if she is also capable of observing entanglement
between the late radiation and its partner modes across the horizon. Such
entanglement is easily inferred: each outgoing Hawking-radiation particle is
entangled with its anti-particle that has fallen into the BH. Observing such
entanglement, however, requires a horizon-crossing reference frame, which the
GHP again forbids. A partner mode is, by definition, a subsystem, and the
GHP forbids the transfer of subsystem-dependent information across S.

The symmetric geometry of Fig. 7 provides a simple explanation of why
Alice’s information (assuming that she can obtain it) about entanglement out-
side the BH cannot penetrate the horizon to be compared with information
about entanglement inside the BH. Were Alice to fall, in her proper time,
through S, Bob with his CPT-symmetric reference frames would observe her
only as a shower of Hawking radiation. The “firewall” that consumes Alice
is, in other words, on the inside of the horizon, and it is apparent only to
inside observers using their CPT-symmetric reference frames. Alice with her
external reference frames observes nothing unusual as noted earlier. A similar
firewall exists outside the horizon, apparent only to outside observers, that
consumes not infalling matter and information like Alice, but rather matter
and information falling out from the inside. The firewall, in other words, is an
alternative description of the Hawking evaporation mechanism. Its physical
role is the destruction of GHP-forbidden mereological information transiting
S, including any information about entanglement between subsystems on the
opposite side of S.
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6 Conclusion

The HP appears, at first glance, to be both counterintuitive and limited to
contexts where gravitation and quantum theory intersect. We have shown here
that it is neither. It is, instead, a special case of a more general principle, the
GHP, that can be translated roughly as “information is available only through
interaction.” This GHP has both philosophical and formal roots in the 18th
century, and has been formulated independently in multiple disciplines from
the mid-20th century onwards. It limits the classical information transmitted
across any inter-system boundary to the information that can be encoded
by the eigenvalues of the inter-system interaction. As to observe something
is to obtain information from it by interacting with it, the GHP places a
quantitative upper limit on the bandwidth of observations employing finite
resources.

We offer, in summary, the following conclusions:

1. The GHP characterizes all transfers of classical information across decom-
positional boundaries in associatively-decomposable state spaces. It con-
stitutes a significant limit on information transfer whenever the encodable
classical information is finite.

2. The GHP applies not just to (d−1)-dimensional boundaries of d-dimensional
geometric spaces, but to any collection of degrees of freedom bounding a
larger collection of degrees of freedom. The HP as originally formulated is
a geometric special case.

3. The spatial degrees of freedom on an information-encoding boundary are
strictly ancillary. The interaction that transfers information across the
boundary is independent, in principle, of such degrees of freedom.

4. The GHP strictly forbids transfers of mereological information across inter-
system boundaries. Subsystem boundaries or inter-subsystem interactions
within an overarching system cannot be considered ontological by observers
confined to any other (sub)system.

5. “Observation” is holographic encoding. Observational outcomes and hence
the “observed world” are both classical and strictly observer-relative by
definition.

While its simplicity, deep history and independent discovery by multiple
disciplines indicate that the GHP must be considered to be in some sense
“intuitive” or even “obvious,” the above indicate that it is also extraordinar-
ily powerful. Strict compliance with the GHP sheds new light on unitarity
and entanglement, provides a simple and novel explanation of gauge invari-
ance, shows that “decoherence” and “observation” are alternative terms for
the same process, and suggests that the apparent conflict between unitarity
and covariance highlighted by the BHIP is due not to unitarity or to covari-
ance but rather to pre-theoretical assumptions about cross-horizon access to
mereological information that the GHP explicitly forbids.
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