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Preface

This manuscript began life as a set of lecture notes for a two-quarter (twenty-

week) course on the foundations of general relativity that I taught at the Uni-

versity of Chicagomany years ago. I have repeated the course quite a few times

since then, both there and at theUniversity of California, Irvine, and have over

the years steadily revised the notes and added new material. Maybe now the

notes can stand on their own.

The coursewasnever intended tobe a systematic survey of general relativity.

There are many standard topics that I do not discuss—e.g., the Schwarzschild

solution and the “classic tests” of general relativity. (And I have always recom-

mended that students who have not already taken a more standard course in

the subject do some additional reading on their own.) My goals instead have

been to (i) present the basic logical-mathematical structure of the theory with

some care, and (ii) consider additional special topics that seem to me, at least,

of particular interest. The topics have varied from year to year, and not all have

found their way into these notes. I will mention in advance three that did.

The first is “geometrized Newtonian gravitation theory,” also known as

“Newton-Cartan theory.” It is now well known that one can, after the fact,

reformulate Newtonian gravitation theory so that it exhibits many of the

qualitative features that were once thought to be uniquely characteristic of gen-

eral relativity. On reformulation, Newtonian theory too provides an account

of four-dimensional spacetime structure in which (i) gravity emerges as a

manifestation of spacetime curvature, and (ii) spacetime structure itself is

“dynamical” in the sense that it participates in the unfolding of physics rather

than being a fixed backdrop against which it unfolds. It has always seemed

to me helpful to consider general relativity and this geometrized reformula-

tion of Newtonian theory side by side. For one thing, one derives a sense of

where Einstein’s equation “comes from.” When one reformulates the empty-

space field equation of Newtonian gravitation theory (i.e., Laplace’s equation

ix
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∇2φ = 0, where φ is the gravitational potential), one arrives at a constraint on

the curvature of spacetime, namely Rab = 0. The latter is, of course, just what
we otherwise know as (the empty-space version of ) Einstein’s equation. And,

reciprocally, this comparison of the two theories side by side provides a certain

insight into Newtonian physics. For example, it yields a satisfying solution (or

dissolution) to an old problem about Newtonian cosmology. Newtonian theory

in a standard textbook formulation seems to provide no sensible prescription

for what the gravitational field should be like in the presence of a uniform

mass-distribution filling all of space. (See section 4.4.) But the problem is

really just an artifact of the formulation, and it disappears when one passes to

the geometrized version of the theory.

The basic idea of geometrized Newtonian gravitation theory is simple

enough. But there are complications, and I deal with some of them in the

present expanded form of the lecture notes. In particular, I present two dif-

ferent versions of the theory—what I call the “Trautman version” and the

“Künzle-Ehlers version”—and consider their relation to one another. I also

discuss in some detail the geometric significance of various conditions on

the Riemann curvature field Ra
bcd that enter into the formulation of these

versions.

A second special topic that I consider is the concept of “rotation.” It turns

out to be a rather delicate and interesting question, at least in some cases, just

what it means to say that a body is or is not rotating within the framework of

general relativity. Moreover, the reasons for this—at least the ones I have in

mind—do not have much to do with traditional controversy over “absolute vs.

relative (or Machian)” conceptions of motion. Rather, they concern particular

geometric complexities that arise when one allows for the possibility of space-

time curvature. The relevant distinction for my purposes is not that between

attributions of “relative” and “absolute” rotation, but rather that between attri-

butions of rotation that can and cannot be analyzed in terms of motion (in the

limit) at a point. It is the latter—ones thatmake essential reference to extended

regions of spacetime—that can be problematic.

The problem has two parts. First, one can easily think of different criteria

for when an extended body is rotating. (I discuss two examples in section

3.2.) These criteria agree if the background spacetime structure is sufficiently

simple—e.g., if one is working inMinkowski spacetime. But they do not agree

in general. So, at the very least, attributions of rotation in general relativity

can be ambiguous. A body can be rotating in one perfectly natural sense but

not rotating in another, equally natural, sense. Second, circumstances can

arise in which the different criteria—all of them—lead to determinations of
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rotation and non-rotation that seem wildly counterintuitive. (See section 3.3.)

The upshot of this discussion is not that we cannot continue to talk about

rotation in the context of general relativity. Not at all. Rather, we simply have

to appreciate that it is a subtle and ambiguous notion that does not, in all cases,

fully answer to our classical intuitions.

A third special topic that I consider is Gödel spacetime. It is not a live can-

didate for describing our universe, but it is of interest because of what it tells

us about the possibilities allowed by general relativity. It represents a possi-

ble universe with remarkable properties. For one thing, the entire material

content of the Gödel universe is in a state of uniform, rigid rotation (accord-

ing to any reasonable criterion of rotation). For another, light rays and free

test particles in it exhibit a kind of boomerang effect. Most striking of all, it

admits closed timelike curves that cannot be “unrolled” by passing to a cover-

ing space (because the underlying manifold is simply connected). In section

3.1, I review these basic features of Gödel spacetime and, in an appendix to

that section, I discuss how one can go back and forth between an intrinsic

characterization of the Gödel metric and two different coordinate expressions

for it.

These three special topics are treated in chapters 3 and 4.Much of thismate-

rial has been added over the years. The original core of the lecture notes—the

review of the basic structure of general relativity—is to be found in chapter 2.

Chapter 1 offers a preparatory review of basic differential geometry. It has

never beenmy practice to work through all thismaterial in class. I have limited

myself there to “highlights” and general remarks. But I have always distributed

the notes so that students with sufficient interest can do further reading on

their own. On occasion, I have also run a separate “problem session” and used

it for additional coaching on differential geometry. (A number of problems,

with solutions, are included in the present version of the lecture notes.) I

suggest that readers make use of chapter 1 as seems best to them—as a text

to be read from the beginning, as a reference work to be consulted when

particular topics arise in later chapters, as something in between, or not at all.

I would like to use this occasion to thank a number of people who have

helped me over the years to learn and better understand general relativity.

I could produce a long list, but the ones who come first, at least, are John

Earman, David Garfinkle, Robert Geroch, Clark Glymour, Howard Stein, and

Robert Wald. I am particularly grateful to Bob1 and Bob2 for allowing this

interloper from the Philosophy Department to find a second home in the

Chicago Relativity Group. Anyone familiar with their work, both research and

expository writings, will recognize their influence on this set of lecture notes.
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Erik Curiel, Sam Fletcher, David Garfinkle, John Manchak, and Jim

Weatherall have my thanks, as well, for the comments and corrections they

have given me on earlier drafts of the manuscript.

Matthias Kretschmann was good enough some years ago to take my hand-

written notes on differential geometry and set them in TEX. I took over after

that, but I might not have started without his push.

Finally, Pen Maddy has helped me to believe that this project was

worth completing. I shall always be grateful to her for her support and

encouragement.
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1
DIFFERENTIAL GEOMETRY

1.1. Manifolds

We assume familiarity with the basic elements of multivariable calculus and

point set topology. The following notions, in particular, should be familiar.

R
n (for n ≥ 1) is the set of all n-tuples of real numbers x = (x1, . . . , xn).

The Euclidean inner product (or “dot product”) on R
n is given by x · y = x1y1

+ . . .+ xnyn. It determines a norm, ‖x‖ = √
x · x. Given a point x ∈ R

n and a

real number ε > 0,Bε (x) is the openball inR
n centered at x with radius ε—i.e.,

Bε (x) = {y : ‖y − x‖ < ε}. Clearly, x belongs to Bε (x) for every ε > 0. A subset

S of R
n is open if, for all points x in S, there is an ε > 0 such that Bε (x) ⊆ S.

This determines a topology on R
n. Given m, n ≥ 1, and a map f : O → R

m

from an open set O in R
n to R

m , f is smooth (or C∞) if all its mixed partial

derivatives (to all orders) exist and are continuous at every point in O.

A smooth n-dimensionalmanifold (n ≥ 1) can be thought of as a point set to

which has been added the “local smoothness structure” of R
n. Our discussion

of differential geometry begins with a more precise characterization.1

Let M be a non-empty set. An n-chart on M is a pair (U ,ϕ) where U is

a subset of M and ϕ : U → R
n is an injective (i.e., one-to-one) map from U

into R
n with the property that ϕ[U] is an open subset of R

n. (Here ϕ[U] is
the image set {ϕ( p) : p ∈ U}.) Charts, also called “coordinate patches,” are the
mechanism with which one induces local smoothness structure on the set M.

To obtain a smooth n-dimensional manifold, we must lay down sufficiently

many n-charts onM to cover the set and require that they be, in an appropriate

sense, compatible with one another.

Let (U1,ϕ1) and (U2,ϕ2) be n-charts on M. We say the two are compatible if

either the intersection set U = U1 ∩ U2 is empty or the following conditions

hold:

1. In this section and several others in chapter 1, we follow the basic lines of the presentation
in Geroch [22].

1
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Figure 1.1.1. Two n-charts (U1,ϕ1) and (U2,ϕ2) onM with overlapping domains.

(1) ϕ1[U] and ϕ2[U] are both open subsets of R
n.

(2) ϕ1 ◦ϕ−1
2 : ϕ2[U] → R

n and ϕ2 ◦ϕ−1
1 : ϕ1[U] → R

n are both smooth.

(Notice that the second makes sense since ϕ1[U] and ϕ2[U] are open subsets

of R
n and we know what it means to say that a map from an open subset of

R
n to R

n is smooth. See figure 1.1.1.)

The relation of compatibility between n-charts on a given set is reflexive

and symmetric. But it need not be transitive and, hence, not an equivalence

relation. For example, consider the following three 1−charts on R:

C1 = (U1,ϕ1), with U1 = (− 1, 1) and ϕ1(x) = x

C2 = (U2,ϕ2), with U2 = (0, 1) and ϕ2(x) = x

C3 = (U3,ϕ3), with U3 = (− 1, 1) and ϕ3(x) = x3

Pairs C1 and C2 are compatible, and so are pairs C2 and C3. But C1 and C3 are

not compatible, because the map ϕ1 ◦ϕ−1
3 : (− 1,+1) → R is not smooth (or

even just differentiable) at x = 0.

We now define a smooth n-dimensional manifold (or, in brief, an n-manifold)

(n ≥ 1) to be a pair (M, C) whereM is a non-empty set and C is a set of n-charts

on M satisfying the following four conditions.

(M1) Any two n-charts in C are compatible.

(M2) The (domains of the) n-charts in C coverM; i.e., for every p ∈ M, there

is an n-chart (U ,ϕ) in C such that p ∈ U .

(M3) (Hausdorff condition)Givendistinct points p1 and p2 inM, there existn-

charts (U1,ϕ1) and (U2,ϕ2) in C such that pi ∈ Ui for i = 1, 2 andU1 ∩ U2

is empty.

(M4) C is maximal in the sense that any n-chart on M that is compatible

with every n-chart in C belongs to C.
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(M1) and (M2) are certainly conditions one would expect. (M3) is included,

following standard practice, simply to rule out pathological examples (though

one does, sometimes, encounter discussions of “non-Hausdorff manifolds”).

(M4) builds in the requirement that manifolds do not have “extra struc-

ture” in the form of distinguished n-charts. (For example, we can think of the

point setRn as carrying a single [global]n-chart. In the transition from thepoint

set R
n to the n-manifold R

n discussed below, this “extra structure” is washed

out.)

Because of (M4), it might seem a difficult task to specify an n-dimensional

manifold. (How is one to get a grip on all the different n-charts that make up

a maximal set of such?) But the following proposition shows that the speci-

fication need not be difficult. It suffices to come up with a set of n-charts on

the underlying set satisfying (M1), (M2), and (M3), and then simply throw in

wholesale all other compatible n-charts.

PROPOSIT ION 1.1.1. Let M be a non-empty set, let C0 be a set of n-charts on M

satisfying conditions (M1), (M2), and (M3), and let C be the set of all n-charts on M

compatible with all the n-charts in C0. Then (M, C) is an n-manifold; i.e., C satisfies

all four conditions.

Proof. Since C0 satisfies (M1), C0 is a subset of C. It follows immediately that

C satisfies (M2), (M3), and (M4). Only (M1) requires some argument. Let

C1 = (U1,ϕ1) and C2 = (U2,ϕ2) be any two n-charts compatible with all

n-charts in C0. We show that they are compatible with one another. We

may assume that the intersection U1 ∩ U2 is non-empty, since otherwise

compatibility is automatic.

First we show that ϕ1[U1 ∩ U2] is open. (A parallel argument establishes

that ϕ2[U1 ∩ U2] is open.) Consider an arbitrary point of ϕ1[U1 ∩ U2]. It is of
the form ϕ1( p) for some point p ∈ U1 ∩ U2. Since C0 satisfies (M2), there exists

an n-chart C = (U ,ϕ) in C0 whose domain contains p. So p ∈ U ∩ U1 ∩ U2.

Since C is compatible with both C1 and C2, ϕ[U ∩ U1] and ϕ[U ∩ U2] are
open sets in R

n, and the maps

ϕ1 ◦ϕ−1 : ϕ[U ∩ U1] → R
n, ϕ2 ◦ϕ−1 : ϕ[U ∩ U2] → R

n,

ϕ ◦ϕ−1
1 : ϕ1[U ∩ U1] → R

n, ϕ ◦ϕ−1
2 : ϕ2[U ∩ U2] → R

n,

are all smooth (and therefore continuous). Now ϕ[U ∩ U1 ∩ U2] is open, since
it is the intersection of open sets ϕ[U ∩ U1] and ϕ[U ∩ U2]. (Here we use
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the fact that ϕ is injective.) So ϕ1[U ∩ U1 ∩ U2] is open, since it is the pre-

image of ϕ[U ∩ U1 ∩ U2] under the continuous map ϕ ◦ϕ−1
1 . But, clearly,

ϕ1( p) ∈ ϕ1[U ∩ U1 ∩ U2], and ϕ1[U ∩ U1 ∩ U2] is a subset of ϕ1[U1 ∩ U2]. So
we see that our arbitrary point ϕ1( p) in ϕ1[U1 ∩ U2] is contained in an open

subset of ϕ1[U1 ∩ U2]. Thus ϕ1[U1 ∩ U2] is open.
Next we show that the map ϕ2 ◦ϕ−1

1 : ϕ1[U1 ∩ U2] → R
n is smooth. (A par-

allel argument establishes that ϕ1 ◦ϕ−1
2 : ϕ2[U1 ∩ U2] → R

n is smooth.) For

this it suffices to show that, given our arbitrary point ϕ1( p) in ϕ1[U1 ∩ U2], the
restriction of ϕ2 ◦ϕ−1

1 to some open subset of ϕ1[U1 ∩ U2] containing ϕ1( p) is

smooth. But this follows easily. We know that ϕ1[U ∩ U1 ∩ U2] is an open sub-

set of ϕ1[U1 ∩ U2] containing ϕ1( p). And the restriction of ϕ2 ◦ϕ−1
1 to ϕ1[U ∩

U1 ∩ U2] is smooth, since it can be realized as the composition of ϕ ◦ϕ−1
1

(restricted to ϕ1[U ∩ U1 ∩ U2]) with ϕ2 ◦ϕ−1 (restricted to ϕ[U ∩ U1 ∩ U2]),
and both these maps are smooth. �

Our definition of manifolds is less restrictive than some in that we do not

include the following condition.

(M5) (Countable cover condition) There is a countable subset {(Un,ϕn) : n ∈
N} of C whose domains cover M; i.e., for all p in M, there is an n such

that p ∈ Un.

In fact, all the manifolds that one encounters in relativity theory satisfy (M5).

But there is some advantage in not taking the condition for granted from

the start. It is simply not needed for our work until we discuss derivative

operators—i.e., affine connections—on manifolds in section 1.7. It turns out

that (M5) is actually a necessary and sufficient condition for there to exist a

derivative operator on amanifold (givenour characterization). It is also aneces-

sary and sufficient condition for there to exist a (positive definite) Riemannian

metric on a manifold. (See Geroch [23]. The paper gives a nice example of a

2-manifold that violates [M5].)

Our way of defining n-manifolds is also slightly non-standard because we

jump directly from the point set M to the manifold (M, C). In contrast, one

often proceeds in two stages. One first puts a topology T on M, forming a

topological space (M, T ). Then one adds the set of n-charts C to form the

“manifold”
(
(M, T ), C

)
. If one proceeds this way, one must require of every

n-chart (U ,ϕ) in C thatU be open—i.e., thatU belong to T , so that ϕ : U → R
n

qualifies as continuous.

Given our characterization of an n-manifold (M, C), we do not (yet) know

what it means for a subset of M to be “open.” But there is a natural way to use
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the n-charts in C to define a topology on M. We say that a subset S of M is open

if, for all p in S, there is an n-chart (U ,ϕ) in C such that p ∈ U andU ⊆ S. (This

topology can also be characterized as the coarsest topology on M with respect

to which, for all n-charts (U ,ϕ) in C, ϕ : U → R
n is continuous. See problem

1.1.3). It follows immediately that the domain of every n-chart is open.

PROBLEM 1.1.1. Let (M, C) be an n-manifold, let (U ,ϕ) be an n-chart in C, let Ô

be an open subset of ϕ[U], and let O be its pre-image ϕ−1[Ô]. (So, O ⊆ U.) Show

that (O,ϕ|O), the restriction of (U ,ϕ) to O, is also an n-chart in C.

PROBLEM 1.1.2. Let (M, C) be an n-manifold, let (U ,ϕ) be an n-chart in C, and

let O be an open set in M such that U ∩ O = ∅. Show that
(
U ∩ O,ϕ|U∩O

)
, the

restriction of (U ,ϕ) to U ∩ O, is also an n-chart in C. (Hint: Make use of the result

in problem 1.1.1. Strictly speaking, by the way, we do not need to assume that U ∩ O

is non-empty. But that is the only case of interest.)

PROBLEM 1.1.3. Let (M, C) be an n-manifold and let T be the set of open subsets

of M. (i) Show that T is, in fact, a topology on M, i.e., it contains the empty set

and the set M, and is closed under finite intersections and arbitrary unions. (ii)

Show that T is the coarsest topology on M with respect to which ϕ : U → R
n is

continuous for all n-charts (U ,ϕ) in C.

Now we consider a few examples of manifolds. Let M be R
n, the set of all

ordered n-tuples of real numbers. Let U be any subset of M that is open (in

the standard topology on R
n), and let ϕ : U → R

n be the identity map. Then

(U ,ϕ) qualifies as an n-chart on M. Let C0 be the set of all n-charts on M of

this very special form. It is easy to check that C0 satisfies conditions (M1),

(M2), and (M3). If we take C to be the set of all n-charts on M compatible

with all n-charts in C0, then it follows (by proposition 1.1.1) that (M, C) is
an n-manifold. We refer to it as “the manifold R

n.” (Thus, one must distin-

guish among the point set R
n, the vector space R

n, the manifold R
n, and so

forth.)

Next we introduce the manifold Sn. The underlying set M is the set of

points x = (x1, . . . , xn+1) ∈ R
n+1 such that ‖x‖ = 1. For each i = 1, . . . , n + 1,

we set

U+
i = {(

x1, . . . , xi, . . . , xn+1) ∈ M : xi > 0
}
,

U−
i = {(

x1, . . . , xi, . . . , xn+1) ∈ M : xi < 0
}
,
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and define maps ϕ+
i : U+

i → R
n and ϕ−

i : U−
i → R

n by setting

ϕ+
i

(
x1, . . . , xn+1) = (

x1, . . . , xi−1, xi+1, . . . , xn+1) = ϕ−
i

(
x1, . . . , xn+1).(

U+
i andU−

i areupper and lowerhemisphereswith respect to thexi coordinate

axis; ϕ+
i and ϕ−

i are projections that erase the ith coordinate of
(
x1, . . . , xn+1

)
.
)

The (n + 1) pairs of the form (U+
i ,ϕ+

i ) and (U−
i ,ϕ−

i ) are n-charts on M. The

set C1 of all such pairs satisfies conditions (M1) and (M2). For all p ∈ M and

all ε > 0, if Bε ( p)∩ M is a subset of U+
i (respectively U−

i ), we now add to

C1 the n-chart that results from restricting (U+
i ,ϕ+

i ) (respectively (U−
i ,ϕ−

i )) to

Bε ( p)∩ M. The expanded set of n-charts C2 satisfies (M1), (M2), and (M3). If,

finally, we add to C2 all n-charts on M compatible with all n-charts in C2, we
obtain the n-manifold Sn.

We thus have the manifolds R
n and Sn for every n ≥ 1. From these we can

generate many more manifolds by taking products and cutting holes.

Let M1 = (M1, C1) be an n1-manifold and let M2 = (M2, C2) be an n2–

manifold. The product manifold M1 × M2 is an (n1 + n2)–manifold defined

as follows. The underlying point set is just the Cartesian product M1 × M2—

i.e., the set of all pairs ( p1, p2) where pi ∈ Mi for i = 1, 2. Let (U1,ϕ1) be an

n1-chart in C1 and let (U2,ϕ2) be an n2-chart in C2. We associate with them a

set U and a map ϕ : U → R
(n1+n2). We take U to be the product U1 × U2; and

given ( p1, p2) ∈ U , we take ϕ
(
( p1, p2)

)
to be (y1, . . . , yn1 , z1, . . . , zn2 ), where

ϕ1( p1) = (y1, . . . , yn1 ) and ϕ2( p2) = (z1, . . . , zn2 ). So defined, (U ,ϕ) qualifies

as an (n1 + n2)–chart on M1 × M2. The set of all (n1 + n2)–charts on M1 × M2

obtained in this manner satisfies conditions (M1), (M2), and (M3). If we now

throw in all n-charts on M1 × M2 that are compatible with all members of this

set, we obtain the manifold M1 × M2. Using this product construction, we

generate the 2−manifold R
1 × S1 (the “cylinder”), the 2−manifold S1 × S1

(the “torus”), and so forth.

Next, let (M, C) be an n-manifold, and let S be a closed proper subset of M.

(So M–S is a non-empty open subset of M.) Further, let C′ be the set of all

n-charts(U ,ϕ) inCwhereU ⊆ (M−S). Thenthepair(M−S, C′) isann-manifold

in its own right. (This follows as a corollary to the assertion in problem 1.1.2.)

A large fraction of the manifolds one encounters in relativity theory can be

obtained from themanifoldsR
n and Sn by taking products and excising closed

sets.

We now define “smoothmaps” betweenmanifolds. We do so in two stages.

First, we consider the special case in which the second manifold (i.e., the one

into which the first is mapped) is R. Then we consider the general case. Let

(M, C) be an n-manifold. We say that a map α : M → R is smooth (or C∞)
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if, for all n-charts (U ,ϕ) in C, α ◦ϕ−1 : ϕ[U] → R is smooth. (Here we use a

standard technique. To define something on an n-manifold, we use the charts

to pull things back to the context of R
n where the notion alreadymakes sense.)

Next let (M′, C′) be an m-manifold (with no requirement that m = n). We say

that a map ψ : M → M′ is smooth (or C∞) if, for all smooth maps α : M′ → R

on the second manifold, the composed map α ◦ψ : M → R is smooth. One

can check that the second definition is compatible with the first (see problem

1.1.4), and with the standard definition of smoothness that applies specifically

to maps of the form ψ : R
n → R

m .

PROBLEM 1.1.4. Let (M, C) be an n-manifold. Show that a map α : M → R is

smooth according to our first definition (which applies only to real-valued maps on

manifolds) iff it is smooth according to our second definition (which applies to maps

between arbitrary manifolds).

Let (M, C) and (M′, C′) be manifolds. The definition of smoothness just

given naturally extends to maps of the form ψ : O → M′ where O is an open

subset ofM (that neednot be all ofM). It does so becausewe can always think of

O as amanifold in its own rightwhenpairedwith the charts it inherits fromC—
i.e., the charts in C whose domains are subsets of O. On this understanding it

follows, for example, that if a map ψ : M → M′ is smooth, then its restriction

to O is smooth. It also follows that given any chart (U ,ϕ) in C, the maps

ϕ : U → R
n and ϕ−1 : ϕ[U] → M are both smooth.

The point mentioned in the preceding paragraph will come up repeatedly.

We shall often formulate definitions in terms of structures defined on mani-

folds and then transfer themwithout comment to open subsets ofmanifolds. It

should be understood in each case that we have inmind themanifold structure

induced on those open sets.

Given manifolds (M, C) and (M′, C′), a bijection ψ : M → M′ is said to

be a diffeomorphism if bothψ andψ−1 are smooth. Twomanifolds are said to be

diffeomorphic, of course, if there exists a diffeomorphism between them—i.e.,

between their underlying point sets. Diffeomorphic manifolds are as alike as

they can bewith respect to their “structure.” They can differ only in the identity

of their underlying elements.

1.2. Tangent Vectors

Let (M, C) be an n-manifold and let p be a point in M. In this section, we intro-

duce the notion of a “vector” (or “tangent vector” or “contravariant vector”) at p.
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We also show that the set of all vectors at p naturally forms an n-dimensional

vector space.

Consider first the familiar case ofR
n. A vector ξ at a point inR

n can be char-

acterized by its components (ξ1, . . . , ξn) with respect to the n coordinate axes.

This characterization is not available for arbitrary n-manifolds where no coor-

dinate curves are distinguished. But an alternate, equivalent characterization

does lend itself to generalization.

Let p be a point in R
n. We take S( p) to be the set of all smooth maps

f : O → R, where O is some open subset (or other) of R
n that contains p.

If f1 : O1 → R and f2 : O2 → R are both in S( p), then we can define new

maps ( f1 + f2) : O1 ∩ O2 → R and ( f1 f2) : O1 ∩ O2 → R in S( p) by setting

( f1 + f2)(q) = f1(q)+ f2(q) and ( f1 f2)(q) = f1(q) f2(q) for all points q in O1 ∩ O2.

Now suppose that ξ is a vector at p in R
n with components (ξ1, . . . , ξn) and

that f is in S( p). The directional derivative of f at p in the direction ξ is defined

by

(1.2.1) ξ ( f ) = ξ · (∇f )|p =
n∑

i=1

ξ i ∂ f

∂xi
( p).

It follows immediately from the elementary properties of partial derivatives

that, for all f1 and f2 in S( p),

(DD1) ξ ( f1 + f2) = ξ ( f1)+ ξ ( f2).

(DD2) ξ ( f1f2) = f1( p) ξ ( f2)+ f2( p) ξ ( f1).

(DD3) If f1 is constant, ξ ( f1) = 0.

Any map from S( p) to R satisfying these three conditions will be called

a derivation (or directional derivative operator) at p. Thus, every vector at p

defines, via equation (1.2.1), a derivation at p. Indeed, we shall see in a

moment that equation (1.2.1) defines a bijection between vectors at p (under-

stood as ordered n-tuples of reals) and derivations at p. This will give us

our desired alternate characterization of vectors in R
n. But first we need a

lemma.

LEMMA 1.2.1. Let f1 : O1 → R and f2 : O2 → R be elements of S( p) that agree

on some open set O ⊆ O1 ∩ O2 containing p. Then, for all derivations ξ at p,

ξ ( f1) = ξ ( f2).

Proof. Let h : O → R be the constantmap onO that assigns 1 to all points. Cer-

tainly h is in S( p). Themaps h f1 and h f2 have domainO and agree throughout



“530-47773_Ch01_2P.tex” — 1/23/2012 — 17:18 — page 9

−1

0

+1

differential geometry / 9

O; i.e., h f1 = h f2. So ξ (h f1) = ξ (h f2). But by (DD2) and (DD3),

ξ (h f1) = h( p)ξ ( f1)+ f1( p)ξ (h) = 1 ξ ( f1)+ f1( p) 0 = ξ ( f1).

Similarly, ξ (h f2) = ξ ( f2). So ξ ( f1) = ξ ( f2), as claimed. �

PROPOSIT ION 1.2.2. Equation (1.2.1) defines a bijection between vectors at p and

derivations at p.

Proof. Suppose first that ξ = (ξ1, . . . , ξn) and η = (η1, . . . , ηn) are vectors at p

that, via equation (1.2.1), determine the same derivation at p. Then ξ · (∇f )|p =
η · (∇f )|p, for all f in S( p). Consider the special case where f is the coordinate

map xi : R
n → R that assigns to a point in R

n its ith coordinate. We have

(∇xi)|p =
(
∂xi

∂x1 , . . . ,
∂xi

∂xi
, . . . ,

∂xi

∂xn

)
∣∣p = (0, . . . , 0, 1, 0, . . . , 0),

where the sole 1 in the far right n-tuple is in the ith position. So ξ i =
ξ · (∇xi)|p = η · (∇xi)|p = ηi. But this is true for all i = 1, . . . , n. Hence ξ = η.
Thus, the map from vectors at p to derivations at p determined by equation

(1.2.1) is injective.

Next, suppose that ξ is a derivation at p and that the numbers ξ1, . . . , ξn are

defined by ξ i = ξ (xi). We show that, for all f in S( p), ξ ( f ) =
n∑

i=1

ξ i ∂ f

∂xi
( p).

That is, we show that ξ can be realized as the image of (ξ1, . . . , ξn) under the

map determined by equation (1.2.1). This will establish that the map is also

surjective.

Let f : O → R be a map in S( p). By the preceding lemma, we may assume

that O is an open ball centered at p. (If f ′ is the restriction of f to an open

ball centered at p, ξ ( f ′) = ξ ( f ). So we lose nothing by working with f ′ rather
than f .) If x is a point in O, it follows by the fundamental theorem of calculus

that

f (x) = f ( p)+
∫ 1

0

d

dt
f ( p + t(x − p)) dt.

(We want the domain of f to be an open ball centered at p to insure that f is

defined at all points on the line segment connecting p and x.) By the “chain

rule,”

d

dt
f ( p + t(x − p)) =

n∑
i=1

(
∂ f

∂xi
( p + t(x − p))

)
(xi − pi).
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Inserting the right side of this equation into the integrand above, we arrive at

(1.2.2) f (x) = f ( p)+
n∑

i=1

gi(x) (x
i − pi),

where, for all i, themap gi : O → R is given by gi(x) =
∫ 1

0

∂ f

∂xi
( p + t(x − p)) dt.

The gi belong to S( p). It now follows from (DD1), (DD2), and (DD3) that

ξ ( f ) =
n∑

i=1

[
gi( p) ξ (xi − pi)+

(
(xi − pi)( p)

)
ξ (gi)

]
.

(Here we are construing the numbers f ( p) and p1, . . . , pn as constant func-

tions on O.) But (xi − pi)( p) = pi − pi = 0, and ξ (xi − pi) = ξ (xi)− ξ ( pi) =
ξ i − 0 = ξ i. So we have

ξ ( f ) =
n∑

i=1

ξ i gi( p).

But it follows fromequation (1.2.2) that
∂ f

∂xi
( p) = gi( p). So ξ ( f ) =

n∑
i=1

ξ i ∂ f

∂xi
( p),

as claimed. �

With proposition 1.2.2 as motivation, we now give our definition of “vec-

tors” at points of manifolds. Given a manifold (M, C) and a point p in M, let

S( p) be the set of smooth maps f : O → R where O is some open subset (or

other) of M that contains p. (Our prior remark about adding and multiplying

elements of S( p) carries over intact.) We take a vector (or tangent vector, or con-

travariant vector) at p to be a map from S( p) to R that satisfies (DD1), (DD2),

and (DD3).

The set of all vectors at p has a natural vector space structure (over R). If ξ

and η are vectors at p, and k is a real number, we can define new vectors ξ + η
and k ξ by setting

(ξ + η)( f ) = ξ ( f )+ η( f )

and

(k ξ )( f ) = k ξ ( f )

for all f in S( p). The vector space Mp so defined is called the tangent space to p.

We shall soon show that Mp has dimension n; i.e., it has the same dimension

as (M, C). To do so, we give a second characterization of vectors on manifolds

that is of independent interest.

Let γ : I → M be a smooth curve in M—i.e., a smooth map from an open

interval I ⊆ R intoM. (I is of the form (a, b), (− ∞, b), (a,+∞), or (− ∞,+∞),
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where a and b are real numbers. We knowwhat it means to say that γ : I → M

is smooth since, as noted toward the end of section 1.1, we can think of I as

a manifold in its own right when paired with the charts it inherits from the

manifold R.) Suppose s0 ∈ I and γ (s0) = p. We associate with γ a vector
→
γ p

at p by setting
→
γ p( f ) = d

ds

(
f ◦ γ )(s0) for all f in S( p). (This definition makes

sense since ( f ◦ γ ) is a smooth map from I into R.) It is easy to check that
→
γ p,

so defined, satisfies (DD1) – (DD3). For example, (DD2) holds for all f1 and f2
in S(p) since

→
γ p( f1 f2) =

(
d

ds

((
f1 f2

) ◦ γ ))(s0) =
(

d

ds

((
f1 ◦ γ ) ( f2 ◦ γ )))(s0)

= (
f1 ◦ γ )(s0)( d

ds

(
f2 ◦ γ ))(s0)+ (

f2 ◦ γ )(s0)( d

ds

(
f1 ◦ γ ))(s0)

= f1( p)
→
γ p( f2)+ f2( p)

→
γ p( f1).

→
γ p is called the tangent vector to γ at p.

Suppose now that (U ,ϕ) is an n-chart in our n-manifold (M, C). Associated
with (U ,ϕ) are coordinatemaps ui : U → R for i = 1, . . . , n defined by ui(q) =(
xi ◦ϕ)(q). (Thus, the number that ui assigns to a point q in M is the one that

xi assigns to the image point ϕ(q) inR
n. Equivalently, ui(q) is the ith coordinate

of ϕ(q). So ϕ(q) = (
u1(q), . . . , un(q)

)
.
)

Now let p be a point in U . We understand the ith coordinate curve through

ϕ( p) = (
u1( p), . . . , un( p)

)
in R

n to be the map from R to R
n given by

(1.2.3) s �→ (
u1( p), . . . , ui−1( p), ui( p)+ s, ui+1( p), . . . , un( p)

)
.

The image of the curve is a line through ϕ( p), parallel to the ith coordinate axis

through the origin (see figure 1.2.1). We can pull this curve back to U via ϕ−1

Figure 1.2.1. Coordinate curves on M with respect to (U,ϕ).



“530-47773_Ch01_2P.tex” — 1/23/2012 — 17:18 — page 12

−1

0

+1

12 / differential geometry

to obtain a smooth curve γi : I → U through p:

(1.2.4) γi(s) = ϕ−1(u1( p), . . . , ui−1( p), ui( p)+ s, ui+1( p), . . . , un( p)
)
.

Note that γi(0) = p. (We can afford to be vague about the domain I of γi since

we are interested only in the tangent to the curve at p. All that matters is

that 0 ∈ I. How do we know that γi is smooth? This follows because ϕ−1 is

smooth, and so γi is the composition of two smooth maps.) Extending our

previous usage, we now refer to γi as the ith coordinate curve through p with

respect to (U ,ϕ). (Note that coordinate curves through points inR
n are defined

outright, but coordinate curves through points inM are necessarily relativized

to n-charts.) This curve has a tangent
→
γ i |p at p. By the chain rule,

(1.2.5)
→
γ i |p( f ) = d

ds

(
f ◦ γi

)
(0) =

(
∂
(

f ◦ϕ−1
)

∂xi

)(
ϕ( p)

)
for all f in S( p). We note for future reference that, in particular, since u j =
x j ◦ϕ,

(1.2.6)
→
γ i |p(u j) =

(
∂x j

∂xi

)(
ϕ( p)

) = δij .

(Here δij is the Kronecker delta function that is 1 if i = j, and 0 otherwise.)

Sometimes the tangent vector
→
γ i is written as

∂

∂ui
and

→
γ i( f ) is written as

∂ f

∂ui
. Using this notation, and suppressing the point of evaluation p, equations

(1.2.5) and (1.2.6) come out as

(1.2.7)
∂ f

∂ui
= ∂( f ◦ϕ−1)

∂xi

and

(1.2.8)
∂u j

∂ui
= δij .

Using the tangent vectors
→
γ i |p, i = 1, . . . , n, we can show that Mp is n-

dimensional.

PROPOSIT ION 1.2.3. Let (M, C) be an n-manifold, let (U ,ϕ) be an n-chart in

C, let p be a point in U, and let γ1, . . . , γn be the n coordinate curves through p

with respect to (U ,ϕ). Then their tangent vectors
→
γ 1 |p, . . . ,

→
γ n |p at p form a basis

for Mp.
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Proof. First we show that the vectors are linearly independent. Let a1, . . . , an

be real numbers such that
n∑

i=1
ai

→
γ i |p = 0. We must show that the ai are all 0.

Now for all f in S( p), we have

0 =
(

n∑
i=1

ai
→
γ i |p

)
( f ) =

n∑
i=1

ai
→
γ i |p ( f ).

Consider the special case where f is the coordinate map u j = x j ◦ ϕ on U .

Then, by (1.2.6),
→
γ i |p( f ) = δij . So the equation reduces to 0 = aj . And this is

true for all j = 1, . . . , n.

Next, suppose that ξ is a vector at p. We show that it can be expressed as

a linear combination of the
→
γ i |p. First we associate with ξ a vector ξ̂ at ϕ( p).

(In what follows, we shall be going back and forth between the context of

M and R
n. To reduce possible confusion, we shall systematically use carets

for denoting objects associated with R
n). We take ξ̂ to be the vector whose

action on elements f̂ : Ô → R in S
(
ϕ( p)

)
is given by ξ̂ ( f̂ ) = ξ( f̂ ◦ϕ). (This

makes sense since f̂ ◦ϕ is an element of S( p) with domain ϕ−1
[
ϕ[U] ∩ Ô

]
.
)

By proposition 1.2.2 (applied to ξ̂ at ϕ( p)), we know that there are real numbers

ξ1, . . . , ξn such that

ξ̂ ( f̂ ) =
n∑

i=1

ξ i ∂ f̂

∂xi

(
ϕ( p)

)
for all f̂ in S

(
ϕ( p)

)
. Now let f :O → R be an arbitrary element of S( p).

Then f ◦ϕ−1 :ϕ[O ∩ U] → R belongs to S
(
ϕ( p)

)
. So, taking f̂ = f ◦ϕ−1 in

the preceding equation and using equation (1.2.5),

ξ̂
(

f ◦ϕ−1) =
n∑

i=1

ξ i ∂
(
f ◦ϕ−1

)
∂xi

(
ϕ( p)

) =
n∑

i=1

ξ i →
γ i |p( f ).

But recallinghow ξ̂ wasdefined, we alsohave ξ̂
(

f ◦ϕ−1
) = ξ(( f ◦ϕ−1

) ◦ϕ) =
ξ ( f ). Thus, ξ ( f ) =

n∑
i=1
ξ i

→
γ i |p( f ) for all f in S( p); i.e., ξ =

n∑
i=1
ξ i

→
γ i |p. So, as

claimed, ξ can be expressed as a linear combination of the
→
γ i |p. �

It follows from proposition 1.2.3, of course, that every vector ξ at p has a

unique representation in the form ξ =
n∑

i=1
ξ i

→
γ i |p. Equivalently, by equation

(1.2.5),

(1.2.9) ξ ( f ) =
n∑

i=1

ξ i →
γ i |p( f ) =

n∑
i=1

ξ i ∂
(

f ◦ϕ−1
)

∂xi

(
ϕ( p)

)
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for all f in S( p). We refer to the coefficients ξ1, . . . , ξn as the components of ξ

with respect to (U ,ϕ).

We know that every smooth curve through p determines a vector at p,

namely its tangent vector at that point. Using proposition 1.2.3, we can show,

conversely, that every vector at p can be realized as the tangent vector of a

smooth curve through p.

PROPOSIT ION 1.2.4. Given an n-manifold (M, C), a point p in M, and a vector

ξ at p, there is a smooth curve γ through p such that
→
γ p = ξ .

Proof. Let (U ,ϕ) be an n-chart in C with p ∈ U , and let ui(i = 1, . . . , n) be the

corresponding coordinatemaps onU . (Recall that ui = xi ◦ ϕ.) By proposition
1.2.3, we know that there are real numbers ξ1, . . . , ξn such that ξ =

n∑
i=1
ξ i

→
γ i |p.

Now let γ : I → U be the smooth map defined by

γ (s) = ϕ−1 (u1( p)+ ξ1s, . . . , un( p)+ ξns
)
.

Note that γ (0) = p.
(
The exact specification of the domain of γ does notmatter,

but we may as well take it to be the largest open interval I containing 0 such

that, for all s in I,
(
u1( p)+ ξ1s, . . . , un( p)+ ξns

)
is in ϕ[U].) For all f in S( p),

→
γ p( f ) = d

ds

(
f ◦ γ )(0) =

n∑
i=1

(
∂
(

f ◦ϕ−1
)

∂xi

(
ϕ( p)

))
ξ i

=
n∑

i=1

ξ i →
γ i |p( f ) = ξ ( f ).

(The second equality follows by the “chain rule,” and the third by equation

[1.2.5].) Thus,
→
γ p = ξ . �

So far, we have two equivalent characterizations of “vectors” at a point p

of a manifold. We can take them to be derivations—i.e., mappings from S( p)

to R satisfying conditions (DD1)–(DD3)—or take them to be tangents at p to

smooth curves passing through p. Wemention, finally, a third characterization

that was the standard one before “modern” coordinate-free methods became

standard in differential geometry. It requires a bit of preparation. (This third

characterization will play no role in what follows, and readers may want to

jump to the final paragraph of the section.)

Let (U1,ϕ1) and (U2,ϕ2) be n-charts on our background manifold (M, C)
such that (U1 ∩ U2) = ∅. Let p be a point in (U1 ∩ U2). Further, for all
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i = 1, . . . , n, let x′i : ϕ1[U1 ∩ U2] → R be the map defined by

x′i = xi ◦ϕ2 ◦ϕ−1
1 ,

where xi is the ith coordinate map on R
n. We can think of the x′i as providing

a second coordinate system on ϕ1[U1 ∩ U2] that is connected to the first by a

smooth, invertible transformation,

(x1, . . . , xn) �→ (x′1(x1, . . . , xn), . . . , x′n(x1, . . . , xn)).

PROPOSIT ION 1.2.5. Under the assumptions of the preceding paragraph, let ξ

be a non-zero vector at p whose components with respect to (U1,ϕ1) and (U2,ϕ2)

are (ξ1, . . . , ξn) and (ξ ′1, . . . , ξ ′n). Then the components obey the transformation

law

(1.2.10) ξ ′i =
n∑

j=1

ξ j ∂x
′i

∂x j
(ϕ1( p)).

(Of course, they also obey its symmetric counterpart, with the roles of xi and ξ i

systematically interchanged with those of x′i and ξ ′i .)

Proof. Let f be any element of S( p). Then

(1.2.11)

n∑
j=1

ξ j ∂
(

f ◦ϕ−1
1

)
∂x j

(
ϕ1( p)

) = ξ ( f ) =
n∑

j=1

ξ ′j ∂
(

f ◦ϕ−1
2

)
∂x j

(
ϕ2( p)

)
.

Here we have simply expressed the action of ξ on f in terms of the two sets

of components, using equation (1.2.9). Hence, in particular, if f = x′i ◦ϕ1 =
xi ◦ϕ2 ◦ϕ−1

1 ◦ϕ1 = xi ◦ϕ2, we get
n∑

j=1

ξ j ∂x
′i

∂x j
(ϕ1( p)) =

n∑
j=1

ξ ′j ∂xi

∂x j
(ϕ2( p)) = ξ ′i. �

In what follows, let C( p) be the set of charts in C whose domains contain p.

PROBLEM 1.2.1. Let ξ be a non-zero vector at p, and let (k1, . . . , kn) be a non-zero

element of R
n. Show there exists an n-chart in C( p) with respect to which ξ has

components (k1, . . . , kn).

(Hint: Consider any n-chart (U1,ϕ1) in C( p), and let (ξ1, . . . , ξn) be the com-

ponents of ξ with respect to (U1,ϕ1). Then there is a linear map from R
n to itself

that takes (ξ1, . . . , ξn) to (k1, . . . , kn). Let the associated matrix have elements {aij}.
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So, for all i = 1, . . . , n, ki =
n∑

j=1

aij ξ
j . Now consider a new chart (U2,ϕ2) in C( p)

where U2 = U1 and ϕ2 is defined by the condition

xi ◦ϕ2 =
n∑

j=1

aij (x
j ◦ϕ1).

Show that the components of ξ with respect to (U2,ϕ2) are (k1, . . . , kn).)

We have just seen that each vector ξ at p (understood, say, as a derivation)

determines a map from C( p) to R
n satisfying the transformation law (1.2.10).

(The map assigns to each n-chart the components of the vector with respect to

the n-chart.) It turns out, conversely, that every map from C( p) to R
n satisfying

equation (1.2.10) determines a unique vector ξ at p. It does so as follows. Let

(U1,ϕ1) be an n-chart in C( p). We stipulate that, for all maps f in S( p),

(1.2.12) ξ ( f ) =
n∑

j=1

ξ j ∂
(

f ◦ϕ−1
1

)
∂x j

(
ϕ1( p)

)
,

where (ξ1, . . . , ξn) is the element of R
n associated with (U1,ϕ1). We need only

verify that this definition is independent of our choice of n-chart.

Let (U2,ϕ2) be any other n-chart in C( p) with associated n-tuple

(ξ ′1, . . . , ξ ′n). Then, by assumption, the latter are related to (ξ1, . . . , ξn) by

equation (1.2.10). Now consider the map f ◦ϕ−1
1 : ϕ1[U1 ∩ U2] → R. It can

be realized as the composition of two maps, f ◦ϕ−1
1 = ( f ◦ϕ−1

2 ) ◦ (ϕ2 ◦ϕ−1
1 ).

Hence, by the chain rule,

∂
(

f ◦ϕ−1
1

)
∂x j

(
ϕ1( p)

) =
n∑

k=1

∂
(

f ◦ϕ−1
2

)
∂xk

(
ϕ2( p)

) ∂(xk ◦ϕ2 ◦ϕ−1
1

)
∂x j

(
ϕ1( p)

)

=
n∑

k=1

∂
(

f ◦ϕ−1
2

)
∂xk

(
ϕ2( p)

) ∂x′k

∂x j

(
ϕ1( p)

)
,

for all j. Hence, by equations (1.2.12) and (1.2.10),

ξ ( f ) =
n∑

j=1

ξ j

[
n∑

k=1

∂
(

f ◦ϕ−1
2

)
∂xk

(
ϕ2( p)

) ∂x′k

∂x j

(
ϕ1( p)

)]

=
n∑

k=1

⎡⎣ n∑
j=1

ξ j ∂x
′k

∂x j

(
ϕ1( p)

)⎤⎦∂( f ◦ϕ−1
2

)
∂xk

(
ϕ2( p)

)= n∑
k=1

ξ ′k ∂
(

f ◦ϕ−1
2

)
∂xk

(
ϕ2( p)

)
.
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Thus, our definition of ξ is, indeed, independent of our choice of n-chart.

We could equally well have formulated equation (1.2.12) using (U2,ϕ2) and

(ξ ′1, . . . , ξ ′n).
The upshot is that there is a canonical one-to-one correspondence between

vectors at p and maps from C( p) to R
n satisfying equation (1.2.10). This gives

us our promised third (classical) characterization of the former.

There is a helpful picture that accompanies our formal account of tangent

vectors and tangent spaces. Think about the special case of a 2-manifold (M, C)
that is a smooth surface in three-dimensional Euclidean space. In this case, the

tangent space to themanifoldMp at a point p is (or can be canonically identified

with) the plane that is tangent to the surface at p. In traditional presentations

of differential geometry, vectors at points of manifolds are sometimes called

“infinitesimal displacements.” The picture suggests where this term comes

from. A displacement from p on the surface M is approximated by a tangent

vector inMp. The degree of approximation increases as the displacement onM

shrinks. In the limit of “infinitesimal displacements,” the two coincide. (Quite

generally, statements about “infinitesimal objects” can be read as statements

about corresponding objects in tangent spaces.)

1.3. Vector Fields, Integral Curves, and Flows

In what follows, let (M, C) be an n-manifold. (We shall often supress explicit

reference to C.) A vector field on M is a map ξ that assigns to every point p

in M a vector ξ ( p) in Mp. (Sometimes we shall write ξ|p for the value of the

field ξ at p rather than ξ ( p).) We can picture it as field of arrows on M. Given

any smooth map f : M → R, ξ induces a map ξ ( f ) : M → R defined by

ξ ( f )( p) = ξ|p( f ). If ξ ( f ) is smooth for all such f , we say that the vector field ξ

itself is smooth.

The proposed picture of a vector field as a field of arrows on M suggests

that it should be possible to “thread” the arrows—at least when the field is

smooth—to form a network of curves covering M. (See figure 1.3.1.) In fact,

this is possible.

Let ξ be a smooth vector field on M. We say that a smooth curve γ : I → M

is an integral curve of ξ if, for all s ∈ I,
→
γ γ (s)= ξ

(
γ (s)

)
—i.e., if the tangent

vector to γ at γ (s) is equal to the vector assigned by ξ to that point. Intu-

itively, an integral curve of ξ threads the arrows of ξ and is so parametrized

that it “moves quickly” (it covers a lot of M with each unit increment of the

parameter s) where ξ is large and “slowly” where ξ is small. Let us also

say that a smooth curve γ : I → M has initial value p if 0 ∈ I and γ (0) = p.
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Figure 1.3.1. Integral curves “threading” the vectors of a smooth vector field.

The following is the basic existence and uniqueness theorem for integral

curves.

PROPOSIT ION 1.3.1. Let ξ be a smooth vector field on M and let p be a point in

M. Then there is an integral curve γ : I → M of ξ with initial value p that has the

following maximality property: if γ ′ : I′ → M is also an integral curve of ξ with

initial value p, then I′ ⊆ I and γ ′(s) = γ (s) for all s ∈ I′.

It is clear that the curve whose existence is guaranteed by the proposition is

unique. (For if γ ′ : I′ → M is another, we have I′ ⊆ I and I ⊆ I′, so I′ = I, and

also γ ′(s) = γ (s) for all s ∈ I′.) It is called the maximal integral curve of ξ with

initial value p. It also clearly follows from the proposition that if γ is an integral

curve of ξ with initial value p, and if its domain is R, then γ is maximal. (The

converse is false. Maximal integral curves need not have domain R. We shall

soon have an example.) The proof of the proposition, which we skip, makes

use of the basic existence and uniqueness theorem for solutions to ordinary

differential equations. Indeed, the proposition can be understood as nothing

but a geometric formulation of that theorem. (See, for example, Spivak [57,

volume 1, chaper 5].)

Here are some examples. In the following, let x1 and x2 be the stan-

dard coordinate maps on R
2. (So if p = ( p1, p2) ∈ R

2, then x1( p) = p1 and

x2( p) = p2.)

(1) Let ξ be the “horizontal” vector field
∂

∂x1 on R
2.
(
Given any point p and

any function f in S( p), the vector
∂

∂x1 |p at p assigns to f the number

∂ f

∂x1 ( p).
)
The maximal integral curve of ξ with initial value p = ( p1, p2)

is the map γ : R → R
2 with
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γ (s) = (
p1 + s, p2

)
.

(The “vertical” vector field
∂

∂x2 is defined similarly.)

(2) Let ξ be the “rotational” vector field −x2 ∂

∂x1 + x1 ∂

∂x2 on R
2. The maxi-

mal integral curve of ξ with initial value p = ( p1, p2) is the map γ : R →
R
2 with

γ (s) = (
p1 cos s − p2 sin s, p1 sin s + p2 cos s

)
.

The image of γ is a circle, centered at (0, 0), that passes through p. (In

the degenerate case where p is (0, 0), γ is the constant curve that sits at

(0, 0).)

(3) Let ξ be the “radial expansion” vector field x1 ∂

∂x1 + x2 ∂

∂x2 on R
2. The

maximal integral curve of ξ with initial value p = ( p1, p2) is the map

γ : R → R
2 with

γ (s) = ( p1 es, p2 es).

If ( p1, p2) = (0, 0), the image of γ is a radial line starting from, but not

containing, (0, 0). If p is (0, 0), γ is the constant curve that sits at (0, 0).

Let us check one of these—say (2). The indicated curve is, in fact, an integral

curve of the given vector field since, for all s ∈ R, and all f ∈ S(γ (s)), by the

chain rule,

→
γ γ (s) ( f ) = d

ds

(
f ◦ γ )(s) = d

ds
f
(

p1 cos s − p2 sin s, p1 sin s + p2 cos s
)

= ∂ f

∂x1 (γ (s))
(−p1 sin s − p2 cos s

)+ ∂ f

∂x2 (γ (s))
(

p1 cos s − p2 sin s
)

= ∂ f

∂x1 (γ (s))
(−x2(γ (s))

)+ ∂ f

∂x2 (γ (s))
(
x1(γ (s))

)
=

(
−x2 ∂

∂x1 + x1 ∂

∂x2

)
|γ (s)

( f ).

PROBLEM 1.3.1. Let ξ be the vector field x1 ∂

∂x1 − x2 ∂

∂x2 on R
2. Show that the

maximal integral curve of ξ with initial value p = ( p1, p2) is the map γ : R → R
2

with γ (s) = ( p1 es, p2 e−s). (The image of γ is a (possibly degenerate) hyperbola

satisfying the coordinate condition x1x2 = p1p2.)

Next we consider reparametrizations of integral curves.
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PROPOSIT ION 1.3.2. Let ξ be a smooth vector field on M, let γ : I → M be an

integral curve of ξ , and let α : I′ → I be a diffeomorphism taking the interval I′ to

the interval I. Consider the reparametrized curve γ ′ = γ ◦α : I′ → M.

(1) If there is a number c such that α(s) = s + c for all s ∈ I′, then γ ′ is an integral

curve of ξ .

(2) Conversely, if γ ′ is an integral curve of ξ and if ξ is everywhere non-zero on

γ [I], then there is a number c such that α(s) = s + c for all s ∈ I′.

Proof. For all s ∈ I′ and all functions f ∈ S(γ ′(s)), it follows by the chain rule

(and the definition of tangents to curves) that

→
γ ′
γ ′(s)( f ) = d

ds

(
f ◦ γ ′)(s) = d

ds

(
f ◦ γ ◦α)(s) =

(
d

dt

(
f ◦ γ ))(α(s))dα

ds
(s)

= →
γ γ (α(s))( f )

dα

ds
(s).

That is, for all s ∈ I′,

→
γ ′
γ ′(s) =→

γ γ (α(s))
dα

ds
(s).(1.3.1)

Since γ is an integral curve of ξ , we also have

→
γ γ (α(s))= ξ

(
γ (α(s))

)
(1.3.2)

for all s ∈ I′. Now γ ′ is an integral curve of ξ iff
→
γ ′
γ ′(s) = ξ(γ ′(s)

) = ξ(γ (α(s)))
for all s ∈ I′. So, by equations (1.3.1) and (1.3.2), γ ′ is an integral curve of ξ iff

(1.3.3) ξ
(
γ (α(s))

) dα

ds
(s) = ξ(γ (α(s)))

for all s ∈ I′. This equation is the heart of the matter. If there is a c such

that α(s) = s + c for all s ∈ I′, then
dα

ds
= 1 everywhere, and so it follows

immediately that equation (1.3.3) holds for all s ∈ I′. This gives us clause (1).
Conversely, if equation (1.3.3) does hold for all s ∈ I′, it must be the case that
dα

ds
= 1 everywhere. (Here we use our assumption that ξ

(
γ (α(s))

)
is non-zero

for all s ∈ I′.) So, clearly, αmust be of the formα(s) = s + c for somenumber c.

This gives us (2). �
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The qualification in the the second clause of the proposition—that ξ be non-

zero on the image of γ—is necessary. (See problem 1.3.3.) The first clause of

the proposition tells us that if γ : I → M is an integral curve of ξ , then so is the

curve defined by setting γ ′(s) = γ (s + c). We say that γ ′ is derived from γ by

“shifting its initial value.” Several useful facts about integral curves follow from

proposition 1.3.2 (together with proposition 1.3.1). We list three as problems.

Thefirst is a slightlymore general formulation of the existence anduniqueness

theorem.

PROBLEM 1.3.2. (Generalization of proposition 1.3.1) Again, let ξ be a smooth

vector field on M, and let p be a point in M. But now let s0 be any real number (not

necessarily 0). Show that there is an integral curve γ : I → M of ξ with γ (s0) = p

that is maximal in this sense: given any integral curveγ ′ : I′ → M of ξ , ifγ ′(s0) = p,

then I′ ⊆ I and γ ′(s) = γ (s) for all s in I′.
(Hint: Invoke proposition 1.3.1 and shift initial values.)

PROBLEM 1.3.3. (Integral curves that go nowhere) Let ξ be a smooth vector field

on M, and let γ : I → M be an integral curve of ξ . Suppose that ξ vanishes (i.e.,

assigns the zero vector) at some point p ∈ γ [I]. Then the following both hold.

(1) γ (s) = p for all s in I; that is, γ is a constant curve.

(2) The reparametrized curve γ ′ = γ ◦α : I′ → M is an integral curve of ξ for

all diffeomorphisms α : I′ → I.

(Hint: Think about the constant curve, with domain R, that assigns p to all s.)

PROBLEM 1.3.4. (Integral curves cannot cross) Let γ : I → M and γ ′ : I′ → M

be integral curves of ξ that are maximal (in the sense of problem 1.3.2) and satisfy

γ (s0) = γ ′(s′0). Then the two curves agree up to a parameter shift: γ (s) = γ ′(s +
(s′0 − s0)

)
for all s ∈ I.

Again, let ξ be a smooth vector field on M. We say that ξ is complete if,

for every point p in M, the maximal integral curve of ξ with initial point p

has domain R—i.e., is a curve of the form γ : R → M. For example, let M

be the restriction of R
2 to the vertical strip

{
( p1, p2) : −1 < p1 < 1

}
, let ξ be

the restriction of the “horizontal” vector field
∂

∂x1 (discussed above) to M,

and let p = (0, 0). The maximal integral curve of ξ with initial value p is the

map γ : (− 1, 1) → M with γ (s) = (s, 0). So ξ is not complete. (Intuitively,

moving along any maximal integral curve of ξ in either direction, one “runs
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out of space” in finite parameter time.) In contrast, the “vertical field”
∂

∂x2

is complete on M. And
∂

∂x1 itself is complete when construed as a field on

(all of) R
2.

Next, let M be the puncturedmanifold R
2 − {(0, 0)}, and let ξ be the restric-

tion of the radial vector field (the third in our list of examples) to M. Then

ξ is complete. This follows directly from our determination of the maximal

integral curves of ξ . It also follows from the assertion in the next problem.

(Intuitively, the vectors of ξ rapidly get small as one approaches the puncture

point, and so—moving “backward” along a maximal integral curve of ξ—one

cannot reach that point in finite parameter time.)

PROBLEM 1.3.5. Let ξ be a smooth vector field on M that is complete. Let p be a

point in M. Show that the restriction of ξ to the punctured manifold M − {p} is

complete (as a field on M − {p}) iff ξ vanishes at p.

The maximal integral curves of a smooth vector field suggest the flow lines

of a fluid. It turns out to be extremely useful to think of them this way. As

above, let ξ be a smooth vector field on the manifold M. We associate with ξ

a set Dξ ⊆ R × M and a “flow map” � : Dξ → M as follows. We take Dξ to be

the set of all points (s, p) with the property that if γ : I → M is the maximal

integral curve of ξ with initial value p, then s ∈ I; and in this case we set

�(s, p) = γ (s). (That is, if we start at p, and move s units of parameter distance

along the maximal integral curve with initial value p, we arrive at �(s, p).) So,

in particular, (0, p) is in Dξ for all p in M, and �(0, p) = p for all such. If the

vector field ξ is complete, Dξ = R × M. But, in general, Dξ is a proper subset

of the latter. (Starting at a point p, it may not be possible to move s units of

parameter distance along the maximal integral curve with initial value p.) We

have the following basic result.

PROPOSIT ION 1.3.3. Let ξ be a smooth vector field on M, and let � : Dξ → M

be as in the preceding paragraph. Then Dξ is an open subset of R × M, and � is

smooth.

The proposition asserts, in effect, that solutions to ordinary differential

equations depend smoothly on initial conditions. (See Spivak [57, volume 1,

chapter 5].)

Assume for the moment that our smooth vector field ξ on M is com-

plete. (So Dξ = R × M.) In this case, given any s ∈ R, we can define a map
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�s : M → M by setting �s( p) = �(s, p). It follows from proposition 1.3.3 that

�s is smooth. (�s can be realized as a composite map M → R × M → M with

action p �→ (s, p) �→ �(s, p), and each of the component maps is smooth.) Fur-

thermore, the indexed set {�s}s∈R has a natural group structure under the

operation of composition
(
�s ◦�t = �s+t

)
, with the identity map �0 playing

the role of the unit element. (See the next paragraph.) It follows that �s is

injective and that its inverse (�s)−1 = �−s is smooth. So each �s is a diffeo-

morphism thatmapsM onto itself. We say that {�s}s∈R is a one-parameter group

of diffeomorphisms of M generated by ξ . Note that, for all p in M, the map from

R to M defined by s �→ �s( p) is just themaximal integral curve of ξ with initial

value p.

That �s ◦�t = �s+t for all s and t follows as a consequence of the assertion

in problem 1.3.4. Given any point p in M, and any t ∈ R, let γ : I → M be the

maximal integral curve of ξ with initial value �t( p). Then γ (s) = �s
(
�t( p)

)
for

all s. Let γ ′ : I′ → M be the maximal integral curve of ξ with initial value p.

Then γ ′(t) = �t( p) = γ (0) and γ ′(s + t) = �s+t( p) for all s. Since γ (0) = γ ′(t),
it follows from the assertion in the problem that γ (s) = γ ′(s + t) for all s. So

we have �s
(
�t( p)

) = γ (s) = γ ′(s + t) = �s+t( p) for all p, t, and s.

Now recall the three complete vector fields on R
2 considered above. Each

defines a one-parameter group of diffeomorphisms {�}s∈R on R
2. The pattern

of association is as follows.

Field Associated Diffeomorphisms
∂

∂x1 �s( p1, p2) = ( p1 + s, p2)

−x2 ∂

∂x1 + x1 ∂

∂x2 �s( p1, p2) = (
p1 cos s − p2 sin s, p1 sin s + p2 cos s

)
x1 ∂

∂x1 + x2 ∂

∂x2 �s( p1, p2) = ( p1 es, p2 es)

In the three cases, respectively, �s is a displacement by the amount s in the

x1 direction, a (counterclockwise) rotation through s radians with center point

(0, 0), and a radial expansion by the factor es with center point (0, 0).

Let us now drop the assumption that ξ is complete. Then the “flow maps”

�s : M → M will not, in general, be defined for all s. But by paying attention to

domains of definition, we can still associate with ξ a set of “local flow maps.”

It follows from proposition 1.3.3 that, given any point p in M, there are both

an open interval I ⊆ R containing 0 and an open subset U ⊆ M containing p

such that I × U ⊆ Dξ . If we set �s(q) = �(s, q) for all (s, q) ∈ I × U , then the

following all hold.
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(1) �s : U → �s[U] is a diffeomorphism for all s ∈ I.

(2) (�s ◦�t)(q) = �s+t(q) for all s, t, and q such that {s, t, s + t} ⊆ I and

{q,�t(q)} ⊆ U .

(3) For all q in U , the map γ : I → M defined by γ (s) = �s(q) is a smooth

integral curve of ξ with initial value q.

In this case, we say that the collection {�s : U → �s[U]}s∈I is a local one-

parameter group of diffeomorphisms generated by ξ .

1.4. Tensors and Tensor Fields on Manifolds

We start with some linear algebra. We shall return to manifolds shortly.

Let V be an n-dimensional vector space. (Throughout this book, “vector

spaces” should be understood to be vector spaces over R.) Linear functionals

(or covariant vectors or co-vectors) over V are linear maps from V to R. The set

of all linear functionals on V has a natural vector space structure. Given two

linear functionals α and β, and a real number k, we take α+β and kα to be

the linear functionals defined by setting

(α+β)(ξ ) = α(ξ )+β(ξ ),
(kα)(ξ ) = kα(ξ ),

for all ξ in V . The vector space V∗ of linear functionals on V is called the dual

space of V . It is easy to check that V∗ has dimension n.
(
If

1
ξ ,

2
ξ , . . . ,

n
ξ form a

basis for V , then the elements 1
α, 2
α, . . . , n

α in V∗ defined by

i
α
( j

ξ
) = δij

form a basis for V∗ called the dual basis of
1
ξ ,

2
ξ , . . . ,

n
ξ .
)

The vector space V∗ has its own dual space V∗∗, consisting of linear maps

from V∗ to R. V∗∗ is naturally isomorphic to V under the mapping ϕ : V →
V∗∗, defined by setting ϕ(ξ )(α) = α(ξ ) for all ξ in V and all α in V∗; i.e., we
require that ϕ(ξ ) make the same assignment to α that α itself makes to ξ .

In our development of tensor algebra we shall use the “abstract index nota-

tion” introduced by Roger Penrose. (See Penrose and Rindler [51] for a

more complete and systematic treatment.) We start by considering an infi-

nite sequence of vector spaces Va,Vb, . . . ,Va1 ,Vb1 , . . . , all isomorphic to

our original n-dimensional vector space V . Here a, b, . . ., a1, b1, . . . are

elements of some (unspecified) infinite labeling set and are called “abstract

indices.” They must be distinguished from more familiar “counting indices.”
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We think of isomorphisms being fixed once and for all, and regard ξa, ξ b, . . .

as the respective images in Va,Vb, . . . of ξ in V . The spaces Va,Vb, . . . have

their respective dual spaces (Va)∗, (Vb)∗, . . . . We designate these with low-

ered indices: Va,Vb, . . . . Our fixed isomorphisms between V and Va,Vb, . . .

naturally extend to isomophisms between V∗ and Va,Vb, . . . . Given α in V∗

we take its image in Va to be the unique element αa satisfying the condition

αa(ξa) = α(ξ ) for all ξ in V . It is convenient to drop parentheses and write

αa(ξa) as αa ξ
a or ξa αa. Thus we have αa ξ

a = ξa αa = αb ξ
b = ξ b αb, and so

forth. (In what follows, our notation will be uniformly commutative. In a

sense, the notation incorporates the canonical isomorphism of V with V∗∗.
Rather than thinking of ξa αa asαa(ξa), we can think of it as the “action of ξa on

αa” and understand that as the action on αa of the vector in (Va)∗∗ canonically
isomorphic to ξa.)

Indices tell us where vectors and linear functionals reside. So rather than

writing, for example, “for all vectors ξa in Va . . . ,” it will suffice to write “for

all vectors ξa . . . .”

We have introduced vector spaces Va,Vb, . . . ,Va,Vb, . . . . Now we jump

to a larger collection of indexed spaces Va1...ar
b1...bs

(r , s ≥ 1) where the indices

a1, . . . , ar , b1, . . . , bs are all distinct. (The order of superscript indices here will

make no difference; nor will that of subscript indices. So, for example, Vad
bc =

Vda
bc = Vad

cb = Vda
cb . But it will make a difference whether particular indices

appear in superscript or subscript position—e.g., Va
b = Vb

a.) To keep the nota-

tion under control, we shall work first with a representative special case: Vab
c .

The elements of this space are multilinear maps that assign real numbers

to unordered triples of the form {μa, νb, γ c}—i.e., triples containing one ele-

ment each from Va,Vb, and Vc . (We shall write these triples, indifferently, as

μa νb γ
c or νb μa γ

c or γ c νb μa or νb γ
c μa, and so forth.) By “multilinearity”

we mean that if λ is in Vab
c , then

λ
(
(μa + kρa)νb γ

c) = λ(μa νb γ
c )+ kλ(ρa νb γ

c ),

λ
(
μa(νb + k τb)γ

c) = λ(μa νb γ
c )+ kλ(μa τb γ

c ),

λ
(
μa νb(γ

c + k δc )
) = λ(μa νb γ

c )+ kλ(μa νb δ
c ),

for all μa, ρa, νb, τb, γ c , δc and all real numbers k. The set Vab
c has a natural

vector space structure. If λ and λ′ are two elements of Vab
c and k is a real

number, we can define new elements (λ+ λ′) and (kλ) in Vab
c by setting

(λ+ λ′)(μa νb γ
c ) = λ(μa νb γ

c )+ λ′(μa νb γ
c ),

(kλ)(μa νb γ
c ) = kλ(μa νb γ

c ),
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for allμa, νb, γ c . The vector space Vab
c has dimension n3. To see this, first note

that any triple of vectors {ϕa,ψb,χc} determines an element in Vab
c under the

rule of association

{ϕa,ψb,χc} : μa νb γ
c �−→ (ϕaμa)(ψb νb)(χc γ

c ).

Wewrite this element as ϕaψb χc or χc ϕ
aψb orψb χc ϕ

a, and so on. The order

of the terms makes no difference. Next, let
1
ξa,

2
ξa, . . . ,

n
ξa be a basis for Va with

dual basis 1
αa,

2
αa, . . . ,

n
αa. (Here we have abstract and counting indices side by

side.) One can easily verify that the set of all triples of the form
i
ξa

j

ξb k
αc , with

i, j, k ranging from 1 to n, forms a basis for Vab
c . Thus, every element of Vab

c

can be uniquely expressed in the form

n∑
i=1

n∑
j=1

n∑
k=1

ijk
c

i
ξa

j

ξb
k
αc .

Sometimes it will be convenient to recast sums such as this in terms of a single

summation index and absorb coefficients—i.e., in the form

n3∑
i=1

i
μa i
νb

i
τc .

(Rather than three indices that range from 1 to n, we have one index that

ranges from 1 to n3.)

Generalizing now, the tensor space Va1...ar
b1...bs

(r , s ≥ 1) consists of multilinear

maps assigning real numbers to unordered (r + s)-tuples, containing one ele-

ment each from Va1 , . . . ,Var ,V
b1 , . . . ,Vbs . It is a vector space with dimension

n(r+s), and its elements can be realized as linear combinations of the form

n(r+s)∑
i=1

i
μa1 · · · i

νar i
γ b1 · · · i

λbs .

We have assumed (r , s ≥ 1). But the definition scheme we have given makes

sense, too, when r = 0 and s = 1, and when r = 1 and s = 0. In the former

case, we recover indexed dual spaces as previously characterized. (The ele-

ments of Vb, recall, are just linear maps from Vb to R). And in the latter case,

we recover our initial indexed vector spaces, at least if we allow for the identifi-

cation of those spaces with their “double duals.” We can even allow r = s = 0

and construe the tensor space over V with no indices as just R. The elements

of tensor spaces are called tensors. Tensor indices in superscript (respec-

tively, subscript) position are sometimes called “contravariant” (respectively,

“covariant”) indices.
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We have noted that abstract indices give information about where vectors

and co-vectors reside; e.g.,μa belongs to the spaceVa and νb belongs toVb. We

can extend this pattern of “residence labeling” to elements of arbitrary tensor

spaces. For example, we can attach the index configuration ab
c to elements of

Vab
c and make statements of the form “for all λab

c . . . .” But things are a bit

delicate in the case where the total number of indices present is greater than

one.

Though the order of superscript indices and the order of subscript indices

make no difference when it comes to labeling tensor spaces, they do make a

difference when it comes to labeling tensors themselves. For example, though

Vab = Vba, for an arbitrary element αab of that space it need not be the case

that αab = αba. (The latter equality captures the condition, not true in general,

that the tensor αab is “symmetric.”) To see why, suppose, once again, that
1
ξa,

2
ξa, . . . ,

n
ξa is a basis for Va and 1

αa,
2
αa, . . . ,

n
αa is its dual basis. Let αab be

the element i
αa

j
αb, for some particular i and j. Then, according to the Penrose

notation (as will be explained below), αba is the element i
αb

j
αa. It follows from

what has been said so far that the tensors i
αa

j
αb and

i
αb

j
αa are simply not equal

unless i = j. (Why? Assume they are equal. Then they have the same action

on all pairs μa νb. So, in particular, they have the same action on
i
ξa

j

ξb. But

i
αa

j
αb
( i
ξa

j

ξb
) = i

αa
( i
ξa
) j
αb
( j

ξb
) = 1

and
i
αb

j
αa
( i
ξa

j

ξb
) = j

αa
( i
ξa
) i
αb
( j

ξb
) = (δij)

2.

So δij = 1; i.e., i = j.)

A second point about the delicacy of the index notation should be men-

tioned, though it will not concern us until we reach section 1.9 and work with

tensors in the presence of a (non-degenerate) metric gab. We will then want to

follow standard practice and use the metric and its inverse gab to “lower and

raise indices.” (The rest of this paragraph can be skipped. It is included only

for readers who already know about lowering and raising indices andwhomay

anticipate the problemmentioned here.) For example, we shall write α b
a as an

abbreviation for αan gnb. A problem will arise, though, when we try to lower or

raise an index on a tensor that has indices in both subscript and superscript

position. For example, do we write λab
c gcd as λdab or as λadb or as λabd ? The

latter three will not, in general, be equal (for the reasons given in the preceding

paragraph). To cope with the problem, when the time comes, we shall adopt

the convention that superscript indices should never be aligned with subscript
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indices. Instead, each index will have its own vertical “slot.” So, for example,

the elements of the space Vab
c will carry the index structure ab

c or
a b
c or ab

c (or
ba

c or
b a
c or ba

c ), and we will not assume, for example, that λab
c = λa b

c . (For the

rest of this section—indeed until section 1.9—we shall not bother with index

slots.)

One final preliminary remark about notation is called for. As mentioned

before, we want the notation to be uniformly commutative, at least as regards

the order of tensors within an expression (in contrast to the order of indices

within a tensor). So, for example, the number λab
c (μa νb γ

c ) that the tensor λab
c

assigns to a tripleμa νb γ
c will be written as λab

c μa νb γ
c or asμa νb γ

c λab
c or as

νb γ
c λab

c μa, and so forth. Furthermore, if λab
c is the tensor ϕaψb χc , we shall

write λab
c (μa νb γ

c ) as ϕaψb χc μa νb γ
c or as χc μaψ

b νb ϕ
a γ c or as any other

string with the individual vectors in some order or other. The order does not

matter because it is the indices here that determine the crucial groupings: ϕa

with μa, ψb with νb, χc with γ c .

We now have in hand the various tensor spaces Va1...ar
b1...bs

. Within each one

(just because it is a vector space), there is an addition operation that is associa-

tive and commutative. We will be interested in three other tensor operations:

outer multiplication, index substitution, and contraction. We will consider

them in turn.

“Outer multiplication” (or, perhaps, “tensor multiplication”), first, is an

operation of structure

Va1...ar
b1...bs

× Vc1...cm
d1...dn

→ Va1...ar c1...cm
b1...bsd1...dn

,

where the indices a1, . . . , ar , b1 . . . bs, c1, . . . , cm , d1, . . . , dn are all distinct. It is

defined in an obvious way. Consider a representative special case:

Vab
c × Vfd → Vab

cfd .

The outer product of αab
c and ξfd , written αab

c ξfd or ξfd αab
c , is defined by

setting (
αab

c ξfd
)(
λa ρb δ

c μf νd) = (
αab

c λa ρb δ
c)(ξfd μf νd)

for all λa, ρb, δc ,μf , νd . As usual, generally we shall drop parentheses and

write terms in any order. So the action of αab
c ξfd on λa ρb δ

c μf νd will be

expressed, indifferently, as αab
c λa ρb δ

c ξfd μ
f νd or as αab

c ξfd λa ρb δ
c μf νd or

as λa ρb ξfd δ
c μf αab

c ν
d , and so forth. It should be clear that outer multipli-

cation, as defined here, is commutative, associative, and distributive over

addition. Notice, also, that our notation is consistent. Consider, for example,

the expression τ a εb ϕc αa βb γ
c . We can construe it as the action of τ a εb ϕc on
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αa βb γ
c, or as the action of εb ϕc αa on τ a βb γ

c , or as the action of γ c ϕc τ
a εb

on αa βb, and so on. (The third readingmakes sense: γ c ϕc τ
a εb is the element

of Vab that arises if one multiplies the element τ a εb by the number γ c ϕc .)

Each of these functional operations yields the same number, so no consistency

problem arises.

The operation of “(x → y) index substitution” has the structure

Vx a1...ar
b1b2...bs

→ V
y a1...ar
b1b2...bs

or Va1a2...ar
x b1...bs

→ Va1a2...ar
y b1...b2

,

where the indices x, y, a1, . . . , ar , b1, . . . , bs are all distinct. In defining the

operation, it is, again, easiest to consider a representative special case, say

Vab
c → Vdb

c . Given a tensor αab
c , it can be expressed as a sum of the form

αab
c =

n3∑
i=1

i
μa i
νb

i
τc .

We take the result of (a → d) index substitution on αab
c , which we write as αdb

c ,

to be the sum

αdb
c =

n3∑
i=1

i
μd i
νb

i
τc .

(This makes sense because we already have a fixed isomorphism between Va

and Vd that takes each i
μa to i

μd .) Of course, it must be checked that this

definition is independent of the choice of expansion for αab
c . That is, one must

check that if

n3∑
i=1

i
μa i
νb

i
τc =

n3∑
i=1

i
δa

i
εb

i
ρc ,

then

n3∑
i=1

i
μd i
νb

i
τc =

n3∑
i=1

i
δd

i
εb

i
ρc .

But this follows from the fact that i
μa λa = i

μd λd and
i
δa λa = i

δd λd for all i and

all λa.

It can easily be checked that index substitution commutes with addition,

outer multiplication, and other index substitutions. For example, if αab
c =

βab
c + γ ab

c , then αdb
c = βdb

c + γ db
c . If λab

cfg = αab
c ξfg , then λ

db
cfg = αdb

c ξfg . And the

tensor that results from first applying (a → b) index substitution and then

(c → d) index substitution to αa
cf is the same as that resulting from reversing
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the order and applying first (c → d) index substitution and then (a → b) index

substitution. It is written as αb
df . All these facts, in a sense, are built into our

notation.

Our final tensor operation, “(x, y) contraction,” has the structure

Vx a1...ar
y b1...bs

→ Va1...ar
b1...bs

,

where the indices x, y, a1, . . . , ar , b1, . . . , bs are all distinct. Consider, for

example, (a, c) contraction with action Vab
c → Vb. Suppose

αab
c =

n3∑
i=1

i
μa i
νb

i
τc .

We take the result of applying (a, c) contraction to αab
c to be

αab
a =

n3∑
i=1

i
μa i
τa

i
νb.

(
This could also be expressed as

n3∑
i=1

i
μc i
τc

i
νb or as

n3∑
i=1

i
μc i
νb i
τc or as

n3∑
i=1

i
μd i
τd

i
νb,

and so forth. The last of the listed possibilities is equal to the first because
i
μa i
τa = i

μd i
τd for all

i
μa and i

τa.
)
Wewrite this result as αab

a (or αcb
c or αdb

d , and so

forth). It is important that contracted indices on a tensor—i.e., ones that appear

in both contravariant and covariant position—play no role in determining the

space in which the tensor resides. αab
a belongs to Vb, not some space Vab

a .

Indeed, there is no such space as we have set things up.

To prove that contraction is well defined—i.e., independent of one’s choice

of expansion—a simple lemma is needed.

LEMMA 1.4.1. For all r ≥ 1, and all
k
ϕa and

k
ψ c (k = 1, . . . , r),

r∑
k=1

k
ϕa k
ψ c = 0 =⇒

r∑
k=1

k
ϕa k
ψa = 0.

Proof. Let
1
ξa,

2
ξa, . . . ,

n
ξa be a basis for Va with dual basis 1

αa,
2
αa, . . . ,

n
αa. Then,

for each k = 1, . . . , r , there exist numbers cki and dkj (i, j = 1, . . . , n) where
k
ϕa =

n∑
i=1

cki
i
ξa and

k
ψ c =

n∑
j=1

dkj
j
αc . Assume the left-side condition holds. Then



“530-47773_Ch01_2P.tex” — 1/23/2012 — 17:18 — page 31

−1

0

+1

differential geometry / 31

for all l = 1, . . . , n,

0 =
(

r∑
k=1

k
ϕa k
ψ c

)
l
αa

l
ξc =

r∑
k=1

(
n∑

i=1

cki
i
ξa

)⎛⎝ n∑
j=1

dkj
j
αc

⎞⎠ l
αa

l
ξc

=
r∑

k=1

n∑
i=1

n∑
j=1

cki dkj δil δjl =
r∑

k=1

ckl dkl .

It follows that the right-side condition holds, since

r∑
k=1

k
ϕa k
ψa =

r∑
k=1

(
n∑

i=1

cki
i
ξa

)⎛⎝ n∑
j=1

dkj
j
αa

⎞⎠ =
r∑

k=1

n∑
i=1

n∑
j=1

cki dkj δij

=
n∑

i=1

r∑
k=1

cki dki = 0.

(
Each term

r∑
k=1

cki dki in the final sum is 0 by the calculation just given.
)

�

PROBLEM 1.4.1. Show that lemma 1.4.1 can also be derived as a corollary to the

following fact (Herstein [32, p. 272]) about square matrices: if M is an (r × r)matrix

(r ≥ 1) and M2 is the zero matrix, then the trace of M is 0. (Hint: Consider the

r × r matrix M with entries Mij = i
ϕa

j

ψa.)

COROLLARY 1.4.2. For all r ≥ 1, and all
k
βa, k

γb,
k
ψ c (k = 1, . . . , r),

r∑
k=1

k
βa k
γb k
ψ c = 0 =⇒

r∑
k=1

(
k
βa k
ψa

)
k
γb = 0.

Proof. It follows from the left-side condition that, for all λb,
r∑

k=1

k
βa
( k
γ bλb

)
k
ψ c = 0. Applying the lemma

(
with k

ϕa = ( k
γ b λb

) k
βa for all k = 1, . . . , r

)
, we

may infer that
r∑

k=1

( k
βa k
ψa

) k
γb λb = 0. But here λb is arbitrary. So it must be the

case that the right-side condition holds. �
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It follows immediately that contraction is well defined for our tensor αab
c .

For if

αab
c =

n3∑
i=1

i
μa i
νb

i
τc =

n3∑
i=1

i
δa

i
χb i
ρc ,

we can apply corollary 1.4.2 to the difference
n3∑

i=1

i
μa i
νb i
τc −

n3∑
i=1

i
δa

i
χb i
ρc (con-

strued as a sum over 2n3 terms). And the corollary can be recast easily for

tensors with other index structures.

The contraction operation commutes with addition, outer multiplication,

index substitution, and other contractions. Note, once again, the consis-

tency of our notation. The expression βa γa, for example, can be construed

as the action of the functional γa on βa, or as the outer product of βa

with γb followed by (a, b) contraction, or as the outer product βb with γa

followed by (a, b) contraction, and so forth. There is no need to choose

among these different readings. Similarly, αa
c λa σ

c can be understood as

the action of αa
c on λa σ

c , or as the outer product of αa
c with λb σ

d fol-

lowed by (a, b) and (c, d) contractions, or as the action of λa on αa
c σ

c , and so

forth.

The operations we have introduced on tensorsmay seem a bit complex. But

one quickly gets used to them and applies them almost automatically where

appropriate. That is one of the virtues of the abstract index notation. One gets

to manipulate tensors as easily as one manipulates components of tensors in

traditional tensor analysis. One has the best of both worlds: complete basis

(or coordinate) independence, and the computational convenience that comes

with indices.

Two bits of special notation will be useful. First, we introduce the “delta

tensor” δa
b . It is the element of Va

b defined by setting δa
b ηa ξ

b = ηa ξ
a for all ηa

and ξ b. (Clearly, δa
b , so defined, is a tensor since it is linear in both indices.)

Notice that the defining condition is equivalent to the requirement that δa
b ξ

b =
ξa for all ξ b, and also to the requirement that δa

b ηa = ηb for all ηa. We can think

of δa
b as an (a → b) index substitution operator acting on covariant indices,

or as a (b → a) index substitution operator acting on contravariant indices.

So, for example, δa
b α

bc
d = αac

d . To see this, suppose that αbc
d =

n3∑
i=1

i
μb i
ν c i
τd .

Then

δa
b α

bc
d =

n3∑
i=1

(
δa

b
i
μb) i
νc

i
τd =

n3∑
i=1

i
μa i
νc

i
τd = αac

d .
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Given a basis
1
ξa,

2
ξa, . . . ,

n
ξa for Va with dual basis 1

αa,
2
αa, . . . ,

n
αa, δa

b can be

expressed as δa
b =

n∑
i=1

i
ξa

i
αb. (This follows since the left- and right-side tensors

in this equation have the same action on the basis elements
1
ξb,

2
ξb, . . . ,

n
ξb.) It

follows that δa
a = n.

The second bit of useful notation is for “symmetrization” and “anti-

symmetrization” of tensors. Consider, for example, the tensor βab. Corre-

sponding to it is the tensor βba. One can think of the latter as arising from

the former by a series of index substitutions: βab → βcb → βcd → βbd → βba.

(We have already discussed the fact that, though βab and βba belong to Vab,

in general it is not the case that βab = βba.) We take β(ab) and β[ab] to be the

respective symmetrization and anti-symmetrization of βab:

β(ab) = 1

2
(βab +βba),

β[ab] = 1

2
(βab −βba).

Similarly, given a tensor γ b
cdg , we set

γ b
(cdg) = 1

6
(γ b

cdg + γ b
gcd + γ b

dgc + γ b
cgd + γ b

gdc + γ b
dcg ),

γ b
[cdg] = 1

6
(γ b

cdg + γ b
gcd + γ b

dgc − γ b
cgd − γ b

gdc − γ b
dcg ).

In general, a tensor with round brackets surrounding a collection of p con-

secutive indices (all contravariant or all covariant) is to be understood as
1

p!
times the sum of the p! tensors obtained by taking the selected indices in

all possible permutations. (Each permutation can be achieved by multiple

index substitutions.) In the case of square brackets, the only difference is that

each term in the sum receives a coefficient of (+ 1) or (− 1) depending on

whether the indices in that term form a positive or negative permutation of

the original sequence. The operations of symmetrization and antisymmetriza-

tion commute with addition, outer multiplication, and index substitution. So,

for example, if βab = γ ab + ρab, then β(ab) = γ (ab) + ρ(ab). If γ b
cdg = λcdg ξ

b,

then γ b
(cdg) = λ(cdg) ξ

b. And if one applies (c → f ) index substitution to γ b
cdg

and then symmetrizes over the indices f , d, and g , the resulting tensor is the

same one obtained if one first symmetrizes over c, d, and g and then applies

(c → f ) index substitution.

We say that a tensor of the form α
a1...ar
b1...bs

is (totally) symmetric in indices

b1, . . . , bs if interchanging any two of these indices leaves the tensor intact, or,
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equivalently, if α a1...ar
(b1...bs)

= αa1...ar
b1...bs

. We say it is (totally) anti-symmetric in those

indices if the interchange in each case has the effect of multiplying the tensor

by (− 1) or, equivalently, if α a1...ar
[b1...bs] = αa1...ar

b1...bs
. (The conditions of symmetry

and anti-symmetry in indices a1, . . . , ar are defined similarly.) The following

proposition will be useful in what follows.

PROPOSIT ION 1.4.3. If

(1) αa1...ar
b1...bs

is symmetric in indices b1, . . . , bs, and

(2) αa1...ar
b1...bs

ξ b1 . . . ξ bs = 0 for all ξ in V,

then αa1...ar
b1...bs

= 0. (A parallel proposition holds if αa1...ar
b1...bs

is symmetric in indices

a1, . . . , ar .)

Proof. We prove the proposition by induction on s. The case s = 1 is trivial. So

assume s > 1 and assume the proposition holds for s − 1. For all vectorsμ and

ν in V , and all real numbers k, we have, by (2), 0 = αa1...ar
b1...bs

(μ+ k ν)b1 . . . (μ+
k ν)bs . Expanding the right side of the equation and using (1), we arrive at

0 = αa1...ar
b1...bs

μb1 . . . μbs +
(

s

1

)
k αa1...ar

b1...bs
μb1 . . . μbs−1νbs + . . .

+
(

s

s − 1

)
ks−1 α

a1...ar
b1...bs

μb1 νb2 . . . νbs + ks α
a1...ar
b1...bs

νb1 . . . νbs .

But k is arbitrary here. The only way the right-side sum can be 0 for all

values of k is if each of the terms in the sum (without the coefficient) is 0.
In particular, αa1...ar

b1...bs
μb1 . . . μbs−1 νbs = 0. Now let α′a1...ar

b1...bs−1
= αa1...ar

bs...bs
νbs . The

tensor α′a1...ar
bs...bs−1

is completely symmetric in the indices b1, . . . , bs−1, and

α′a1...ar
b1...bs−1

μb1 . . . μbs−1 = 0 for all μ in V . So, by our induction hypothesis,

it must be the case that αa1...ar
b1...bs

νbs = 0. But ν was an arbitrary vector. So

α
a1...ar
b1...bs

= 0, as claimed. �

Sometimes it will be convenient to work with this proposition in a slightly

more general form. Let � and � be strings of indices, possibly empty, in

which a1, . . . , ar , b1, . . . , bs do not appear. Then we can say that a tensor

α
a1...ar
�b1...bs�

is (totally) symmetric in indices b1, . . . , bs if α
a1...ar

�(b1...bs)�
= α a1...ar

�b1...bs�
.

The case of (total) anti-symmetry is handled similarly. It follows as a corollary

to the proposition that if α a1...ar
�b1...bs�

is symmetric in indices b1, . . . , bs, and if

α
a1...ar
�b1...bs�

ξ b1 . . . ξ bs = 0 for all ξ in V , then α a1...ar
�b1...bs�

= 0. (It follows because
we can always contract on all the indices in � and � with arbitrary, distinct
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vectors and generate a tensor to which the proposition is directly applicable.)

Of course, a similar generalization of the proposition is available in the case

where the “extra indices” are in covariant position.

This completes our discussion of tensor algebra. We now return to man-

ifolds. Suppose (M, C) is an n-manifold and p is a point in M. Then Mp is

an n-dimensional vector space. We can take it to be our fundamental space

V and construct a hierarchy of tensor spaces over it. A tensor field on M is

simply an assignment of a tensor (over Mp) to each point p in M, where

the tensors all have the same index structure. So, for example, a vector field

ξa on M (as defined in section 1.3) qualifies as a tensor field on M. The

tensor operations (addition, outer multiplication, index substitution, and con-

traction) are all applied pointwise, and so they extend naturally to tensor

fields.

We already know what it means for a scalar field or a (contravariant) vector

field on M to be smooth. We now take a covariant vector field αa on M to be

smooth if (ξa αa) is smooth for all smooth vector fields ξa onM. Quite generally,

we say that a tensor field λa1...ar
b1...bs

on M is smooth if λa1...ar
b1...bs

ξ b1 . . . ηbs αa1 . . . βar

is smooth for all smooth fields ξ b1 , . . . , ηbs ,αa1 , . . . ,βar on M.

This pattern of definition is extremely common. One starts with a con-

cept (in this case smoothness) applicable to scalar fields, then extends it to

contravariant vector fields by considering their action on scalar fields, then

extends it to covariant vector fields by considering their action on contravariant

fields, then extends it to tensor fields of arbitrary index structure by consider-

ing their action on (appropriate combinations of) contravariant and covariant

vector fields.

It follows from the definition of smoothness for tensor fields just given that

the four tensor operations take smooth tensor fields to smooth tensor fields.

1.5. The Action of Smooth Maps on Tensor Fields

In this section, we consider when and how it is possible to use a smooth map

between manifolds to carry tensors at a point, and tensor fields, from one

manifold to the other.

We start with tensors at a point. Let (M, C) and (M′, C′) be manifolds,

not necessarily of the same dimension; let ψ : M → M′ be a smooth map of

M into M′; and let p be a point in M. There is no natural way to transfer

arbitrary tensors between p and ψ( p)—at least, not without further assump-

tions in place. But it is possible to associate with ψ two restricted transfer

maps.
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Let us say that a tensor (at some point on some manifold) is contravariant

(respectively, covariant) if all of its indices are in contravariant (respectively,

covariant) position. The rank of such a tensor is the number of its indices.

We allow the number to be 0; i.e., we regard scalars (real numbers) as both

contravariant and covariant tensors of rank 0.

The first of our two restricted transfermaps, the “push-forwardmap” (ψp)∗,
takes contravariant tensors at p to contravariant tensors of the same rank at

ψ( p). The second, the “pull-back map” (ψp)∗, takes covariant tensors at ψ( p)

to covariant tensors of the same rank at p. We define (ψp)∗ and (ψp)∗ in four

stages. (For clarity, we mark objects defined on M′ with a prime.)

(Stage 0) Given any real number c, we set (ψp)∗(c) = (ψp)∗(c) = c.

(Stage 1) Given a vector ξa at p, we define (ψp)∗(ξa) at ψ( p) as follows.

Let α′ : O′ → R be an element of S
(
ψ( p)

)
. Then (α′ ◦ψ) : ψ−1[O′] → R

is an element of S( p). We need to specify what assignment (ψp)∗(ξa)

makes to α′. We set

(1.5.1)
(
(ψp)∗(ξa)

)
(α′) = ξa(α′ ◦ψ).

This makes sense because (α′ ◦ψ) is an object of the sort to which ξa

makes assignments.

(Stage 2) Next, consider a covariant tensor η′
b1 ... bs

at ψ( p). We define the

pull-back tensor (ψp)∗(η′
b1 ... bs

) at p by specifying its action on arbitrary

vectors
1
ξ b1 , …,

s
ξ bs there. We set

(1.5.2)(
(ψp)∗(η′

b1 ... bs
)
) 1
ξ b1 . . .

s
ξ bs = η′

b1 ... bs

(
(ψp)∗(

1
ξ b1 )

)
. . .

(
(ψp)∗(

s
ξ bs )

)
.

Here, of course, we understand the right side because we know (from

stage 1) how to push forward the vectors
i
ξ bi .

(Stage 3) Finally, consider a contravariant tensor ξa1 ... ar at p with r ≥ 2.

We define the push-forward tensor (ψp)∗(ξa1 ... ar ) at ψ( p) by specifying

its action on arbitrary vectors
1
η ′

a1 , …,
r
η ′

ar
there:

(1.5.3)(
(ψp)∗(ξa1 ... ar )

) 1
η ′

a1 . . .
r
η ′

ar
= ξa1 ... ar

(
(ψp)∗(

1
η ′

a1 )
)
. . .

(
(ψp)∗(

r
η ′

ar
)
)
.

This completes the definition of (ψp)∗ and (ψp)∗.
Several basic facts about them are recorded in the next proposition.
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PROPOSIT ION 1.5.1. Let ψ : M → M′ be a smooth map of the manifold M into

the manifold M′. Let p be any point in M. Then (ψp)∗ and (ψp)∗ have the following

properties.

(1) (ψp)∗ and (ψp)∗ commute with addition.

For example, (ψp)∗(ξabc + ρabc ) = (ψp)∗(ξabc )+ (ψp)∗(ρabc ).

(2) (ψp)∗ and (ψp)∗ commute with outer multiplication.

For example, (ψp)∗(η′
abc μ

′
de) = (

(ψp)∗(η′
abc)

) (
(ψp)∗(μ′

de)
)
.

(3) (ψp)∗ and (ψp)∗ commute with index substitution.

(4) For all tensors ξa1...ar c1...cs and ρb1...br at p, and all tensors η′
a1...ar

and

μ′
b1...br d1...ds

at ψ( p),(
(ψp)∗(ξa1...ar c1...cs )

)
η′

a1...ar
= (ψp)∗

(
ξa1...ar c1...cs ((ψp)∗(η′

a1...ar
))
)
,(1.5.4) (

(ψp)∗(μ′
b1...br d1...ds

)
)
ρb1...br = (ψp)∗

(
μ′

b1...br d1...ds
((ψp)∗(ρb1...br ))

)
.(1.5.5)

Note that we cannot replace clause (4) with the simpler assertion that (ψp)∗
and (ψp)∗ commute with contraction. We cannot claim, for example, that

(ψp)∗(ξac ηa) = (
(ψp)∗(ξac )

) (
(ψp)∗(ηa)

)
, since the second term on the right

side is not well formed. The push-forwardmap (ψp)∗ makes assignments only

to contravariant vectors at p.

Note also that it follows as a special case of clause (2) that (ψp)∗ and (ψp)∗

commute with scalar multiplication. For example, (ψp)∗(c ξab) = ((ψp)∗(c))(
(ψp)∗(ξab)

) = c
(
(ψp)∗(ξab)

)
. So, clearly, (ψp)∗ and (ψp)∗ are linear maps

(when restricted to tensors of a fixed rank).

Proof. All four clauses in the proposition follow easily from the definitions

of (ψp)∗ and (ψp)∗. For the fourth clause, one first considers contrac-

tions involving (contravariant or covariant) vectors—i.e., ((ψp)∗(ξa c1...cs )) η′
a or

((ψp)∗(η′
b d1...ds

)) ρb—and then uses the fact that every tensor η′
a1...ar

or ρb1...br

can be represented as a sum over products of such vectors. The desired con-

clusion then follows from clauses (1) and (2). By way of example, let us verify

one instance of the fourth clause, say(
(ψp)∗(ξac )

)
η′

a = (ψp)∗
(
ξac ((ψp)∗(η′

a)
))
.

To show that the two (right- and left-side) vectors at ψ( p) are equal, it suffices

to demonstrate that they have the same action on any vector μ′
c there. But this

follows, since

(ψp)∗
(
ξac ((ψp)∗(η′

a)
))
μ′

c = ξac((ψp)∗(η′
a)
) (
(ψp)∗(μ′

c )
) = (

(ψp)∗(ξac )
)
η′

a μ
′
c .
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Both equalities are instances of equation (1.5.3). The role of ξa1...ar is played

by
(
ξac

(
(ψp)∗(η′

a)
))

in the first and by ξac in the second. �

Now we turn our attention to fields on M and M′. At each point p in M,

we have transfer maps (ψp)∗ and (ψp)∗. The question arises whether they can

be “aggregated” to carry contravariant fields on M to ones on M′ or, alter-
natively, to carry covariant fields on M′ to ones on M. Here an asymmetry

arises.

Consider first a tensor field ξa1...ar on M. For all p in M, (ψp)∗
(
ξa1...ar ( p)

)
is

a tensor atψ( p). (ξa1...ar ( p) is the value of the field at p, and it is pushed forward

by (ψp)∗.) But these individual assignments do not, in general, determine a

field on M′. For one thing, if ψ is not injective, there will be distinct points p

and q such that ψ( p) = ψ(q), and nothing guarantees that (ψp)∗
(
ξa1...ar ( p)

) =
(ψq)∗

(
ξa1...ar (q)

)
. Furthermore, even if ψ is injective, this prescription will not

transfer a tensor to a point p′ in M′ unless it is in the range of ψ—i.e., unless

p′ = ψ( p) for some p in M.

But no problems arise if we work in the other direction. Consider a field

η′
b1...bs

on M′. Then at every point p, there is a well-defined pull-back tensor

(ψp)∗
(
η′

b1...bs

(
ψ( p)

))
. It just does not matter whether ψ is injective or whether

its range is all of M′. So we can aggregate the individual pull-back maps at

different points to generate a map ψ∗ that takes covariant tensor fields on M′

to ones on M of the same rank.

In particular, ψ∗ takes scalar fields α′ : M′ → R on M′ to scalar fields

(1.5.6) ψ∗(α′) = (α′ ◦ψ)

on M. (Think about it this way. The pull-back field ψ∗(α′) assigns to any

point p in M the same number that α′ assigns to ψ( p). (Recall the 0-th stage

in the definition of (ψp)∗.) So, for all p in M, ψ∗(α′)( p) = α′(ψ( p)) = (α′ ◦
ψ)( p).)

Three of the (pointwise) algebraic conditions listed in proposition 1.5.1

carry over immediately. Thus, ψ∗ commutes with addition, outer multipli-

cation, and index substitution (if these are now understood as operations on

tensor fields rather than as operations on tensors at a point). The fourth con-

dition, the one involving contraction, does not carry over because it refers

to individual push-forward maps (ψp)∗ (and these, we know, cannot, in gen-

eral, be aggregated). In addition, ψ∗ satisfies a natural smoothness condition;

namely, it takes smooth fields on M′ to smooth fields on M. This is immedi-

ate for the case of scalar fields. (If α′ : M′ → R is smooth, then certainly the
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composed map ψ∗(α′) = (α′ ◦ψ) is smooth as well.) But a short detour will

be required for the other cases.

Let us temporarily put aside our map ψ between manifolds and consider

a general fact about the representation of covariant vector fields on a man-

ifold M. Given any smooth scalar field α : M → R, we associate with it a

smooth covariant vector field daα on M, called its “exterior derivative.” (Here

we partially anticipate our discussion of exterior derivative operators in sec-

tion 1.7.) It is defined by the requirement that, for all p in M and all vectors

ξa at p, ξa daα = ξ (α); i.e., ξa daα is the directional derivative of α at p in the

direction ξa. (The condition clearly defines a covariant vector—i.e., a linear

functional over Mp, at each point p. And the resultant field daα is smooth

since, given any smooth vector field ξa on M, ξa daα is a smooth scalar field

on M.) The fact we need is the following.

LEMMA 1.5.2. Let λa be a smooth field on an n-dimensional manifold (M, C). Then,

given any point p in M, there exists an open set O containing p, and smooth

real-valued maps
1
f , . . . ,

n
f ,

1
g , . . . ,

n
g on O, such that λa =

1
f da

1
g + · · · +

n
f da

n
g

on O.

Proof. Let p be a point in M, let (O,ϕ) be a chart in C with p ∈ O, and

let u1, . . . , un be the associated coordinate maps on O. At every point q in

O, the coordinate curve tangent vectors (
→
γ 1|q)a, . . . , (

→
γ n|q)a associated with

u1, . . . , un form a basis for (Mq)a. (Recall proposition 1.2.3.) Now consider

the vector fields dau1, . . . , daun on O. We claim that they determine a dual

basis at every q; i.e., (
→
γ i |q)a(dau j) = δij for all i, j ∈ {1, . . . , n}. Indeed, this

follows immediately since (
→
γ i |q)a(dau j) =→

γ i |q(u j) (by the definition of da)

and
→
γ i |q(u j) = δij (by equation (1.2.6)). So we can express λa in the form

λa =
1
f dau1 + . . .+

n
f daun on O, where

i
f = (

→
γ i)aλa. The coordinate maps

u1, . . . , un are certainly smooth. And the maps
1
f , . . . ,

n
f must be smooth as

well since λa and the coordinate tangent fields (
→
γ 1)a, . . . , (

→
γ n)a are so. �

With the lemma in hand, let us return to the original discussion. Again, let ψ

be a smooth map from the manifold M into the manifold M′. Note that given
any smooth field α′ : M′ → R on M′, we have

(1.5.7) ψ∗(daα
′) = da

(
ψ∗(α′)

)
.
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(To see this, let p be any point in M and let ξa be any vector at p. Then

ξ b(ψ∗(dbα
′)
)
|p = (

(ψp)∗(ξ b)
)
(dbα

′)|ψ( p) = (
(ψp)∗(ξ b)

)
(α′)

= ξ b(α′ ◦ψ) = ξ b (db(ψ
∗(α′))

)
|p.

The first equality is an instance of equation (1.5.2), with (dbα
′)|ψ( p) playing the

role of η′
b; the third is an instance of equation (1.5.1). The second follows from

the definition of the operator da, and the fourth from that definition together

with equation (1.5.6). So equation (1.5.7) holds at all points p in M.)

It is our goal, once again, to show that, for all smooth fields η′
b1...bs

on M′,
the pull-back field ψ∗(η′

b1...bs
) on M is smooth as well. Consider the case of a

smooth vector field η′
b on M′. Suppose M′ has dimension n. We know from

the lemma that given any point p′ inM′, we can find an open setO′ containing

p′ in which η′
b admits the representation η′

b =
n∑

i=1

i
f ′db

i
g ′ (with the constituent

maps all smooth). Hence, we have

ψ∗(η′
b) = ψ∗

(
n∑

i=1

i
f ′db

i
g ′
)

=
n∑

i=1

ψ∗(
i
f ′)ψ∗(db

i
g ′) =

n∑
i=1

ψ∗(
i
f ′) db

(
ψ∗(

i
g ′)

)
throughoutψ−1[O′]. (We get the second equality from the fact thatψ∗ respects
the tensor operations of addition and outer multiplication (in the sense dis-

cussed above). The third equality follows from equation (1.5.7).) But the

constituent fields in the far right sum are all smooth. (We have already seen

that ψ∗ takes smooth scalar fields to smooth scalar fields.) So ψ∗(η′
b) itself is

smooth on ψ−1[O′]. But as p′ ranges over M′, the corresponding pull-back

sets ψ−1[O′] cover M. It follows that ψ∗(η′
b) is smooth on (all of) M.

It remains to consider the general case: smooth fields on M′ of the form

η′
b1...bs

. But this case quickly reduces to the preceding one. We can express any

such field, at least locally, in the form

η′
b1...bs

=
ns∑

i=1

i
μ ′

b1
. . .

i
ν ′

bs
,

where
i
μ′

b1
, . . . ,

i
ν ′

bs
(i = 1, . . . , ns) are all smooth fields onM′. Since the individ-

ual pull-backfieldsψ∗(
i
μ ′

b1
), . . . ,ψ∗( i

ν ′
bs
) are smooth (and sinceψ∗ commutes

with addition and outer multiplication), it follows that ψ∗(η′
b1...bs

) must be

smooth on M.

In summary, we have established the following.
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PROPOSIT ION 1.5.3. Let ψ : M → M′ be a smooth map of the manifold M into

the manifold M′. Then ψ∗ is a map from smooth covariant tensor fields on M′

to smooth covariant fields on M of the same rank that commutes with addi-

tion, outer multiplication, and index substitution and that also satisfies equation

(1.5.7).

The complications and asymmetries we have encountered all have their

origin in the fact that we have only been assuming that ψ is a smooth map

of M into M′. Now, finally, let us consider the case where ψ is, in fact, a dif-

feomorphism of the first onto the second; i.e., there is a well-defined inverse

map ψ−1 : M′ → M that is also smooth. Then, as one would expect, there is

induced a natural one-to-one correspondence between smooth tensors fields

of arbitrary index structure on the two manifolds, and this correspondence

fully respects the four tensor operations. We already know how ψ∗ acts on

smooth covariant tensor fields (and scalar fields) on M′. Now we can char-

acterize its action on a smooth field λ′ a1...ar
b1...bs

of unrestricted index structure

on M′. We stipulate that, given any point p in M, and any smooth fields
1
ηa1 , . . . ,

r
ηar ,

1
ξ b1 , . . . ,

s
ξ bs on M,

ψ∗(λ′ a1...ar
b1...bs

)|p (
1
ηa1 . . .

s
ξ bs )|p

= (λ′ a1...ar
b1...bs

)|ψ( p)
((
(ψ)∗(

1
ηa1 )

)
. . .

(
(ψ)∗(

s
ξ bs )

))
|ψ( p).(1.5.8)

Of course, the right side makes sense only if we understand how ψ∗ acts

on smooth vector fields ηa and ξ b on M. But we do understand (in this new

context where ψ is a diffeomorphism). Here we can aggregate the individual

push-forward maps (ψp)∗ to generate a map ψ∗ that knows how to act on con-

travariant vector fields—just as previously we aggregated the maps (ψp)∗ to

generate a map ψ∗ that knows how to act on covariant vector fields. And we

can take ψ∗(ηa) to be (ψ−1)∗(ηa). This completes the definition of ψ∗.
Notice that this general characterization of ψ∗ reduces to the one given

previously in the special case where it acts on a covariant field λ′
b1...bs

.

Theway to remember equation (1.5.8) is this. A trade-off is involved. Pulling

back λ′ a1...ar
b1...bs

from ψ( p) to p and having it act there on particular vectors yields

the same result as pushing those vectors forward from p to ψ( p) and having

λ
′ a1...ar
b1...bs

act on them there.

We have just seen how to extend ψ∗ so that it acts on smooth fields on M′

of unrestricted index structure (when ψ is a diffeomorphism). Of course, we

can extend ψ∗ similarly. Indeed, we can take it to be (ψ−1)∗.
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It is a straightforward matter to confirm that ψ∗ (and so ψ∗) commutes

with addition, outer multiplication, contraction, and index substitution. By

way of example, we verify that, for all smooth fields α′a
b and ξ ′b on M′,

(1.5.9) ψ∗(α′a
b ξ

′b) = ψ∗(α′a
b)ψ

∗(ξ ′b).

Let ηa be any smooth field onM. Then, invoking equation (1.5.8) and dropping

explicit reference to points of evaluation, we have

ψ∗(α′a
b)ψ

∗(ξ ′b)ηa = α′a
bψ∗

(
ψ∗(ξ ′b)

)
ψ∗(ηa) = α′a

b ξ
′b ψ∗(ηa) = ψ∗(α′a

b ξ
′b) ηa.

(For the second equality, we use the fact that (ψ∗ ◦ψ∗) = the identity map.)

Since this holds for all smooth fields ηa on M, we have equation (1.5.9).

1.6. Lie Derivatives

Let (M, C) be a fixedmanifold, and let ξa be a smooth vector field onM. The Lie

derivative operator £ξ associated with ξa is a map from smooth tensor fields

(on M) to smooth tensor fields (on M) of the same index structure. Roughly

speaking, £ξ λa1...ar
b1...bs

represents the “rate of change” of the field λa1...ar
b1...bs

relative

to a standard of constancy determined by ξa. We now have the tools in place to

make this precise. (It is not important, but we write “£ξ ” rather than “£ξa” to

avoid the impression that the operator adds a new index. There is no chance

for confusion since the object X in £X is always a contravariant vector field

and the index it carries makes no difference.)

Let λa1...ar
b1...bs

be a smooth field on M, and let p be a point in M. Further,

let {�t : U → �t[U]}t∈I be a local one–parameter group of diffeomorphisms

generated by ξa with p ∈ U . Here I is an open interval of R, U is an open

subset of M, and the maps �t : U → �t[U] ⊆ M satisfy conditions (1)–(3) at

the close of section 1.3. We set(
£ξ λa1...ar

b1...bs

)
|p = lim

t→0

1

t

[(
(�t)

∗(λa1...ar
b1...bs

)
)
|p − λa1...ar

b1...bs |p
]
.

The right-side limit is to be understood this way. We start with the tensor

(λa1...ar
b1...bs

) |�t ( p) at �t( p), carry it back to p with the pull-back map (�t)∗, subtract
(λa1...ar

b1...bs
)|p, divide by t, and then take the limit as t goes to 0. (That the limit

exists, and that the resultant field
(
£ξ λa1...ar

b1...bs

)
on M is smooth, follows from

proposition 1.3.3.) Note that we need to carry (λa1...ar
b1...bs

) |�t ( p) back to p before

comparing it with (λa1...ar
b1...bs

)|p because the two tensors live in different spaces.

The expression
[(
λ

a1...ar
b1...bs

)
|�( p) − λa1...ar

b1...bs |p
]
is not well formed.

The following proposition lists several basic properties of Lie derivatives.

(The proof is straightforward.)



“530-47773_Ch01_2P.tex” — 1/23/2012 — 17:18 — page 43

−1

0

+1

differential geometry / 43

PROPOSIT ION 1.6.1. The operator £ξ has the following properties.

(1) It commutes with addition.

For example, £ξ (αab
c +βab

c ) = £ξ (αab
c )+£ξ (βab

c ).

(2) It satisfies the Leibniz rule with respect to outer multiplication.

For example, £ξ (αab
c βdf ) = αab

c £ξ βdf +βdf £ξ αab
c .

(3) It commutes with the operation of index substitution.

(4) It commutes with the operation of contraction.

PROBLEM 1.6.1. Show that £ξ δb
a = 0. (Hint: Recall that δb

a can be thought of as

an index substitution operator, and make use of proposition 1.6.1.)

PROBLEM 1.6.2. Let ηa be a smooth, non-vanishing field on M. Show that if

£ξ (ηa ηb) = 0, then £ξ ηa = 0.

Two cases are of special interest, namely Lie derivatives of scalar fields and

of contravariant vector fields. We consider them in order.

PROPOSIT ION 1.6.2. Let ξa and α be smooth fields on M. Then £ξ (α) = ξ (α);
i.e., at every point in M, £ξ α is just the ordinary directional derivative of α in the

direction ξa.

Proof. Let p be any point in M, and let {�t : U → �t[U]}t∈I be a local one–

parameter group of diffeomorphisms generated by ξa with p ∈ U . Since the

curve γ : I → M defined by γ (t) = �t( p) is an integral curve of ξa with initial

point p, we have

ξ|p(α) =→
γ |p(α) = d

dt
(α ◦ γ )(0) = d

dt

[(
α ◦�t

)
( p)

]
|t=0.

But (�t)∗(α) = (α ◦�t) for all t ∈ I. (Recall equation (1.5.6).) So we also have

(
£ξ α

)
|p = lim

t→0

1

t

[(
(�t)∗(α)

)
|p −α|p

]
= lim

t→0

1

t

[(
α ◦�t

)
( p)− (

α ◦�0
)
( p)

]
= d

dt

[(
α ◦�t

)
( p)

]
|t=0.

So (£ξ α)|p = ξ|p(α) at all points p in M. �

We need a lemma for the second special case (Lie derivatives of contravari-

ant vector fields).
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LEMMA 1.6.3. Let ξa be a smooth vector field on M, let p be a point in M, and, once

again, let {�t : U → �t[U]}t∈I be a local one–parameter group of diffeomorphisms

generated by ξa with p ∈ U. Then, given any smooth scalar field α : M → R, there

is a one–parameter family of smooth scalar fields {ϕt}t∈I on U such that

(1) α ◦�t = α+ t ·ϕt for all t in I, and

(2) ϕ0 = ξ (α).

Proof. Consider the family of smooth scalar fields {ϕt}t∈I on U defined by

setting

ϕt(q) =
∫ 1

0

d

du

[(
α ◦�u

)
(q)
]
|u=t x dx

for all t in I and q in U . We claim that it satisfies conditions (1) and (2). First,

for all t in I,

t ·ϕt(q) =
∫ 1

0

d

du

[(
α ◦�u

)
(q)
]
|u=t x t dx

=
∫ 1

0

d

dx

[(
α ◦�t x (q)

)]
dx

= (
α ◦�t

)
(q)− (

α ◦�0
)
(q).

But �0(q) = q for all q in U . So we have condition (1). Next, differentiation

with respect to t yields

t · d

dt
ϕt(q)+ϕt(q) = d

dt

[(
α ◦�t

)
(q)
]
.

Evaluating both sides at t = 0 gives us

ϕ0(q) = d

dt

[(
α ◦�t

)
(q)
]
|t=0 .

But now, since {�t : U → �t[U]}t∈I is a local one–parameter group of diffeo-

morphisms generated by ξa, the curve γ : I → O defined by γ (t) = �t(q) is

an integral curve of ξa with initial value q. Thus,

ξ|q(α) =→
γ |q(α) = d

dt
(α ◦ γ )| t=0 = d

dt

[(
α ◦�t

)
(q)
]
| t=0 .

So ϕ0(q) = ξ|q(α) for arbitrary q in U . This is just condition (2). �

PROPOSIT ION 1.6.4. Let ξa and λa be smooth vector fields on M. Then £ξ (λa) =
[ξ , λ]a, where [ξ , λ]a is the smooth (“commutator”) vector field on M whose action
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on a smooth scalar field α : M → R is given by

[ξ , λ](α) = ξ (λ(α))− λ(ξ (α)).

(Another remark about notation. Onemust make some decision about how to

handle abstract indices when dealing with commutator vector fields. Depend-

ing on context, we shall write, for example, either “[ξ , λ]a” or “[ξ , λ]” or “[ξa,

λa]”—but never “[ξa, λa]a.” Nothing of importance turns on this decision.)

Proof. Let p be any point in M, and let {�t : U → �t[U]}t∈I be a local one–

parameter group of diffeomorphisms generated by ξa with p ∈ U . Given a

smooth scalarfieldα : M → R, let {ϕt}t∈I be aone–parameter family of smooth

scalar fields on U satisfying conditions (1) and (2) in the lemma. For all t such

that both t and −t are in I, we have

[(�t)∗(λa)]|p (α) = λa|�t ( p)(α ◦�−t) = λa|�t ( p)(α− t ·ϕ−t).

The first equality follows directly from equation (1.5.1) and the fact that (�t)∗ =
(�−t)∗. The second follows from condition (1) of the lemma (with t replaced

by −t). So

(
£ξ λa)

|p(α) = lim
t→0

1

t

[(
(�t)∗(λa)

)
|p (α)− λa|p(α)

]
= lim

t→0

1

t

[
λa|�t ( p)(α)− λa|p(α)

]− lim
t→0

λa|�t ( p)(ϕ−t)

= lim
t→0

1

t

[
(λa(α))|�t ( p) − (λa(α))|p

]− λa|p(ϕ0)

= d

dt

[(
λa(α) ◦�t

)
( p)

]
|t=0 − λa|p(ϕ0).

Now the first term on the right side of the final line is equal to ξ|p
(
λ(α)

)
. (The

argument is the same as used in the final stage of the proof of the lemma.)

And ϕ0 = ξ (α), by condition (2) of the lemma. So(
£ξ λa)

|p(α) = ξa|p(λ(α))− λa|p(ξ (α)).

Since p and α are arbitrary, this establishes our claim. �

PROBLEM 1.6.3. Show that the set of smooth contravariant vector fields on M forms

a “Lie algebra” under the bracket operation (defined in the preceding proposition);

i.e., show that for all smooth vector fields ξ , η, λ on M,

[ξ , η] = −[η, ξ ] and
[
λ, [ξ , η]]+ [

η, [λ, ξ ]]+ [
ξ , [η, λ]] = 0.
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PROBLEM 1.6.4. Show that for all smooth vector fields ξa, ηa on M, and all smooth

scalar fields α on M,

£(α ξ )η
a = α(£ξ ηa)− (

£η α
)
ξa.

PROBLEM 1.6.5. One might be tempted to take a smooth tensor field to be “constant”

if its Lie derivatives with respect to all smooth vector fields are zero. But this idea

does not work. Any contravariant vector field that was constant in this sense would

have to vanish everywhere. Prove this.

PROBLEM 1.6.6. Show that for all smooth vector fields ξa, ηa, and all smooth tensor

fields αa...b
c...d , (

£ξ £η −£η£ξ
)
αa...b

c...d = £θ αa...b
c...d ,

where θa is the field £ξ ηa. It follows that £ξ and £η commute iff [ξ , η] = 0. (Hint:

First prove the assertion, in order, for scalar fields α and contravariant fields αa. It

will then be clear how to continue with covariant fields αa and arbitrary tensor fields

αa...b
c...d .)

Although it is important to knowhowLie derivatives are defined, in practice

one rarelymakes direct reference to the definition. Instead, one invokes propo-

sitions 1.6.1, 1.6.2, and 1.6.4. In fact, Lie derivatives can be fully characterized

in terms of the properties listed there.

PROPOSIT ION 1.6.5. Let ξa be a smooth vector field on M. Let D be an operator

taking smooth tensor fields on M to smooth tensor fields on M of the same index

structure that satisfies the following three conditions.

(1) For all smooth scalar fields α on M, D(α) = ξ (α).
(2) For all smooth vector fields λa on M, D(λa) = [ξ , λ]a.
(3) D commutes with the operations of addition, index substitution, and con-

traction; it further satisfies the Leibniz rule with respect to tensor multiplica-

tion.

Then D = £ξ ; i.e., D and £ξ have the same action on all smooth tensor fields.

Proof. We are assuming outright that D and £ξ have the same action on

scalar field and contravariant vector fields. We must show that (3) induces

agreement on tensor fields of all other index structures. Consider, first, the
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case of a field γa. Given any smooth field λa on M, we must have D(γa λ
a) =

ξ (γa λ
a) = £ξ (γa λ

a) by (1). Hence, by (3),

γa D(λa)+ D(γa)λa = γa £ξ (λa)+£ξ (γa)λa.

But D(λa) = £ξ (λa) by (2). So, for arbitrary smooth fields λa on M,
(
D(γa)−

£ξ (γa)
)
λa = 0. Thus, D(γa) = £ξ (γa).

We can now jump to the general case of a smooth tensor field λa1...ar
b1...bs

on M.

We do so with an argument that is much like the one just used to handle the

case of covariant vector fields. Let λb1 , . . . , ρbs ,μa1 , . . . , νar be arbitrary smooth

fields on M, and consider the scalar field α = λa1...ar
b1...bs

λb1 . . . ρbs μa1 . . . νar . By

(1), D(α) = £ξ (α). We can expand the terms D(α) and £ξ (α) using the fact

that both operators, D and £ξ , satisfy the Leibniz rule. The result will be an

equation with r + s + 1 terms on each side. The terms will agree completely,

except that where D appears on the left, £ξ will appear on the right. In r + s

terms, the operator (D or £ξ ) will act on a vector field. So all these terms will

cancel since D and £ξ agree in their action on contravariant and covariant

vector fields. For example, the terms

λ
a1...ar
b1...bs

D(λb1 ) . . . ρbs μa1 . . . νar and λ
a1...ar
b1...bs

(
£ξ λb1

)
. . . ρbs μa1 . . . νar

will cancel since D(λb1 ) = £ξ λb1 . So we may conclude that[
D
(
λ

a1...ar
b1...bs

)−£ξ
(
λ

a1...ar
b1...bs

)]
λb1 . . . ρbs μa1 . . . νar = 0

for all smooth fields λb1 , . . . , ρbs ,μa1 , . . . , νar on M. Thus D and £ξ agree in
their action on λa1...ar

b1...bs
. �

We record one more fact for future reference. For any smooth field λa1...ar
b1...bs

,

£ξ λa1...ar
b1...bs

is supposed to represent the “rate of change” of the field λa1...ar
b1...bs

rela-

tive to a standard of constancy determined by (the flow maps associated with)

ξa. So one would expect that £ξ λa1...ar
b1...bs

vanishes (everywhere) iff those flow

maps preserve λa1...ar
b1...bs

. Wemake the claim precise in the following proposition.

The only slightly delicate matter is the need to keep track of the domains of

definition of the local flow maps.

PROPOSIT ION 1.6.6. Let ξa and λa1...ar
b1...bs

be smooth fields on M. Then the following

conditions are equivalent.

(1) £ξ λa1...ar
b1...bs

= 0 (everywhere on M).

(2) For all local one–parameter groups of diffeomorphisms {�t : U → �t[U]}t∈I

generated by ξa, and all t ∈ I, (�t)∗(λa1...ar
b1...bs

) = λa1...ar
b1...bs

.
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Proof. The proof is essentially the same no matter what the index structure

of the field under consideration. So, for convenience, we work with a field

λa
b . One direction ((2) ⇒ (1)) is immediate. Let {�t : U → M}t∈I be any local

one–parameter group of diffeomorphisms determined by ξa, and let p be any

point in U . If (2) holds, then, in particular,
(
(�t)∗(λa

b)
)
|p = λa

b |p for all t ∈ I.

Hence(
£λ λa

b

)
|p = lim

t→0

1

t

[(
(�t)

∗(λa
b)
)
|p − λa

b |p
]

= lim
t→0

1

t
[λa

b |p − λa
b |p ] = 0.

The converse requires just a bit more work. Suppose that (1) holds. Let

{�t : U → M}t∈I be any local one–parameter group of diffeomorphisms deter-

mined by ξa, and let p be any point in U . Further, let ηa and ρb and be any

two vectors at p, and let f : I → R be the smooth map defined by

f (t) = ((
�t)∗(λa

b)
)
|p ηa ρ

b.

We show that f ′(t) = 0 for all t ∈ I. This will suffice. For then it will follow

that f is constant; i.e.,
[(
�t)∗(λa

b)
]
|p ηa ρ

b = [(
�0)∗(λa

b)
]
|p ηa ρ

b = λa
b |p ηa ρ

b for

all t ∈ I. Hence, since ηa and ρa are arbitrary vectors at p, it will follow that(
(�t)∗(λa

b)
)
|p = λa

b |p for all t ∈ I, as needed.

So let t be any number in I. Then we have

f ′(t) = lim
s→0

1

s

[(
(�t+s)∗(λa

b)
)
|p ηa ρ

b − (
(�t)∗(λa

b)
)
|p ηa ρ

b
]
.

Now suppose s is sufficiently small in absolute value that {s, t + s} ⊆ I and

�s( p) ∈ U . Then �t+s( p) = (�t ◦�s)( p). (Recall condition (2) in the final para-

graph of section 1.3.) Hence, for all such s, we have(
(�t)∗(λa

b)
)
|p ηa ρ

b = λa
b |�t ( p)

(
(�t)∗(ηa)

)
|�t ( p)

(
(�t)∗(ρb)

)
|�t ( p)

and(
(�t+s)∗(λa

b)
)
|p ηa ρ

b = (
(�s)∗(λa

b)
)
|�t ( p)

(
(�t)∗(ηa)

)
|�t ( p)

(
(�t)∗(ρb)

)
|�t ( p).

So, substituting into our expression for f ′(t), we have

f ′(t) =
[
lim
s→0

1

s

((
(�s)∗(λa

b)
)
|�t ( p) − λa

b |�t ( p)

)] (
(�t)∗(ηa)

)
|�t ( p)

(
(�t)∗(ρb)

)
|�t ( p)

= (
£ξ λa

b

)
|�t ( p)

(
(�t)∗(ηa)

)
|�t ( p)

(
(�t)∗(ρb)

)
|�t ( p).

Since £ξ λa
b = 0 everywhere, we may conclude that f ′(t) = 0. �
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1.7. Derivative Operators and Geodesics

We have already introduced one kind of derivative operator, namely £λ, asso-
ciated with a smooth contravariant vector field λa. In this section, we discuss

a different kind. It is, in a sense, a generalization of the gradient operator ∇
that one encounters in standard vector analysis on R

n.

Let M be a manifold, and let ∇ be a map that acts on pairs (c,αa1...ar
b1...bs

),

where the second is a smooth tensor field on M and the first is an abstract

index distinct from a1 . . . , ar , b1, . . . , bs, and associates with them a smooth

tensor field∇cα
a1...ar
b1...bs

on M in which c appears as a covariant index. (Given any

one index c, we understand ∇c to be the operator that takes the field α
a1...ar
b1...bs

to

the field ∇cα
a1...ar
b1...bs

.) We say that ∇ is a (covariant) derivative operator on M if it

satisfies the following conditions.

(DO1) ∇ commutes with addition on tensor fields.

For example, ∇n
(
αab

c +βba
c

) = ∇n α
ab
c + ∇n β

ba
c .

(DO2) ∇ satisfies the Leibniz rule with respect to tensor multiplication.

For example, ∇n
(
αab

c ξfd
) = αab

c ∇n ξfd + (∇n α
ab
c

)
ξfd .

(DO3) ∇ commutes with index substitution.

For example, the result of applying (a → d) index substitution to αab
c and

applying∇n is the sameas that arising fromapplying (a → d) substitution

to∇n α
ab
c . Furthermore, the result of applying (n → m) index substitution

to ∇n α
ab
c is the same as that arising from applying ∇m to αab

c .

(DO4) ∇ commutes with contraction.

For example, the result of applying (a, c) contraction to ∇n α
ab
c is the same

as that arising from applying ∇n to αab
a .

(DO5) For all smooth scalar fields α and all smooth vector fields ξn,

ξn ∇n α = ξ (α).
(DO6) For all (distinct) indices a and b, and for all smooth scalar fields α,

∇a∇b α = ∇b∇a α.

The first four conditions should seem relatively innocuous. Condition (DO5)

is suggested by the situation in ordinary vector analysis on R
n. There the

directional derivative of α in the direction ξ is given by ξ · ∇α. (Recall equation
(1.2.1).) We want to interpret ξn ∇n α as the analog of ξ · ∇ α. So we set ξn ∇n α

equal to the (generalized) directional derivative ξ (α). Condition (DO6) is a bit

more delicate. One can imagine strengthening the condition to require that

∇a and ∇b commute on all tensor fields. This leads to the class of “flat” deriva-

tive operators and is far too restrictive for our purposes. One can also imagine

dropping the condition altogether. This leads to the larger class of “derivative
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operators with torsion.” It will be clear later why we have included (DO6). (The

derivative operators determined by metrics are necessarily torsion free.)

Some authors refer to the associated maps ∇a as “derivative operators”

rather than reserving that term for the map ∇ itself. We shall do so as well, on

occasion.

Having defined derivative operators, we can now pose the question of their

existence, and uniqueness on manifolds. Concerning existence, one has the

following basic result (Geroch [23, appendix]).

PROPOSIT ION 1.7.1. A connected manifold admits a derivative operator iff a

countable subset of the manifold’s charts suffice to cover it.

The restriction to connected manifolds here is harmless since, clearly, a

manifold admits a derivative operator iff each of its components does. Prac-

tically all the manifolds one ever deals with in differential geometry satisfy

the stated countable cover condition. Indeed, one has to work hard to find a

manifold that does not. So proposition 1.7.1 has the force of a strong exis-

tence theorem. (And, of course, it implies that all manifolds admit derivative

operators locally.)

The question of uniqueness is easier to deal with, and we give a complete

answer. But first a lemma is needed.

LEMMA 1.7.2. Let ∇ be a derivative operator on the n-dimensional manifold M,

and let ξb be a co-vector at the point p. Then there is a smooth scalar field α in S( p)

such that ξb = (∇b α)|p.

Proof. Here we use coordinates as in section 1.2. Suppose (U ,ϕ) is a chart on

M with p ∈ U , and u1, . . . , un are the corresponding coordinate maps on U .

The coordinate curve tangent vectors
→
γ 1|p, . . . ,

→
γ n|p form a basis for Mp. Let

{ 1
β,

2
β, . . . ,

n
β} be a dual basis. Then (

→
γ i |p)

j

β = δij for all i and j in {1, . . . , n},
and there exist real numbers

1
c, . . . ,

n
c such that ξb =

n∑
i=1

i
c

i
βb. Now we define

a smooth scalar field α : U → R by setting α(q) =
n∑

i=1

i
c ui(q). We claim ξb =

(∇b α)|p.
Wemust show that ηb ξb = ηb (∇b α)|p holds for arbitrary vectors ηb at p. Let

ηb =
n∑

i=1

i

d
(→
γ i |p

)b be one such. Then, by (DO5), and the fact that
→
γ i |p(u j) = δij

(recall equation (1.2.6)), we have
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ηb (∇b α)|p = η(α)|p =
(

n∑
i=1

i

d (
→
γ i |p)

)⎛⎝ n∑
j=1

j
c u j

⎞⎠ =
n∑

i=1

i

d
i
c.

Since we also have

ηb ξb =
(

n∑
i=1

i

d
(→
γ i |p

)b

)⎛⎝ n∑
j=1

j
c

j

βb

⎞⎠ =
n∑

i=1

i

d
i
c,

we are done. �

PROPOSIT ION 1.7.3. Let ∇ and ∇′ be derivative operators on the manifold M.

Then there exists a smooth symmetric tensor field Ca
bc on M that satisfies the following

condition for all smooth tensor fields αa1...ar
b1...bs

on M:

(∇′
m − ∇m

)
α

a1...ar
b1...bs

= αa1...ar
nb2...bs

Cn
mb1

+ . . .(1.7.1)

+αa1...ar
b1...bs−1n Cn

mbs
−αna2...ar

b1...bs
Ca1

mn − . . .−αa1...ar−1n
b1...bs

Car
mn.

Conversely, given any derivative operator ∇ on M and any smooth symmetric tensor

field Cm
ab on M, if ∇′ is defined by equation (1.7.1), then ∇′ is also a derivative

operator on M. (To get a grip on equation (1.7.1), note that for each index in

α
a1...ar
bs...bs

there is a corresponding term on the right. That term carries a + or −
depending on whether the index is a subscript or superscript. In that term, the index

is contracted into Ca
bc .)

Proof. Let ∇ and ∇′ be derivative operators on M. Note first that given any

smooth scalar field α onM,∇′
a α = ∇a α. (This follows from the fact that given

any vector ξa at any point in M, ξa ∇′
a α = ξ (α) = ξa ∇a α.)

Next we claim that given any smooth co-vector field γb on M, if γb = 0
at a point p, then ∇′

a γb = ∇a γb at p. To see this, let ξ b be any smooth field

on M and consider the scalar field γb ξ
b. We have 0 = (∇′

a − ∇a
)(
γb ξ

b
) =

γb
(∇′

a − ∇a
)
ξ b + ξ b

(∇′
a − ∇a

)
γb everywhere. So, in particular, we have 0 =

ξ b
(∇′

a − ∇a
)
γb at p. Since this is true for arbitrary ξa, it must be the case that(∇′

a − ∇a
)
γb = 0 as claimed.

It follows from the claim that given any smooth field αb on M, the value

of
(∇′

m − ∇m
)
αb at a point p is determined solely by the value of αb itself at p.(

For suppose that 1
αb and

2
αb agree at p. Then the claim is applicable to 1

αb − 2
αb,

and therefore
(∇′

m − ∇m
) 1
αb = (∇′

m − ∇m
) 2
αb at p.)



“530-47773_Ch01_2P.tex” — 1/23/2012 — 17:18 — page 52

−1

0

+1

52 / differential geometry

Now we define a tensor field Ca
bc . Given any point p and a vector 0

αa at p,

we set

Cn
mb

0
αn = (∇′

m − ∇m
)
αb

where αb is any smooth field on M that assumes the value 0
αb at p. (Our

preliminary work shows that the choice of αb makes no difference.) It follows

immediately that Cn
mb satisfies Cn

mb αn = (∇′
m − ∇m

)
αb for all smooth fields αb

and, therefore, is smooth itself.

Ca
bc is symmetric. To see this, consider any smooth scalarfieldα onM. Since

∇′
n α = ∇n α, it follows that Cn

mb ∇n α = (∇′
m − ∇m

)∇b α = ∇′
m∇b α− ∇m∇b α =

∇′
m∇′

b α− ∇m∇b α. So, by (DO6), we may conclude that Cn
mb ∇n α = Cn

bm ∇n α.

But by our lemma, all covariant vectors at a point can be realized in the form

∇n α for some scalar field α. So we have Ca
bc = Ca

cb.

Next we show that Ca
bc satisfies condition (1.7.1). This involves a now famil-

iar sequential form of argument—from scalar fields, to vector fields, to

arbitrary tensor fields. We have already seen that all derivative operators agree

on scalar fields. And it follows directly from our definition of Ca
bc that (1.7.1)

holds for covariant vector fields. So let ξa be an arbitrary smooth contravariant

field on M. Then, given any smooth field γa on M,

0 = (∇′
a − ∇a

)(
ξ b γb

) = ξ b(∇′
a − ∇a

)
γb + γb

(∇′
a − ∇a

)
ξ b

= ξ b Cd
ab γd + γb

(∇′
a − ∇a

)
ξ b

= [
ξ b Cd

ab + (∇′
a − ∇a

)
ξd]γd .

Since this holds for all smooth fields γa, it follows that
(∇′

a − ∇a
)
ξd = −ξ b Cd

ab,

as required by (1.7.1).

To check equation (1.7.1) for tensor fields αa
bc , one expands 0 = (∇′

m − ∇m
)(

αa
bc ξ

bλc ηa
)

for arbitrary fields ξ b, λc , ηa and uses the known expres-

sions for
(∇′

m − ∇m
)
ξ b,

(∇′
m − ∇m

)
λc , and

(∇′
m − ∇m

)
ηa. The calculation is

straightforward. Tensor fields of arbitrary index structure can be handled

similarly.

The second half of the proposition is also straightforward. �

It is worth noting that condition (DO6) entered the proof only in the demon-

stration that Ca
bc must be symmetric. If in the statement of the proposition

one drops the requirement of symmetry on Ca
bc , then one has the appropriate

formulation for derivative operators with torsion.
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In what follows, if ∇′ and ∇ are derivative operators on a manifold that,

together with the field Ca
bc , satisfy condition (1.7.1), then we shall write ∇′ =(∇,Ca

bc

)
. Clearly this is equivalent to ∇ = (∇′,−Ca

bc

)
.

We have introduced two kinds of derivative operators. The next proposition

shows how the action of one can be expressed in terms of the other.

PROPOSIT ION 1.7.4. Suppose ∇ is a derivative operator on the manifold M, and

λa is a smooth vector field on M. Then for all smooth fields αa1...ar
b1...bs

on M, we have

£λ αa1...ar
b1...bs

= λn ∇n α
a1...ar
b1...bs

+αa1...ar
nb2...bs

∇b1 λ
n(1.7.2)

+ . . .+αa1...ar
b1...bs−1n ∇bs λ

n

−αna2...ar
b1...bs

∇n λ
a1 − . . .−αa1...ar−1n

b1...bs
∇n λ

ar .

(Condition (1.7.2), of course, resembles (1.7.1). The difference £λ αa1...ar
b1...bs

−
λn ∇n α

a1...ar
b1...bs

is a sum of terms, one for each index in αa1...ar
b1...bs

. The terms carry

a + or − depending on whether the associated index is a subscript or a superscript.

Each term is contracted with ∇a λ
b.)

Proof. The proof is another simple sequential argument, like the one used

in the preceding proof. (Note that we shall not need to invoke the definition

of Lie derivatives. It will suffice to make use of the properties collected in

propositions 1.6.1 and 1.6.4.)

First of all, trivially, ifα is a smooth scalar field, then£λ α = λ(α) = λn ∇n α.

Next, suppose ξa is a smooth vector field. Then for arbitrary smooth scalar

fields α, we have, by proposition 1.6.4),

(
£λ ξ

)
(α) = λ(ξ (α))− ξ(λ(α)) = λ(ξa ∇a α

)− ξ(λa ∇a α
)

= λb ∇b
(
ξa ∇a α

)− ξ b ∇b
(
λa ∇a α

)
= λb ξa ∇b∇a α+ (

λb∇b ξ
a)∇a α− ξ b λa ∇b∇a α− (

ξ b∇b λ
a)∇a α.

The first and third term of the last line cancel each other by (DO6). So we have(
£λ ξ

)
(α) = (

λb ∇b ξ
a − ξ b ∇b λ

a)∇a α = (
λb ∇b ξ

a − ξ b ∇b λ
a)(α).

Since α is arbitrary, it follows that

£λ ξa = λb ∇b ξ
a − ξ b ∇b λ

a,

as required by equation (1.7.2).
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Next let αa be a smooth covariant vector field. Then for arbitrary smooth

fields ξa,

£λ (αa ξ
a) = αa £λ ξa + ξa £λ αa

= αa
(
λb ∇b ξ

a − ξ b ∇b λ
a)+ ξa £λ αa.

Here we have used both the fact that £λ satisfies the Leibniz condition and

our previous expression for £λ ξa. But we also have

£λ
(
αa ξ

a) = λb ∇b
(
αa ξ

a) = λb αa ∇b ξ
a + λb ξa ∇b αa.

Therefore,

ξa £λ αa = ξa(λb ∇b αa +αb ∇a λ
b).

Since ξa is arbitrary, we have

£λ αa = λb ∇b αa +αb ∇a λ
b,

as required by equation (1.7.2).

Continuing this way, we can verify equation (1.7.2) for tensor fields of

arbitrary index structure. �

PROBLEM 1.7.1. Show that if ∇ is a derivative operator on a manifold, then

∇n δ
b
a = 0.

With the notion of a derivative operator in hand, we can now introduce the

idea of “parallel transport” of tensors along curves.

SupposeM is amanifold with derivative operator∇. The directional deriva-

tive of a scalar field α at p in the direction ξa, we know, is given by ξn ∇n α.

Generalizing now, we take the directional derivative of a smooth field αa1...am
b1...br

at p in the direction ξa (with respect to ∇) to be

ξn ∇n α
a1...am
b1...br

.

Furthermore, if γ : I → M is a smooth curve with tangent field ξa, we say that

α
a1...am
b1...br

is constant along γ (with respect to ∇) if ξn ∇n α
a1...am
b1...br

= 0.
Derivative operators are sometimes called “connections” (or “affine con-

nections”). That is because, in a sense, they “connect” the tangent spaces of

points “infinitesimally close” to one another, i.e., they provide a standard of

identity for vectors at distinct, but “infinitesimally close” points.

So far, our tensor fields have always been defined over an entire manifold

or—this amounts to the same thing—to open subsets of a manifold. It is

useful also to consider tensor fields defined on curves. Suppose γ : I → M is
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a smooth curve on the manifold M. A tensor field (of a given index structure) on

γ is just a map that assigns to each s in I a tensor of that index structure at

γ (s). (Note that this is not quite the same as assigning a tensor of that index

structure to each point in γ [I], since we are not here excluding the possibility
that the curve may cross itself—i.e., that γ (s1) = γ (s2) for distinct s1 and s2 in

I. We do not want to insist in such a case that the tensor assigned to s1 is the

same as the one assigned to s2.) So, for example, the tangent field to γ counts

as a tensor field on γ .

It is clear what the appropriate criterion of smoothness is for tensor fields

on γ . A scalar field on γ is just a map α : I → R. So we certainly understand

what it means for it to be smooth. We take a vector field ξa on γ to be smooth

if, for all smooth scalar fields α on M, ξ (α) is a smooth scalar field on γ . Next,

we take a co-vector fieldμa on γ to be smooth if, for all smooth fields ξa on M,

ξaμa is a smooth scalar field on γ . One can continue in this way following the

usual pattern. Note that the tangent vector field to any smooth curve qualifies

as smooth.

Now suppose that γ : I → M is a smooth curve on the manifold M with

tangent field ξa, αa1...am
b1...br

is a smooth field on γ , and ∇ is a derivative operator

on M. We cannot meaningfully apply ∇ to αa1...am
b1...br

. But we can make sense

of the directional derivative field ξn ∇n α
a1...am
b1...br

on γ . We can do so using the

following proposition.

PROPOSIT ION 1.7.5. Suppose ∇ is a derivative operator on the manifold M and

γ : I → M is a smooth curve with tangent field ξa. Then there is a unique operator

α
a1...am
b1...br

�→ D
(
α

a1...am
b1...br

)
taking smooth tensor fields on γ to smooth tensor fields on γ of the same index

structure that satisfies the following conditions.

(1) D commutes with the operations of addition, index substitution, and contrac-

tion; it further satisfies the Leibniz rule with respect to tensor multiplication.

(2) For all smooth scalar fields s �→ α(s) on γ , D(α) = dα

ds
.

(3) Let s �→ α
a1...am
b1...br

(s) be a smooth tensor field on γ . Suppose there is an open set

O and a smooth field α̃a1...am
b1...br

on O such that, for all s in some open interval

I′ ⊆ I, α
a1...am
b1...br

(s) = α̃a1...am
b1...br

|γ (s). Then, for all s in I′, D
(
α

a1...am
b1...br

)
(s) =(

ξn∇n α̃
a1...am
b1...br

)
|γ (s).
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Proof. Suppose first thatD satisfies the stated conditions, and supposeαa1...am
b1...br

is a smooth tensor field on γ . We shall derive an explicit expression for

D(αa1...am
b1...br

) in terms of a local coordinate chart. This will show that there can be,

at most, one D satisfying the stated conditions. To avoid drowning in indices,

we shall work with a representative case—a smooth field αa
b—but it will be

clear how to adapt the argument to fields with other index structures.

Suppose our background manifold (M, C) has dimension n. Let s be any

point in I, and let (U ,ϕ) be an n-chart in C whose domain U contains γ (s). For

all i ∈ {1, . . . , n}, let i
ηa be the smooth coordinate-curve tangent field (

→
γ i)a on

U . We know that the fields
1
ηa,

2
ηa, . . . ,

n
ηa form a basis for the tangent space at

every point in U . Let
1
μa,

2
μa, . . . ,

n
μa be corresponding smooth co-vector fields

on U that form a dual basis at every point. Now let αa
b be a smooth field on γ .

We can certainly express it in terms of these basis and co-basis fields. That

is, we can find an open subinterval I′ ⊆ I containing s, and smooth functions
ij
α : I′ → R such that, at all points s in I′,

αa
b (s) =

n∑
i,j=1

ij
α(s)(

i
ηa)|γ (s) (

j
μb)|γ (s).

Here, of course,
ij
α = αa

b
i
ηb j
μa. We can construe the restrictions of

i
ηa and

j
μb

to γ [I′] as smooth fields on (a restricted segment of) γ . It follows, therefore,

that at all points in I′,

D(αa
b ) =

n∑
i,j=1

D
(

ij
α

i
ηa j
μb

)
=

n∑
i,j=1

[
D(

ij
α) (

i
ηa j
μb)+

ij
αD(

i
ηa j
μb)

]
.

Here we have just used the fact that D commutes with tensor addition and

satisfies the Leibniz rule (and suppressed explicit reference to the evaluation

point s). But now it follows from conditions (2) and (3), respectively, that

D(
ij
α) = d

ij
α

ds
, and D(

i
ηa j
μb) = ξn∇n(

i
ηa j
μb). So, we have our promised explicit

expression for D(αa
b ):

D(αa
b ) =

n∑
i,j=1

⎡⎣d
ij
α

ds
(

i
ηa j
μb)+

ij
αξn∇n(

i
ηa j
μb)

⎤⎦ .

To show existence, finally, it suffices to check that the operator D defined

by this expression (and the counterpart expressions for fields with other index

structures) satisfies all three conditions in the proposition. �
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Under the stated conditions of the proposition, we can now understand

ξn∇n α
a1...am
b1...br

to be the smooth field on γ given byD
(
α

a1...am
b1...br

)
. Note that condi-

tion (3) in theproposition justmakesprecise the requirement that ξn∇n α
a1...am
b1...br

is “what it should be” in the case where αa1...am
b1...br

arises as the restriction to γ [I]
of some smooth tensor field defined on an open set.

We have already said what it means for a tensor field defined on an open

set to be “constant” along a curve γ with tangent field ξa. We can now extend

that notion to fields αa1...am
b1...br

defined only on γ itself. The defining condition,

ξn ∇n α
a1...am
b1...br

= 0 carries over intact.
The fundamental fact about constant fields on curves is the following.

PROPOSIT ION 1.7.6. Given a manifold M, a derivative operator∇ on M, a smooth

curve γ : I → M, and a tensor
0
α

a1...am
b1...br

at some point γ (s), there is a unique smooth

tensor field αa1...am
b1...br

on γ that is constant (with respect to ∇) and assumes the value
0
α

a1...am
b1...br

at s.

When the conditions of the proposition are realized, we say that αa1...am
b1...br

results from parallel transport of 0
α

a1...am

b1...br
along γ (with respect to ∇).

Finally, we introduce “geodesics.” We say that a smooth curve γ : I → M is

a geodesic (with respect to ∇) if its tangent vector field ξa is constant along γ—

i.e., if ξ b ∇b ξ
a = 0. The basic existence and uniqueness theorem for geodesics

is the following. (In what follows, we shall drop the qualification “with respect

to ∇” except in contexts where doing so might lead to ambiguity.)

PROPOSIT ION 1.7.7. Given a manifold M, a derivative operator ∇ on M, a point

p in M, and a vector ξa at p, there is a unique geodesic γ : I → M with γ (0) = p

and ξ =→
γ |p that satisfies the following maximality condition: if γ ′ : I′ → M is also

a geodesic with γ ′(0) = p and
→
γ ′|p = ξ , then I′ ⊆ I and γ ′(s) = γ (s) for all s ∈ I′.

To prove propositions 1.7.6 and 1.7.7, one formulates the assertions in

terms of local coordinates and then invokes the fundamental existence and

uniqueness theorem for ordinary differential equations.

A derivative operator determines a class of geodesics. It turns out that a

derivative operator is actually fully characterized by its associated geodesics.

This will be important later in our discussion of relativity theory.

PROPOSIT ION 1.7.8. Suppose ∇ and ∇′ are both derivative operators on the man-

ifold M. Further suppose that ∇ and ∇′ admit the same geodesics (i.e., for all smooth
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curves γ : I → M, γ is a geodesic with respect to ∇ iff it is a geodesic with respect to

∇′). Then ∇′ = ∇.

Proof. The argument provides a good example of how proposition 1.7.3 is

used. Given ∇ and ∇′, there must exist a smooth symmetric field Ca
bc on M

such that ∇′ = (∇,Ca
bc ). It will suffice to show that Ca

bc vanishes everywhere.

Given an arbitrary point p and an arbitrary vector
0
ξa at p, there is a geodesic

γ with respect to ∇ that passes through p and has tangent
0
ξa at p. Let ξa be

the tangent vector field of γ . Then we have ξn ∇n ξ
a = 0. By our hypothesis, γ

must also be a geodesic with respect to ∇′. So ξn ∇′
n ξ

a = 0 too. Now, since

∇′
a = (∇a,Ca

bc ), we have ∇′
a λ

b = ∇a λ
b − Cb

an λ
n for all smooth fields λa. So,

in particular, we have

0 = ξa ∇′
a ξ

b = ξa ∇a ξ
b︸ ︷︷ ︸

= 0

−Cb
an ξ

a ξn

at all points on the image of γ . So Cb
an

0
ξn 0
ξa = 0 at p. But

0
ξa and p were arbi-

trary, and Cb
an is symmetric. So, by proposition 1.4.3, Ca

bc must vanish every-

where. �

The property of being a geodesic is not preserved under reparametrization

of curves. The situation is as follows.

PROPOSIT ION 1.7.9. Suppose M is a manifold with derivative operator ∇, and

γ : I → M is a smooth curve with tangent field ξa. Then γ can be reparametrized

so as to be a geodesic (i.e., there is a diffeomorphism α : I′ → I of some interval I′

onto I such that γ ′ = γ ◦α is a geodesic) iff ξn ∇n ξ
a = f ξa for some smooth scalar

field f on γ . Furthermore, if γ is a non-trivial geodesic (i.e., a geodesic with non-

vanishing tangent field), then the reparametrized curve γ ′ = γ ◦α is a geodesic iff

α is linear.

Proof. Suppose α : I′ → I is a diffeomorphism and ξ ′ is the tangent field to

γ ′ = γ ◦α : I′ → M. Set t = α(s). By the chain rule, we have ξ ′ = ξ dα

ds
. (This

abbreviates ξ ′|γ ′(s) = ξ|γ (α(s)) dα

ds
(s). Recall equation (1.3.1) in the proof of

proposition 1.3.2.) Now we can construe
dα

ds
as a smooth scalar field on γ—it

assigns to s the number
dα

ds
(s) at the point γ (s)—and we can make sense of
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the rate of change ξn ∇n
dα

ds
. So we have

ξ ′n ∇n ξ
′a =

(
dα

ds
ξn
)

∇n

(
dα

ds
ξa
)

=
(

dα

ds

)2

ξn ∇n ξ
a +

(
dα

ds

)
ξa ξn ∇n

dα

ds
.

Now
dα

ds
(s) = 0 for all s in I′, since α is a diffeomorphism. So, by the chain

rule again,

ξn ∇n
dα

ds
= d

dt

(
dα

ds

)
= d2α

ds2

(
dα

ds

)−1

.

It follows that

(1.7.3) ξ ′n ∇n ξ
′a =

(
dα

ds

)2

ξn ∇n ξ
a + d2α

ds2
ξa.

Both our claims follow from this last equation. First, γ ′ is a geodesic, i.e.,

ξ ′n ∇n ξ
′a = 0 iff ξn ∇n ξ

a = f ξa, where f = −d2α

ds2

(
dα

ds

)−2

. Second, if γ is

a geodesic (i.e., if ξn ∇n ξ
a = 0), then γ ′ is also a geodesic iff

d2α

ds2
ξa = 0.

On the assumption that ξa is non-vanishing, the latter condition holds iff
d2α

ds2
= 0—i.e., α is linear. �

We know that a derivative operator is determined by its associated class of

geodesics. Let us now consider a different question. Suppose one does not

know which (parametrized) curves are geodesics, but only which ordered point

sets on a manifold are the images of geodesics. To what extent does that partial

information allow one to determine the derivative operator? We answer the

question in the next proposition. Let us say that two derivative operators∇ and

∇′ on a manifold are projectively equivalent if they admit the same geodesics

up to reparametrization (i.e., if any curve can be reparametrized as to be a

geodesic with respect to ∇ iff it can be reparametrized so as to be a geodesic

with respect to ∇′).

PROPOSIT ION 1.7.10. Suppose ∇ and ∇′ are derivative operators on a manifold

M and ∇′ = (∇,Ca
bc

)
. Then ∇ and ∇′ are projectively equivalent iff there is a

smooth field ϕc on M such that

Ca
bc = δa

b ϕc + δa
c ϕb.
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Proof. Suppose first that there does exist such a field ϕc . Further suppose that

γ is an arbitrary smooth curve with tangent field ξa. Then

ξn ∇′
n ξ

a = ξn(∇n ξ
a − Ca

nm ξ
m) = ξn ∇n ξ

a − (
δa

n ϕm + δa
m ϕn

)
ξn ξm

= ξn ∇n ξ
a − 2 ξa(ϕm ξ

m).

It follows by the first part of proposition 1.7.9 that γ can be reparametrized so

as to be a geodesic with respect to ∇ iff it can be reparametrized so as to be a

geodesic with respect to ∇′.
Conversely, suppose that ∇ and ∇′ are projectively equivalent. We show

there is a smooth field ϕc on M such that Ca
bc = δa

b ϕc + δa
c ϕb. Let γ be an

arbitrary geodesic with respect to ∇ with tangent field ξa. Then ξn ∇n ξ
a = 0

and ξn ∇′
n ξ

a = f ξa for some smooth field f on γ . (Here again we use the first

part of proposition 1.7.9.) It follows that

f ξa = ξ b(∇b ξ
a − Ca

bc ξ
c) = −Ca

bc ξ
b ξ c .

Therefore,
(
Ca

bc ξ
d − Cd

bc ξ
a
)
ξ b ξ c = 0. This can be expressed as(

Ca
bc δ

d
r − Cd

bc δ
a
r

)
ξ b ξ c ξ r = 0.

Now let ϕad
bcr be the field

(
Ca

bc δ
d
r − Cd

bc δ
a
r

)
. Symmetrizing on the indices b, c, r ,

we have

ϕ ad
(bcr) ξ

b ξ c ξ r = 0.

Since this equation must hold for all choices of γ , and hence all vec-

tors ξ (at all points), and since ϕ ad
(bcr) is symmetric in b, c, r , it follows

fromproposition 1.4.3 that ϕ ad
(bcr) = 0. Therefore, using the fact thatCa

bc is itself

symmetric,

Ca
bc δ

d
r − Cd

bc δ
a
r + Ca

rb δ
d
c − Cd

rb δ
a
c + Ca

cr δ
d
b − Cd

cr δ
a
b = 0.

Now suppose n is the dimension of our underlying manifold. Then (r , d)

contraction yields

n Ca
bc − Ca

bc + Ca
cb − Cd

db δ
a
c + Ca

cb − Cd
cd δ

a
b = 0.

Thus, (n + 1)Ca
bc = δa

b Cd
cd + δa

c Cd
bd . If we set ϕc = 1

n + 1
Cd

cd , this can be

expressed as

Ca
bc = δa

b ϕc + δa
c ϕb. �
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We close this sectionwith a few remarks about the “exterior derivative oper-

ator” and about “coordinate derivative operators” (associated with particular

charts on a manifold).

An m-form (for m ≥ 0) on a manifold M is a tensor field on M with m

covariant indices that is anti-symmetric—i.e., a tensor field of the form αa1...am

where αa1...am = α[a1...am]. (Scalar fields qualify as 0-forms.)

Suppose αa1...am is a smooth m-form on M, and c is an index distinct from

a1, . . . , am . Then, given any covariant derivative operator ∇, ∇[c αa1...am] quali-
fies as a smooth (m + 1)-formonM. It turns out that this field is independent of

the choice of derivative operator ∇. (See problem 1.7.2.) In this way, we arrive

at an operator d (the exterior derivative operator) that acts on pairs αa1...am and

c, and satisfies

(1.7.4) dc αa1...am = ∇[c αa1...am]

for all choices of ∇. So, in particular, we have da α = ∇a α for all smooth

scalar fields α. We have db αa = ∇[b αa] = 1
2 (∇b αa − ∇a αb) for all smooth co-

vector fields αa. And so forth.

One can certainly introduce the exterior derivative operator directly, without

reference to covariant derivative operators. Most books do so. But there is no

loss in proceeding as we have, since covariant derivative operators always

exist locally on manifolds, and local existence is all that is needed for our

characterization.

Officially, we are taking the exterior derivative operator d to be a map that

acts on a pair of objects—an index and a smoothm-form (for somem or other).

One might also use the term to refer to the associated map dc that assigns

dc αa1...am to αa1...am . Some authors do so, and we shall too on occasion.

PROBLEM 1.7.2. Let ∇ and ∇′ be derivative operators on a manifold, and letαa1...an

be a smooth n-form on it. Show that

∇[b αa1...an] = ∇′[b αa1...an].

(Hint: Make use of proposition 1.7.3.)

It is worth asking why we do not allow the exterior derivative operator to

act on arbitrary smooth covariant tensor fields. The problem is not a failure to

be well defined. (Note that given any smooth covariant field αa1...an , and any

two derivative operators ∇ and ∇′, it follows from problem 1.7.2 that

∇[b αa1...an] = ∇[b α[a1...an]] = ∇′[b α[a1...an]] = ∇′[b αa1...an].)
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Rather, the problem is thatwe cannot both extend the application of the exterior

derivative operator and have it satisfy the Leibniz rule—and presumably the

latter is a requirement for any derivative-like operator. Here is the argument.

Let αab be any smooth symmetric field. Then (if we allow ourselves to apply

dn), dnαab = ∇[nαab] = 0. Now let f be any smooth scalar field. By the same

argument, we have dn( f αab) = 0. So, if the Leibniz rule obtains, we have

0 = dn( f αab) = f (dnαab)+ (dnf )αab = (dnf )αab.

But this is impossible since, given any point p, we always choose f and αab so

that neither αab nor (dnf ) vanishes at p.

We have introduced three types of derivative operator on manifolds. It is

helpful to contrast them with respect to two features: the background geomet-

ric structure they presuppose (if any) and the types of tensorfields towhich they

can be applied. One finds a trade-off of sorts. The exterior derivative operator

da presupposes no background structure (beyond basic manifold structure).

But it is only applicable to smooth m-forms (for some m or other). In con-

trast, the Lie derivative operator £ξ and the covariant derivative operator ∇a

can both be applied to arbitrary smooth tensor fields. But the first presup-

poses (i.e., is defined relative to) a smooth contravariant vector field ξ ; and the

latter can itself be thought of as a layer of geometric structure beyond pure

manifold structure. (Another difference, of course, is that £ξ leaves intact the
index structure of the tensor field on which it acts, whereas da and∇a both add

a as a covariant index.)

Let us now consider “coordinate differentials.” Let (U ,ϕ) be an n-chart on

then-manifold (M, C), and letui : U → R (i = 1, . . . , n) be the coordinatemaps

on U determined by ϕ. We know that the associated smooth coordinate-curve

tangent fields
→
γ 1, . . . ,

→
γ n form a basis for the tangent space at every point in

U . (Recall the discussion in section 1.2.) The notation(
∂

∂u1

)
, . . . ,

(
∂

∂un

)
is often used for these fields. And give any smooth scalar field f on U , the

action of
(
∂

∂ui

)
on f is often written, simply, as

(
∂ f

∂ui

)
. Using this notation,

we have, by equation (1.2.5),

(1.7.5)

(
∂ f

∂ui

)
|p

=
(
∂

∂ui

)
|p
( f ) =→

γ i |p( f ) =
(
∂
(

f ◦ϕ−1
)

∂xi

)
∣∣ϕ( p)
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for all p in U . In particular, if we take f to be u j , it follows from equation

(1.2.6) that

(1.7.6)

(
∂u j

∂ui

)
=
(
∂

∂ui

)
(u j) =→

γ i(u
j) = δij

at all points in U . Furthermore, if ∇ is a derivative operator on M, we have,

by condition (DO5),

(1.7.7)

(
∂

∂ui

)a

(daf ) =
(
∂

∂ui

)a

(∇af ) =
(
∂

∂ui

)
( f ) =

(
∂ f

∂ui

)
.

So, taking f to be u j once again, we have

(1.7.8)

(
∂

∂ui

)a

(dau j) =
(
∂u j

∂ui

)
= δij .

This shows that the co-vectors

(dau1), . . . , (daun)

form a dual basis to
(
∂

∂u1

)a

, . . . ,
(
∂

∂un

)a

at every point in U .

Many useful facts follow from the preceding lines. For example, it follows

that the index substitution field δa
b can be expressed as

(1.7.9) δa
b =

(
∂

∂u1

)a

(dbu1)+ . . .+
(
∂

∂un

)a

(dbun).

And it follows that, for all smooth scalar fields f on U ,

(1.7.10) db f =
n∑

j=1

(
∂ f

∂u j

)
(dbu j).

(In both cases, the left- and right-side fields must be equal since they have

the same action on the basis fields
(
∂

∂ui

)b

. Consider equation (1.7.10). We

know from equation (1.7.7) that contraction with
(
∂

∂ui

)b

on the left side yields(
∂ f

∂ui

)
; and we know from equation (1.7.8) that contraction with

(
∂

∂ui

)b

on
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the right side yields
(
∂ f

∂ui

)
as well.) If we were not using the abstract index

notation, we would express equation (1.7.10) in the form

df =
n∑

j=1

(
∂ f

∂u j

)
dui.

Next we consider “coordinate derivative operators.” The basic fact is this.

PROPOSIT ION 1.7.11. Let M be an n-manifold, let (U ,ϕ) be an n-chart with non-

empty domain on M (in the atlas that defines the manifold), and let ui : U → R

(i = 1, . . . , n) be the coordinate maps determined by ϕ. Then there is a unique

derivative operator ∇ on U such that ∇a

(
∂

∂ui

)b

= 0 for all i.2

Proof. Uniqueness follows easily from proposition 1.7.3. Suppose ∇ and ∇′

are derivative operators on U with ∇′ = (∇, Ca
bc ). Then, for all i,

∇′
a

(
∂

∂ui

)b

= ∇a

(
∂

∂ui

)b

− Cb
an

(
∂

∂ui

)n

.

So if ∇ and ∇′ both satisfy the stated condition, it must be the case that

Cb
an

(
∂

∂ui

)n

= 0, for all i. This, in turn, implies thatCb
an = 0. (Somewhatmore

generally, if two derivative operators agree in their action on a set of vector

fields that span the tangent space at each point, the derivative operators must

be equal.)

We now establish existence by explicitly exhibiting a derivative operator

∇ on U that satisfies the stated condition. First, given any smooth scalar field

f on U , we take ∇a f to be the field on the right side of equation (1.7.10).

(We have no choice here, since da f = ∇a f for all derivative operators.) Next

consider any smooth tensor field on U that carries at least one abstract index.

It can be expressed uniquely as a sum over the basis fields
(
∂

∂ui

)a

and (dau j).

Consider an example. The field γ ab
c can be expressed uniquely in the form

γ ab
c =

n∑
i=1

n∑
j=1

n∑
k=1

ijk
γ

(
∂

∂ui

)a(
∂

∂u j

)b

(dcu
k).

2. Here, as usual, we have suppressed explicit reference to manifold atlases. We mean, of
course, that (M, C) is an n-manifold, (U ,ϕ) is an n-chart in C, and ∇ is a derivative operator on the
restricted manifold (U , C|U ).
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We take the action of ∇m on γ ab
c to be given by

∇mγ
ab
c =

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

⎛⎝ ∂ ijk
γ

∂ul

⎞⎠( ∂

∂ui

)a(
∂

∂u j

)b

(dcu
k)(dmul).

Here we introduce a new summation variable l, take the partial derivative of

the scalar field
ijk
γ with respect to ul , and add (dmul) to the list of fields on

the right. This prescription can be generalized. In every case, we determine

the action of ∇m on a tensor field by first expressing the field as a sum over the

basis fields
(
∂

∂ui

)a

and (dbu j), and then generating a new sum (with m as a

new covariant index) in three steps: we introduce a new summation variable ι,

take the partial derivative of the scalar coefficient field with respect to uι, and

then add (dmuι) to the list of fields in the sum. One can easily check that the

operator so-defined satisfies conditions (DO1) through (DO6). And it is clear

that ∇a

(
∂

∂ui

)b

= 0 for all i. For when we (vacuously) represent any particular

field
(
∂

∂ui 0

)b

in the indicated way,

(
∂

∂ui 0

)b

=
n∑

i=1

i
α

(
∂

∂ui

)b

,

the coefficients i
α are constant (either 0 or 1), and so

∂
i
α

∂ul
= 0 for all i

and l. �

We call this derivative operator—the one identified in the proposition—

the coordinate derivative operator canonically associated with (U , ϕ). Sometimes,

when the there is no ambiguity about the n-chart with which it is associated,

the operator is written as ∂ . So ∂a

(
∂

∂ui

)b

= 0 for all i. As we shall see in the

next section, all coordinate derivative operators are flat; i.e., their Riemann

curvature fields vanish.

PROBLEM 1.7.3. Let ∇ be the coordinate derivative operator canonically associated

with (U , ϕ) on the n-manifold M. Let ui be the coordinate maps on U determined

by the chart. Further, let ∇′ be another derivative operator on U. We know (from

proposition 1.7.3) that there is a smooth field Ca
bc on U such that ∇′ = (∇,Ca

bc ).

Show that if

Ca
bc =

n∑
i=1

n∑
j=1

n∑
k=1

ijk

C

(
∂

∂ui

)a

(dbu j) (dcu
k),
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then a smooth vector field ξa =
n∑

i=1

i
ξ

(
∂

∂ui

)a

on U is constant with respect to ∇′

(i.e., ∇′
a ξ

b = 0) iff

∂
i
ξ

∂u j
=

n∑
k=1

ijk

C
k
ξ

for all i and j. (The “Christoffel symbol” �i
jk is often used to designate the coefficent

field
ijk

C.)

Next, wemake use of proposition 1.7.11 to prove a useful proposition about

“position fields.”

PROPOSIT ION 1.7.12. Let ∇ be the coordinate derivative operator canonically

associated with (U , ϕ) on the n-manifold M. Let ui be the coordinate maps on U

determined by the chart, and let p be a point in U. Then there exists a unique smooth

vector field χa on U such that (1) ∇aχ
b = δb

a and (2) χa = 0 at p.

Proof. (Existence) Consider the field χa defined by

(1.7.11) χa =
n∑

i=1

(
ui − ui( p)

)( ∂

∂ui

)a

.

Clearly it satisfies condition (2) since
(
ui − ui( p)

)
|p = (

ui( p)− ui( p)
) = 0. And

it satisfies (1) because

∇aχ
b =

n∑
i=1

∇a
(
ui − ui( p)

)( ∂

∂ui

)b

=
n∑

i=1

(∇a ui)
(
∂

∂ui

)b

= δb
a.

(Thefirst equality follows from the fact that the basis fields
(
∂

∂ui

)b

are constant

with respect to ∇; the second equality follows from the fact that (all) derivative

operators annihilate all constant scalar fields; and the third equality follows

from equation (1.7.9).)

(Uniqueness) Assume χ ′a satisfies conditions (1) and (2) as well, and con-

sider the difference field (χ ′a −χa). It is constant with respect to ∇ (because

∇a(χ ′b −χb) = δb
a − δb

a = 0), and it is the zero vector at p. So it must be the

zero vector everywhere; i.e., χ ′a = χa. �

We refer to χa as the position field relative to p (associated with the coordinate

derivative ∇).
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In the last few paragraphs we have dealt with the derivative operator

∇ canonically associated with an arbitrary n-chart (U ,ϕ) on an arbitrary n-

manifold M. Let us now consider the special case where M is the manifold

R
n, (U ,ϕ) is the (global) n-chart whereU = R

n, and ϕ : U → R
n is the identity

map. (So ui = (
xi ◦ϕ) = xi.) In this case, we get

(1.7.12)

(
∂ f

∂xi

)
=
(
∂

∂xi

)
( f )

from equation (1.7.5). Of course, we have already encountered the fields(
∂

∂xi

)
. They were the first examples of vector fields that we considered in

section 1.3. (There we used equation (1.7.12) to characterize the fields.)

Many familiar textbook assertions about “differentials” fall out as conse-

quences of the claims we have listed. For example, the equation

df =
n∑

j=1

(
∂ f

∂x j

)
dx j

comes out in our notation as

db f =
n∑

j=1

(
∂ f

∂x j

)
dbx j ,

and the latter is just an instance of equation (1.7.10).

The coordinate derivative operator∇ canonically associatedwith the coordi-

nates x1, . . . , xn is defined on the entiremanifoldR
n (because the coordinates

are). So, too, the associated positions fields χa (relative to particular points) are

defined on the entire manifold. Note that we have encountered these position

fields before as well. Suppose we take p to be the origin (i.e., suppose xi( p) = 0

for all i). Then, recalling equation (1.7.11), we have

χa =
n∑

i=1

xi
(
∂

∂xi

)a

.

In the case n = 2, the right-side field is precisely what we called the “radial

expansion” field in section 1.3. We can picture it as follows. Given any point

q in R
2, there is a natural isomorphism between the vector space R

2 and the

tangent space to the manifold R
2 at q defined by

(x1, x2) �→ x1
(
∂

∂x1

)a

|q
+ x2

(
∂

∂x2

)a

|q
.

If we identify these two, then we can think of χa|q as just the “position vector”
−→oq that runs from the origin o to q. (See figure 1.7.1.)
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Figure 1.7.1. The position field χa on R
2 (relative to point o).

1.8. Curvature

In this section we introduce the Riemann curvature tensor field Ra
bcd and

discuss its intuitive geometric significance. We start with an existence claim.

LEMMA 1.8.1. Suppose ∇ is a derivative operator on the manifold M. Then there

is a (unique) smooth tensor field Ra
bcd on M such that for all smooth fields ξ b,

(1.8.1) Ra
bcd ξ

b = −2∇[c∇d] ξa.

Proof. Uniqueness is immediate since any two fields that satisfied this con-

dition would agree in their action on all vectors ξ b at all points. For existence,

we introduce a field Ra
bcd and do so in such a way that it is clear that it satisfies

the required condition. Let p be any point in M and let
0
ξb be any vector at p.

We define Ra
bcd

0
ξb by considering any smooth field ξ b on M that assumes the

value
0
ξb at p and setting Ra

bcd

0
ξb = −2∇[c∇d] ξa. It suffices to verify that the

choice of the field ξ b plays no role. For this it suffices to show that if ηb is a

smooth field on M that vanishes at p, then necessarily ∇[c∇d] ηb vanishes at

p as well. (For then we can apply this result, taking ηb to be the difference

between any two candidates for ξ b.)

The usual argument works. Let λa be any smooth field on M. Then we

have, by condition (DO6),

0 = ∇[c∇d]
(
ηa λa

) = (∇[c ηa)(∇d] λa
)+ ηa ∇[c∇d] λa

+ (∇[c λ|a|
)(∇d] ηa)+ λa∇[c∇d] ηa.

(Note: In the third term of the final sum the vertical lines around the index

indicate that it is not to be included in the anti-symmetrization.) Now the first

and third terms in that sum cancel each other. And the second vanishes at
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p. So we have 0 = λa ∇[c∇d] ηa at p. But the field λa can be chosen so that it

assumes any particular value at p. So ∇[c∇d] ηa = 0 at p, as claimed. �

Ra
bcd is called the Riemann curvature tensor field (associated with∇). It codes

information about the degree towhich the operators∇c and∇d fail to commute.

Several basic properties of Ra
bcd are collected in the next proposition.

PROPOSIT ION 1.8.2. Suppose ∇ is a derivative operator on the manifold M. Then

the curvature tensor field Ra
bcd associated with ∇ satisfies the following conditions:

(1) For all smooth tensor fields αa1...ar
b1...bs

on M,

2∇[c∇d] αa1...ar
b1...bs

= αa1...ar
nb2...bs

Rn
b1cd + . . .+αa1...ar

b1...bs−1n Rn
bscd

−αna2...ar
b1...bs

Ra1
ncd − . . .−αa1...ar−1n

b1...bs
Rar

ncd .

(2) Ra
b(cd) = 0.

(3) R a
[bcd] = 0.

(4) ∇[mR a
|b|cd] = 0 (Bianchi’s identity).

Proof. Condition (1) is proved in the now familiar way using (D06) and lemma

1.8.1. We proceed in two steps. First, we show that 2∇[c∇d] αb = αn Rn
bcd for all

fields αb onM. To do so, we consider an arbitary smooth field ξa onM, expand

0 = ∇[c∇d]
(
ξa αa

)
, and invoke the lemma. Then we turn to the general case.

We contract αa1...ar
b1...bs

with s smooth contravariant vector fields and r smooth

covariant vector fields, apply ∇[c∇d], expand, and then use our previous

results. Condition (2) follows immediately from lemma 1.8.1. For (3), notice

that given any smooth scalar field α on M, we have, by (1),

Ra
bcd ∇a α = 2∇[c∇d]∇b α

and hence, by (D06),

R a
[bcd] ∇a α = 2∇[c∇d∇b] α = 0.

Since any covariant vector at any point can be realized in the form ∇a α (recall

lemma 1.7.2), it follows that R a
[bcd] = 0 everywhere.

The argument for (4) is just a bit more complicated. Given any smooth field

αb on M, we have

2∇r∇[c∇d] αb = ∇r (Ra
bcd αa) = (∇r Ra

bcd)αa + Ra
bcd ∇r αa.

But we also have, by (1),

2∇[r∇c]∇d αb = Rn
drc ∇n αb + Rn

brc ∇d αn.
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Ifweanti-symmetrize these twoequations in (r , c, d), thenwehave2∇[r∇c∇d] αb

on the left side of both. So (equating their right sides),(∇[r R a
|b|cd]

)
αa + Ra

b[cd ∇r] αa = R n
[drc] ∇n αb + Rn

b[rc ∇d] αn.

The second term on the left here is equal to the second term on the right. So,

by condition (3), we have (∇[r Ra
|b|cd]

)
αa = 0.

But αa is arbitrary, and so we have (4). �

PROBLEM 1.8.1. Let ∇ and ∇′ be derivative operators on a manifold with ∇′
m =

(∇m ,Ca
bc ), and let their respective curvature fields be Ra

bcd and R′a
bcd. Show that

(1.8.2) R′a
bcd = Ra

bcd + 2∇[c Ca
d]b + 2Cn

b[c Ca
d]n.

PROBLEM 1.8.2. Show that the exterior derivative operator d on any manifold

satisfies d2 = 0; i.e., dn(dm αb1...bp ) = 0 for all smooth p-formsαb1...bp . (Hint: Make

use of proposition 1.8.2. Notice also that λ[a...[b...c]...d] = λ[a...b...c...d] for all tensors

λa...b...c...d.)

PROBLEM 1.8.3. Show that given any smooth field ξa, and any derivative operator

∇ on a manifold, £ξ commutes with ∇ (in its action on any tensor field) iff

∇a∇b ξ
m = Rm

bna ξ
n. (Here, of course, Rm

bna is the curvature field associated with ∇.

If this conditions holds, we say that ξa is an “affine collineation” with respect to ∇.

Hint: First show that if Km
ab = Rm

bna ξ
n − ∇a∇b ξ

m, then for all smooth fields αa1...ar
b1...bs

,

(£ξ ∇n − ∇n £ξ )αa1...ar
b1...bs

= αa1...ar
m b2...bs

Km
nb1

+ . . .+αa1...ar
b1...bs−1 m Km

nbs

−αm a2...ar
b1...bs

Ka1
nm − . . .−αa1...ar−1 m

b1...bs
Kar

nm .)

PROBLEM 1.8.4. Show that given any smooth field ξa on a manifold, the operators

£ξ and da commute in their action on all smooth p-forms. (Hint: Make use of the

equation stated in the hint for problem 1.8.3.)

It is not our purpose to attempt to develop systematically the theory of forms

on a manifold, but we shall pause for one comment on the result stated in

problem 1.8.2. Let αa1...an be a smooth n-form on amanifoldM with n ≥ 1. We

say that is closed if its exterior derivative vanishes. And we say that it is exact

if there is a (n − 1)-form on M of which it is the exterior derivative. (So, for

example, the form αab is closed if da αbc = 0, and it is exact if there is a smooth
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form βa such that αab = da βb.) It follows immediately from the problem that

every exact form is closed. It turns out that the converse is true as well, at

least locally, but the proof is non-trivial. We record the fact here for future

reference.

PROPOSIT ION 1.8.3. Let αa1...an be a smooth closed n-form on the manifold M

with n ≥ 1. Then, for all p in M, there is an open set O containing p, and an

(n − 1)-form βa1...an−1 on O such that αa1...an = da1 βa2...an .

Global assertions can also be made if M satisfies suitable conditions. If M

is simply connected, for example, then all closed 1-forms are (globally) exact.

And if M is contractible then, for all n ≥ 1, all closed n-forms are (globally)

exact. (See Spivak [57, volume I] for proofs of the two claims. Proposition 1.8.3

is a consequence of the second, since all manifolds are locally contractible.)

Suppose M is a manifold with derivative operator ∇ and associated cur-

vature field Ra
bcd . We say that ∇ is flat (or that M is flat relative to ∇) if Ra

bcd
vanishes everywhere on M. The next proposition makes clear the intuitive

geometric significance of flatness.

PROPOSIT ION 1.8.4. Let ∇ be a derivative operator on the manifold M. If parallel

transport of vectors on M relative to ∇ is path independent, then ∇ is flat. Conversely,

if ∇ is flat, then, at least locally (i.e., within some open neighborhood of every

point), parallel transport of vectors relative to ∇ is path independent. (If M is

simply connected, the converse holds globally.)

Proof. First assume that parallel transport of vectors onM is path independent.

Let p be any point in M, and let
0
ξa be any vector at p. We extend

0
ξa to a smooth

vector field ξa on all of M by parallel transporting
0
ξa (via any curve) to other

points of M. The resulting field is constant in the sense that ∇a ξ
b = 0 every-

where. (This follows from the fact that all directional derivatives of ξ b at all

points vanish.) Hence, Ra
bcd ξ

b = −2∇[c∇d] ξa = 0 at all points. In particular,

Ra
bcd

0
ξb = 0 at p. Since

0
ξb was arbitrary, we have Ra

bcd = 0 at p.

Conversely, suppose that Ra
bcd vanishes on M. To show that parallel trans-

port on M is, at least locally, path independent, it will suffice to show that

given any vector
0
ξ a at point p, there is an extension of

0
ξ a to a smooth

field ξa on some open set O containing p that is constant; i.e., ∇a ξ
b = 0

everywhere in O. (For then, given any point q ∈ O, and any curve γ from

p to q whose image falls within O, parallel transport of
0
ξ a along γ must
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yield ξa|q.) To see that a vector field satisfying ∇a ξ
b = 0 and ξa|p = 0

ξ a does

exist locally, one writes out these two conditions in terms of local coordi-

nates and generates a set of partial differential equations. These equations,

it turns out, have a solution if a certain “integrability condition” is satis-

fied. That condition, is nothing but the equation Ra
bcd = 0 expressed in local

coordinates. (For further details, see, for example, Spivak [57], volume 2,

chapter 4.) �

We know from proposition 1.7.11, that given any n-chart (U , ϕ) (with non-

empty domain) on an n-manifold, there is a unique derivative operator ∇ on

U such that ∇a

(
∂

∂ui

)b

= 0 for all i. (Here u1, . . . , un are the coordinate maps

on U determined by (U , ϕ).) We called it the “coordinate derivative oper-

ator canonically associated with (U , ϕ).” It follows immediately, of course,

that

Ra
bcd

(
∂

∂ui

)b

= −2∇[c ∇d]
(
∂

∂ui

)a

= 0

for all i. This, in turn, implies that Ra
bcd = 0, since the fields(

∂

∂u1

)b

, . . . ,
(
∂

∂un

)b

span the tangent space at every point. Thus we see

that coordinate derivative operators canonically associated with local charts are

flat.

The geometric significance of the curvature tensor field can also be expli-

cated in terms of “geodesic deviation.” Suppose ξa is a smooth vector field on

the manifold M whose integral curves are geodesics with respect to ∇. (We

shall say that ξa is a geodesic field with respect to ∇.) Further suppose that λa is

a smooth field that satisfies £ξ λa = 0. Then we can think of the restriction of

λa to an integral curve γ of ξa as a field that connects γ to an “infinitesimally

close” integral curve γ ′. If we do, the second derivative field ξn ∇n
(
ξm ∇m λ

a
)

along γ represents the “relative acceleration” of γ ′ with respect to γ . The

following proposition shows how this field can be expressed in terms of the

Riemann curvature field.

PROPOSIT ION 1.8.5. Suppose ξa is a geodesic field on the manifold M with

respect to ∇. Further suppose λa is a smooth field that satisfies £ξ λa = 0.

Then

(1.8.3) ξn ∇n
(
ξm ∇mλ

a) = Ra
bcd ξ

b λc ξd .
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Proof. We have ξn ∇n ξ
a = 0 (since ξa is a geodesic field) and ξn ∇n λ

a =
λn ∇n ξ

a (since £ξ λa = 0). The rest is just a calculation.

ξn ∇n
(
ξm ∇m λ

a) = ξn ∇n
(
λm ∇m ξ

a) = (
ξn ∇n λ

m)∇m ξ
a + ξn λm ∇n∇m ξ

a

= (
ξn ∇n λ

m)∇m ξ
a + ξn λm ∇m∇n ξ

a + ξn λm Ra
rmn ξ

r

= (
ξn ∇n λ

m)∇m ξ
a + λm ∇m

(
ξn ∇n ξ

a)−(
λm ∇m ξ

n)∇n ξ
a

+ ξn λm Ra
rmn ξ

r

= Ra
rmn ξ

r λm ξn.

(The third equality follows fromRa
rmn ξ

r = −2∇[m∇n] ξa. The final one follows

from the fact that in the sum before the equality sign, the second term is 0,
and the first and third terms cancel each other.) �

PROPOSIT ION 1.8.6. Suppose ∇ is a derivative operator on the manifold M.

Then ∇ is flat iff all geodesic deviation on M (with respect to ∇) vanishes; i.e.,

given any smooth geodesic field ξa, and any smooth field λa such that £ξ λa = 0,

ξn ∇n
(
ξm ∇mλ

a
) = 0.

Proof. The “only if” half follows immediately from proposition 1.8.5. So sup-

pose that all geodesic deviation vanishes. Then, given any vectors
0
ξa and

0
λa at a

point p, itmust be the case thatRa
bcd

0
ξb

0
λc

0
ξd = 0. (We can always choose field ξa

and λa on an open set containing p such that ξa is a geodesic field, £ξ λa = 0,

and ξa and λa assume the values
0
ξa and

0
λa at p, respectively.) Equivalently,

it must be the case that Ra
bcd

0
ξb 0
ξd = 0 for all vectors

0
ξb at p. Our conclusion

now follows by the symmetries of the Riemann tensor recorded as conditions

(2) and (3) in proposition 1.8.2. By (2), first, it follows that Ra
bcd

0
ξb

0
ξc = 0 for all

vectors
0
ξb at p. Hence, by proposition 1.4.3,

(1.8.4) R a
(bc)d = 0

at p. Next, by (2) and (3), we have (everywhere)

Ra
bcd + Ra

dbc + Ra
cdb = 0.

But condition (2) and equation (1.8.4) jointly imply

Ra
bcd = Ra

dbc = Ra
cdb

at p. So Ra
bcd = 0 at our arbitrary point p. �
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Equation (1.8.3) is called the equation of geodesic deviation. Notice that it

must be the second derivative field ξn ∇n
(
ξm ∇m λ

a
)
that enters the equation,

and not the first derivative field ξn ∇n λ
a. The latter is unconstrained by the

curvature of the manifold. It can assume any value at a point.

1.9. Metrics

A (semi-Riemannian) metric on a manifold M is a smooth field gab on M that

is symmetric and invertible; i.e., there exists an (inverse) field gbc on M such

that gab gbc = δc
a.

It is easy to check that the inverse field gbc of a metric gab is symmetric and

unique. It is symmetric since

gcb = gnb δc
n = gnb (gnm gmc ) = (gmn gnb) gmc = δb

m gmc = gbc .

(Here we use the symmetry of gnm for the third equality.) It is unique because

if g ′bc is also an inverse field, then

g ′bc = g ′nc δb
n = g ′nc (gnm gmb) = (gmn g ′nc ) gmb = δc

m gmb = gcb = gbc .

(Here again we use the symmetry of gnm for the third equality; and we use

the symmetry of gcb for the final equality.) One can also check that the inverse

field gbc of a metric gab is smooth. This follows, essentially, because given

any invertible square matrix A (over R), the components of the inverse matrix

A−1 depend smoothly on the components of A.

The requirement that a metric be invertible can be given a second formula-

tion. Indeed, given any field gab on themanifoldM (not necessarily symmetric

and not necessarily smooth), the following conditions are equivalent.

(1) There is a tensor field gbc on M such that gab gbc = δc
a.

(2) For all p in M, and all vectors ξa at p, if gab ξ
a = 0, then ξa = 0.

(When the conditions obtain, we say that gab is non-degenerate.) To see this,

assume first that (1) holds. Then given any vector ξa at any point p, if gab ξ
a = 0,

it follows that ξc = δc
a ξ

a = gbc gab ξ
a = 0. Conversely, suppose that (2) holds.

Then at any point p, the map from (Mp)a to (Mp)b defined by ξa �→ gab ξ
a is

an injective linear map. Since (Mp)a and (Mp)b have the same dimension, it

must be surjective as well. So the map must have an inverse gbc defined by

gbc (gab ξ
a) = ξc or gbc gab = δc

a.

In the presence of a metric gab, it is customary to adopt a notation conven-

tion for “lowering and raising indices.” Consider first the case of vectors.

Given a contravariant vector ξa at some point, we write gab ξ
a as ξb; and given
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a covariant vector ηb, we write gbc ηb as ηc . The notation is evidently consistent

in the sense that first lowering and then raising the index of a vector (or vice

versa) leaves the vector intact.

One would like to extend this notational convention to tensors with more

complex index structure. But now one confronts a problem. (It was men-

tioned in passing in section 1.4.) Given a tensor αab
c at a point, for example,

how should we write gmc αab
c ? As αmab? Or as αamb? Or as αabm? In gen-

eral, these three tensors will not be equal. To get around the problem, we

introduce a new convention. In any context where we may want to lower or

raise indices, we shall write indices, whether contravariant or covariant, in a

particular sequence. So, for example, we shall write αab
c or α

a b
c or α ab

c . (These

tensors may be equal—they belong to the same vector space—but they need

not be.) Clearly this convention solves our problem. We write gmc αab
c as α

abm ;

gmc αa b
c as αamb; and so forth. No ambiguity arises. (And it is still the case that

if we first lower an index on a tensor and then raise it (or vice versa), the result

is to leave the tensor intact.)

We claimed in the preceding paragraph that the tensors αab
c and αa b

c (at

some point) need not be equal. Here is an example. (It is just a variant of

the one used in section 1.4 to show that the tensors αab and αba need not be

equal.) Suppose
1
ξa,

2
ξa, . . . ,

n
ξa is a basis for the tangent space at a point p.

Further suppose αabc = i
ξa

j

ξb
k
ξc at the point. Then αacb = i

ξa
j

ξc
k
ξb there. Hence,

lowering indices, we have αab
c = i

ξa
j

ξb k
ξ c but αa b

c = i
ξa

j

ξ c
k
ξb at p. These two

will not be equal unless j = k.

We have reserved special notation for two tensor fields: the index sub-

stiution field δa
b and the Riemann curvature field Ra

bcd (associated with some

derivative operator). Our convention will be to write these as δa
b and Ra

bcd—

i.e., with contravariant indices before covariant ones. As it turns out, the order

does not matter in the case of the first since δa
b = δ a

b . (It does matter with the

second.) To verify the equality, it suffices to observe that the two fields have

the same action on an arbitrary field αb:

δ a
b α

b = (gbn gam δn
m)αb = gbn gan αb = gbn gna αb = δa

bα
b.

Similarly we can verify (if we are raising and lowering indices with gab) that

δa
b = ga

b and δab = gab. (We shall take these different equalities for granted in

what follows.)

Now suppose gab is a metric on the n-dimensional manifold M and p is a

point inM. Then there exists anm, with 0 ≤ m ≤ n, and a basis
1
ξa,

2
ξa, . . . ,

n
ξa
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for the tangent space at p such that

gab
i
ξa

i
ξb = +1 if 1 ≤ i ≤ m,

gab
i
ξa

i
ξb = −1 if m < i ≤ n,

gab
i
ξa

j

ξb = 0 if i = j.

Such a basis is called orthonormal. Orthonormal bases at p are not unique,

but all have the same associated number m. We call the pair (m, n − m) the

signature of gab at p. (The existence of orthonormal bases and the invariance

of the associated number m are basic facts of linear algebraic life. See, for

example, Lang [36].) A simple continuity argument shows that any connected

manifoldmust have the same signature at each point. In what follows we shall

restrict attention to connected manifolds and refer simply to the “signature

of gab.”

A metric with signature (n, 0) is said to be positive definite. With signature

(0, n), it is said to be negative definite. With any other signature it is said to be

indefinite. One case will be of special interest to us later. A Lorentzian metric is

a metric with signature (1, n − 1). The mathematics of relativity theory is, to

some degree, just a chapter in the theory of four-dimensional manifolds with

Lorentzian metrics.

Suppose gab has signature (m, n − m), and
1
ξa,

2
ξa, . . . ,

n
ξa is anorthonormal

basis at a point. Further, supposeμa and νa are vectors there. Ifμa = ∑n
i=1

i
μ

i
ξa

and νa = ∑n
i=1

i
ν

i
ξa, then it follows from the linearity of gab that

(1.9.1) gab μ
a νb = 1

μ
1
ν+ . . .+ m

μ
m
ν − m+1

μ
m+1
ν − . . .− n

μ
n
ν.

In the special case where the metric is positive definite, this comes to

(1.9.2) gab μ
a νb = 1

μ
1
ν+ . . .+ n

μ
n
ν.

And where it is Lorentzian,

(1.9.3) gab μ
a νb = 1

μ
1
ν− 2

μ
2
ν− . . .− n

μ
n
ν.

So far we have introduced metrics and derivative operators as independent

objects. But, in a quite natural sense, a metric determines a unique derivative

operator.

Suppose gab and ∇ are both defined on the manifold M. Further suppose

γ : I → M is a smooth curve on M with tangent field ξa and λa is a smooth

field on γ . Both ∇ and gab determine a criterion of “constancy” for λa. λa is

constant with respect to ∇ if ξn ∇nλ
a = 0 and is constant with respect to gab

if gab λ
a λb is constant along γ—i.e., if ξn ∇n

(
gab λ

a λb
) = 0. It seems natural
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to consider pairs gab and ∇ for which the first condition of constancy implies

the second.

Let us say that ∇ is compatible with gab if, for all γ and λa as above, λa is

constant with respect to gab whenever it is constant with respect to∇. The next

lemma gives the condition a more economical formulation.

LEMMA 1.9.1. Suppose ∇ is a derivative operator, and gab is a metric, on the

manifold M. Then ∇ is compatible with gab iff ∇a gbc = 0.

Proof. Suppose γ is an arbitrary smooth curve with tangent field ξa and λa is

an arbitrary smooth field on γ satisfying ξn ∇n λ
a = 0. Then

ξn ∇n
(
gab λ

a λb) = gab λ
a ξn ∇n λ

b︸ ︷︷ ︸
=0

+gab λ
b ξn ∇n λ

a︸ ︷︷ ︸
=0

+λa λb ξn∇n gab

= λa λb ξn ∇n gab.

Supposefirst that∇n gab = 0. Then it follows immediately that ξn ∇n
(
gab λ

a λb
) =

0. So∇ is compatiblewith gab. Supposenext that∇ is compatiblewith gab. Then

for all choices of γ and λa (satisfying ξn ∇n λ
a = 0), we have λa λb ξn ∇n gab = 0.

Since the choice of λa (at any particular point) is arbitrary and gab is symmetric,

it follows (by proposition 1.4.3) that ξn ∇n gab = 0. But this must be true for

arbitrary ξa (at any particular point), and so we have ∇n gab = 0. �

Note that the condition of compatibility is also equivalent to ∇a gbc = 0. To
see this, recall (problem 1.7.1) that ∇a δ

m
n = 0. Hence,

0 = gbn ∇a δ
c
n = gbn ∇a

(
gnr grc) = gbn gnr ∇a grc + gbn grc ∇a gnr

= δb
r ∇a grc + gbn grc ∇a gnr = ∇a gbc + gbn grc ∇a gnr .

So if ∇a gbc =0, it follows immediately that ∇a gbc =0. Conversely, if ∇a gbc = 0,
then gbn grc ∇a gnr = 0. And therefore,

0 = gpb gsc gbn grc ∇a gnr = δn
p δ

r
s ∇a gnr = ∇a gps.

The basic fact about compatible derivative operators is the following.

PROPOSIT ION 1.9.2. Suppose gab is a metric on the manifold M. Then there is a

unique derivative operator on M that is compatible with gab.
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Proof. To prove that M admits any derivative operator at all is a bit involved,

and we skip the argument. (See Geroch [23]. It turns out that if a manifold

admits a metric, then it necessarily satisfies the countable cover condition

(M5) that we considered in section 1.1. And the latter, as noted in proposition

1.7.1, guarantees the existence of a derivative operator.) We do prove that if M

admits a derivative operator∇, then it admits exactly one∇′ that is compatible

with gab.

Every derivative operator ∇′ on M can be realized as ∇′ = (∇,Ca
bc ), where

Ca
bc is a smooth, symmetric field on M. Now

∇′
a gbc = ∇a gbc + gnc Cn

ab + gbn Cn
ac = ∇a gbc + Ccab + Cbac .

So ∇′ will be compatible with gab (i.e., ∇′
a gbc = 0) iff

(1.9.4) ∇a gbc = −Ccab − Cbac .

Thus it suffices for us to prove that there exists a unique smooth, symmetric

field Ca
bc on M satisfying equation (1.9.4). To do so, we write equation (1.9.4)

twice more after permuting the indices:

∇c gab = −Cbca − Cacb,

∇b gac = −Ccba − Cabc .

If we subtract these two from the first equation, and use the fact that Cabc is

symmetric in (b, c), we get

(1.9.5) Cabc = 1

2

(∇a gbc − ∇b gac − ∇c gab
)
,

and, therefore,

(1.9.6) Ca
bc = 1

2
gan (∇n gbc − ∇b gnc − ∇c gnb

)
.

This establishes uniqueness. But clearly the field Ca
bc defined by equation

(1.9.6) is smooth, symmetric, and satisfies equation (1.9.4). So we have exis-

tence as well. �

In the case of positive definite metrics, there is another way to capture the

significance of compatibility of derivative operators with metrics. Suppose the

metric gab on M is positive definite and γ : [s1, s2] → M is a smooth curve on

M.3 We associate with γ a length

3.Officially (in section1.2), wehave takena “smooth curve onM” to be a smoothmapof the form
γ : I → M where I is an open (possibly infinite or half infinite) interval in R. Let us now agree to
extend thedefinition andallow for thepossibility that the interval I is not open. In this case, we takeγ
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|γ | =
∫ s2

s1

(
gab ξ

a ξ b) 1
2 ds,

where ξa is the tangent field to γ . This assigned length is invariant under

reparametrization. For suppose σ : [t1, t2] → [s1, s2] is a diffeomorphism
(
we

shall write s = σ (t)) and ξ ′a is the tangent field of γ ′ = γ ◦ σ : [t1, t2] → M.

Then ξ ′a = ξa ds

dt
. (Recall equation (1.3.1) in the proof of proposition 1.3.2.) We

may as well require that the reparametrization preserve the orientation of the

original curve—i.e., require that σ (t1) = s1 and σ (t2) = s2. In this case,
ds

dt
> 0

everywhere. (Only small changes are needed if we allow the reparametrization

to reverse the orientation of the curve. In that case,
ds

dt
< 0 everywhere.) It

follows that ∣∣γ ′∣∣ =
∫ t2

t1

(
gab ξ

′a ξ ′b) 1
2 dt =

∫ t2

t1

(
gab ξ

a ξ b) 1
2

ds

dt
dt

=
∫ s2

s1

(
gab ξ

a ξ b) 1
2 ds = |γ |.

Let us say that γ : I → M is a curve from p to q if I is of the form [s1, s2],
p = γ (s1), and q = γ (s2). In this (positive definite) case, we take the distance

from p to q to be

d( p, q) = g.l.b.
{|γ | : γ is a smooth curve from p to q

}
.

Further, we say that a curve γ : I → M is minimal if, for all s ∈ I, there

exists an ε > 0 such that, for all s1, s2 ∈ I with s1 ≤ s ≤ s2, if s2 − s1 < ε and

if γ ′ = γ|[s1,s2] (the restriction of γ to [s1, s2]), then |γ ′| = d
(
γ (s1), γ (s2)

)
. Intu-

itively, minimal curves are “locally shortest curves.” Certainly they need not

be “shortest curves” outright. (Consider, for example, two points on the “equa-

tor” of a two-sphere that are not antipodal to one another. An equatorial

curve running from one to the other the “long way” qualifies as a minimal

curve.)

One can characterize the unique derivative operator compatible with a pos-

itive definite metric gab in terms of the latter’s associated minimal curves. But

in doing so, one has to pay attention to parametrization.

tobe smooth if there is anopen interval I′ ⊆ R, with I ⊆ I′, anda smoothmapγ ′ : I′ → M, such that
γ ′(s) = γ (s) for all s ∈ I. And in this case, of course, we obtain the “tangent field of γ ” by restricting
that of γ ′ to I. Furthermore, if σ : I′ → I is a bijection betweeen (not necessarily open) intervals in
R, we understand it to be a diffeomorphism if σ and σ−1 are both smooth in the sense just given.
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Let us say that a smooth curve γ : I → M with tangent field ξa is

parametrized by arc length if for all ξa, gab ξ
a ξ b = 1. In this case, if I = [s1, s2],

then

|γ | =
∫ s2

s1

(
gab ξ

a ξ b) 1
2 ds =

∫ s2

s1
1 ds = s2 − s1.

(Any non-trivial smooth curve can always be reparametrized by arc length.)

Our characterization theorem is the following.

PROPOSIT ION 1.9.3. Suppose gab is a positive definite metric on the manifold

M and ∇ is a derivative operator on M. Then ∇ is compatible with gab iff for all

smooth curves γ parametrized by arc length, γ is a geodesic with respect to ∇ iff it

is minimal with respect to gab.

Note that the proposition would be false if the qualification “parametrized

by arc length” were dropped. The class of minimal curves is invariant under

reparametrization. The class of geodesics (determined by a derivative operator)

is not.

We skip the proof of proposition of 1.9.3, which involves ideas from the

calculus of variations. And we assert, without further discussion at this stage,

that more complicated versions of the theorem are available when the metric

gab under consideration is not positive definite. (We shall later consider the

Lorentzian case.)

We have already demonstrated (proposition 1.8.2) that the Riemann tensor

field associatedwith any derivative operator exhibits several index symmetries.

When thederivative operator is determinedby ametric, yet further symmetries

are present.

PROPOSIT ION 1.9.4. Suppose gab is a metric on a manifold M, ∇ is the derivative

operator on M compatible with gab, and Ra
bcd is associated with ∇. Then Rabcd

( = gam Rm
bcd) satisfies the following conditions.

(1) Rab(cd) = 0.

(2) Ra[bcd] = 0.

(3) R(ab)cd = 0.

(4) Rabcd = Rcdab.

Proof. Conditions (1) and (2) follow directly from clauses (2) and (3) of propo-

sition 1.8.2. And by clause (1) of that proposition, we have, since ∇a gbc = 0,

0 = 2∇[c∇d] gab = gnb Rn
acd + gan Rn

bcd = Rbacd + Rabcd .
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That gives us (3). So it will suffice for us to show that clauses (1)–(3) jointly

imply (4). Note first that

0 = Rabcd + Radbc + Racdb

= Rabcd − Rdabc − Racbd .

(The first equality follows from (2), and the second from (1) and (3).) So

anti-symmetrization over (a, b, c) yields

0 = R[abc]d − Rd[abc] − R[acb]d .

The second term is 0 by clause (2) again, and R[abc]d = −R[acb]d . So we have

an intermediate result:

(1.9.7) R[abc]d = 0.

Now consider the octahedron in figure 1.9.1. Using conditions (1)–(3) and

equation (1.9.7), one can easily verify that the sum of the terms corresponding

to each triangular face vanishes. For example, the shaded face determines the

sum

Rabcd + Rbdca + Radbc = −Rabdc − Rbdac − Rdabc = −3R[abd]c = 0.

So if we add the sums corresponding to the four upper faces, and subtract the

sums corresponding to the four lower faces, we get (since “equatorial” terms

cancel),

4Rabcd − 4Rcdab = 0.

This gives us (4). �

Figure 1.9.1. Symmetries of the Riemann tensor field Rabcd.
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We say that two metrics gab and g ′
ab on a manifold M are projectively equiva-

lent if their respective associated derivative operators are projectively

equivalent—i.e., if their associated derivative operators admit the same

geodesics up to reparametrization. (Recall our discussion in section 1.7.) In

contrast, we say that they are conformally equivalent if there is amap � : M → R

such that

g ′
ab = �2 gab.

� is called a conformal factor. (If such amap exists, it must be smooth and non-

vanishing since both gab and g ′
ab are.) Notice that if gab and g ′

ab are conformally

equivalent, then, given any point p and any vectors ξa and ηa at p, they agree

on the ratio of their assignments to the two; i.e.,

g ′
ab ξ

a ξa

g ′
ab η

a ηb
= gab ξ

a ξ b

gab η
a ηb

(if the denominators are non-zero).

If two metrics are conformally equivalent with conformal factor �, then

the connecting tensor field Ca
bc that links their associated derivative operators

can be expressed as a function of �.

PROPOSIT ION 1.9.5. If gab and g ′
ab = �2 gab are metrics on the manifold M, and

∇′ = (∇,Ca
bc

)
, then

(1.9.8) Ca
bc = − 1

2�2

[
δa

b ∇c �
2 + δa

c ∇b�
2 − gbc gar ∇r �

2].
Proof. Since ∇′ is compatible with g ′

ab, it follows that

g ′
dr Cr

bc = 1

2

[∇d g ′
bc − ∇b g ′

dc − ∇c g ′
db
]
.

(Recall equation (1.9.5) in the proof of proposition 1.9.2.) If we substitute

�2 gab for g ′
ab and use the fact that ∇ is compatible with gab, this gives us

�2 gdr Cr
bc = 1

2

[
gbc ∇d�

2 − gdc ∇b�
2 − gdb ∇c �

2].
Contracting both sides with gad yields

�2 Ca
bc = 1

2

[
gbc gad ∇d�

2 − δa
c ∇b�

2 − δa
b∇c �

2],
as claimed. �

The next proposition asserts that if metrics are both projectively and confor-

mally equivalent, then they can differ by—at most—amultiplicative constant.
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(The converse implication is immediate.) The result will later (in section 2.1)

be of crucial importance in our discussion of the physical signficance of the

spacetime metric.

PROPOSIT ION 1.9.6. Suppose the hypotheses of proposition 1.9.5 obtain and, in

addition, gab and g ′
ab are projectively equivalent. Further suppose that the dimension

of M is at least 2. Then � is constant on M.

Proof. Let the dimension of M be n ≥ 2. We know that Ca
bc must satisfy

equation (1.9.8). But by proposition 1.7.10, we also have

(1.9.9) Ca
bc = δa

b ϕc + δa
c ϕb

for some smooth field ϕc . The proof proceeds by playing off equations (1.9.8)

and (1.9.9) against each other. Contracting the two equations (and using the

fact that δa
a = n), we get

Ca
ba = − 1

2�2

[∇b�
2 + n∇b�

2 − ∇b�
2] = − n

2�2 ∇b�
2,

Ca
ba = ϕb + nϕb = (n + 1)ϕb.

So

(1.9.10) − 1

2�2 ∇b�
2 = n + 1

n
ϕb.

Substituting into equation (1.9.8), this yields

Ca
bc = n + 1

n

[
δa

b ϕc + δa
c ϕb − gbc gar ϕr

]
.

Comparing this expression for Ca
bc with equation (1.9.9), we get

δa
b ϕc + δa

c ϕb = (n + 1)gbc gar ϕr .

If we contract both sides with gbc , we are left with

ϕa +ϕa = (n + 1)nϕa.

Hence, since n ≥ 2, ϕa = 0. So ∇b�
2 = 0, by equation (1.9.10). �

Note that in one-dimensional manifolds, all metrics are projectively equiv-

alent. (All smooth curves are geodesics up to reparametrization with respect

to all derivative operators.) For this reason the proposition fails if n = 1.
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In the case where a derivative operator ∇ is determined by a metric gab, the

Riemann tensor field Ra
bcd associated with the former admits an instructive

decomposition. Consider first the Ricci tensor field Rab and scalar curvature

field R defined by

Rab = Rc
abc

R = Ra
a( = gar Rra).

The first is symmetric since, by conditions (1), (3), and (4) of proposition 1.9.4,

Rab = gcd Rdabc = gcd Rcbad = Rba.

It also follows from the symmetries listed in proposition 1.9.4 that these are,

up to sign, the only fields that can be obtained by contraction from Ra
bcd .

(Contraction on any two indices yields either the zero field or±Rab and, there-

fore, contraction on all four indices [two at a time] yields either the zero field

or ±R.)

PROBLEM 1.9.1. Let ∇ be a derivative operator on a manifold M compatible with

the metric gab. Use the Bianchi identity (in proposition 1.8.2) to show that

∇a
(
Rab − 1

2
gabR

) = 0.

(This equation will figure later in our discussion of Einstein’s equation.)

The Weyl (or conformal) tensor field Cabcd is defined by

(1.9.11)

Cabcd = Rabcd − 2

n − 2

[
ga[d Rc]b + gb[c Rd]a

]− 2

(n − 1)(n − 2)
R ga[c gd]b

(if the dimension n of the underlying manifold is at least 3). The second

and third terms on the right side exhibit symmetries (1)–(4) from proposition

1.9.4. Therefore, Cabcd does so as well. Furthermore, as is easily checked,

Ca
bca = 0. So all contractions of Cabcd vanish. Thus equation (1.9.11) provides

a decomposition of Rabcd in terms of Rab, R, and that part of Rabcd whose

contractions all vanish. Later we shall see that Einstein’s equation in relativity

theory correlates Rab and R with the presence of mass-energy but does not

constrain Cabcd . So, in a sense, the Weyl field is that part of the full Riemann

curvature field that is left free by the dynamical constraints of the theory.

It turns out that the Weyl field is conformally invariant; i.e., we have the

following basic result.
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PROPOSIT ION 1.9.7. Let gab and g ′
ab = �2 gab be metrics on a manifold with

respective Weyl fields Cabcd and C′
abcd. Then C′a

bcd = Ca
bcd.

One can prove this with a laborious but straightforward calculation using

problem 1.8.1 and proposition 1.9.5. (See Wald [60, pp. 446–467].)

We have said that a metric gab is flat if its associated Riemann tensor

field Rabcd vanishes everywhere. In parallel, we say that it is conformally flat if

its Weyl tensor field Cabcd vanishes everywhere. It follows immediately from

proposition 1.9.7 (and the definition of Cabcd) that if a metric is conformally

equivalent to a flat metric, then it is conformally flat. It turns out that the

converse is true as well in manifolds of dimension at least 4. (In dimension 3,

Cabcd vanishes automatically.)

Our next topic is “isometries” and “Killing vector fields.” Given two man-

ifolds with a metric, (M, gab) and (M′, g ′
ab), we say that a smooth map ϕ :

M → M′ is an isometry if ϕ∗(g ′
ab) = gab. (Recall our discussion of “pull-back

maps” in section 1.5.) This condition captures the requirement that ϕ pre-

serve inner products. To see this, consider any point p in M and any two

vectors ξa and ρa at p. The two have an inner product gab |p ξ
aρb at p. The

push-forward map (ϕp)∗ carries them to vectors
(
(ϕp)∗(ξa)

)
and

(
(ϕp)∗(ρa)

)
at

ϕ( p), whose inner product there is g ′
ab |ϕ( p)

(
(ϕp)∗(ξa)

)(
(ϕp)∗(ρb)

)
. In general,

there is no reason why these two inner products should be equal. But they will

be if ϕ∗(g ′
ab) = gab, for then

gab |p ξ
aρb = (

ϕ∗(g ′
ab)

)
|p ξ

aρb = g ′
ab |ϕ( p)

(
(ϕp)∗(ξa)

)(
(ϕp)∗(ρb)

)
.

The second equality is just an instance of the condition (equation 1.5.2) that

defines ϕ∗(g ′
ab).

Now suppose λa is a smooth (not necessarily complete) vector field on M.

We say that λa is aKilling field (with respect to gab) if£λ gab = 0 or, equivalently,
if it satisfies “Killing’s equation”

(1.9.12) ∇(a λb) = 0.

(Here∇ is understood to be the derivative operator onM compatible with gab.)

Equivalence here follows from proposition 1.7.4:

£λ gab = λn ∇n gab + gnb ∇a λ
n + gan ∇b λ

n = ∇a λb + ∇b λa.

Note that

λa is a Killing field ⇐⇒ the (local) flow maps determined

by λa are isometries.
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This assertion is just a special case of proposition 1.6.6, and it explains the

classical description of Killing fields as “infinitesimal isometries.”

The following proposition is useful when one undertakes to find or classify

Killing fields.

PROPOSIT ION 1.9.8. Let gab be a metric on the manifold M with associated

derivative operator ∇. Further, let λa be a Killing field on M (with respect to gab).

Then

∇a∇b λc = −Rm
abc λm .

Proof. Given any smooth field λa on M, we have

2∇[a∇b] λc = Rm
cab λm ,

2∇[c∇a] λb = Rm
bca λm ,

2∇[b∇c] λa = Rm
abcλm .

If we subtract the third equation from the sum of the first two, and then use

the fact that ∇(r λs) = 0, we get

2∇a ∇b λc = (Rm
cab + Rm

bca − Rm
abc )λm

= 3Rm
[abc] λm − 2Rm

abc λm .

But Rm
[abc] = 0, and so our claim follows. �

In the following problems, assume that gab is a metric on a manifold M

and ∇ is its associated derivative operator.

PROBLEM 1.9.2. Let ξa be a smooth vector field on M. Show that

£ξ gab = 0 ⇐⇒ £ξ gab = 0.

PROBLEM 1.9.3. Show that Killing fields on M with respect to gab are affine

collineations with respect to ∇. (Recall problem 1.8.3.)

PROBLEM 1.9.4. Show that if ξa is a Killing field on M with respect to gab, then

the Lie derivative operator £ξ annihilates the fields Rabcd, Rab, and R (determined

by gab).

PROBLEM 1.9.5. Show that if ξa and ηa are Killing fields on M (with respect to gab),

and k is a real number, then (ξa + ηa), (kξa), and the commutator [ξ , η]a = £ξ ηa
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are all Killing fields as well. (Thus, the set of Killing fields has the structure of a Lie

algebra.)

PROBLEM 1.9.6. Let ηa be a Killing field on M with respect to gab. (i) Let γ be

a geodesic with tangent field ξa. Show that the function E = ξa ηa is constant on

γ . (ii) Let Tab be a smooth tensor field that is symmetric and divergence free (i.e.,

∇aTab = 0), and let Ja be the field Tab ηb. Show that ∇aJa = 0. (Both of these

assertions will be important later in connection with our discussion of conservation

principles.)

PROBLEM 1.9.7. A smooth field ηa on M is said to be a “conformal Killing field”

(with respect to gab) if £η
(
�2gab

) = 0 for some smooth scalar field �. Show that

if ηa is a conformal Killing field, and M has dimension n, then

∇(a ηb) = 1

n
(∇c η

c ) gab.

The set of Killing fields on a manifold with a metric has a natural vec-

tor space structure (problem 1.9.5). It turns out that if n is the dimension

of the manifold and d is the dimension of this vector space, then 0 ≤ d ≤
1
2 n (n + 1). We will not prove this inequality but will show that “n-dimensional

Euclidean space” does, in fact, admit 1
2 n (n + 1) linearly independent Killing

fields.

Let ∇ be the flat derivative operator on the manifold R
n (with n ≥ 1)

canonically associated with the (globally defined) projection coordinate maps

x1, . . . , xn. (Recall our discussion toward the end of section 1.7.) We know that

the basis fields
(
∂

∂x1

)a

, . . . ,
(
∂

∂xn

)a

and co-basis fields (dax1), . . . , (daxn) are

all constant with respect to ∇. We take the Euclidean metric on R
n to be the

field

(1.9.13) gab = (dax1)(dbx1)+ . . .+ (daxn)(dbxn)

and take n-dimensional Euclidean space to be the pair (Rn, gab). It follows

that

gab

(
∂

∂x j

)a(
∂

∂xk

)b

=
n∑

i=1

(daxi)
(
∂

∂x j

)a

(dbxi)
(
∂

∂xk

)b

=
n∑

i=1

δij δik = δjk

for all j and k. Thus the fields
(
∂

∂x1

)a

, . . . ,
(
∂

∂xn

)a

form an orthonormal

basis for gab at every point, and the signature of gab is (n, 0). It also follows
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that
(
∂

∂xi

)
a

= gan

(
∂

∂xi

)n

= (daxi) for all i. (This does not hold in gen-

eral. For example, as we shall see later, when we raise and lower indices

with the Minkowski metric on R
n,
(
∂

∂xi

)
a

= −(daxi) for some choices of i.)

Hence

(daxi) = gan (dnxi) = gan
(
∂

∂xi

)
n

=
(
∂

∂xi

)a

for all i and, therefore, the inverse metric field gab can be expressed in the

form

(1.9.14) gab =
(
∂

∂x1

)a(
∂

∂x1

)b

+ . . .+
(
∂

∂xn

)a(
∂

∂xn

)b

.

Note also that ∇a gbc = 0—i.e., that ∇ is the unique derivative operator com-

patible with gbc . (This follows immediately since the scalar coefficient fields

on the right side of equation (1.9.13) are all constant.)

Now we proceed to find all Killing fields in n-dimensional Euclidean space.

Doing so is easy given the machinery we have developed.

PROPOSIT ION 1.9.9. Let ξa be a Killing field in n-dimensional Euclidean space

(Rn, gab) (with n ≥ 1), let ∇ be the flat derivative operator on R
n canonically

associated with the projection coordinate maps x1, . . . , xn (which is compatible

with gab), let p be any point in R
n, and let χa be the position field on R

n determined

relative to p and ∇. (Recall proposition 1.7.12.) Then the following both hold.

(1) There exist a unique constant, anti-symmetric field Fab, and a unique constant

field ka, such that

(1.9.15) ξb = χa Fab + kb.

(Here, of course, “constant” means “constant with respect to ∇.”)

(2) The vector space of Killing fields in (Rn, gab) has dimension 1
2 n (n + 1).

Proof. (1) (Existence) Consider the fields Fab = ∇a ξb, and kb = ξb −χa Fab.

Since ξa is a Killing field,∇(a ξb) = 0. So Fab is anti-symmetric. Clearly, the two

fields satisfy equation 1.9.15. So what we need to show is that they are both

constant with respect to ∇. Fab is, since ∇n Fab = ∇n ∇a ξb = −Rm
nab ξm = 0.

(The second equality follows from proposition 1.9.8, and the third from the

fact that ∇ is flat.) Furthermore, kb is constant, since
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∇n kb = ∇n ξb − ∇n (χa Fab) = Fnb − Fab ∇nχ
a = Fnb − Fab δ

a
n = Fnb − Fnb = 0.

(For the second equality we use the fact that ∇n Fab = 0, and for the third that

∇nχ
a = δa

n.)

(Uniqueness) Assume that the fields F′
ab and k′

a also satisfy the stated

conditions. It follows that

Fab = Fnb δ
n

a = Fnb ∇aχ
n = ∇a (χn Fnb + kb) = ∇a ξb

= ∇a (χ
n F ′

nb + k′
b)

= F ′
nb ∇a χ

n = F ′
nb δ

n
a = F ′

ab

and, therefore, kb = k′
b.

(2) Let d be the dimension of the vector space of Killing fields in (Rn, gab).

It follows from part (1) that d is of the form d = d1 + d2, where d1 is the

dimension of the vector space of constant, anti-symmetric fields Fab on

(Rn, gab), and d2 is the dimension of the vector space of constant fields ka

on the manifold. Clearly,
(
∂

∂x1

)a

, . . . ,
(
∂

∂xn

)a

form a basis for the latter.

So d2 = n. We claim that d1 = n(n − 1)

2
. This will suffice, of course, for

then d = n + n(n − 1)

2
= n(n + 1)

2
. To verify the claim, consider the expan-

sion of any constant, anti-symmetric field Fab in terms of the co-basis fields

(dax1), . . . , (daxn). The coefficient fields are all constant (since Fab is). So they

determine an n × n anti-symmetric (real) matrix. (The ijth entry is the coeffi-

cient of (daxi)(dbx j) in the expansion.) Thus the problem reduces to that of

determining the dimension of the vector space of all n × n anti-symmetric real

matrices. Since all numbers on the diagonal must be 0, and the ijth and jith

entries must sum to 0, the number of independent entries is just the num-

ber of ordered pairs (i, j) where 1 ≤ i < j ≤ n. And this number is certainly
n(n − 1)

2
. So we are done. �

Consider, for example, the case of two-dimensional Euclidean space where

there should be 3
(
= 3× 2

2

)
linearly independent Killing fields. Here the

space of constant vector fields ka is two-dimensional and is generated by(
∂

∂x1

)a

and
(
∂

∂x2

)a

. The space of constant, anti-symmetric fields Fab is

one-dimensional and is generated by

Fab = (dax1) (dbx2)− (dax2) (dbx1).
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So the full vector space of Killing fields is generated by the three fields

1
ξ b =

(
∂

∂x1

)b

,

2
ξ b =

(
∂

∂x2

)b

,

3
ξ b = χa F b

a = (
x1 − x1( p)

)( ∂

∂x2

)b

− (
x2 − x2( p)

)( ∂

∂x1

)b

.

The expression for the third is easily derived using our expression for Fab and

equation (1.7.11) (in the case where ui = xi):

3
ξ b = χa Fan gnb

=
[
(x1 − x1( p))

(
∂

∂x1

)a

+ (x2 − x2( p))
(
∂

∂x2

)a]
[
(dax1)(dnx2)− (dax2)(dnx1)

]
gnb

=
[
(x1 − x1( p))

(
∂

∂x1

)a

+ (x2 − x2( p))
(
∂

∂x2

)a]
[
(dax1)

(
∂

∂x2

)b

− (dax2)
(
∂

∂x1

)b
]

= (x1 − x1( p))
(
∂

∂x2

)b

− (x2 − x2( p))
(
∂

∂x1

)b

.

The first two are the “infinitesimal generators” of horizontal and vertical

translations. (See figure 1.9.2.) The third is the generator of counterclock-

wise rotations centered at p. If p = (0, 0), the third reduces to the field

x1
(
∂

∂x2

)b

− x2
(
∂

∂x1

)b

that we have already encountered in section 1.3.

Figure 1.9.2. Killing fields in the Euclidean plane.
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Finally, we briefly consider “manifolds of constant curvature,” a topic that

will arise when we discuss Friedmann spacetimes in section 2.11.

We say that a manifold with metric (M, gab) has constant curvature κ at a

point in M if

(1.9.16) Rabcd = κ (gad gbc − gac gbd)

holds there. (And, of course, we say that is has constant curvature at a point

if it has constant curvature κ there for some κ .) Note that it is “possible”

for equation (1.9.16) to hold only because the field gabcd = (gad gbc − gac gbd)

exhibits the same index symmetries as Rabcd (recall proposition 1.9.4):

R(ab)cd = 0 g(ab)cd = 0,(1.9.17)

Rab(cd) = 0 gab(cd) = 0,(1.9.18)

Ra[bcd] = 0 ga[bcd] = 0,(1.9.19)

Rabcd = Rcdab gabcd = gcdab.(1.9.20)

To motivate the definition, let us temporarily assume that gab is positive-

definite. (That makes things a bit easier.) Let p be a point in M and let W be a

two-dimensional subspace of Mp. We take the W-sectional curvature of (M, gab)

at p to be the number

(1.9.21)
Rabcd α

a βb αc βd

(gad gbc − gac gbd)αa βb αc βd

where αa and βa are any two vectors at p that span W . Note that the definition

is well posed. First, the denominator cannot be 0, for that would violate our

stipulation that αa and βa span W . (Using a more familiar notation, the point

is this: if u and v are vectors such that 〈u, v〉2 = ‖u‖2 ‖v‖2, then u and v

must be linearly dependent.) Second, the expression is independent of the

choice of αa and βa. For suppose that α̃a and β̃a form a basis for W as well,

with α̃a = f αa + g βa and β̃a = h αa + kβa. Then, by equations (1.9.17) and

(1.9.18),

Rabcd α̃
a β̃b α̃c β̃d = ( fk − gh)2 Rabcd α

a βb αc βd

(gad gbc − gac gbd) α̃
a β̃b α̃c β̃d = ( fk − gh)2 (gad gbc − gac gbd)α

a βb αc βd ,

and the factor ( fk − gh)2 simply drops out.

In the special case of a smooth surface in three-dimensional Euclidean

space (with the metric induced on it), the sectional curvature at any point is
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just what we would otherwise call the “Gaussian curvature” there. (See Spivak

[57], volume 2, chapter 4.)

Now we show that constancy of curvature at a point can be understood to

mean equality of sectional curvatures there.

PROPOSIT ION 1.9.10. Let M be a manifold of dimension at least 2, let gab be a

positive-definite metric on M, and let κ be a real number. Then

Rabcd = κ (gad gbc − gac gbd)

holds at a point iff all sectional curvatures there (i.e., all W-sectional curvatures for

all two-dimensional subspaces W) are equal to κ .

Proof. The “only if” half of the assertion is immediate. For the converse,

assume that all sectional curvatures are equal to κ at some point p in M. Our

goal is to show that the difference tensor

Dabcd = Rabcd − κ (gad gbc − gac gbd)

vanishes at p. Note that Dabcd inherits the symmetry conditions (1.9.17)–

(1.9.20). Note, as well, that (i) Dabcd α
a βb αc βd = 0 for all vectors αa and βa

at p. For if αa and βa are linearly independent, the claim follows from the fact

that all sectional curvatures at p are equal to κ . And if they are not linearly

independent, it follows from (1.9.17) (or (1.9.18)). What we show is that Dabcd

cannot satisfy (i) and the listed symmetry conditions without vanishing.

Let 1
μa, 2
μa, . . . , n

μa be a basis for Mp. We claim that (ii) Dabcd
i
μa j
μb i
μc k
μd =

0, for all i, j and k. This is clear, since by (i) and the symmetry (1.9.20),

0 = Dabcd
i
μa (

j
μb + k

μb) i
μc (

j
μd + k

μd) = 2Dabcd
i
μa j
μb i
μc k
μd .

We also claim that (iii) Dacbd = −Dadbc . For this, note that by (i) and (ii)—and

by the symmetries (1.9.17), and (1.9.18), (1.9.20)—

0 = Dabcd (
i
μa + j

μa)( k
μb + l

μb)( i
μc + j

μc )( k
μd + l

μd)

= 2Dabcd (
i
μa k
μb j
μc l
μd + i

μa l
μb j
μc k
μd)

= 2 (Dacbd + Dadbc )
i
μa j
μb k
μc l
μd .

Since this holds for all i
μa j
μb k
μc l
μd (and since 1

μa, 2
μa, . . . , n

μa is a basis for Mp),

we have (iii). Finally, it follows from (iii) and the other symmetries of Dabcd

that
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Dabcd = −Dadcb = Dadbc = −Dacbd = Dadcb + Dabdc = −Dabcd − Dabcd .

So Dabcd = 0. �

Nowwe drop our temporary assumption that we are dealing with a positive-

definite metric and return to the general case.

So far, we have considered only the property of having constant curvature at

a point. We say that (M, gab) has constant curvature if it has constant curvature

at every point and the value of the curvature is everywhere the same. The

second clause (same value at every point) needs to be added because it does

not follow automatically—at least, not ifM is two-dimensional. (In that special

case, the property of having constant curvature at every point is vacuous and

there is no reason why sectional curvatures at different points need be equal.)

But, perhaps surprisingly, it does follow automatically if the dimension of M

is at least 3.

PROPOSIT ION 1.9.11. (Schur’s Lemma)Let M be a manifold of dimension n ≥ 3,

and let gab be a metric on M (not necessarily positive-definite). Suppose there is a

smooth scalar field κ on M such that

Rabcd = κ (gad gbc − gac gbd).

Then κ is constant.

Proof. By Bianchi’s identity (proposition 1.8.2), ∇[mRab
cd] = 0. It follows that

if we apply ∇m to κ (δa
d δ

b
c − δa

c δ
b
d), and anti-symmetrize over m, c, d, we

get 0. But (δa
d δ

b
c − δa

c δ
b
d) is already anti-symmetric in c, d. So

0 = ∇[m (κ δa
d δ

b
c]) = δa[d δb

c ∇m] κ .

Contracting on indices a, d and on b, c yields

0 = (n − 1) (n − 2)∇mκ .

So (given our assumption that n ≥ 3), we may conclude that ∇m κ = 0—i.e.,

that κ is constant on M. �

As it happens, the assertion of the proposition is also true if n = 1, for in

that case we have (at every point) Rabcd = 0 = (gad gbc − gac gbd). (Every tensor

over a one-dimensional vector space vanishes if it is anti-symmetric in two

indices.) The proposition fails only if n = 2.

Let (M, gab) and (M′, g ′
ab) be two manifolds with metric. We say they are

locally isometric if, for all points p ∈ M and p′ ∈ M′, there exist open sets O ⊆
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M and O′ ⊆ M′ containing p and p′, respectively, such that the restricted

manifolds (O, gab|O) and (O′, g ′
ab|O′ ) are isometric.

Suppose (M, gab) and (M′, g ′
ab) both have constant curvature and their

respective curvature values are κ and κ ′. Then, one can show, they are locally

isometric iff (i) M and M′ have the same dimension, (ii) gab and g ′
ab have the

same signature, and (iii) κ = κ ′. (See Wolf [64], proposition 2.4.11.) But these

conditions certainly do not guarantee that (M, gab) and (M′, g ′
ab) are (globally)

isometric. (We will have more to say about this in section 2.11.)

1.10. Hypersurfaces

Let (S, CS) and (M, CM ) be manifolds of dimension k and n, respectively, with

1 ≤ k ≤ n. A smooth map � : S → M is said to be an imbedding if it satisfies

the following three conditions.

(I1) � is injective.

(I2) At all points p in S, the associated (push-forward) linear map (�p)∗ :
Sp → M�( p) is injective.

(I3) For all open sets O1 in S, �[O1] = �[S] ∩ O2 for some open set O2 in

M. (Equivalently, the inverse map �−1 : �[S] → S is continuous with

respect to the relative topology on �[S].)
(Recall our discussion of push-forward and pull-backward maps in section

1.5.)

Several comments about the definition are in order. First, given any point

p in S, (I2) implies that (�p)∗[Sp] is a k-dimensional subspace of M�( p). So

the condition cannot be satisfied unless k ≤ n. Second, the three conditions

are independent of one another. For example, the smooth map � : R → R
2

defined by �(s) = (cos(s), sin(s)) satisfies (I2) and (I3) but is not injective. It

wraps R round and round in a circle. On the other hand, the smooth map

� : R → R defined by�(s) = s3 satisfies (I1) and (I3) but is not an imbedding

because (�0)∗ : R0 → R0 is not injective.4 (Here R0 is the tangent space to the

manifold R at the point 0). Finally, a smooth map � : S → M can satisfy (I1)

4. (�0)∗ annihilates the vector
d

dx
in R0 (and so has a non-trivial kernel). This is clear since,

for any smooth real-valued function f defined on some open subset of R containing �(0) = 0, we
have (

(�0)∗
(

d

dx

))
( f ) =

(
d

dx
( f ◦�)

)
|x=0

=
(

d

dx
( f (x3)

)
|x=0

= (
f ′(x3) 3x2)

|x=0 = 0.
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Figure 1.10.1. The map � is not an imbedding, because its image bunches up on itself.

and (I2) but still have an image that “bunches up on itself.” It is precisely this

possibility that is ruled out by condition (I3). Consider, for example, a map

� : R → R
2 whose image consists of part of the imageof the curve y = sin(1/x)

smoothly joined to the segment {(0, y) : y < 1}, as in figure 1.10.1. It satisfies

conditions (I1) and (I2) but is not an imbedding because we can find an open

interval O1 in R such that given any open set O2 in R
2, �[O1] = O2 ∩�[R].

Suppose (S, CS) and (M, CM ) aremanifoldswith S ⊆ M. We say that (S, CS)

is an imbedded submanifold of (M, CM ) if the identity map id : S → M is an

imbedding. If, in addition, k = n − 1 (where k and n are the dimensions of the

twomanifolds), we say that (S, CS) is a hypersurface in (M, CM ). Inwhat follows,

we first workwith arbitrary imbedded submanifolds and then restrict attention

to hypersurfaces. Where confusion does not arise, we suppress reference to

charts.

Once and for all in this section, let (S, CS) be a k-dimensional imbedded

submanifold of the n-dimensional manifold (M, CM ), and let p be a point

in S. We need to distinguish two senses in which one can speak of “tensors

at p.” There are tensors over the vector space Sp (call them S-tensors at p) and

ones over the vector space Mp (call them M-tensors at p). So, for example, an

S-vector ξ̃a at p makes assignments to maps of the form f̃ : Õ → R where Õ

is a subset of S that is open in the topology induced by CS, and f̃ is smooth

relative to CS. In contrast, an M-vector ξa at p makes assignments to maps

of the form f : O → R where O is a subset of M that is open in the topology

induced by CM , and f is smooth relative to CM .5 Our first task is to consider

the relation between S-tensors at p and M-tensors there.

5. As an aid to clarity, we shall sometimes mark S-tensors with a tilde, and sometimes we shall
indicate the character of a vector ξa simply by indicating, explicitly, its membership in (Sp)a or
(Mp)a (Co-vectors ηa shall be handled similarly.)
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Let us say that ξa ∈ (Mp)a is tangent to S if ξa ∈ (idp)∗[(Sp)a]. (This makes

sense. We know that (idp)∗[(Sp)a] is a k-dimensional subspace of (Mp)a; ξa

either belongs to that subspace or it does not.) Let us further say that ηa in

(Mp)a is normal to S if ηa ξ
a = 0 for all ξa ∈ (Mp)a that are tangent to S. Each

of these classes of vectors has a natural vector space structure. The space

of vectors ξa ∈ (Mp)a tangent to S has dimension k. The space of co-vectors

ηa ∈ (Mp)a normal to S has dimension (n − k) (see problem 1.10.1).

PROBLEM 1.10.1. Let S be a k-dimensional imbedded submanifold of the n-

dimensional manifold M, and let p be a point in S.

(1) Show that the space of co-vectors ηa ∈ (Mp)a normal to S has dimension

(n − k). (Hint: Consider a basis for (Mp)a containing (as a subset) k vectors

tangent to S. Then consider a dual basis.)

(2) Show that a vector ξa ∈ (Mp)a is tangent to S iff ηa ξ
a = 0 for all co-vectors

ηa ∈ (Mp)a that are normal to S.

We note for future reference that a co-vector ηa ∈ (Mp)a is normal to S iff

(idp)∗(ηa) = 0. It is worth giving the argument in detail to help gain familiarity

with our notation. (idp)∗(ηa) is the zero vector in (Sp)a iff
(
(idp)∗(ηa)

)
ξ̃a =

0 for all ξ̃a ∈ (Sp)a. But (by the definition of the pull-back operation),(
(idp)∗(ηa)

)
ξ̃a = ηa

(
(idp)∗(ξ̃a)

)
. So (idp)∗(ηa) = 0 iff ηa

(
(idp)∗(ξ̃a)

) = 0 for all

ξ̃a ∈ (Sp)a. But a vector ξa ∈ (Mp)a is tangent to S precisely if it is of the form(
(idp)∗(ξ̃a)

)
for some ξ̃a ∈ (Sp)a. So (idp)∗(ηa) = 0 iff ηa ξ

a = 0 for all vectors

ξa ∈ (Mp)a that are tangent to S; i.e., ηa is normal to S.

The classification we have introduced can be extended to indices on M-

tensors of higher index structure. Consider, for example, the M-tensor αab
cd

at p. We take it to be tangent to S in its first contravariant index if ηaα
ab

cd = 0
for all ηa ∈ (Mp)a that are normal to S. (Note that this characterization, which

applies to all M-tensors with contravariant indices, is consistent with the one

given initially for the special case of contravariant vectors by virtue of the

second assertion in problem 1.10.1.) And we take it to be normal to S in its

second covariant index if ξdαab
cd = 0 for all ξd ∈ (Mp)d that are tangent to S.

So far, M-tensors at p can be tangent to S only in their contravariant indices

and normal to S only in their covariant indices. But now (and henceforth in

this section), let us assume that a metric gab is present on M. Then the clas-

sification can be extended. We can take take the tensor to be tangent to S in a

covariant index if it is so after the index is raised with gab. And we can take it to

be normal to S in a contravariant index if it is so after the index is lowered with
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gab. Now we have four subspaces to consider side by side. In addition to the

old k-dimensional space of contravariant M-vectors at p tangent to S, we have

a new (n − k)-dimensional space of contravariant M-vectors at p normal to S.

And in addition to the old (n − k)-dimensional space of covariant M-vectors

at p normal to S, we have a new k-dimensional space of covariant M-vectors

at p tangent to S. As one would expect, it is possible to introduce “projection

tensors” that, when applied to (contravariant and covariant) M-vectors at p,

yield their respective components in these four subspaces. We shall do so in a

moment.

Let us say that an M-tensor at p is (fully) tangent to S (or normal to S) if it

is so in each of its indices. The subspace of M-tensors αa1...ar
b1...bs

at p tangent

to S has dimension k(r+s).

Nothing said so far rules out the possibility that there is a non-zero vector

ξa ∈ (Mp)a that is both tangent to, and normal to, S. Such a vector would

necessarily satisfy gab ξ
a ξ b = 0. (Since ξa is tangent to S, and gab ξ

b is normal

to S, the contraction of the two must be 0.) There cannot be non-zero vectors

satisfying this condition if gab is positive definite. But the possibility does arise

when, for example, the metric is of Lorentzian signature.

We say that our imbedded submanifold S is a metric submanifold (relative to

the background metric gab on M) if, for all p in S, no non-zero vector in (Mp)a

is both tangent to S and normal to S. An alternative formulation is available.

The pull-back field id∗(gab) is always a smooth, symmetric field on S. But it is

non-degenerate (and so a metric) iff S is a metric submanifold (see problem

1.10.2).

PROBLEM 1.10.2. Let S be a k-dimensional imbedded submanifold of the

n-dimensional manifold M, and let gab be a metric on M. Show that S is a met-

ric submanifold (relative to gab) iff for all p in S the pull-back tensor (idp)∗(gab)

at p is non-degenerate; i.e., there is no non-zero vector ξ̃a ∈ (Sp)a such that(
(idp)∗(gab)

)
ξ̃a = 0.

In what follows, we assume that S is a metric submanifold (relative to gab).

Non-metric submanifolds do arise in relativity theory. (“Null hypersurfaces,”

for example, are non-metric.) But they are not essential for our purposes, and

it will simplify our discussion to put them aside. The assumption that S is a

metric submanifold, for example, implies—and, indeed, is equivalent to the

assertion that—there is a basis for Mp consisting entirely of vectors that are either

tangent to, or normal to, S (but not both). It is convenient to be able to work with

such a basis. (It is always true (in the presence of a metric) that we can find k



“530-47773_Ch01_2P.tex” — 1/23/2012 — 17:18 — page 98

−1

0

+1

98 / differential geometry

linearly independent vectors at p tangent to S, and (n − k) linearly independent

vectors there normal to S. But the combined set of n vectors will be linearly

independent iff the subspaces spanned by the two individual sets share no

non-zero vector; i.e., there is no non-zero vector that is both tangent to, and

normal to, S.)

The vector space of S-tensors at p of a given index structure has the same

dimension as the vector space of M-tensors there that are of the same index

structure and that are tangent to S. In fact, as we now show, there is a canoni-

cally defined linear map φp from the first to the second that is injective and so

qualifies as an isomorphism.6 We define this isomorphism α̃
a1...ar

b1...bs
�−→

φp(α̃
a1...ar

b1...bs
) in stages, considering, in order, scalars (0th order tensors),

contravariant vectors, covariant vectors, and then, finally, arbitrary tensors.

For scalars α, we set φp(α) = α. (We do not place a tilde over the first α

because there is no distinction to be drawn here. Scalars are just scalars.) For

vectors ξ̃a, we set

φp(ξ̃a) = (idp)∗(ξ̃a).

It follows immediately from (I2)—the second condition in the definition of

an imbedding—and the definition of tangency that φp determines an isomor-

phism between Sp and the space of contravariant M-vectors at p tangent to S.

Next, we define φp(η̃a) by specifying its action on vectors ξa ∈ (Mp)a that are

either tangent to, or normal to, S. (This suffices since, as we have seen, we

can always find a basis for (Mp)a consisting entirely of such vectors.)

φp(η̃a) ξa =
⎧⎨⎩η̃a

(
(φp)−1(ξa)

)
if ξa is tangent to S

0 if ξa is normal to S.

Clearly, φp(η̃a) is tangent to S. That much is guaranteed by the second clause

within the definition. Moreover, the action of φp on (Sp)a is injective. (Suppose

φp(η̃a) is the zero vector in (Mp)a. Then η̃a
(
(φp)−1(ξa)

) = 0, for all tangent

vectors ξa ∈ (Mp)a. But every vector in (Sp)a is of the form (φp)−1(ξa) for some

tangent vector ξa ∈ (Mp)a. So η̃a is the zero vector in (Sp)a.)

Finally, we consider the case of an S-tensor at p of higher order index

structure – say α̃ab
c . There are no surprises. We define φp(α̃ab

c ), once again,

by specifying its action on vectors that are all tangent to, or normal to, S.

6. We are presenting a great deal of detail here. Some readers may want to skip to proposition
1.10.1.
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φp(α̃
ab

c )μa νb ξ
c =

⎧⎪⎪⎨⎪⎪⎩
α̃ab

c

(
(φp)−1(μa)

)(
(φp)−1(νb)

) (
(φp)−1(ξ c )

)
if μa, νb, and ξ care tangent to S

0 if μa, νb, or ξ c is normal toS.

Clearly, φp(α̃ab
c ) is tangent to S, and the argument that φp is injective in its

action on (Sp)ab
c is verymuch the same as in the preceding case. This completes

our definition.

We have established, so far, that for every index structure a1...ar
b1...bs

, there

is an isomorphism between the vector space of S-tensors α̃a1...ar
b1...bs

at p and

the vector space of M-tensors αa1...ar
b1...bs

at p that are tangent to S. If we

now “aggregate” the different isomorphisms, we arrive at a map φp (we use

the same notation) that commutes with all the tensor operations – addition,

outer multiplication, index substitution, and contraction. It follows from our

definition, for example, that φp(α̃ab
c β̃

de) = φp(α̃ab
c )φp(β̃de) and φp(α̃ab

c β̃
ce) =

φp(α̃ab
c )φp(β̃ce). In summary, we have established the following.

PROPOSIT ION 1.10.1. Let S be a metric submanifold of the manifold M. Then

the tensor algebra of S-tensors at any point of S is isomorphic to the tensor algebra

of M-tensors there that are tangent to S.

The map φp is closely related to (idp)∗. Indeed, it agrees with the latter in

its action on contravariant tensors at p. But (idp)∗ makes assignments only to

contravariants tensors there, whereas φp makes assignments to all tensors.

(Similarly, (φp)−1 agrees with (idp)∗ in its assignment to covariant tensors at

p that are tangent to S.)

Now we switch our attention to tensor fields on S—i.e., assignments of

tensors of the same index structure to every point of S. Of course, we have

to distinguish between assignments of S-tensors and assignments of M-

tensors. But the isomorphismswehavebeenconsidering (definedat individual

points of S) induce a correspondence α̃a1...ar
b1...bs

�−→ φ(α̃a1...ar
b1...bs

) between

S-fields and M-fields that are tangent to S—i.e., tangent at every point.

The correspondence respects differential structure in the following sense

(in addition to algebraic structure). Let αa1...ar
b1...bs

be an M-field on S that is

tangent to S. There are two senses in which it might be said to be “smooth.”

Let us say that it is M-smooth if, for every p in S, there is an open set O ⊆ M

containing p and an extension of αa1...ar
b1...bs

to a field
+
α

a1...ar
b1...bs

on O that

is smooth relative to the charts CM . (This sense of smoothness applies to all

M-fields on S, whether they are tangent to S or not.) Let us also say that it

is S-smooth if the corresponding S-field φ−1(αa1...ar
b1...bs

) is smooth relative to
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the charts CS. One would like these two senses of smoothness to agree, and in

fact they do. By direct consideration of charts, one can establish the following.

(We skip the proof.)

PROPOSIT ION 1.10.2. Let S be a metric submanifold of the manifold M. Further,

let αa1...ar
b1...bs

be an M-field on S that is tangent to S. Thenαa1...ar
b1...bs

is M-smooth

iff it is S-smooth.

In what follows, we shall sometimes say that an M-field on S is smooth

without further qualification. If the field is not tangent to S, this can only

mean that it is M-smooth. If it is tangent to S, the proposition rules out any

possibility of ambiguity.

Consider now the S-field h̃ab = id∗(gab) on S. It is called the induced metric

or first fundamental form on the manifold S.7 (That it is a metric follows from

our assumption that S is a metric submanifold of M. Recall problem 1.10.2.)

Associated with h̃ab is a unique compatible derivative operator D̃ on S. (So it

satisfies D̃a h̃bc = 0.) It is our goal now to show that it is possible, in a sense, to

express D̃ in terms of the derivative operator ∇ on M that is compatible with

gab. The sense involved is a bit delicate because it makes reference to the map

φ we have been considering that takes S-fields to M-fields on S tangent to S.

The idea, in effect, is to translate talk about the former into talk about the latter.

Corresponding to h̃ab is a smooth, symmetric M-field hab = φ(h̃ab) =
φ(id∗(gab)) on S that is tangent to S. (It is tangent to S because the image

of every S-field under φ is so. How do we know it is smooth? Since gab is a

smooth field on the manifold M, id∗(gab) is a smooth field on the manifold S.

But id∗(gab) = φ−1(hab). So hab is S-smooth (and, hence, M-smooth as well).)

We can characterize hab directly, without reference to h̃ab or φ, in terms of its

action (at any point of S) on M-vectors that are tangent to, or normal to, S.

(1.10.1) hab λ
a ηb =

⎧⎨⎩gab λ
a ηb if λa and ηa are both tangent to S

0 if λa or ηa is normal to S.

The equivalence is easy to check.8

Several properties of hab, as well as a companion field kab = (gab − hab) are

listed in the following proposition. Clearly, kab is also a symmetric, smooth

7.Warning: the latter (perfectly standard) expression is potentially confusing because h̃ab is not
a “form” in the special technical sense introduced in section 1.7; i.e., it is not anti-symmetric.

8. Suppose λa and ηa are both tangent to S. Then, by the definitions of φ and the pull-back map
id∗, hab λ

a ηb = φ(id∗(gab)) λa ηb = id∗(gab)φ−1(λa)φ−1(ηb) = gab id∗(φ−1(λa)) id∗(φ−1(ηb)) =
gab λ

a ηb. Alternatively, if either λa or ηa is normal to S, then hab λ
a ηb = 0 since hab is tangent

to S.
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M-field on S. (Here and in what follows, whenever we lower and raise indices

on M-tensors, it should be understood that we do so with gab.)

PROPOSIT ION 1.10.3. Let S be a metric submanifold of the manifold M (with

respect to the metric gab on M). Let hab be the M-field on S defined by equa-

tion (1.10.1), and let kab be the companion M-field (gab − hab) on S. Then all the

following hold.

(1) hab is tangent to S and kab is normal to S.

(2) For all M-vector fields αa on S,

(a) αa is tangent to S ⇐⇒ ha
b α

b = αa ⇐⇒ ka
b α

b = 0 and

(b) αa is normal to S ⇐⇒ ka
b α

b = αa ⇐⇒ ha
b α

b = 0.

(3) ha
b hb

c = ha
c and ka

b kb
c = ka

c and ha
b kb

c = 0.

Proof. (1) We have already given an argument to show that hab is tangent

to S. (Once again, hab = φ(h̃ab), and the image of every S-field under φ is

tangent to S.) Now let ξa be any M-vector tangent to S (at any point of S).

Then kab ξ
a = gab ξ

a − hab ξ
a. But gab ξ

a = hab ξ
a, since they agree in their

action on both vectors tangent to S and normal to it. So kab ξ
a = 0. It follows

that kab is normal to S in its first index. But kab is symmetric. So it is (fully)

normal to S. (2) Suppose first that ha
b α

b = αa. Then αa is certainly tangent to

S, since ha
b is tangent to S in the index a. Conversely, suppose αa is tangent

to S. Then, we claim, ha
b α

b and αa have the same action on any vector ηa

(at any point of S) that is either tangent to, or normal to, S. In the first case,

ha
b α

b ηa = gab η
a αb = αa ηa. In the second case, ha

b α
b ηa = 0 = αa ηa. This

gives us the first equivalence in (a). The second is immediate since ka
b α

b =
(ga

b − ha
b)α

b = αa − ha
b α

b. The equivalences in (b) are handled similarly. (3)

It follows from (2) that ha
b hb

c and ha
c have the same action on any vector ξ c (at

any point of S) that is either tangent to, or normal to, S. So ha
b hb

c = ha
c . The

arguments for ka
b kb

c = ka
c and ha

b kb
c = 0 are similar. �

PROBLEM 1.10.3. Prove the following generalization of clause (2) in proposition

1.10.3. For all M-tensor fields α ...a... on S,

(1) α ...a... is tangent to S in the index a ⇐⇒ ha
b α

...b... = α ...a... ⇐⇒
ka

b α
...b... = 0.

(2) α ...a... is normal to S in the index a ⇐⇒ ka
b α

...b... = α ...a... ⇐⇒
ha

b α
...b... = 0.
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We have formulated the preceding problem in terms of contravariant M-

fields on S. But, of course, this involves no essential loss of generality. For

given one, instead, of form, say, α ab
cde, we can always apply the stated results

to β abcde = α ab
mnrg

mcgndgre and then lower indices.

We can think of ha
b and ka

b as projection operators. Given an M-field

ξa, ha
b ξ

b is its component tangent to S, and ka
b ξ

b is its component normal

to S. More generally, we can use the two operators to decompose an M-field

of arbitrary index structure into a sum of component tensor fields, each of

which is either tangent to S or normal to S in each of its indices (which is not

to say that each of the component fields will be either [fully] tangent to S or

[fully] normal to S). So, for example, in the case of a field αa
b on S, we have

the following decomposition:

αa
b = ha

m hn
b α

m
n + ha

m kn
b α

m
n + ka

m hn
b α

m
n + ka

m kn
b α

m
n.

(Notice that the two fields, left and right, have the same action (at any point)

on any pair of vectors ηa ξ
b, each of which is either tangent to S or normal

to S.)

We are ready to explain the sense in which the action of D̃ can be expressed

in terms of ∇. We start with a lemma.

LEMMA 1.10.4. Let S be a metric submanifold of the manifold M (with respect to

the metric gab on M). Let hab be the M-field on S defined by equation (1.10.1).

Finally, let
1
α

a1...ar
b1...bs

and
2
α

a1...ar
b1...bs

be smooth M-fields on an open set O ⊆ M

that agree on S. Then at all points of S ∩ O,

hn
m∇n

1
α

a1...ar
b1...bs

= hn
m∇n

2
α

a1...ar
b1...bs

.

Proof. Consider βa1...ar
b1...bs

= 1
α

a1...ar
b1...bs

− 2
α

a1...ar
b1...bs

. It vanishes on S. Let

p be a point in S ∩ O. We need to show that

hn
m∇nβ

a1...ar
b1...bs

= 0

at p. To do so, it suffices to show that if we contract the left side with any vector

ξm at p that is either tangent to, or normal to, S, the result is 0. That is true
automatically if ξm is normal to S (since hn

m is tangent to S). And if ξm is

tangent to S, hn
m ξ

m = ξn. So it suffices to show that

ξn ∇n β
a1...ar

b1...bs
= 0

for all ξn at p tangent to S. The proof of this assertion is similar to other

“well-definedness” arguments given before, and proceeds by considering the
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index structure of βa1...ar
b1...bs

. If β is a scalar field on S, then ξn ∇n β is just

the directional derivative ξ (β). This has to be 0 because β is constant on S.

One next proves the statement for contravariant vector fields βa on S using

the result for scalar fields together with the Leibniz rule. And so forth. �

Now suppose αa1...ar
b1...bs

is a smooth M-field on S. We cannot expect to be

able to associate with it a field ∇m α
a1...ar

b1...bs
on S. (The latter, if well defined,

would encode information about how αa1...ar
b1...bs

changes as one moves away

from S in arbitrary directions.) But, by the lemma, we can introduce a field

hn
m ∇n α

a1...ar
b1...bs

on S. At any point of S, we simply extend αa1...ar
b1...bs

to a

smooth field
1
α

a1...ar
b1...bs

on some open set O, and set

hn
m ∇n α

a1...ar
b1...bs

= hn
m ∇n

1
α

a1...ar
b1...bs

.

This field need not be tangent to S even if αa1...ar
b1...bs

is. But we can “make it

tangent” if we project all indices onto S with the field hn
m . This action defines

an operator Da on the set of all smooth M-tensor fields αa1...ar
b1...bs

on S that

are tangent to S:

(1.10.2) Dm α
a1...ar

b1...bs
= ha1

c1 . . . har
cs

hd1
b1
. . . hds

bs
hn

m ∇n α
c1...cr

d1...ds
.

The basic result toward which we have been working is the following.

PROPOSIT ION 1.10.5. For all smooth S-fields α̃a1...ar
b1...bs

,

φ(D̃n α̃
a1...ar

b1...bs
) = Dn φ(α̃

a1...ar
b1...bs

).

Proof. Let ˜̃D be the operator on smooth S-fields that is defined by the condition

˜̃Dn α̃
a1...ar

b1...bs
= φ−1(Dn φ(α̃

a1...ar
b1...bs

)).
It suffices for us to show that it is a derivative operator on S and that it is

compatible with h̃ab. For then it will follow (by proposition 1.9.2) that ˜̃D = D̃.

Consider, first, the compatibility condition. Since φ(h̃ab) = hab, we have

˜̃Dn h̃ab = φ−1(Dn φ(h̃ab)) = φ−1(Dn hab) = φ−1(hr
a hs

b hm
n∇m hrs)

= φ−1(hs
b hm

n

[∇m (hr
a hrs)− hrs ∇m hr

a

])
= φ−1(hs

b hm
n∇m has − hr

b hm
n∇m hra) = φ−1(0) = 0.

Note that we have used the Leibniz rule (in reverse) to arrive at the fourth

equality. We are justified in doing so because we are here working “within

the shadow” of the projection operator hm
n. We can always (locally) extend
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the tensor fields in question, invoke the Leibniz rule for ∇ in its standard

form (where we are working with fields defined on open sets in M rather than

fields defined only on S), and then invoke our lemma to show that it does

not matter how we do the extension. Note also that the fifth equality follows

from the third clause of proposition 1.10.3, and the sixth from the symmetry

of hab.

Next we need to verify that ˜̃D satisfies conditions (DO1) through (DO6)

(section 1.7). The first five are straightforward. The argument is very much

the same in each case. Let us consider, for example, a representative instance

of the Leibniz rule. We have

˜̃Dn(α̃ab η̃c ) = φ−1(Dn[φ(α̃ab)φ(η̃c )]) = φ−1(ha
r hb

s h
q
c hm

n∇m [φ(α̃rs)φ(η̃q)])
= φ−1(ha

r hb
s h

q
c[φ(α̃rs) hm

n∇m φ(η̃q)+φ(η̃q) hm
n∇m φ(α̃rs)])

= φ−1(φ(α̃ab) h
q
c hm

n∇m φ(η̃q)+φ(η̃c ) ha
r hb

s hm
n∇m φ(α̃rs))

= φ−1(φ(α̃ab)Dn φ(η̃c )+φ(η̃c )Dn φ(α̃ab))

= α̃ab φ−1(Dn φ(η̃c ))+ η̃c φ
−1(Dn φ(α̃ab))

= α̃ab ˜̃Dn η̃c + η̃c
˜̃Dn α̃

ab.

A few steps here deserve comment. For the fourth equality, we need the fact

that ha
r φ(α̃

rs) = φ(α̃as) (and a number of similar statements involving change

of index). Note that this is just an instance of the assertion in problem 1.10.3,

since φ(α̃rs) is tangent to S. And the sixth equality holds because φ (acting

at any point in S) is a tensor algebra isomorphism that commutes with the

operations of addition and outer multiplication.

Let us turn, finally, to (DO6). This is the only one of the conditions that

requires a bit of attention. Let α be a smooth scalar field on S. Then

˜̃Da
˜̃Db α = φ−1(Da φ(

˜̃Db α)) = φ−1(DaDb φ(α)) = φ−1(hm
b hn

a∇n (hr
m∇rα)).

Here we have used the fact that φ(α) = α. Now let p be any point on S. We can

extend α to a smooth field
+
α on an open set O in M containing p. Moreover,

we can do so in such a way that ∇a
+
α is tangent to S on S ∩ O. (This can be

verified with an argument involving charts. Intuitively we keep
+
α constant

as we move out from S in directions normal to S.) So hn
a∇n

+
α= ∇a

+
α on

S ∩ O. Thus, ∇a
+
α is a smooth field on O that agrees with hn

a ∇n
+
α on S ∩ O. It
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follows thatwe canunderstandhn
a ∇n (hr

m∇rα) to behn
a ∇n∇m

+
α onS ∩ O, and

therefore
˜̃Da

˜̃Db α = φ−1(hm
b hn

a∇n ∇m
+
α )

at p. The tensor on the right side is manifestly symmetric in a and b (since

∇ satisfies condition (DO6)). Thus ˜̃Da
˜̃Db α is symmetric in these indices at

our arbitrary point p in S. �

Up to this point we have been attentive to the distinction between S-fields

and M-fields on S tangent to S, between h̃ab and hab, and between the oper-

ators D̃ and D. But it is, more or less, standard practice to be a bit casual

about these distinctions or even to collapse them entirely by formally identify-

ing the vector space Sp with the subspace of Mp whose elements are tangent

to S. (The work we have done to this point—in particular, propositions 1.10.1,

1.10.2, and 1.10.5—makes clear that there is no harm in doing so.) In what

follows, that will be our practice as well. We shall refer to hab as the “metric

induced on S” (or the “first fundamental form on S”), refer to D as the “deriva-

tive operator induced on S,” and so forth. We shall also drop the labels “S-field”

and “M-field,” since it is only the latter with which we shall be working.

In effect, we shall be systematically translating “S-talk” into “M-talk.” Here

is one more example of how this works. What should we mean by a “geodesic

on S with respect to the induced metric (or induced derivative operator)”? We

can certainly understand it to be a map of the form γ : I → S that is smooth

with respect to CS and whose tangent field ξ̃a satisfies ξ̃nD̃nξ̃
a = 0. Instead,

we shall drop explicit reference to CS and D̃ and take it to be a map of the

form γ : I → S that is smooth with respect to CM and whose tangent field ξa

satisfies ξnDnξ
a = 0.

We know that

(1.10.3) hm
a hn

b h
p
c ∇m hnp = 0

on S. (This is just the assertion that Dahbc = 0, and we proved it in the course

of showing that D̃ah̃bc = 0. That was the first step in our proof of proposition

1.10.5.) Similarly, one can show that

(1.10.4) hm
a kn

b k
p
c ∇m hnp = 0

on S. However, the mixed projection field πabc defined by

(1.10.5) πabc = hm
a hn

b k
p
c ∇m hnp

need not vanish. It turns out that πabc is of particular geometric interest. It is

called the extrinsic curvature field on S.



“530-47773_Ch01_2P.tex” — 1/23/2012 — 17:18 — page 106

−1

0

+1

106 / differential geometry

Figure 1.10.2. The cylinder and the plane (imbedded in three-dimensional Euclidean space)
both have vanishing intrinsic curvature. But the cylinder, in contrast to the plane, has non-
vanishing extrinsic curvature. Notice that there are curves on the cylinder—e.g., γ , that are
geodesics with respect to induced derivative operator D that are not geodesics with respect
to the background derivative operator ∇.

PROBLEM 1.10.4. Prove equation (1.10.4).

The induced metric hab and its associated derivative operator D are geometric

structures “intrinsic” toS. They arenot sensitive to thewayS is imbedded inM.

We say that (S, hab) has vanishing intrinsic curvature just in case D is flat. The

extrinsic curvature of S, in contrast, is determined by the imbedding. Think of

both a plane and a cylinder imbedded in ordinary three-dimensional Euclidean

space (figure 1.10.2). They both have vanishing intrinsic curvature. But only

the plane has vanishing extrinsic curvature. Notice that all geodesics of the

plane are necessarily geodesics of the ambient three-dimensional space. But

the corresponding statement for the cylinder is not true. There are geodesics of

the cylinder (e.g., γ in figure 1.10.2) that are not geodesics of the larger space.

This is a good way to think about extrinsic curvature. Indeed, as we shall prove

(proposition 1.10.7), πabc is a measure of the degree to which geodesics in

(S, hab) fail to be geodesics in (M, gab). But first we need a lemma.

LEMMA 1.10.6. π[ab]c = 0 .

Proof. Consider any point p in S. If ξa is a vector at p tangent to S, we have

ξ c k
p
c = 0 and hence ξ c π[ab]c = 0. So it will suffice to show ξ c π[ab]c = 0 for

all ξa at p normal to S. Since S has dimension k and M has dimension n,

we can find an open set O containing p and (n − k) smooth scalar fields
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i
α(i = 1, . . . , n − k) on O such that (i) ∇a

i
α is normal to S on S ∩ O, for all

i, and (ii) the vectors ∇a
i
α are linearly independent on S ∩ O. (This can be

verified with an argument involving charts. Indeed, the fields i
α can be local

coordinates induced by a chart on M. What is required is that their associated

coordinate curves all be orthogonal to S where they intersect it.) To complete

the proof, it suffices to verify that (∇c i
α)π[ab]c = 0 at p for all i. But this follows

since we have

(∇c i
α)π[ab]c = (∇c i

α)hm[a hn
b] k

p
c ∇m hnp = hm[a hn

b](∇p i
α)∇m hnp

= hm[a hn
b][∇m(hnp∇p i

α)− hnp ∇m∇p i
α
]

= − hm[a h
p
b]∇m∇p

i
α = −hm

a h
p
b∇[m∇p]

i
α = 0.

(For the fourth equality, we have used the fact that since hnp ∇p i
α = 0 on

S ∩ O, it must be the case that h m
a ∇m(hnp ∇p i

α) = 0 on S ∩ O. This follows,

once again, from lemma 1.10.4.) �

Now we can give the promised geometric interpretation of πabc .

PROPOSIT ION 1.10.7. Let S be a metric submanifold of the manifold M (with

respect to the metric gab on M). Let ∇ be the derivative operator on M determined

by gab, let hab be the induced metric on S, and let πabc be the extrinsic curvature

field on S. Finally, let γ be a geodesic in (S, hab) with tangent field ξa. Then

(1.10.6) ξn ∇n ξ
c = π c

ab ξ
a ξ b.

Proof. By hypothesis, ξn Dn ξ
c = 0. And ξn hr

n = ξ r , since ξa is tangent to

S. So

0 = ξn hr
n hc

m∇r ξ
m = ξ r (gc

m − kc
m)∇r ξ

m = ξ r ∇r ξ
c − kc

m ξ
r ∇r ξ

m .

Therefore,

ξ r ∇r ξ
c = kc

m ξ
r ∇r ξ

m = kc
m ξ

r ∇r (hm
p ξ

p)

= kc
m ξ

r (hm
p ∇r ξ

p + ξp ∇r hm
p) = kc

m ξ
r ξp ∇r hm

p

= kc
m(ξa hr

a)(ξ
b h

p
b)∇r hm

p = ξa ξ b hr
a h

p
b kcm ∇r hpm = ξa ξ b π c

ab .

Here we use the fact that kc
m hm

p = 0 for the fourth equality. �
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Given any point p in S, πabc vanishes there iff πabc ξ
aξ b = 0 for all vectors

ξa at p that are tangent to S. (This follows, since πabc is symmetric in its first

two indices (lemma 1.10.6) and also tangent to S in them. Recall proposition

1.4.3.) But given any vector ξa at p tangent to S, there is a geodesic in (S, hab)

that passes through p, whose tangent vector there is ξa. So it follows from

our proposition that πabc = 0 iff all geodesics in (S, hab) are geodesics in (M, gab).

Moreover, the requirement that equation (1.10.6) hold for all geodesics in

(S, hab) uniquely determines πabc .

Next we consider the Gauss-Codazzi equations.

PROPOSIT ION 1.10.8. Suppose (M, gab) and (S, hab) are as in proposition 1.10.7,

and D is the derivative operator on S determined by hab. Further suppose Ra
bcd is

the Riemann curvature field on M associated with ∇, and Ra
bcd is the Riemann

curvature field on S associated with D. Then

Ra
bcd = −2πa m[c πd]bm + ha

m hn
b h

p
c hr

d Rm
npr ,(1.10.7)

hm[a hn
b] h

p
c kr

d∇m πnpr = 1

2
hm

a hn
b h

p
c kr

d Rmnpr .(1.10.8)

Proof. The argument consists of a long computation. First, let λa be any

smooth vector field on S tangent to S. Then Ra
bcd must satisfy

−1

2
Ra

bcd λ
b = D[c Dd] λa = h

p
[c hr

d] ha
s∇p(hm

r hs
n∇m λ

n)(1.10.9)

= h
p
[c hr

d] ha
s

[
(∇p hm

r )h
s
n ∇m λ

n

+ hm
r (∇p hs

n)∇m λ
n + hm

r hs
n ∇p ∇m λ

n].
Now, by equations (1.10.3) and (1.10.5),

(1.10.10) h
p
c hr

d ∇p hm
r = h

p
c hr

d gm
q∇p h

q
r = h

p
c hr

d(k
m

q + hm
q)∇p h

q
r = π m

cd .

So, by lemma 1.10.6, the first term on the right side of equation (1.10.9)

vanishes. The second and third terms can be simplified by using equa-

tion (1.10.10), the symmetry of hsn, and the fact that hr
d hm

r = hm
d . We

have
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−1

2
Ra

bcd λ
b = h

p
[c hm

d] ha
s(∇p hs

n)∇m λ
n + h

p
[c hm

d]h
a
n ∇p ∇m λ

n

= π an[c hm
d]∇m λn + h

p
c hm

d ha
n∇[p∇m] λn

= π an[c hm
d] ∇m λn − 1

2
h

p
c hm

d ha
n Rn

bpm λ
b.

Now πcan is normal to S in its third index. So π an
c hnb = 0 and, therefore,

π an
c hm

d∇m λn = π an
c hm

d∇m(hnb λ
b)

= π an
c hm

d λ
b ∇m hnb = π an

c hm
d hb

r λ
r ∇m hnb

= π an
c πdrn λ

r = πa n
c πdrnλ

r .

So we have, all together,(− 1

2
Ra

rcd −πa n[c πd]rn + 1

2
ha

n h
p
c hm

d Rn
rpm

)
λr = 0.

Now let ηb be an arbitrary smooth field on S and take hr
b η

b for λr . Then, since

the first two terms are tangent to S in the index rI, we have

(Ra
bcd + 2πa n[c πd]bn − ha

n hr
b h

p
c hm

d Rn
rpm)ηb = 0.

Since this holds for all smooth fields ηb on S, the field in parentheses must

vanish. This gives us equation (1.10.7). The second computation is similar,

and we leave it as an exercise. �

PROBLEM 1.10.5. Derive the second Gauss-Codazzi equation (1.10.8).

The first Gauss-Codazzi equation expresses the intrinsic Riemann curva-

ture tensor field Ra
bcd in terms of the extrinsic curvature field πabc and the full

background Riemann curvature field Ra
bcd . We shall return to it later when we

consider the geometric significance of Einstein’s equation.

So farwehave assumedonly thatS is ametric submanifold ofM. Let us now

consider the special case where S is a metric hypersurface, i.e., has dimension

k = (n − 1). A slight simplification results. The vector space of vectors normal

to S is now one-dimensional at every point of S. So it consists of multiples

of some (normalized) vector ξa where ξaξa = ±1. (ξaξa cannot be 0 precisely

because S is a metric submanifold.) Whether the value of ξaξa is +1 or −1

depends on S and the signature of gab. At least if S is connnected, the value

will be the same at every point of S—i.e., everywhere +1 or everywhere −1.
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Let us assume that S and gab are such that the value is +1 at all points

of S. (The other case is handled similarly.) So there are exactly two vectors ξa

normal to S at every point satisfying ξa ξa = 1. Locally, at least, we can always

make a choice so as to generate a smooth field. We say that S is two sided if it

is possible to do so globally.

Let ξa be one such (local or global) smooth normal field on S satisfying

ξa ξa = 1. Then

hab = (gab − ξa ξb),(1.10.11)

kab = ξa ξb.(1.10.12)

(Note that hab and (gab − ξa ξb) have the same action on ξa and on all vectors

tangent to S.) Now consider the field πab defined by

(1.10.13) πab = −πabc ξ
c .

When hypersurfaces are under discussion, it (rather than πabc ) is often

called the extrinsic curvature field (relative to ξa). It is also called the second

fundamental form on S (relative to ξa). Notice that

π[ab] = 0,(1.10.14)

πabc = −πab ξc ,(1.10.15)

πab = hm
a hn

b ∇m ξn.(1.10.16)

The first assertion follows immediately from lemma 1.10.6. For the second, it

suffices to observe that πabc and −πab ξc agree in their action on ξ c and on all

vectors ηc tangent to S. For the third, we have

πab = −πabc ξ
c = −hm

a hn
b k

p
c ξ

c ∇m hnp = −hm
a hn

b ξ
p ∇m hnp

= − hm
a hn

b[∇m(ξp hnp)− hnp ∇m ξ
p] = hm

a h
p
b ∇m ξp.

Equation (1.10.16) leads to an alternative interpretation of extrinsic curva-

ture in the case of hypersurfaces. Let
+
ξ a be an extension of ξa to a smooth

field of unit length on some open set O in M, and let
+
hab be defined by

+
hab= gab−

+
ξ a

+
ξ b. (So

+
hab is an extension of hab and

+
hab

+
ξ a = 0.) Then we have

(1.10.17) πab = 1

2
£+
ξ

+
hab



“530-47773_Ch01_2P.tex” — 1/23/2012 — 17:18 — page 111

−1

0

+1

differential geometry / 111

on S ∩ O. To prove this, observe first that on S ∩ O, £+
ξ

+
hab is tangent to S (in

both indices). This follows since £+
ξ

+
ξ a = 0 and, hence,

+
ξ a £+

ξ

+
hab= £+

ξ
(

+
hab

+
ξ a)− +

hab £+
ξ

+
ξ a = 0.

Therefore on S we have

£+
ξ

+
hab = hr

a hs
b £+

ξ

+
hrs= hr

a hs
b £+

ξ
(grs −

+
ξ r

+
ξ s )

= hr
a hs

b £+
ξ

grs = hr
a hs

b [+ξn ∇n grs + gns ∇r
+
ξn + grn ∇s

+
ξn]

= hr
a hs

b (∇r
+
ξ s + ∇s

+
ξ r ) = 2hr

(a hs
b) ∇r

+
ξ s

= 2π(ab) = 2πab.

(The final two equalities follow, respectively, from equations (1.10.16) and

(1.10.14).)

Thus we can think of πab (up to the factor 1
2 ) as the Lie derivative of hab

in the direction ξa normal to S. This interpretation will be important later

in connection with our discussion of the “initial value problem” in general

relativity.

Finally let us reconsider the Gauss-Codazzi equations in the present

case. Substituting −πabξc for πabc in the equations of proposition 1.10.8

yields

Ra
bcd = − 2πa[c πd]b + ha

m hn
b h

p
c hr

d Rm
npr ,(1.10.18)

hm[a hn
b] h

p
c ∇m πnp = − 1

2
hm

a hn
b h

p
c ξ

rRmnpr .

The second can be expressed as

(1.10.19) D[a πb]c = −1

2
hm

a hn
b h

p
c ξ

rRmnpr .

Contracting on equation (1.10.18) yields

Rbc = −πa
c πab +πa

a πcb + hr
m hn

b h
p
c Rm

npr .

Substituting (gr
m − ξm ξ r ) for hr

m on the right side, we arrive at
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(1.10.20) Rbc = π πbc −πab π
a
c + hn

b h
p
c Rnp − Rmbcr ξ

m ξ r ,

where π = πa
a. (Note that Rmbcr ξ

m ξ r is tangent to S, since (by proposition

1.9.4) contracting with ξa on b or c yields 0. Hence hn
b h

p
c Rmbcr ξ

m ξ r =
Rmbcr ξ

m ξ r .) Contracting once more yields

R = π2 −πab π
ab + hnp Rnp − Rmr ξ

mξ r

= π2 −πab π
ab + R − 2Rnr ξ

n ξ r .(1.10.21)

Of course, in the special case where we are dealing with a hypersurface

imbedded in a flatmanifold (Ra
bcd = 0)—e.g., in the case of a two-dimensional

surface imbedded in three-dimensional Euclidean space—our expressions for

Ra
bcd , Rbc , and R simplify still further:

Rabcd = πad πbc −πac πbd ,(1.10.22)

Rbc = π πbc −πab π
a
c ,(1.10.23)

R = π2 −πab π
ab.(1.10.24)

1.11. Volume Elements

In what follows, let M be an n–dimensional manifold (n ≥ 1). As we know

from section 1.7, an s-form on M (s ≥ 1) is a covariant field αb1...bs
that is anti-

symmetric (i.e., anti-symmetric in each pair of indices). The case where s = n

is of special interest.

Let αb1...bn
be an n-form on M. Further, let

i
ξb(i = 1, . . . , n) be a basis for

the tangent space at a point in M with dual basis i
ηb(i = 1, . . . , n). Then αb1...bn

can be expressed there in the form

(1.11.1) αb1...bn
= k n! 1

η[b1 . . .
n
ηbn]

where

k = αb1...bn

1
ξb1 . . .

n
ξbn .

(To see this, observe that the two sides of equation (1.11.1) have the same

action on any collection of n vectors from the set { 1
ξb, . . . ,

n
ξb}.) It follows that if

αb1...bn and βb1...bn are any two smooth, non-vanishing n-forms on M, then

βb1...bn = f αb1...bn

for some smooth non-vanishing scalar field f .

Smooth, non-vanishing n-forms always exist locally on M. (Suppose (U ,ϕ)

is a chart with coordinate vector fields ( �γ1)a, . . . , ( �γn)a, and suppose i
ηb(i =
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Figure 1.11.1. A 2-form αab on the Möbius strip determines a “positive direction of rotation”
at every point where it is non-zero. So there cannot be a smooth, non-vanishing 2-form on the
Möbius strip.

1, . . . , n) are dual fields. Then 1
η[b1 . . .

n
ηbn] qualifies as a smooth, non-vanishing

n-form onU .) But they do not necessarily exist globally. Suppose, for example,

that M is the two-dimensional Möbius strip (see figure 1.11.1), and αab is

any smooth two-form on M. We see that αab must vanish somewhere as

follows.

Let p be any point on M at which αab = 0, and let ξa be any non-zero

vector at p. Consider the number αab ξ
aρb as ρb rotates though the vectors in

Mp. If ρb = ±ξ b, the number is zero. If ρb = ±ξ b, the number is non-zero.

Therefore, as ρb rotates between ξa and −ξa, it is always positive or always

negative. Thus αab determines a “positive direction of rotation” away from ξa

on Mp. αab must vanish somewhere because one cannot continuously choose

positive rotation directions over the entire Möbius strip.

M is said to be orientable if it admits a (globally defined) smooth, non-

vanishing n-form.

So far we have made no mention of metric structure. Suppose now that

our manifold M is endowed with a metric gab of signature (n+, n−). We take

a volume element on M (with respect to gab) to be a smooth n-form εb1...bn
that

satisfies the normalization condition

(1.11.2) εb1...bn εb1...bn
= (− 1)n

−
n!.

Suppose εb1...bn
is a volume element on M, and

i
ξ b(i = 1, . . . , n) is an

orthonormal basis for the tangent space at a point in M. Then at that point we

have, by equation (1.11.1),

(1.11.3) εb1...bn
= k n! 1

ξ [b1 . . .
n
ξ bn]
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where k = εb1...bn

1
ξb1 . . .

n
ξbn . Hence, by the normalization condition (1.11.2),

(− 1)n
−

n! = (
k n! 1

ξ [b1 . . .
n
ξ bn]

)(
k n! 1

ξ[b1 . . .
n
ξbn])

= k2(n!)2 1
n!
( 1
ξ b1

1
ξb1

)
. . .

(n
ξ bn

n
ξbn

) = k2 n! (− 1)n
−
.

So k2 = 1 and, therefore, equation (1.11.3) yields

(1.11.4) εb1...bn

1
ξb1 . . .

n
ξbn = ±1.

Clearly, if εb1...bn
is a volume element on M, then so is−εb1...bn

. It follows from

the normalization condition (1.11.4) that there cannot be any others. Thus,

there are only two possibilities. Either (M, gab) admits no volume elements (at

all) or it admits exactly two, and these agree up to sign.

Condition (1.11.4) also suggests where the term “volume element” comes

from. Given arbitrary vectors 1
γ a, . . . , n

γ a at a point, we can think of

εb1...bn

1
γb1 . . .

n
γbn as the volume of the (possibly degenerate) parallelepipeddeter-

mined by the vectors. Notice that, up to sign, εb1...bn
is characterized by three

properties.

(VE1) It is linear in each index.

(VE2) It is anti-symmetric.

(VE3) It assigns a volume V with |V | = 1 to each orthonormal paral-

lelepiped.

These are conditionswewould demandof anywould-be volumemeasure (with

respect to gab). If the length of one edge of a parallelepiped is multiplied by a

factor k, then its volume should increase by that factor. And if a parallelepiped

is sliced into two parts, with the slice parallel to one face, then its volume

should be equal to the sum of the volumes of the parts. This leads to (VE1).

Furthermore, if any two edges of the parallelepiped are coalligned (i.e., if it

is a degenerate parallelepiped), then its volume should be zero. This leads to

(VE2). (If for all vectors ξa, εb1...bn
ξ b1 ξ b2 = 0, then it must be the case that

εb1...bn
is anti-symmetric in indices (b1, b2). And similarly for all other pairs

of indices.) Finally, if the edges of a parallelepiped are orthogonal, then its

volume should be equal to the product of the lengths of the edges. This leads

to (VE3). The only unusual thing about εb1...bn
as a volume measure is that it

respects orientation. If it assigns V to the ordered sequence 1
γ a, . . . , n

γ a, then

it assigns (− V ) to 2
γ a, 1
γ a, 3
γ a, . . . , n

γ a, and so forth.

It will be helpful to collect here a few facts for subsequent calculations.

Suppose εa1...an is a volume element on M with respect to the metric gab with
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signature (n+, n−). Then

εa1...an εb1...bn
= (− 1)n

−
n! δ[a1b1 . . . δ

an]
bn
,(1.11.5)

εa1...an εa1b2...bn
= (− 1)n

−
(n − 1)! δ[a2b2 . . . δ

an]
bn
,(1.11.6)

εa1...an εa1a2b3...bn
= (− 1)n

−
2(n − 2)! δ[a3b3 . . . δ

an]
bn
,(1.11.7)

...

εa1...an εa1...ar br+1...bn
= (− 1)n

−
r! (n − r)! δ[ar+1

br+1
. . . δ

an]
bn
.(1.11.8)

Consider, for example, the case where n = 3 and n− = 0—i.e., where

gab is positive definite. (The general case is handled similarly.) Then equation

(1.11.5) comes out as the assertion εabcεmnq = 6 δ[am δb
n δ

c]
q . To see that it holds,

consider any anti-symmetric tensor αmnq at a point. Then αmnq = k εmnq for

some k. So

εabc εmnq α
mnq = k εabc εmnq ε

mnq = 6 k εabc = 6αabc

= 6 δ[am δb
n δ

c]
q α

mnq.

Thus for all anti-symmetric αmnq at the point, we have(
εabc εmnq − 6 δ[am δb

n δ
c]
q

)
αmnq = 0.

In particular, given arbitrary vectors λm , ρn,μq there,(
εabc εmnq − 6 δ[am δb

n δ
c]
q

)
λ[m ρnμq] = 0.

But since the expression in parentheses is itself anti-symmetric in the indices

(m, n, q), this condition can be expressed as(
εabc εmnq − 6 δ[am δb

n δ
c]
q

)
λm ρnμq = 0.

Since λm , ρn, and μq are arbitrary, it follows that

εabc εmnq − 6 δ[am δb
n δ

c]
q = 0.

This gives us equation (1.11.5). Next, equation (1.11.6) follows from (1.11.5)

since

εabc εanq = 6 δ[aa δb
n δ

c]
q

= 2
(
δa

a δ
[b

n δ
c]

q − 2 δ[bn δc]
q

)
= 2(3− 2)δ[bn δc]

q = 2 δ[bn δc]
q.
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Finally, equation (1.11.7) follows from (1.11.6) since

εabc εabq = 2 δ[bb δ
c]

q = (
δb

b − 1
)
δc

q = 2 δc
q.

Another fact we shall need is

(1.11.9) ∇m εa1...an
= 0

(where ∇ is the derivative operator on M determined by gab). To see this,

suppose λa is an arbitrary smooth field on M. Then, since λm ∇m εb1...bn
is a

smooth n-form on M, we have

λm ∇m εb1...bn
= ϕ εb1...bn

for some scalar field ϕ. But then

ϕ (− 1)n
−

n! = ϕ εa1...an εa1...an
= εa1...an λm ∇m εa1...an

= 1

2
λm ∇m

(
εa1...an εa1...an

) = 1

2
λm ∇m((− 1)n

−
n!) = 0.

So ϕ = 0 and, hence, λm ∇m εb1...bn
= 0. Since λm was arbitrary, we have

equation (1.11.9).

Finally, we show how to recover ordinary vector analysis in terms of volume

elements. Suppose our manifold M is R
3, gab is the Euclidean metric defined

by equation (1.9.13), ∇ is the derivative operator determined by gab, and εabc

is a volume element on M. Then, given contravariant vectors ξ and η at some

point, we define their dot and cross products as follows:

ξ · η = ξa ηa,

ξ × η = εabc ξb ηc .

(We are deliberately not using indices on the left.) It follows immediately from

the anti-symmetry of εabc that ξ × η = −(η× ξ ), and that ξ × η is orthogonal

to both ξ and η. Furthermore, if we define the angular measure �(ξ , η) by
setting

cos�(ξ , η) = ξ · η
‖ξ‖ ‖η‖ ,

where ‖ξ‖ = (ξ · ξ ) 12 , then the magnitude of ξ × η is given by

‖ξ × η‖ = (
εabc ξb ηc εamn ξ

m ηn) 1
2

= (
2 δ[bm δc]

n ξ
m ηn ξb ηc

) 1
2
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= [
(ξ b ξb)(η

c ηc )− (ξ b ηb)
2] 1

2

= ‖ξ‖ ‖η‖(1− cos2�(ξ , η)
) 1
2 = ‖ξ‖ ‖η‖sin �(ξ , η).

Consider an example. One learns in ordinary vector analysis that, given any

three vectors α,β, γ at a point,

γ × (α×β) = α(γ ·β)−β(γ ·α).
In our notation, this comes out as the assertion

εabc γb
(
εcmn α

m βn) = αa(γb β
b)−βa(γb α

b),

and it follows easily from equation (1.11.6):

εabc γb εcmn α
m βn = εcab εcmn γb α

m βn

= 2 δ[am δ
b]

n γb α
m βn = αa(γb β

b)−βa(αb γb).

Given a smooth scalar field f and a smooth contravariant vector field ξ on

M, we define the following:

grad( f ) = ∇af

div(ξ ) = ∇a ξ
a

curl(ξ ) = εabc ∇b ξc .

(In themore familiar notation usually found in textbooks, these would be writ-

ten as∇f ,∇ · ξ , and∇ × ξ .) With these definitions, we can recover all the usual

formulas of vector analysis. Here are two simple examples. (Others are listed

in the problems that follow.)

(1) curl(grad f ) = 0.
(2) div(curl ξ ) = 0.

The first comes out as the assertion that εabc ∇b∇c f = 0, which is immediate

since ∇b∇c f is symmetric in (b, c). (For this result, flatness is not required.)

The second comes out as∇a(εabc ∇b ξc ) = 0. This follows fromequation (1.11.9)

and the fact (now using flatness) that ∇a∇b ξc is symmetric in (a, b).

PROBLEM 1.11.1. One learns in the study of ordinary vector analysis that, for all

vectors ξ , η, θ , and λ at a point, the following identities hold.

(1) (ξ × η) · (θ × λ) = (ξ · θ )(η · λ)− (ξ · λ)(η · θ ).
(2) (ξ × (η× θ ))+ (θ × (ξ × η))+ (η× (θ × ξ )) = 0.

Reformulate these assertions in our notation and prove them.
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PROBLEM 1.11.2. Do the same for the following assertion:

div(ξ × η) = η · curl(ξ )− ξ · curl(η).
(Here ξ and η are understood to be smooth vector fields.)

PROBLEM 1.11.3. We have seen (proposition 1.9.9) that every Killing field ξa in

n-dimensional Euclidean space (n ≥ 1) can be expressed uniquely in the form

ξb = χa Fab + kb,

where Fab and kb are constant, Fab is anti-symmetric, and χa is the position field

relative to some point p. Consider the special case where n = 3. Let εabc be a volume

element. Show that (in this special case) there is a unique constant field Wa such

that Fab = εabcW
c. (If Wa = 0, ξa is the “infinitesimal generator” of a family of

translations in the direction ka. Alternatively, if ka = 0, it generates a family of

rotations about the point p with axis Wa.) (Hint: Consider Wa = 1
2ε

abcFbc .)
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CLASSICAL RELATIVITY THEORY

2.1. Relativistic Spacetimes

With the basic ideas of differential geometry now at our disposal, we turn to

relativity theory.

It is helpful to thinkof the theory as determining a class of geometricmodels

for the spacetime structure of our universe (and isolated subregions thereof,

such as, for example, our solar system). Each represents a possible world

(or world-region) compatible with the constraints of the theory. We describe

thesemodels in stages. First, we characterize a broad class of “relativistic space-

times” anddiscuss their interpretation. Later, we introduce further restrictions

involving global spacetime structure and Einstein’s equation.

We take a relativistic spacetime to be a pair (M, gab), where M is a smooth,

connnected, four-dimensional manifold and gab is a smooth metric on M of

Lorentz signature (1, 3). We interpret M as the manifold of point “events” in

the world.1 The interpretation of gab is given by a network of interconnected

physical principles. We list three in this section that are relatively simple in

character because they make reference only to point particles and light rays.

(These objects alone suffice to determine the metric, at least up to a constant.)

We list a fourth in section 2.3 that concerns the behavior of (ideal) clocks. Still

other principles involving generic matter fields will come up later.

In what follows, let (M, gab) be a fixed relativistic spacetime and let∇ be the

unique derivative operator on M compatible with gab. Since gab has signature

(1, 3), at every point p in M, the tangent space Mp has a basis
1
ξa, . . . ,

4
ξa such

that, for all i and j in {1, 2, 3, 4},

1. We use “event” as a neutral term here and intend no special significance. Somemight prefer
to speak, for example, of “equivalence classes of coincident point events” or “point event locations.”
We shall take this interpretation for granted in what follows and shall, for example, refer to such
things as “particle worldlines in a relativistic spacetime.”

119
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i
ξa

i
ξa =

{
+1 if i = 1

−1 if i = 2, 3, 4

and
i
ξa

j

ξa = 0 if i = j. It follows that given any vectors μa = ∑n
i=1

i
μ

i
ξa and

νa = ∑n
i=1

i
ν

i
ξa at p,

(2.1.1) μa νa = 1
μ

1
ν− 2

μ
2
ν− 3

μ
3
ν− 4

μ
4
ν

and

(2.1.2) μaμa = 1
μ

1
μ− 2

μ
2
μ− 3

μ
3
μ− 4

μ
4
μ.

(Recall equation (1.9.3).)

Given a vector ηa at a point in M, we say ηa is

timelike if ηaηa > 0,

null (or lightlike) if ηaηa = 0,

causal if ηaηa ≥ 0,

spacelike if ηaηa < 0.

In this way, gab determines a “null-cone structure” in the tangent space at every

point of M. Null vectors form the boundary of the cone. Timelike vectors form

its interior. Spacelike vectors fall outside the cone. Causal vectors are those

that are either timelike or null.

The classification extends naturally to curves. We take a smooth curve γ :

I → M to be timelike (respectively null, causal, spacelike) if its tangent vector

field �γ is of this character at every point. The property of being timelike, null,

and so forth is preserved under reparametrization. So there is a clear sense in

which the classification also extends to images of smooth curves.2 The property

of being a geodesic is not, in general, preserved under reparametrization. So

it does not transfer to curve images. But, of course, the related property of

being a geodesic up to reparametrization does carry over.

Now we can state the first three interpretive principles. For all smooth

curves γ : I → M,

(C1) γ is timelike iff γ [I] could be the worldline of a point particle with

positive mass;3

2. Here we are distinguishing between the map γ : I → M and its image γ [I]. We shall take
“worldlines” to be instances of the latter—i.e., construe them as point sets rather than parametrized
point sets.

3. We shall later discuss the concept of mass in relativity theory. For the moment, we take it to
be just a primitive attribute of particles.
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(C2) γ can be reparametrized so as to be a null geodesic iff γ [I] could be

the trajectory of a light ray;4

(P1) γ can be reparametrized so as to be a timelike geodesic iff γ [I] could
be the worldline of a free5 point particle with positive mass.

In each case, a statement about geometric structure (on the left) is correlated

with a statement about the behavior of particles or light rays (on the right).

Several comments and qualifications are called for. First, we are here work-

ing within the framework of relativity as traditionally understood and ignoring

speculations about the possibility of particles that travel faster than light. (The

worldlines of these so-called “tachyons”would come out as images of spacelike

curves.) Second, we have restricted attention to smooth curves. So, depending

on how one models collisions of point particles, one might want to restrict

attention here, in parallel, to particles that do not experience collisions.

Third, the assertions require qualification because the status of “point par-

ticles” in relativity theory is a delicate matter. At issue is whether one treats a

particle’s ownmass-energy as a source for the surroundingmetric field gab—in

addition to other sources that may happen to be present. (Here we anticipate

our discussion of Einstein’s equation.) If one does, then the curvature associ-

ated with gab may blow up as one approaches the particle’s worldline. And in

this case one cannot represent the worldline as the image of a curve in M, at

least not without giving up the requirement that gab be a smooth field on M.

For this reason, a more careful formulation of the principles would restrict

attention to “test particles”—i.e., ones whose own mass-energy is negligible

and may be ignored for the purposes at hand.

Fourth, themodal character of the assertions (i.e., the reference to possibil-

ity) is essential. It is simply not true—take the case of (C1)—that all images of

smooth, timelike curves are, in fact, the worldlines of massive particles. The

claim is that, as least so far as the laws of relativity theory are concerned, they

could be. Of course, judgments concerning what could be the case depend

on what conditions are held fixed in the background. The claim that a partic-

ular curve image could be the worldline of a massive point particle must be

4. For certain purposes, even within classical relativity theory, it is useful to think of light as
constituted by streams of “photons” and to take the right-side condition here to be “γ [I] could be
the worldline of a photon.” The latter formulation makes (C2) look more like (C1) and (P1) and
draws attention to the fact that the distinction between particles with positive mass and those with
zero mass (such as photons) has direct significance in terms of relativistic spacetime structure.

5. “Free particles” here must be understood as ones that do not experience any forces except
gravity. It is one of the fundamental principles of relativity theory that gravity arises as a manifes-
tation of spacetime curvature, not as an external force that deflects particles from their natural,
straight (geodesic) trajectories. We shall discuss this matter further in section 2.5.
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understood to mean that it could so long as there are, for example, no barriers

in the way. Similarly, in (C2) there is an implicit qualification. We are consid-

ering what trajectories are available to light rays when no interveningmaterial

media are present—i.e., when we are dealing with light rays in vacuo.

Though these four concerns are important and raise interesting questions

about the role of idealization and modality in the formulation of physical

theory, they have little to do with relativity theory as such. Similar difficulties

arise, for example, when one attempts to formulate corresponding principles

within the framework of Newtonian gravitation theory.

It follows from the cited interpretive principles that the metric gab is deter-

mined (up to a constant) by the behavior of point particles and light rays.6

We make this claim precise with a sequence of propositions about conformal

structure and projective structure. (Recall our discussion in section 1.9.)

Let g ′
ab be a second smoothmetric of Lorentz signature on M. Clearly, if g ′

ab
is conformally equivalent to gab—i.e., if there is a smooth function� : M → R

such that g ′
ab = �2gab—then the two agree in their classification of vectors

as timelike, null, and so forth. We first verify that the converse is true as

well. (Indeed, we prove something slightly stronger. To establish conformal

equivalence, it suffices to require that the two metrics agree on any one of the

four categories of vectors. If they agree on one, they agree on all.)

PROPOSIT ION 2.1.1. The following conditions are equivalent.

(1) g ′
ab and gab agree on which vectors, at arbitrary points of M, are timelike (or

agree on which are null, or which are causal, or which are spacelike).

(2) g ′
ab and gab are conformally equivalent.

Proof. The equivalence of the four versions of (1) follows from the fact that

the four properties in question (being timelike, null, causal, and spacelike) are

interdefinable. So, for example, we can characterize null vectors in terms of

timelike vectors:

A vector ηa at p is null iff either ηa = 0 or, for all timelike vectors αa at p, and

all sufficiently small numbers k, of the two vectors ηa + kαa and ηa − kαa,

one is timelike and one is not.

6. This was first recognized byHermannWeyl [62]. As he put it [63, p. 61], “it can be shown that
the metrical structure of the world is already fully determined by its inertial and causal structure,
that therefore measurements need not depend on clocks and rigid bodies but that light signals and
massmoving under the influence of inertia alone will suffice.” Formore onWeyl’s “causal-inertial”
method of determining the spacetime metric, see Coleman and Korté [9, section 4.9].
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Conversely, we can characterize timelike vectors in terms of null vectors:

A vector ηa at p is timelike iff for all null vectorsαa = 0 at p there is a number

k = 0 and a null vector βa = 0 at p such that ηa = kαa +βa.

It follows immediately that we can also characterize causal vectors (timelike or

null) and spacelike vectors (neither timelike nor null) in terms of either time-

like vectors or null vectors alone. Other cases are handled similarly. (See

problem 2.1.2.)

Now assume that the two metrics agree in their classification of vectors at

all points of M. We show that they must be conformally equivalent. Let p be

any point in M, and let ξa be any vector at p that is spacelike with respect to

both metrics. Set

(2.1.3) k = g ′
ab ξ

aξ b

gab ξ
aξ b

.

Since the numerator and denominator of the fraction are both negative, k > 0.

We claim first that

(2.1.4) g ′
ab η

aηb = k gab η
aηb

for all ηa at p. If ηa is null with respect to both metrics, the assertion is trivial.

So there are two cases to consider.

Case 1: ηa is timelike with respect to both metrics. Consider the following

quadratic equation (in the variable x):

0 = gab (ξ
a + x ηa)(ξ b + x ηb) = gab ξ

aξ b + 2 x gab ξ
aηb + x2 gab η

aηb.

The discriminant

4 (gab ξ
aηb)2 − 4 (gab ξ

aξ b)(gab η
aηb)

is positive (since (gab ξ
aξ b) < 0, and (gab η

aηb) > 0). So the equation has

real roots r1 and r2 with

(2.1.5) r1 · r2 = gab ξ
aξ b

gab η
aηb

.

Now the equation

0 = g ′
ab (ξ

a + x ηa)(ξ b + x ηb)

must have exactly the same roots as the preceding one (since the metrics

agree on null vectors). So we also have

(2.1.6) r1 · r2 = g ′
ab ξ

aξ b

g ′
ab η

aηb
.
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These two expressions for r1 · r2, together with equation (2.1.3), yield

equation 2.1.4).

Case 2: ηa is spacelike with respect to both metrics. Let γ a be any vector at

p that is timelike with respect to both. Repeating the argument used for

case 1, with ηa now playing the role of ξa, we have

(2.1.7)
g ′
ab η

aηb

g ′
ab γ

aγ b
= gab η

aηb

gab γ
aγ b

.

But g ′
ab γ

aγ b = k gab γ
aγ b, because γ a falls under case 1. So ηa must

satisfy equation (2.1.4) in this case too.

Thus, we have established our claim. Since (g ′
ab − k gab) is symmetric, it now

follows by proposition 1.4.3 that g ′
ab = k gab at p.

To complete the proof, we define a scalar field� : M → R by setting�(p) =√
k(p) at each point p (where k(p) is determined as above). Then g ′

ab = �2 gab,

and � is smooth since gab and g ′
ab are. �

It turns out that dimension plays a role in proposition 2.1.1. Our spacetimes

are four-dimensional. Suppose we temporarily drop that restriction and, for

any n ≥ 2, consider “n-dimensional spacetimes” (M, gab) where M has dimen-

sion n and gab has signature (1, n − 1). What happens to the proposition? The

proof we have given carries over intact for all n ≥ 3. And even when n = 2, it

carries over in part. Three versions of condition (1) are still equivalent to each

other—those involving agreement on timelike, causal, or spacelike vectors—

and to condition (2). But in that special case, two metrics can agree on null

vectors without being conformally equivalent. (At any point p in M, a “90-

degree rotation” of Mp takes null vectors to null vectors, but it takes timelike

vectors to spacelike vectors.)

PROBLEM 2.1.1. Consider our characterization of timelike vectors in terms of null

vectors in the proof of proposition 2.1.1. Why does it fail if n = 2?

PROBLEM 2.1.2. (i) Show that it is possible to characterize timelike vectors (and so

also null vectors and spacelike vectors) in terms of causal vectors. (ii) Show that it is

possible to characterize timelike vectors (and so also null vectors and causal vectors)

in terms of spacelike vectors. (Both characterizations should work for all n ≥ 2.)

Conformally equivalent metrics do not agree, in general, on which curves

qualify as geodesics or even just as geodesics up to reparametrization. But,

it turns out, they do necessarily agree on which null curves are geodesics up
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to reparametrization. Indeed, we have the following proposition. Notice that

clauses (1) and (2) correspond, respectively, to interpretive principles (C1) and

(C2) above.

PROPOSIT ION 2.1.2. The following conditions are equivalent.

(1) g ′
ab and gab agree on which smooth curves on M are timelike.

(2) g ′
ab and gab agree on which smooth curves on M can be reparameterized so as

to be null geodesics.

(3) g ′
ab and gab are conformally equivalent.

Proof. The implication (1) ⇒ (3) follows immediately from the preceding

proposition. So does the implication (2) ⇒ (1). (Two metrics cannot agree on

which curves are null geodesics up to reparametrization without first agreeing

on which curves are null.) To complete the proof, we show that (3) implies (2).

Assume that g ′
ab = �2 gab. Let γ be any smooth curve that is null (with respect

to both gab and g ′
ab), and let λ

a be its tangent field. Further, let∇′
a be the unique

derivative operator on M compatible with g ′
ab. Then, by propositions 1.7.3 and

1.9.5,

λn ∇′
n λ

a = λn (∇n λ
a − Ca

nmλ
m)

where

Ca
nm = − 1

2�2

[
δa

n ∇m�
2 + δa

m ∇n�
2 − gnm gar ∇r �

2].
Substituting for Ca

nm in the first equation, and using the fact that λa is null,

we arrive at

λn ∇′
n λ

a = λn ∇n λ
a + 1

�2 (λ
n ∇n�

2) λa.

It follows that λn ∇′
n λ

a is everywhere proportional to λa iff λn ∇n λ
a is every-

where proportional to λa. Therefore, by proposition 1.7.9, γ can be

reparametrized so as to be a geodesic with respect to gab iff it can be so

reparametrized with respect to g ′
ab. �

Question: What would go wrong if we attempted to adapt the proof to show

that conformally equivalent metrics agree as to which smooth timelike curves

are geodesics up to reparametrization?

We can understand the proposition to assert that the spacetime metric gab is

determined up to a conformal factor, independently, by the set of possible worldlines

of massive point particles and by the set of possible trajectories of light rays.

Next we turn to projective structure. Recall that g ′
ab is said to be projectively

equivalent to gab if, for all smooth curves γ on M, γ can be reparametrized
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so as to be geodesic with respect to g ′
ab iff it can be so reparametrized with

respect to gab. We have proved (proposition 1.9.6) that if the two metrics are

both conformally and projectively equivalent, then the conformal factor con-

necting them is constant. Now, with interpretive principle P1 in mind, we

prove a slightly strengthened version of the proposition that makes reference

only to timelike geodesics (rather than arbitrary geodesics). To do so, we first

strengthen proposition 1.4.3.

PROPOSIT ION 2.1.3. Let αa1...ar
b1...bs be a tensor at some point in M. Suppose

that

(1) αa1...ar
b1...bs is symmetric in indices b1, . . . , bs, and

(2) αa1...ar
b1...bs ξ

b1 . . . ξ bs = 0 for all timelike vectors ξa at the point.

Then αa1...ar
b1...bs = 0.

Proof. Consider first the case where we are dealing with a tensor of form

αb1...bs—i.e., one with no contravariant indices. Let ξa be a timelike vector at

the point in question, and let ηa be an arbitrary vector there. Then there is an

ε > 0 such that, for all real numbers x, if |x| < ε, (ξa + x ηa) is timelike. Now

consider the polynomial function f : R → R defined by

f (x) = αb1...bs (ξ
b1 + x ηb1 ) . . . (ξ bs + x ηbs )

= αb1...bs ξ
b1 . . . ξ bs +

(
s

1

)
x αb1...bs ξ

b1 . . . ξ bs−1ηbs + . . .

+
(

s

s − 1

)
xs−1 αb1...bs ξ

b1 ηb2 . . . ηbs + xs αb1...bs η
b1 . . . ηbs .

By our hypothesis, f (x) = 0 for all x in the interval (− ε, ε). Hence all deriva-

tives of f vanish in the interval. So αb1...bs η
b1 . . . ηbs = 0. Since ηa was an

arbitrary vector at our point, it follows, by proposition 1.4.3, that αb1...bs = 0
there. For the general case, letμa1 . . . νar be arbitrary vectors at the point. Then

αa1...ar
b1...bs μa1 . . . νar = 0 by the argument just given. So (sinceμa1 . . . νar are

arbitrary vectors), αa1...ar
b1...bs = 0. �

Of course, a parallel proposition holds ifαa1...ar
b1...bs is symmetric in indices

a1, . . . , ar . Indeed, we can arrive at that formulation simply by lowering the

a-indices and raising the b-indices, applying the proposition as proved, and

then restoring the original index positions.
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PROBLEM 2.1.3. Does proposition 2.1.3 still hold if condition (1) is left intact but

(2) is replaced by

(2 ′) αa1...ar
b1...bs ξ

b1 . . . ξ bs = 0 for all spacelike vectors ξa at the point?

And what if it is replaced by

(2 ′′) αa1...ar
b1...bs ξ

b1 . . . ξ bs = 0 for all null vectors ξa at the point?

Justify your answers.

The proposition we are after is the following.

PROPOSIT ION 2.1.4. Assume g ′
ab = �2gab. Further, assume g ′

ab and gab agree as

to which smooth, timelike curves can be reparametrized so as to be geodesics. Then

� is constant.

Proof. Assume∇′ = (∇, Ca
bc ) where, once again, ∇′ is the derivative operator

associated with g ′
ab. It suffices for us to show that Ca

bc = δa
b ϕc + δa

c ϕb for

some smooth field ϕa. For then the constancy of � follows exactly as in our

proof of proposition 1.9.6.

To show that Ca
bc has this form, we need only make a slight revision in

our proof of proposition 1.7.10. There we started from the assumption that ∇′

and ∇ agree as to which (arbitrary) smooth curves can be reparametrized so

as to be geodesics. Using that assumption, we showed that the field ϕad
bcr =(

Ca
bc δ

d
r − Cd

bc δ
a
r

)
satisfies the condition

(2.1.8) ϕad
(bcr) ξ

b ξ c ξ r = 0

for all vectors ξa at all points. Then we invoked proposition 1.4.3 to conclude

that ϕad
(bcr) = 0 everywhere. Arguing in exactly the same way from our weaker

assumption (that the metrics agree as to which smooth, timelike curves can

reparametrized so as to be geodesics), we can show that equation (2.1.8) holds

for all timelike vectors at all points. But we know (by proposition 2.1.3) that

this condition also forces the conclusion that ϕad
(bcr) = 0 everywhere. The rest

of the proof goes through exactly as in that of proposition 1.7.10. Without

reference to particular types of vectors, we can show that Ca
bc = δa

b ϕc + δa
c ϕb

where ϕc = 1

n + 1
Cd

cd . �

Later in this bookwe shall consider a fewparticular examples of spacetimes.

But one should be mentioned immediately, namely Minkowski spacetime. We

take it to be the pair (M, gab) where (i) M is the manifold R
4, (ii) (M, gab) is
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flat—i.e., has vanishing Riemann curvature everywhere—and (iii) (M, gab) is

geodesically complete—i.e., all maximally extended geodesics have domain R.

Minkowski spacetime is very special because its structure as an affineman-

ifold (M,∇) is precisely the same as that of four-dimensional Euclidean space.

(Here, of course, ∇ is understood to be the unique derivative operator on

M compatible with gab.) In particular, given any point o in M, there is a

smooth “direction field” χa on M that vanishes at o and satisfies the condition

∇a χ
b = δ b

a . (Recall proposition 1.7.12.)

2.2. Temporal Orientation and “Causal Connectibility”

The characterizationwehave givenof relativistic spacetimes is extremely loose.

Many further conditions might be imposed. We consider one in this section,

namely “temporal orientability.”

First we need to review certain basic facts about Lorentzian metrics. Once

again, let (M, gab) be a fixed relativistic spacetime. We start with the orthog-

onality relation that gab determines in the tangent space at every point of M.

(Two vectors μa and νa at a point qualify as orthogonal, of course, if μaνa = 0.)

PROPOSIT ION 2.2.1. Let μa and νa be vectors at some point p in M. Then the

following both hold.

(1) If μa is timelike and νa is orthogonal to μa, then either νa = 0 or νa is

spacelike.

(2) If μa and νa are both null, then they are orthogonal iff they are proportional

(i.e., one is a scalar multiple of the other).

Proof. (1) Let
1
ξa, . . . ,

4
ξa be an orthonormal basis for Mp with

1
ξa 1
ξa = 1, and

i
ξa i
ξa = −1 for i = 2, 3, 4. Then we can express μa and νa in the form μa =∑n
i=1

i
μ

i
ξa and νa = ∑n

i=1
i
ν

i
ξa. Now assumeμa is timelike, νa is orthogonal to

μa, and νa = 0. We show that νa is spacelike. It follows from our assumptions

that

(
1
μ)2 > (

2
μ)2 + (

3
μ)2 + (

4
μ)2,(2.2.1)

1
μ

1
ν = 2

μ
2
ν+ 3

μ
3
ν+ 4

μ
4
ν,(2.2.2)

1
μ = 0,(2.2.3)

(
2
ν)2 + (

3
ν)2 + (

4
ν)2 > 0.(2.2.4)
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(The first two assertions follow from equations (2.1.2) and (2.1.1). The third

follows fromthefirst. For thefinal inequality, note that if (
2
ν)2 + (

3
ν)2 + (

4
ν)2 = 0,

then
2
ν = 3

ν = 4
ν = 0, and so, by equations (2.2.2) and (2.2.3),

1
ν = 0 aswell. This

contradicts our assumption that νa = 0.) In turn, it now follows by theSchwarz

inequality (as applied to the vectors (
2
μ,

3
μ,

4
μ) and (

2
ν,

3
ν,

4
ν)) that

(
1
μ)2 (

1
ν)2 = (

2
μ

2
ν+ 3

μ
3
ν+ 4

μ
4
ν)2 ≤ [( 2μ)2 + (

3
μ)2 + (

4
μ)2] [(2ν)2 + (

3
ν)2 + (

4
ν)2]

< (
1
μ)2 [(2ν)2 + (

3
ν)2 + (

4
ν)2],

and hence, by equation (2.2.3) again, that

(
1
ν)2 < (

2
ν)2 + (

3
ν)2 + (

4
ν)2.

Thus νa is spacelike.

(2) Assume μa and νa are both null. If they are proportional, then they

are trivially orthogonal. For if, say, μa = k νa, then μaνa = k(νaνa) = 0 (since

νa is null). Assume, conversely, that the vectors are orthogonal. Let ξa be a

timelike vector at p. By clause (1)—since νa is not spacelike—either νa = 0
or ξaνa = 0. (Here ξa is playing role of μa.) In the first case, μa and νa are

trivially proportional. Sowemay assume that ξaνa = 0. Then there is anumber

k such that k (ξaνa) = ξaμa. Hence, (μa − k νa) ξa = 0. Now (μa − k νa) is not

spacelike. (The right side of

(μa − k νa)(μa − k νa) = μaμa − 2 k (μaνa)+ k2 (νaνa)

is 0 since, by assumption, μa and νa are null and μaνa = 0.) So, by clause

(1) again, it must be the case that (μa − k νa) = 0; i.e., μa and νa are proport-

ional. �

PROBLEM 2.2.1. Let p be a point in M. Let p be a point in M. Show that there is no

two-dimensional subspace of Mp all of whose elements are causal (timelike or null).

PROBLEM 2.2.2. Let g ′
ab be a second metric on M (not necessarily of Lorentz sig-

nature). Show that the following conditions are equivalent.

(1) For all p in M, gab and g ′
ab agree on which vectors at p are orthogonal.

(2) g ′
ab is conformally equivalent to either gab or −gab.

Next we consider the “lobes” of the null cone determined by gab at points

of M. Let us say that two timelike vectors μa and νa at a point are co-oriented

(or have the same orientation) if μaνa > 0.
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PROPOSIT ION 2.2.2. For all points p in M, co-orientation is an equivalence

relation on the set of timelike vectors in Mp.

Proof. Reflexivity and symmetry are immediate. For transitivity, let μa, νa,

and ωa be timelike vectors at a point, with the pairs {μa, νa} and {νa, ωa} both
co-oriented. Wemust show that {μa, ωa} is co-oriented as well. The argument

is very much like that for the second clause of proposition 2.2.1.

Sinceμaνa > 0 andωaνa > 0, there is a real number k > 0 such thatμaνa =
k (ωaνa). Hence, (μa − kωa)νa = 0. Since νa is timelike, we know from the

first clause of proposition 2.2.1 that either (μa − kωa) is the zero vector 0
or it is spacelike. In the first case, μa = kωa, and so the pair {μa, ωa} is

certainly co-oriented (μaωa = k (ωaωa) > 0). So we may assume that (μa −
kωa) is spacelike. But then

μaμa − 2 k (μaωa)+ k2 (ωaωa) = (μa − kωa)(μa − kωa) < 0.

Sinceμaμa, ωaωa, and k are all positive, it follows thatμaωa is positive as well.

So, again, we are led to the conclusion that the pair {μa, ωa} is co-oriented. �

The equivalence classes determined at each point by the co-orientation

relation will be called temporal lobes. There must be at least two lobes at each

point since, for any timelike vector μa there, μa and −μa are not co-oriented.

There cannot be more than two since, for all timelike μa and νa at a point, νa

is co-oriented either with μa or with −μa. (Remember, two timelike vectors at

a point cannot be orthogonal.) Hence there are exactly two lobes at each point.

It is easy to check that each lobe is convex; i.e., if μa and νa are co-oriented at a

point, and a, b are both positive real numbers, then (aμa + b νa) is a timelike

vector at the point that is co-oriented with μa and νa.

The relation of co-orientation can be extended easily to the larger set of non-

zero causal (i.e., timelike or null) vectors. Given any two such vectors μa and

νa at a point, we can take them to be co-oriented if either μaνa > 0 or νa = kμa,

with k > 0. (The second possibility must be allowed since we want a non-zero

null vector to count as being co-orientedwith itself.) Once again, co-orientation

turns out to be an equivalence relation with two equivalence classes that we

call causal lobes. (Only minor changes in the proof of proposition 2.2.2 are

required to establish that the extended co-orientation relation is transitive.)

These lobes, too, are convex.

For future reference, we record two more facts about Lorentz metrics. (Let

us agree towrite‖μa‖ for (μaμa)
1
2 whenμa is causal, andwrite it for (−μaμa)

1
2

when μa is spacelike.)
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PROPOSIT ION 2.2.3. Let μa and νa be causal vectors at some point p in M. Then

the following both hold.

(1) (“Wrong way Schwarz inequality”) |μaνa| ≥ ‖μa‖ ‖νa‖, with equality iffμa

and νa are proportional.

(2) (“Wrong way triangle inequality”) Ifμa and νa are non-zero and co-oriented,

‖μa + νa‖ ≥ ‖μa‖ + ‖νa‖,
with equality iff μa and νa are proportional.

Proof. (1) If both μa and νa are null, the assertion follows immediately from

the second assertion in proposition 2.2.1. So we may assume that one of the

vectors, say μa, is timelike. Now we can certainly express νa in the form

νa = kμa + σ a, with k a real number and σ a a vector at p orthogonal to μa. (It

suffices to take k = (μaνa)/(μaμa) and σ a = (νa − kμa).) Hence,

μaνa = k (μaμa),

νaνa = k2 (μaμa)+ σ aσa.

Since σ a is orthogonal to μa, it must either be spacelike or the zero vector

(by proposition 2.2.1). In either case, (σ aσa) ≤ 0. So, since (μaμa) > 0 and

(νaνa) ≥ 0, it follows that

(μaνa)2 = k2 (μaμa)2 = [(νaνa)− (σ aσa)] (μaμa)

≥ (νaνa) (μaμa) = ‖μa‖2 ‖νa‖2.

Equality holds here iff (σ aσa) = 0. But (as noted already), σ a is either the zero

vector or spacelike (in which case (σ aσa) < 0). So equality holds iff σ a = 0;
i.e., νa = kμa.

We leave the second clause as an exercise. �

PROBLEM 2.2.3. Prove the second clause of proposition 2.2.3.

Nowwe switch our attention to considerations of global null cone structure.

We say that (M, gab) is temporally orientable if there exists a continuous timelike

vector field τ a on M. Suppose the condition is satisfied. Then we take two

such fields τ a and τ ′a to be co-oriented if they are so at every point—i.e., if

τ aτ ′
a > 0 holds at every point of M. Co-orientation, now understood as a

relation on continuous timelike vector fields, is an equivalence relation with
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two equivalence classes. (It inherits this property from the original relation

defined on timelike vectors at individual points.) A temporal orientation of

(M, gab) is a choice of one of those two equivalence classes to count as the

“future” one. Thus, a non-zero causal vector ξa at a point of M is said to

be future-directed or past-directed with respect to the temporal orientation T
depending on whether τ aξa > 0 or τ aξa < 0 at the point, where τ a is any

continuous timelike vector field in T . (Remember, τ aξa cannot be 0, since no

timelike vector can be orthogonal to a non-zero causal vector.) Derivatively,

a smooth, causal curve γ : I → M is said to be future-directed (respectively

past-directed) with respect to T if its tangent vector at every point is so.

Our characterization of “relativistic spacetimes” in the preceding section

does not guarantee temporal orientability. But we shall take the condition for

granted in what follows. We assume that our background spacetime (M, gab)

is temporally orientable and that a particular temporal orientation has been

specified.

Also, given points p and q inM, we shall write p � q (resp. p < q) if there is

a smooth, future-directed, timelike (respectively, causal) curve γ : [a, b] → M

where γ (a) = p and γ (b) = q. Note that p < p, for all points p in all spacetimes.

(This is the case because the zero vector in the tangent space at any point

qualifies as a null vector.) But it is not the case, in general, that p � p. The

latter condition holds iff there is a smoooth, closed, future-directed timelike

curve that begins and ends at p. The two relations � and < are naturally

construed as relations of “causal connectibility (or accessibility).”

Appendix: Recovering Geometric Structure from the Causal

Connectibility Relation

We started with a spacetime model (M, gab) exhibiting several levels of geo-

metric structure, and used the latter to define the relations � and < on M.7

The question now arises whether it is possible to work backward—i.e., start

with the pair (M, � ) or (M, < ), with M now construed as a bare point set,

and recover the geometric structure with which one began.8 In this appendix,

we briefly consider one way to make the question precise and give the answer

(without proof). For convenience, we work with the relation �.

Let (M, gab) and (M′, g ′
ab) be (temporally oriented) relativistic spacetimes.

We say that a bijection ϕ : M → M′ between their underlying point sets is a

�-causal isomorphism if, for all p and q in M,

7. The material in this appendix will play no role in what follows.
8. The question figures centrally in the “causal sets” approach to quantum gravity developed

by Rafael Sorkin and co-workers. See, e.g., Sorkin [55, 56].
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(2.2.5) p � q ⇐⇒ ϕ(p) � ϕ(q).

Thenwe can ask the following: Does a �-causal isomorphism have to be a homeo-

morphism? A diffeomorphism? A conformal isometry? (We know in advance that

a causal isomorphismneed not be a ( full) isometry because conformally equiv-

alent metrics gab and �2gab on a manifold M determine the same relation �.

The best one can ask for is that it be a conformal isometry—i.e. that it be a

diffeomorphism that preserves the metric up to a conformal factor.)

Without further restrictions on (M, gab) and (M′, g ′
ab), the answer is certainly

“no” to all three questions. Unless the “causal structure” of a spacetime (i.e.,

the structure determined by �) is reasonably well behaved, it provides no

useful information at all. For example, let us say that a spacetime is causally

degenerate if p � q for all points p and q. Any bijection between two causally

degenerate spacetimes qualifies, trivially, as a �-causal isomorphism. But we

can certainly find causally degenerate spacetimeswhose underlyingmanifolds

have different topologies. For example, we shall verify in section 3.1 that Gödel

spacetime is causally degenerate. Its underlying manifold structure is R
4.

But a suitably “rolled-up” version of Minkowski spacetime is also causally

degenerate, and the latter has the manifold structure S1 × R
3. (Figure 2.2.1

shows a two-dimensional version.)

There is a hierarchy of “causality conditions” that is relevant here. (See,

e.g., Hawking and Ellis [30, section 6.4].) They impose, with varying degrees

of stringency, the requirement that there exist no closed, or “almost closed,”

timelike curves. Here are three.

Chronology: There donot exist smooth closed timelike curves. (Equivalently,

for all p, it is not the case that p � p.)

Future (respectively, past) distinguishablity: For all points p, and all suf-

ficiently small open sets O containing p, no smooth future-directed

(respectively, past-directed) timelike curve that starts at p, and leaves

O, ever returns to O.

Figure 2.2.1. Two-dimensional Minkowski spacetime rolled up into a cylindrical spacetime. It
is causally degenerate: p � q for all points p and q.
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Strong causality: For all points p, and all sufficiently small open sets O

containing p, no smooth future-directed timelike curve that starts in O,

and leaves O, ever returns to O.

It is clear that strong causality implies both future distinguishability and past

distinguishability, and that each of the distinguishability conditions (alone)

implies chronology. Standard examples (see Hawking and Ellis [30]) establish

that the converse implications do not hold, and that neither distinguishability

condition implies the other.

The names “future distinguishability” and “past distinguishability” are eas-

ily explained. For any p, let I+(p) be the set {q : p � q} and let I−(p) be the

set {q : q � p}. It turns out (see Kronheimer and Penrose [33]) that future

distinguishability is equivalent to the requirement that, for all p and q,

I+(p) = I+(q) =⇒ p = q.

And the counterpart requirement with I+ replaced by I− is equivalent to past

distinguishability.

We mention all this because it turns out that one gets a positive answer to

all three questions above if one restricts attention to spacetimes that are both

future and past distinguishing.

PROPOSIT ION 2.2.4. Let (M, gab) and (M′, g ′
ab) be (temporally oriented) relativis-

tic spacetimes that are both future- and past-distinguishing, and let ϕ : M → M′

be a �-causal isomorphism. Then ϕ is a diffeomorphism and preserves gab up to a

conformal factor; i.e. ϕ�(g ′
ab) is conformally equivalent to gab.

One can prove the proposition in two stages. First one shows that, under

the stated assumptions, ϕ must be a homeomorphism (see Malament [38]).9

Then one invokes a result of Hawking, King, and McCarthy [29, theorem 5]

that asserts, in effect, that any continuous �-causal isomorphism must be

smooth and must preserve the metric up to a conformal factor.

The following example shows that the proposition fails if the initial restric-

tion on causal structure is weakened to past distinguishability or to future

distinguishability alone. We give the example in a two-dimensional version

9. This is a slight improvement on a well-known result. If a spacetime (M, gab) is not just past
and future distinguishing, but strongly causal, then one can explicitly characterize its (manifold)
topology in terms of the relation �. In this case, a subset O ⊆ M is open iff, for all points p in
O, there exist points q and r in O such that q � p � r and I+(q)∩ I−(r) ⊆ O (Hawking and Ellis
[30, p. 196]). So a �-causal isomorphism between two strongly causal spacetimes must certainly
be a homeomorphism.
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Figure 2.2.2. An example of a spacetime that is future distinguishing but not past distinguish-
ing. Let ϕ be a bijection of the spacetime onto itself that leaves the lower open half below
C fixed but reverses the position of the two upper slabs. It is a �-isomorphism, but it is
discontinuous along C.

to simplify matters. Start with the manifold R
2 together with the Lorentzian

metric

gab = (d(at)(db)x)− (sinh2 t)(dax)(dbx),

where t, x are global projection coordinates onR
2. Next form a vertical cylinder

by identifying the point with coordinates (t, x) with the one having coordinates

(t, x + 2). Finally, excise two closed half lines—the sets with respective coor-

dinates {(t, x) : x = 0 and t ≥ 0} and {(t, x) : x = 1 and t ≥ 0}. Figure 2.2.2

shows, roughly, what the null cones look like at every point. (The future direc-

tion at each point is taken to be the “upward one.”) The exact formof themetric

is not important here. All that is important is the indicated qualitative behav-

ior of the null cones. Along the (punctured) circle C where t = 0, the vector

fields (∂/∂t)a and (∂/∂x)a both qualify as null. But as one moves upward or

downward from there, the cones close. There are no closed timelike (or null)

curves in this spacetime. Indeed, it is future distinguishing because of the

excisions. But it fails to be past distinguishing because I−(p) = I−(q) for all
points p and q on C. For all points p there, I−(p) is the entire region below C.

Now let ϕ be the bijection of the spacetime onto itself that leaves the “lower

open half” fixed but reverses the position of the two upper slabs. Though ϕ is

discontinuous along C, it is a�-causal isomorphism. This is the case because

every point below C has all points in both upper slabs in its �-future.
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2.3. Proper Time

So far we have discussed relativistic spacetime structure without reference to

either “time” or “space.” We come to them in this section and the next.

Let γ : [s1, s2] → M be a smooth, future-directed timelike curve in M with

tangent field ξa. We associate with it an elapsed proper time (relative to gab)

given by

‖γ ‖ =
∫ s2

s1

(
gab ξ

a ξ b) 1
2 ds.

This elapsed proper time is invariant under reparametrization of γ and is

just what we would otherwise describe as the length of (the image of) γ . The

following is another basic principle of relativity theory.

(P2) Clocks record the passage of elapsed proper time along their world-

lines.

Again, a number of qualifications and comments are called for. Our for-

mulations of (C1), (C2), and (P1) were rough. The present formulation is that

muchmore so. We have taken for granted that we know what “clocks” are. We

have assumed that they have worldlines (rather thanworldtubes). Andwe have

overlooked the fact that ordinary clocks (e.g., the alarmclock on thenightstand)

do not dowell at all when subjected to extreme acceleration, tidal forces, and so

forth. (Try smashing the alarm clock against the wall.) Again, these concerns

are important and raise interesting questions about the role of idealization in

the formulation of physical theory. (One might construe an “ideal clock” as a

point-size test object that perfectly records the passage of proper time along

its worldline, and then take (P2) to assert that real clocks are, under appropri-

ate conditions and to varying degrees of accuracy, approximately ideal.) But

they do not have much to do with relativity theory as such. Similar concerns

arise when one attempts to formulate corresponding principles about clock

behavior within the framework of Newtonian theory.

Now suppose that one has determined the conformal structure of space-

time, say, by using light rays. Then one can use clocks, rather than free

particles, to determine the conformal factor. One has the following simple

result, which should be compared with proposition 2.1.4.10

10. Here we not only determine the metric up to a constant, but determine the constant as
well. The difference is that here, in effect, we have built in a choice of units for spacetime distance.
We could obtain a more exact counterpart to proposition 2.1.4 if we worked, not with intervals of
elapsed proper time, but rather with ratios of such intervals. (Note, by the way, that the condition in
the second sentence of the proposition does notmake sense unless the twometrics are conformally
equivalent. We cannot require that they assign the same length to all timelike curves unless they
first agree on which curves are timelike.)
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PROPOSIT ION 2.3.1. Let g ′
ab be a second smooth metric on M, with g ′

ab = �2 gab.

Further suppose that the two metrics assign the same lengths to timelike curves—

i.e., ‖γ ‖g ′
ab

= ‖γ ‖gab for all smooth, timelike curves γ : I → M. Then � = 1

everywhere. (Here ‖γ ‖gab is the length of γ relative to gab.)

Proof. Let
o
ξa be an arbitrary timelike vector at an arbitrary point p in M. We

can certainly find a smooth, timelike curve γ : [s1, s2] → M through p whose

tangent at p is
o
ξa. By our hypothesis, ‖γ ‖g ′

ab
= ‖γ ‖gab . So, if ξ

a is the tangent

field to γ , ∫ s

s1

(
g ′
ab ξ

a ξ b) 1
2 ds =

∫ s

s1

(
gab ξ

a ξ b) 1
2 ds

for all s in [s1, s2]. It follows that g ′
ab ξ

aξ b = gab ξ
aξ b at every point on the

image of γ . In particular, it follows that (g ′
ab − gab)

o
ξa

o
ξb = 0 at p. But

o
ξa was

an arbitrary timelike vector at p. So, by lemma 2.1.3, g ′
ab = gab at our arbitary

point p. �

(P2) gives thewhole story of relativistic clock behavior (modulo the concerns

noted above). In particular, it implies the path dependence of clock readings. If

two clocks start at an event p and travel along different trajectories to an event

q, then, in general, they will record different elapsed times for the trip. (For

example, one will record an elapsed time of 3,806 seconds, the other 649 sec-

onds.) This is true nomatter how similar the clocks are. (Wemay stipulate that

they came off the same assembly line.) This is the case because, as (P2) asserts,

the elapsed time recorded by each of the clocks is just the length of the timelike

curve it traverses from p to q and, in general, those lengths will be different.

Suppose we consider all future-directed timelike curves from p to q. It is

natural to ask if there are any that minimize ormaximize the recorded elapsed

time between the events. The answer to the first question is “no.” Indeed, one

has the following proposition.

PROPOSIT ION 2.3.2. Let p and q be events in M such that p � q. Then, for all

ε > 0, there exists a smooth, future directed timelike curve γ from p to q with

‖γ ‖ < ε. (But there is no such curve with length 0, since all timelike curves have

non-zero length.)

Though some work is required to give the proposition an honest proof (see

O’Neill [46, pp. 294–295]), it should seem intuitively plausible. If there is a
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Figure 2.3.1. A long timelike curve from p to q and a very short one that approximates a broken
null curve.

smooth, timelike curve connecting p and q, there is also a jointed, zig-zag null

curve connecting them. It has length 0. But we can approximate the jointed

null curve arbitrarily closely with smooth timelike curves that swing back and

forth. So (by the continuity of the length function), we should expect that, for

all ε > 0, there is an approximating timelike curve that has length less than ε.

(See figure 2.3.1.)

The answer to the second question (“Can one maximize recorded elapsed

time between p and q?”) is “yes” if one restricts attention to local regions of

spacetime. In the case of positive definite metrics, i.e., ones with signature of

form (n, 0)—we know geodesics are locally shortest curves. The corresponding

result for Lorentzianmetrics is that timelike geodesics are locally longest curves.

PROPOSIT ION 2.3.3. Let γ : I → M be a smooth, future-directed, timelike curve.

Then γ can be reparametrized so as to be a geodesic iff for all s ∈ I there exists an

open set O containing γ (s) such that, for all s1, s2 ∈ I with s1 ≤ s ≤ s2, if the image

of γ ′ = γ|[s1,s2] is contained in O, then γ ′ (and its reparametrizations) are longer

than all other timelike curves in O from γ (s1) to γ (s2). (Here γ|[s1,s2] is the restriction

of γ to the interval [s1, s2].)

The proof of the proposition is verymuch the same as in the positive definite

case. (See Hawking and Ellis [30, p. 105].) Thus, of all clocks passing locally

from p to q, the one that will record the greatest elapsed time is the one that

“falls freely” from p to q. To get a clock to read a smaller elapsed time than

the maximal value, one will have to accelerate the clock. Now, acceleration

requires fuel, and fuel is not free. So proposition 2.3.3 has the consequence

that (locally) “saving time costs money.” And proposition 2.3.2 may be taken

to imply that “with enough money one can save as much time as one wants.”
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The restriction here to local regions of spacetime is essential. The connec-

tion described between clock behavior and acceleration does not, in general,

hold on a global scale. In some relativistic spacetimes, one can find future-

directed timelike geodesics connecting two events that have different lengths,

and so clocks following the curves will record different elapsed times between

the events even though both are in a state of free fall. Furthermore—this fol-

lows from the preceding claim by continuity considerations alone—it can be

the case that of two clocks passing between the events, the one that under-

goes acceleration during the trip records a greater elapsed time than the one

that remains in a state of free fall. (A rolled-up version of two-dimensional

Minkowski spacetime provides a simple example. See figure 2.3.2.)

The connectionwehavebeen consideringbetweenclockbehavior andaccel-

erationwasonce thought tobeparadoxical. Recall the so-called “clockparadox.”

Suppose two clocks, A andB, pass fromone event to another in a suitably small

region of spacetime. Further suppose A does so in a state of free fall but B

undergoes acceleration at some point along the way. Then, we know, A will

record a greater elapsed time for the trip than B. This was thought paradoxical

because it was believed that relativity theory denies the possibility of distin-

guishing “absolutely” between free-fall motion and accelerated motion. (If we

are equally well entitled to think that it is clock B that is in a state of free fall

and A that undergoes acceleration, then, by parity of reasoning, it should be

B that records the greater elapsed time.) The resolution of the paradox, if one

can call it that, is that relativity theory makes no such denial. The situations of

A and B here are not symmetric. The distinction between accelerated motion

Figure 2.3.2. Two-dimensional Minkowski spacetime rolledup into a cylindrical spacetime.
Three timelike curves are displayed: γ1 and γ3 are geodesics; γ2 is not; γ1 is longer than γ2;
and γ2 is longer than γ3.



“530-47773_Ch02_2P.tex” — 1/23/2012 — 17:18 — page 140

−1

0

+1

140 / classical relativity theory

and free fall makes every bit as much sense in relativity theory as it does in

Newtonian physics.

In what follows, unless indication is given to the contrary, a “timelike

curve” should be understood to be a smooth, future-directed, timelike curve

parametrized by elapsed proper time—i.e., by arc length. In that case, the tan-

gent field ξa of the curve has unit length (ξaξa = 1). And if a particle happens

to have the image of the curve as its worldline, then, at any point, ξa is called

the particle’s four-velocity there.

2.4. Space/Time Decomposition at a Point and Particle Dynamics

Let γ be a smooth, future-directed, timelike curve with unit tangent field ξa

in our background spacetime (M, gab). We suppose that some massive point

particle O has (the image of) this curve as its worldline. Further, let p be a

point on the image of γ and let λa be a vector at p. Then there is a natural

decomposition of λa into components proportional to, and orthogonal to, ξa:

(2.4.1) λa = (λbξb)ξ
a︸ ︷︷ ︸

proportional to ξa

+ (λa − (λbξb)ξ
a)︸ ︷︷ ︸

orthogonal to ξa

.

These are standardly interpreted, respectively, as the “temporal” and “spatial”

components of λa relative to ξa (or relative to O). In particular, the three-

dimensional vector space of vectors at p orthogonal to ξa is interpreted as the

“infinitesimal” simultaneity slice of O at p.11 If we introduce the tangent and

orthogonal projection operators

kab = ξa ξb,(2.4.2)

hab = gab − ξa ξb,(2.4.3)

then the decomposition can be expressed in the form

(2.4.4) λa = ka
b λ

b + ha
b λ

b.

We can think of kab and hab as the relative temporal and spatial metrics deter-

mined by ξa. They are symmetric and satisfy

ka
b kb

c = ka
c ,(2.4.5)

ha
b hb

c = ha
c .(2.4.6)

11. Here we simply take for granted the standard identification of “relative simultaneity” with
orthogonality. For discussion of how the identification is justified, see Malament [42, section 3.1]
and further references cited there.
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Many standard textbook assertions concerning the kinematics and dynam-

ics of point particles can be recovered using these decomposition formulas.

For example, suppose that the worldline of a second particle O′ also passes

through p and that its four-velocity at p is ξ ′a. (Since ξa and ξ ′a are both future-

directed, they are co-oriented; i.e., ξa ξ ′
a > 0.) We compute the speed of O′ as

determined by O. To do so, we take the spatial magnitude of ξ ′a relative to O

and divide by its temporal magnitude relative to O:12

(2.4.7) v = speed of O′ relative to O = ‖ha
b ξ

′b‖
‖ka

b ξ
′b‖ .

(Recall that for any vector μa, ‖μa‖ is (μaμa)
1
2 if μa is causal, and it is

(−μaμa)
1
2 otherwise.) From equations (2.4.2), (2.4.3), (2.4.5), and (2.4.6),

we have

‖ka
b ξ

′b‖ = (ka
b ξ

′b kac ξ
′ c )

1
2 = (kbc ξ

′b ξ ′ c )
1
2 = (ξ ′b ξb)

and

‖ha
b ξ

′b‖ = (− ha
b ξ

′b hac ξ
′ c )

1
2 = (− hbc ξ

′b ξ ′ c )
1
2 = ((ξ ′b ξb)2 − 1)

1
2 .

So

(2.4.8) v = ((ξ ′b ξb)2 − 1)
1
2

(ξ ′b ξb)
< 1.

Thus, asmeasured byO, nomassive particle can ever attain themaximal speed

1. (A similar calculation shows that, as determined by O, light always travels

with speed 1.) For future reference, we note that equation (2.4.8) implies that

(2.4.9) (ξ ′b ξb) = 1√
1 − v2

.

It is a basic fact of relativistic life that there is associated with every point

particle, at every event on itsworldline, a four-momentum (or energy-momentum)

vector Pa that is tangent to its worldline there. The length ‖Pa‖ of this vector

is what we would otherwise call the mass (or inertial mass or rest mass) of

the particle. So, in particular, if Pa is timelike, we can write it in the form

Pa = m ξ a, where m = ‖Pa‖ > 0 and ξ a is the four-velocity of the particle. No

such decomposition is possible when Pa is null and m = ‖Pa‖ = 0.

Suppose a particle O with positive mass has four-velocity ξa at a point, and

another particle O′ has four-momentum Pa there. The latter can either be a

particle with positive mass or mass 0. We can recover the usual expressions

12. We are, in effect, choosing units in which c = 1.



“530-47773_Ch02_2P.tex” — 1/23/2012 — 17:18 — page 142

−1

0

+1

142 / classical relativity theory

for the energy and three-momentum of the second particle relative to O if we

decompose Pa in terms of ξa. By equations (2.4.4) and (2.4.2), we have

(2.4.10) Pa = (Pbξb)︸ ︷︷ ︸
energy

ξa + ha
bPb︸ ︷︷ ︸

three−momentum

.

The energy relative to O is the coefficient in the first term: E = Pbξb. If O′ has
positive mass and Pa = m ξ ′a, this yields, by equation (2.4.9),

(2.4.11) E = m (ξ ′b ξb) = m√
1− v2

.

(If we had not chosen units in which c = 1, the numerator in the final expres-

sion would have been mc2 and the denominator
√
1− (v2/c2).) The three-

momentum relative to O is the second term ha
bPb in the decomposition of

Pa—i.e., the component of Pa orthogonal to ξa. It follows from equations

(2.4.8) and (2.4.9) that it has magnitude

(2.4.12) p = ‖ha
b m ξ ′b‖ = m ((ξ ′b ξb)2 − 1)

1
2 = m v√

1− v2
.

Interpretive principle (P1) asserts that the worldlines of free particles with

positive mass are the images of timelike geodesics. It can be thought of as a

relativistic version of Newton’s first law of motion. Now we consider acceler-

ation and a relativistic version of the second law. Once again, let γ : I → M

be a smooth, future-directed, timelike curve with unit tangent field ξa. Just as

we understand ξa to be the four-velocity field of a massive point particle (that

has the image of γ as its worldline), so we understand ξn∇n ξ
a—the direc-

tional derivative of ξa in the direction ξa—to be its four-acceleration field (or

just acceleration) field). The four-acceleration vector at any point is orthogonal

to ξa. (This is clear, since ξa (ξn∇n ξa) = 1
2 ξ

n∇n (ξa ξa) = 1
2 ξ

n∇n (1) = 0.) The

magnitude ‖ξn∇n ξ
a‖ of the four-acceleration vector at a point is just what

we would otherwise describe as the curvature of γ there. It is a measure of

the rate at which γ “changes direction.” (And γ is a geodesic precisely if its

curvature vanishes everywhere.)

The notion of spacetime acceleration requires attention. Consider an exam-

ple. Suppose you decide to end it all and jump off the Empire State Building.

What would your acceleration history be like during your final moments? One

is accustomed in such cases to think in terms of acceleration relative to the

earth. So onewould say that youundergo acceleration between the time of your

jump and your calamitous arrival. But on the present account, that descrip-

tion has things backwards. Between jump and arrival, you are not accelerating.

You are in a state of free fall and moving (approximately) along a spacetime
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geodesic. But before the jump, and after the arrival, you are accelerating. The

floor of the observation deck, and then later the sidewalk, push you away from

a geodesic path. The all-important idea here is that we are incorporating the

“gravitational field” into the geometric structure of spacetime, and particles

traverse geodesics if and only if they are acted on by no forces “except gravity.”

The acceleration of our massive point particle—i.e., its deviation from a

geodesic trajectory—is determined by the forces acting on it (other than “grav-

ity”). If it has mass m, and if the vector field Fa on I represents the vector

sum of the various (non-gravitational) forces acting on it, then the particle’s

four-acceleration ξn ∇n ξ
a satisfies

(2.4.13) Fa = m ξn∇n ξ
a.

This is our version of Newton’s second law of motion.

Consider an example. (Here we anticipate our discussion in section 2.6.)

Electromagnetic fields are represented by smooth, anti-symmetric fields Fab.

If a particle withmassm > 0, charge q, and four-velocity field ξa is present, the

force exerted by the field on the particle at a point is given by q Fa
b ξ

b. If we use

this expression for the left side of equation (2.4.13), we arrive at the Lorentz

law ofmotion for charged particles in the presence of an electromagnetic field:

(2.4.14) q Fa
b ξ

b = m ξ b ∇b ξ
a.

(Notice that the equationmakes geometric sense. The acceleration field on the

right is orthogonal to ξa. But so is the force field on the left, since ξa(Fa
b ξ

b) =
ξa ξ bFab = ξa ξ bF(ab), and F(ab) = 0 by the anti-symmetry of Fab.)

2.5. The Energy-Momentum Field Tab

In classical relativity theory, one generally takes for granted that all there is,

and all that happens, can be described in terms of various “matter fields,” each

of which is represented by one or more smooth tensor (or spinor) fields on

the spacetimemanifold M.13 The latter are assumed to satisfy particular “field

equations” involving the spacetime metric gab.

For present purposes, the most important basic assumption about the

matter fields is the following.

13. This being the case, the question arises as to how (or whether) one can adequately recover
talk about “point particles” in terms of the matter fields. We shall briefly discuss the question later
in this section.
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Associated with each matter field F is a symmetric smooth tensor field Tab

characterized by the property that, for all points p in M, and all future-

directed, unit timelike vectors ξa at p, Ta
b ξ

b is the four-momentum density

of F at p as determined relative to ξa.

Tab is called the energy-momentum field associated with F . The four-

momentum density vector Ta
b ξ

b at a point can be further decomposed into

its temporal and spatial components relative to ξa,

Ta
b ξ

b = (Tmb ξ
m ξ b)︸ ︷︷ ︸

energy density

ξa + Tmb hma ξ b︸ ︷︷ ︸
three−momentum density

,

just as the four-momentum Pa of a particle was decomposed in equation

(2.4.10). The coefficient of ξa in the first component, Tab ξ
aξ b, is the energy

density of F at the point as determined relative to ξa. The second component,

Tnb (gan − ξa ξn) ξ b, is the three-momentum density of F there as determined

relative to ξa.

A number of assumptions about matter fields can be captured as con-

straints on the energy-momentum tensor fieldswithwhich they are associated.

Examples are the following. (Suppose Tab is associated with matter field F .)

Weak Energy Condition (WEC): Given any timelike vector ξa at any point

in M, Tab ξ
aξ b ≥ 0.

Dominant Energy Condition (DEC): Given any timelike vector ξa at any

point in M, Tab ξ
aξ b ≥ 0 and Ta

b ξ
b is timelike or null.

Strengthened Dominant Energy Condition (SDEC): Given any timelike

vector ξa at any point in M, Tab ξ
aξ b ≥ 0 and, if Tab = 0 there, then

Ta
b ξ

b is timelike.

Conservation Condition (CC): ∇a Tab = 0 at all points in M.

The WEC asserts that the energy density of F , as determined by any observer

at any point, is non-negative. The DEC adds the requirement that the four-

momentum density of F , as determined by any observer at any point, is a

future-directed causal (i.e., timelike or null) vector. We can understand this

second clause to assert that the energy of F does not propagate with superlu-

minal velocity. The strengthened version of the DEC just changes “causal” to

“timelike” in the second clause. It captures something of the flavor of (C1) in

section 2.1, but avoids reference to “point particles.” Each of the listed energy

conditions is strictly stronger than the ones that precede it (see problem 2.5.1).

PROBLEM 2.5.1. Give examples of each of the following.
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(1) A smooth symmetric field Tab that does not satisfy the WEC

(2) A smooth symmetric field Tab that satisfies the WEC but not the DEC

(3) A smooth symmetric field Tab that satisfies the DEC but not the SDEC

PROBLEM 2.5.2. Show that the DEC holds iff given any two co-oriented timelike

vectors ξa and ηa at a point in M, Tab ξ
a ηb ≥ 0.

The CC, finally, asserts that the energy-momentum carried by F is locally

conserved. If two ormorematter fields are present in the same region of space-

time, it need not be the case that each one individually satisfies the condition.

Interaction may occur. But it is a fundamental assumption that the compos-

ite energy-momentum field formed by taking the sum of the individual ones

satisfies it. Energy-momentum can be transferred from one matter field to

another, but it cannot be created or destroyed.

The stated conditions have a number of consequences that support the

interpretations just given. We mention two. The first requires a few prelimi-

nary definitions.

A subset S of M is said to be achronal if there do not exist points p and q in

S such that p � q. Let γ : I → M be a smooth curve. We say that a point p in

M is a future-endpoint of γ if, for all open sets O containing p, there exists an s0
in I such that, for all s ∈ I, if s ≥ s0, then γ (s) ∈ O; i.e., γ eventually enters and

remains in O. (Past-endpoints are defined similarly.) Now let S be an achronal

subset of M. The domain of dependence D(S) of S is the set of all points p in M

with this property: given any smooth causal curve without (past- or future- )

endpoint, if its image contains p, then it intersects S. (See figure 2.5.1.) So, in

particular, S ⊆ D(S).

In section 2.10, we shall make precise a sense in which “what happens on S

determines what happens throughoutD(S).” Here we consider just one aspect

of that determination.

Figure 2.5.1. The domain of dependence D(S) of an achronal set S.
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PROPOSIT ION 2.5.1. Let S be an achronal subset of M. Further, let Tab be

a smooth, symmetric field on M that satisfies both the dominant energy and

conservation conditions. Finally, assume Tab = 0 on S. Then Tab = 0 on all of D(S).

The intended interpretation of the proposition is clear. If energy-momen-

tum cannot propagate (locally) outside the null-cone, and if it is conserved, and

if it vanishes on S, then it must vanish throughout D(S). After all, how could it

“get to” any point in D(S)? Note that our formulation of the proposition does

not presuppose any particular physical interpretation of the symmetric field

Tab. All that is required is that it satisfy the two stated conditions. (For a proof,

see Hawking and Ellis [30, p. 94].)

Now recall (P1). It asserts that free massive point particles traverse (images

of) timelike geodesics. The next proposition (Geroch and Jang [24]) shows that

it is possible, in a sense, to capture the principle as a theorem in relativity

theory. The trick is to find a way to talk about “massive point particles” in

the language of extended matter fields. In effect, we shall model them as

nested sequences of small, but extended, bodies that converge to a point. (See

figure 2.5.2.) It turns out that if the energy-momentum content of each body

in the sequence satisfies appropriate conditions, then the convergence point

will necessarily traverse (the image of) a timelike geodesic.

PROPOSIT ION 2.5.2. Let γ : I → M be smooth curve. Suppose that, given any

open subset O of M containing γ [I], there exists a smooth symmetric field Tab on

M such that the following conditions hold.

(1) Tab satisfies the SDEC.

(2) Tab satisfies the CC.

(3) Tab = 0 outside of O.

(4) Tab = 0 at some point in O.

Then γ is timelike and can be reparametrized so as to be a geodesic.

The proposition might be paraphrased this way. Suppose that for some

smooth curve γ , arbitrarily small bodies with energy-momentum satisfying

conditions (1) and (2) can contain the image of γ in their worldtubes. Then γ

must be a timelike geodesic (up to reparametrization). Bodies here are under-

stood to be “free” if their internal energy-momentum is conserved (by itself).

If a body is acted on by a field, it is only the composite energy-momentum of

the body and field together that is conserved.

Note that our formulation of the proposition takes for granted that we can

keep the background spacetime metric gab fixed while altering the fields Tab
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Figure 2.5.2. A non-geodesic timelike curve enclosed in a tube (as considered in propositions
2.5.2 and 2.5.3).

that live on M. This is justifiable only to the extent that we are dealing with test

bodies whose effect on the background spacetime structure is negligible.14

Note also that we do not have to assume at the outset that the curve γ is

timelike. That follows from the other assumptions.

We have here a precise proposition in the language of matter fields that,

at least to some degree, captures (P1). Similarly, it is possible to capture (C2),

concerning the behavior of light, with a proposition about the behavior of

solutions to Maxwell’s equations in a limiting regime (“the optical limit”)

where wavelengths are small. It asserts, in effect, that when one passes to this

limit, packets of electromagnetic waves are constrained tomove along (images

of ) null geodesics. (See Wald [60, p. 71].)

It isworthnoting that theGeroch-Jang result fails if condition (1) is dropped.

Consider again our nested sequence of bodies converging to a point. It turns

out that theCCalone imposesno restrictionswhatsoever on thewordline of the

convergence point. It can be a null or spacelike curve. It can also be a timelike

curve that exhibits anydesiredpatternof large or changing accelerationor both.

The next proposition, based on a suggestion of Robert Geroch (in personal

communication), gives a counterexample.15

14. Stronger theorems have been proved (see Ehlers and Geroch [16]) where one still models a
point particle as a nested sequence of extended bodies converging to a point but does not require
that the perturbative effect of each body in the sequence disappear entirely. One requires only that,
in a certain precise sense, it disappear in the limit.

15. It is formulated in terms of an initial curve that is timelike—the case of greatest interest—
but that is not essential. The example can also be adapted to show that proposition 2.5.1 fails if the
energy condition there is dropped.
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PROPOSIT ION 2.5.3. Let (M, gab) be Minkowski spacetime, and let γ : I → M be

any smooth timelike curve. Then, given any open subset O of M containing γ [I],
there exists a smooth symmetric field Tab on M that satisfies conditions (2), (3),

and (4) in the preceding proposition. (If we want, we can also strengthen condition

(4) and require that Tab be non-vanishing throughout some open subset O1 ⊆ O

containing γ [I].)

Proof. Let O be an open subset of M containing γ [I], and let f : M → R be

any smooth scalar field on M. (Later we shall impose further restrictions

on f .) Consider the fields Sabcd = f (gadgbc − gacgbd) and Tac = ∇b ∇d Sabcd ,

where ∇ is the ( flat) derivative operator on M compatible with gab. We

have

(2.5.1) Tac = (gadgbc − gacgbd)∇b ∇d f = ∇c ∇af − gac (∇b ∇bf ).

So Tac is clearly symmetric. It is also divergence free since

∇a Tac = ∇a ∇c ∇af − ∇c ∇b ∇bf = ∇c ∇a ∇af − ∇c ∇b ∇bf = 0.

(The second equality follows from the fact that ∇ is flat, and so ∇a and ∇c

commute in their action on arbitrary tensor fields.)

To complete the proof, we now impose further restrictions on f to insure

that conditions (3) and (4) are satisfied. Let O1 be any open subset of M such

that γ [I] ⊆ O1 and cl(O1) ⊆ O. (Here cl(A) is the closure of A.) Our strategy

will be to choose a particular f on O1 and a particular f on M−cl(O), and then

fill in the buffer zone O−cl(O1) any way whatsoever (so long as the resultant

field is smooth). On M−cl(O), we simply take f = 0. This choice guarantees

that, no matter how we smoothly extend f to all of M, Tac will vanish outside

of O.

For the other specification, let o be any point inM and letχa be the “position

field” on M determined relative to o. So ∇a χ
b = δab everywhere, and χa = 0

at o. On O1, we take f = −(χnχn). With that choice, Tac is non-vanishing at

all points in O1. Indeed, we have

∇af = −2χn∇aχ
n = −2χn δa

n = −2χa,

and, therefore,

Tac = ∇c ∇af − gac (∇b ∇bf ) = −2∇cχa + 2 gac (∇b χ
b)

= −2 gca + 2 gac δb
b = −2 gac + 8 gac = 6 gac

throughout O1. �
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One point about the proof deserves comment. As restricted to O1 and to

M−cl(O), the field Tab that we construct does satisfy the SDEC. (In the first

case, Tab = 6 gab, and in the second case, Tab = 0.) But we know—from the

Geroch-Jang theorem itself—that it cannot satisfy that condition everywhere.

So it must fail to do so in the buffer zone O−cl(O1). That shows us something.

We can certainly choose f in the zone so that it smoothly joins with our

choices for f onO1 andM−cl(O). But, nomatter how clever we are, we cannot

do so in such a way that Tab (as expressed in equation (2.5.1)) satisfies the

SDEC.

Nowweconsider twoexamples ofmatterfields: perfect fluids in this section,

and electromagnetic fields in the next.

“Perfect fluids” are represented by three objects: a smooth four-velocity

field ηa, a smooth energy density field ρ, and a smooth isotropic pressure field

p (the latter two as determined by a “co-moving” observer at rest in the fluid).

In the special case where the pressure p vanishes, one speaks of a “dust field”.

Particular instances of perfect fluids are characterized by “equations of state”

that specify p as a function of ρ. (Specifically excluded here are such compli-

cating factors as anisotropic pressure, shear stress, and viscosity.) Though ρ

is generally assumed to be non-negative, some perfect fluids (e.g., to a good

approximation, water) can exert negative pressure. The energy-momentum

tensor field associated with a perfect fluid is

(2.5.2) Tab = ρ ηa ηb − p (gab − ηa ηb).

So the energy-momentumdensity vector of thefluid at anypoint as determined

by a co-moving observer (i.e., as determined relative to ηa) is Ta
b η

b = ρ ηa.

In the case of a perfect fluid, theWEC, DEC, and CC come out as follows.16

WEC ⇐⇒ ρ ≥ 0 and p ≥ −ρ
DEC ⇐⇒ |p| ≤ ρ

CC ⇐⇒
{

(ρ+ p) ηa ∇a η
b − (gab − ηb ηa)∇a p = 0

ηa ∇a ρ+ (ρ+ p) (∇a η
a) = 0

First we verify the equivalences for the WEC and CC. (The one for the

DEC is left as an exercise.) Then we make a few remarks about the physical

interpretation of the two conditions jointly equivalent to CC.

(WEC) Clearly, the WEC holds at a point q in M iff Tab ξ
aξ b ≥ 0 for all unit

timelike vectors ξa at q. (If the inequality holds for all unit timelike vectors, it

16. The DEC and the SDEC are not equivalent in general, as we have seen. But they are
equivalent when applied, specifically, to perfect fluids. See problem 2.5.3.
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holds for all timelike vectors.) It is convenient to work with the condition in

this form.

If Tab is given by equation (2.5.2), and ξa is a unit timelike vector at q,

then Tab ξ
aξ b = (ρ+ p)(ηaξa)2 − p. So theWEC holds at q in M iff, for all such

vectors ξa at q,

(2.5.3) (ρ+ p)(ηaξa)2 − p ≥ 0.

Assumefirst that (ρ+ p) ≥ 0 andρ ≥ 0, and let ξa be a unit timelike vector at q.

Then, by the wrong-way Schwarz inequality (proposition 2.2.3), (ηaξa)2 ≥
‖ηa‖2 ‖ξa‖2 = 1. Hence, (ρ+ p)(ηaξa)2 − p ≥ (ρ+ p)− p = ρ ≥ 0. Sowehave

equation (2.5.3). Conversely, assume equation (2.5.3) holds for all unit time-

like vectors ξa at q. Then, in particular, it holds if ξa = ηa, and in this case

we have 0 ≤ (ρ+ p)(ηaηa)2 − p = (ρ+ p)− p = ρ. Note next that there is no

upper bound to the value of (ηaξa)2 as ξa ranges over unit timelike vectors at

q. (For example, let σ a be any unit spacelike vector at q orthogonal to ηa, and

let ξa be of the form ξa = (cosh θ ) ηa − (sinh θ ) σ a, where θ is a real number.

Then ξa is a unit timelike vector, and (ηaξa)2 = cosh2 θ . The latter goes to

infinity, as θ does.) So equation (2.5.3) cannot possibly hold for all unit time-

like vectors at q unless (ρ+ p) ≥ 0. This gives us the stated equivalence for

the WEC.

(CC) If Tab is given by equation (2.5.2), then a straightforward computation

shows that the conservation condition (∇a Tab = 0) holds iff

ρ (ηa∇a η
b)+ ρ ηb ∇a η

a + ηb(ηa∇a ρ)− (∇a p)(gab − ηaηb)(2.5.4)

+ p(ηa∇a η
b)+ p ηb ∇a η

a = 0.

Assume that equation (2.5.4) does hold. Then contraction with ηb yields

(2.5.5) ηa ∇a ρ+ (ρ+ p)(∇a η
a) = 0.

(Here we use the fact that the unit timelike vector field ηb is orthogonal to

its associated acceleration field ηa∇a η
b and to its associated projection field

hab = (gab − ηaηb).) And if wemultiply equation (2.5.5) by ηb and then subtract

the result from (2.5.4), we arrive at

(2.5.6) (ρ+ p) ηa ∇a η
b − (gab − ηb ηa)∇a p = 0.

Thus equation (2.5.4) holds only if equations (2.5.5) and (2.5.6) do. And the

converse is immediate. So we have our stated equivalence for the conservation

condition.
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PROBLEM 2.5.3. (i) Prove the stated equivalence for the DEC. (ii) Prove that, as

restricted to perfect fluids, the SDEC is equivalent to the DEC.

Now consider the physical interpretation of the two equations jointly equiv-

alent to the CC. Equation (2.5.6) is the equation of motion for a perfect fluid.

We can think of it as a relativistic version of Euler’s equation. Equation (2.5.5)

is an equation of continuity (or conservation) in the sense familiar from clas-

sical fluid mechanics. It is easiest to think about the special case of a dust

field (p = 0). In this case, the equation of motion reduces to the geodesic

equation: ηb ∇b η
a = 0. That makes sense. In the absence of pressure, parti-

cles in the fluid are free particles. And the conservation equation reduces to

ηb ∇b ρ+ ρ (∇b η
b) = 0. The first term gives the instantaneous rate of change

of the fluid’s energy density, as determined by a co-moving observer. The term

∇b η
b gives the instantaneous rate of change of its volume, per unit volume,

as determined by that observer. (We shall justify this claim in section 2.8.) In

a more familiar notation, the equation might be written
dρ

ds
+ ρ

V

dV

ds
= 0 or,

equivalently,
d(ρV )

ds
= 0. (Here we use s for elapsed proper time.) It asserts

that (in the absence of pressure, as determined by a co-moving observer) the

energy contained in an (infinitesimal) fluid blob remains constant, even as its

volume changes.

In the general case, the situation is more complex because the pressure

in the fluid contributes to its energy (as determined relative to particular

observers), and hence to what might be called its “effective mass density.”

(If you compress a fluid blob, it gets heavier.) In this case, the WEC comes

out as the requirement that (ρ+ p) ≥ 0 in addition to ρ ≥ 0. The equation of

motion can be expressed as

(2.5.7) (ρ+ p) ηb ∇b η
a = hab ∇b p,

where hab is the projection field (gab − ηa ηb). This is an instance of the “second

law of motion” (see equation (2.4.13)) as applied to an (infinitesimal) blob of

fluid. On the left we have “effectivemass density× acceleration.” On the right,

we have the force acting on the blob, as determined by a co-moving observer.

We can think of it asminus the gradient of the pressure (as determined by a co-

moving observer). (Theminus sign comes in because of our sign conventions.)

Again, this makes sense. If the pressure on the left side of the blob is greater

than that on the right, it will accelerate to the right.

And in the general case we are now considering—where the pressure p

need not vanish—the term (p ∇b η
b) in the conservation equation is required
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because the energy of the blob is not constant when its volume changes as

a result of the pressure. The equation governs the contribution made to its

energy by pressure.

2.6. Electromagnetic Fields

In this section we briefly discuss electromagnetic fields. Though our principal

interest here is in the energy-momentum field Tab associated with them, we

mention a few fundamental ideas of classical electromagnetic theory along the

way.

Electromagneticfields are representedby smooth, anti-symmetricfieldsFab

(on thebackgroundspacetime (M, gab)). If a particlewithmassm > 0, charge q,

and four-velocity field ξa is present, the force exerted by the field on the particle

at a point is given by q Fa
b ξ

b. (This condition uniquely characterizes Fab.) As

noted at the end of section 2.4, if we use this expression for the force term in

the relativistic version of “Newton’s second law” equation (2.4.13), we arrive

at the Lorentz law of motion:

(2.6.1) q Fa
b ξ

b = m ξ b ∇b ξ
a.

It describes themotion of a charged particle in an electromagnetic field (at least

when the contribution of the particle’s own charge to the field is negligible and

may be ignored). Note again that the equation makes geometric sense. The

acceleration vector on the right is orthogonal to ξa. But so is the force vector

on the left since Fab is anti-symmetric.

The fundamental field equations of electromagnetic theory (“Maxwell’s

equations”) are given by

∇[a Fbc] = 0,(2.6.2)

∇a Fab = Jb.(2.6.3)

Here Ja is the charge-current density field. It is characterized by the following

condition: given any background observer at a point with four-velocity ξa, Jaξa

is the charge density there (arising fromwhatever chargedmatter is present) as

determined by that observer. For example, in the case of a charged dust field,

Ja = μηa, where ηa is the four-velocity of the dust and μ is its charge density

as measured by a co-moving observer. Thus, if equation (2.6.1) expresses the

action of the electromagnetic field on a charged (test) particle, equation (2.6.3)

expresses the reciprocal action of charged matter on the field. The former acts

as a source for the latter.
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An important constraint on the charge-curent density field Ja follows

immediately from equation (2.6.3). Since Fab is anti-symmetric, ∇aJa =
∇a∇n Fna = ∇[a∇n] Fna. But

2∇[a∇n] Fna = −Fma Rn
man − Fnm Ra

man = −Fma Rma + Fnm Rmn

= −Fmn Rmn + Fmn Rnm = 0.

(The first two equalities follow, respectively, from clauses (1) and (2) of propo-

sition 1.8.2. The third involves nothing more than a systematic change of

abstract indices. The final equality follows from the symmetry of the Ricci

tensor field.) So

(2.6.4) ∇aJ
a = 0.

We can understand this as an assertion of the local conservation of charge.

Notice that in the case of charged dust field with Ja = μηa, equation (2.6.4)

comes out as

(2.6.5) ηb ∇b μ+μ (∇b η
b) = 0.

This has exactly the same form as equation (2.5.5) in the special case where

p = 0, and it can be analyzed in exactly the same manner. It asserts that, as

determined by a co-moving observer, the total charge in an (infinitesimal) blob

of charged dust remains constant, even as its volume changes.

PROBLEM 2.6.1. Show that Maxwell’s equations in the source-free case (Ja =
0) are conformally invariant; i.e., if an anti-symmetric field Fab satisfies them

with respect to a metric gab, then it does so as well with respect to any metric of

the form g ′
ab = �2 gab. (Note: Here we need the fact that the dimension n of the

background spacetime is 4. Hint: The conformal invariance of the first Maxwell

equation (∇[a Fbc] = 0) follows immediately fromproblem1.7.2 anddoes not depend

on the value of n. To establish that of the second (∇aFab = 0), use proposition 1.9.5

to show that

∇′
a (g

′am g ′bn Fmn) = 1

�4 (∇aFab)+ (n − 4)

�5
Fab ∇a�,

where g ′ab = �−2 gab is the inverse of g ′
ab, and ∇′ is the derivative operator

compatible with g ′
ab.)

The energy-momentum tensor field associated with Fab is given by

(2.6.6) Tab = Fam Fm
b + 1

4
gab (FmnFmn).



“530-47773_Ch02_2P.tex” — 1/23/2012 — 17:18 — page 154

−1

0

+1

154 / classical relativity theory

We can gain some insight by introducing a reference observer O at a point p,

with four-velocity ξa, and considering the decomposition of Fab there into its

“electric” and “magnetic” components.

Lethab be the spatial projection tensor at thepoint determinedby ξa (defined

by equation (2.4.3)). Further, let εabcd be a volume element on some open set

containing p. Then we define

μ = Ja ξa,(2.6.7)

ja = ha
b Jb,(2.6.8)

Ea = Fa
b ξ

b,(2.6.9)

Ba = 1

2
εabcd ξb Fcd ,(2.6.10)

εabc = εabcn ξ
n.(2.6.11)

Ea and Ba are, respectively, the electric and magnetic field vectors at the point

as determined relative to O. (Clearly, if we had chosen the other volume ele-

ment, −εabcd , we would have ended up with −Ba. A choice of volume element

is tantamount to a choice of “right-hand rule.”) μ and ja are, respectively, the

charge density and current density vectors as determined relative to O. Note

that Ea, Ba, and ja are all orthogonal to ξa. We can think of εabc as a three-

dimensional volume element defined on the orthogonal subspace of ξa (It is

anti-symmetric, it is orthogonal to ξa in all indices and, as one can show using

equation (1.11.8), it satisfies the normalization condition εabcε
abc = −3!.)

Reversing direction, we can recover Fab and Ja from Ea, Ba, μ, and ja as

follows:

Ja = μξa + ja,(2.6.12)

Fab = 2E[a ξb] + εabcd ξ
c Bd .(2.6.13)

The first assertion is an immediate consequence of the definitions of ja and

μ. To verify the second, we substitute for Bd on the right side. By equation

(1.11.8), the anti-symmetry of Fab, and the definition of Ea, we have

2E[a ξb] + εabcd ξ
c
(
1

2
εdpqrξp Fqr

)
= 2E[a ξb] + 1

2
(3!) ξ c δ

[p
a δ

q
b δ

r]
c ξp Fqr

= 2E[a ξb] + 3 ξ c ξ[a Fbc]

= 2E[aξb] + ξ c (ξaFbc + ξcFab − ξbFac )=Fab.



“530-47773_Ch02_2P.tex” — 1/23/2012 — 17:18 — page 155

−1

0

+1

classical relativity theory / 155

Let us now return to our expression (2.6.6) for the energy-momentum field

Tab. Our observer O with four-velocity ξa will attribute to the electromagnetic

field a four-momentum density,

(2.6.14) Ta
b ξ

b = Fam Fmb ξ
b + 1

4
ξa (FmnFmn).

We can express the right side in terms of the relative electric and magnetic

vectors Ea and Ba determined by O. (The computations are much like that

used to prove equation (2.6.13).) We have

Fam Fmb ξ
b = Fam Em = (2E[a ξm] + εampr ξp Br )Em

= − ξa EmEm − εamr Em Br(2.6.15)

and also

FmnFmn = (2E[m ξn] + εmnpq ξp Bq) (2E[m ξn] + εmnrs ξ
r Bs)

= 2EnEn + εmnrs ε
mnpq ξp Bq ξ

r Bs

= 2EnEn − 4 δ[pr δ
q]

s ξp Bq ξ
r Bs = 2 (EnEn − BnBn).(2.6.16)

Hence,

(2.6.17) Ta
b ξ

b = 1

2
(− EnEn − BnBn) ξa − εamr Em Br .

The coefficient of ξa on the right side is the energy density of the field as

determined by O. Using our notation for vector norms and temporarily drop-

ping indices (and remembering that both Ea and Ba are spacelike [or the zero

vector]), we can express it as 1
2 (‖E‖2 + ‖B‖2). This will be familiar as the stan-

dard textbook expression for the energy density of an electromagnetic field.

The component of Ta
b ξ

b orthogonal to ξa, namely −εamr Em Br , is the three-

momentum density of the electromagnetic field as determined by O. In more

familiar vector notation (recall our discussion in section 1.11), it comes out as

−(E × B). (E × B is called the “Poynting vector.”)

Note thatwe can alsowork backward andderive equation (2.6.6), our expres-

sion for Tab, from the assumption that equation (2.6.17) holds for all observers

with four-velocity ξa. (Reversing the calculation, one shows that equation

(2.6.14) or, equivalently, (Ta
b − (Fam Fmb + 1

4 ga
b FmnFmn)) ξ b = 0, holds for

all unit timelike vectors ξa. Equation (2.6.6) then follows by proposition

2.1.3.) So Tab is fully determined by the requirement that it code values for
1
2 (‖E‖2 + ‖B‖2) and −(E × B) for all observers.

PROBLEM 2.6.2. Textbooks standardly assert that (‖E‖2 − ‖B‖2) and E · B are

relativistically invariant (i.e., have common values for all observers). To verify this,

it suffices to note that (in our notation)
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(− EaEa + BaBa) = − 1

2
FabFab,(2.6.18)

EaBa = 1

8
εabcd FabFcd .(2.6.19)

We have proved the first assertion (equation (2.6.16)). Prove the second.

Nowwe consider our two energy conditions and the conservation condition.

Given any future-directed, unit timelike vector ξa at a point, with correspond-

ing electric and magnetic field vectors Ea and Ba, we have

Tab ξ
a ξ b = 1

2
(− EnEn − BnBn),(2.6.20)

(Tabξ
b)(Tacξc ) = 1

4
(EnEn − BnBn)2 + (EnBn)2,(2.6.21)

∇aTab = JaFab.(2.6.22)

The first follows immediately from equation (2.6.17) (and the fact that εabc is

orthogonal to ξa in all indices). We leave the second as an exercise. For the

third, note that

∇aTab = ∇a(Fam F b
m + 1

4
gab FmnFmn)

= Fam ∇aF b
m + F b

m ∇aFam + 1

2
Fmn∇bFmn

= 1

2
Fam(∇aFmb − ∇mFab)+ F b

m ∇aFam + 1

2
Fma∇bFma

= − 1

2
Fam(∇aFbm + ∇mFab + ∇bFma)+ F b

m Jm = JmFmb.

(Weget the third equality by systematically changing indices andusing the anti-

symmetry ofFab: Fam ∇aFmb = Fma ∇mFab = −Fam ∇mFab. We get the fourth

and fifth fromMaxwell’s equations ( first ∇aFam =Jm , then ∇[aFbm] =0) and,
again, the anti-symmetry of Fab.)

PROBLEM 2.6.3. Prove equation (2.6.21). (It follows immediately from this result

that Tab ξ
b is null iff EaEa = BaBa and Ea Ba = 0. By problem 2.6.2, these con-

ditions hold as determined relative to one unit timelike vector ξa at a point iff they

hold for all such vectors there. When they do hold (at all points), we say that Fab is

a “null” field.)
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Maxwell’s equations play no role in the proof of equations (2.6.20) and

(2.6.21). So we see that for any anti-symmetric field Fab, the corresponding

energy-momentum field Tab = Fam Fm
b + 1

4 gab (FmnFmn) satisfies both the

WEC and the DEC (since Ea and Ba are always spacelike or equal to the zero

vector 0). And it satisfies the SDEC except in the special case where Fab is a

non-vanishing null electromagnetic field (in the sense of problem 2.6.3).

The situation is different with the CC, for which Maxwell’s equations are

essential. Suppose that the pair (Fab, Ja) satisfies them (and, therefore, that

equation (2.6.22) holds). There are two cases to consider. If Ja = 0—i.e., if no

sources are present—then the conservation condition ∇aTab = 0 is automat-

ically satisfied. But when charged matter is present, there is the possibility of

energy-momentum being transferred from the electromagnetic field to that

matter. So it should not be the energy-momentum of the electromagnetic

field alone that is conserved. Instead, it should be the total energy-momentum

present (arising from both field and charged matter) that is.

By way of example, consider the case where a charged dust field serves

as a source for the electromagnetic field. Suppose the dust is characterized

by four-velocity field ηa, mass density ρ, and charge density μ, the latter two

as determined by a co-moving observer. Then we have Ja = μηa, and the

energy-momentum field for the dust (alone) is given by ρ ηaηb. So the total

energy-momentum field in this case is given by

(2.6.23) Tab = Fam Fm
b + 1

4
gab (FmnFmn)+ ρ ηaηb.

Hence, by equation (2.6.22),

∇aTab = Ja Fab + ∇a(ρ ηaηb)

= μηa Fab + ρ (ηa∇a η
b)+ ρ ηb ∇a η

a + ηb(ηa∇a ρ).(2.6.24)

This is the counterpart to equation (2.5.4) that we considered in our discussion

ofperfectfluids. Arguingmuchaswedid there, we canverify that in thepresent

case we have the following equivalence. (Set the right-hand side to 0, contract
with ηb, and then subtract the resultant equation from the original.)

CC ⇐⇒
{
μFb

a η
a = ρ (ηa ∇aη

b).

ηa ∇a ρ+ ρ (∇a η
a) = 0.

The second equation on the right side is just equation (2.5.5) in the case where

p = 0. It asserts that, as determined by a co-moving observer, the energy in

an (infinitesimal) blob of dust remains constant, even as the volume of the

blob changes. (Note that it also has exactly the same form as equation (2.6.5),
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which makes a corresponding assertion about charge conservation.) The first

equation on the right side is an equation of motion for the dust field. It has

exactly the same form as equation (2.6.1). It asserts, in a sense, that individual

particles in the dust field obey the Lorentz law of motion. Thus, the energy-

momentum of the electromagnetic field Fab fails to be conserved only to the

extent it exerts a force on those particles and causes them to accelerate.

As an afterthought, now, we recover the standard textbook formulation of

Maxwell’s ( four) equations from our formulation. To do so, we need a bit

of structure in the background. Let us temporarily assume that (M, gab) is not

just any (temporally oriented) spacetime, but one that admits a future-directed,

unit timelike vector field ξa that is constant (∇aξ
b = 0). Let μ, ja, Ea, Ba, and

εabc be as defined above. Further, let D be the derivative operator induced on

hypersurfaces orthogonal to ξa. (Recall our discussion in section 1.10.) Then

we have the following equivalences.

∇[a Fbc] = 0 ⇐⇒
⎧⎨⎩Db Bb = 0 (∇ ·B = 0)

εabc Db Ec = −ξ b ∇b Ba
(
∇ ×E = −∂B

∂t

)

∇a Fab = Jb ⇐⇒
⎧⎨⎩Db Eb = μ (∇ ·E = μ)

εabc Db Bc = ξ b ∇b Ea + ja
(
∇ ×B = ∂E

∂t
+ j

)
(In each case, we have indicated how the right-side equation is formulated in

standard (three-dimensional) vector notation.) We prove the first equivalence

and leave the second as an exercise. Note first that by equations (2.6.13) and

(1.11.8), we have

εabcd Fcd = εabcd (2E[c ξd] + εcdrs ξ
rBs)

= 2 εabcd Ec ξd − 4 δ[ar δb]
s ξ

rBs

= 2 εabcd Ec ξd − 2 ξaBb + 2 ξ bBa.

Hence, since ξa is constant,

(2.6.25) εabcd ∇bFcd = ∇b(ε
abcdFcd) = 2 εabcdξd∇bEc − 2 ξa∇bBb + 2 ξ b∇bBa.

And for that same reason, ∇ahbc = ∇a(gbc − ξbξc ) = 0. So, since ha
bEb = Ea

and ha
bBb = Ba,

DbBb = hm
b hb

n∇mBn = ∇m(hm
b hb

n Bn) = ∇mBm = ∇bBb(2.6.26)

εabcDbEc = εabcd ξd hm
b hn

c∇mEn = εabcd ξd gm
b∇m(hn

cEn)(2.6.27)

= εabcdξd∇bEc .
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(For the second equality in equation (2.6.27), note that εdabc ξd ξb = 0 and,

hence, that εdabc ξd hm
b = εdabc ξd gm

b.) If wenow replace∇bBb and εabcdξd∇bEc

in equation (2.6.25) using equations (2.6.26) and (2.6.27), we arrive at

(2.6.28) εabcd ∇bFcd = −2 ξa(DbBb)+ 2 (εabcDbEc + ξ b∇bBa).

Now ∇[a Fbc] = 0 iff εabcd ∇bFcd = 0. (Why?) And the latter condition holds

iff the sum on the right side of equation (2.6.28) is 0. But that sum consists

of two terms, one tangent to ξa and one orthogonal to ξa. So the sum is 0
iff both terms are 0. Thus we are left with the conclusion that ∇[a Fbc] = 0 iff

Db Bb = 0 and εabcDbEc + ξ b∇bBa = 0.

PROBLEM 2.6.4. Prove the second equivalence ( for ∇a Fab = Jb).

2.7. Einstein's Equation

Once again, let (M, gab) be our background relativistic spacetime with a speci-

fied temporal orientation.

It is one of the fundamental ideas of relativity theory that spacetime struc-

ture is not a fixed backdrop against which the processes of physics unfold,

but instead participates in that unfolding. It posits a dynamical interaction

between the spacetime metric in any region and the matter fields there. The

interaction is governed by Einstein’s field equation

(2.7.1) Rab − 1

2
R gab = 8π Tab,

or, equivalently,

(2.7.2) Rab = 8π (Tab − 1

2
T gab).

Here Rab ( = Rn
abn) is the Ricci tensor field, R ( = Ra

a) is the Riemann scalar

curvature field, and T is the contracted field Ta
a.
17 We start with four remarks

about equation (2.7.1) and then consider two reformulations that provide a

certain insight into the geometric significance of the equation.

(1) It is sometimes taken to be a version of “Mach’s principle” that “the

spacetime metric is uniquely determined by the distribution of matter.” And

it is sometimes proposed that the principle can be captured in the require-

ment that “if one first specifies the energy-momentum distribution Tab on the

spacetime manifold M, then there is exactly one (or at most one) Lorentzian

17. We use “geometrical units” in which the gravitational constant G and the speed of light c
are 1.
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metric gab on M that, together with Tab, satisfies equation (2.7.1).” But there

is a serious problem with the proposal. In general, one cannot specify the

energy-momentum distribution in the absence of a spacetimemetric. Indeed,

in typical cases the metric enters explicitly in the expression for Tab. (Recall

the expression (2.5.2) for a perfect fluid.) Thus, in looking for solutions to

equation (2.7.1), one must, in general, solve simultaneously for the metric

and matter field distribution.

(2) Given any smooth metric gab on M, there certainly exists a smooth

symmetric field Tab on M that, together with gab, is a solution to equation

(2.7.1). It suffices to define Tab by the left side of the equation. But the field Tab

so introduced will not, in general, be the energy-momentum field associated

with any known matter field. And it will not, in general, satisfy the weak

energy condition discussed in section 2.5. If the latter condition is imposed

as a constraint on Tab, Einstein’s equation is an entirely non-trivial restriction

on spacetime structure.

Discussions of spacetime structure in classical relativity theory proceed on

three levels according to the stringency of the constraints imposed on Tab.

At the first level, one considers only “exact solutions”—i.e., solutions where

Tab is, in fact, the aggregate energy-momentum field associated with one or

more known matter fields. So, for example, one might undertake to find all

perfect fluid solutions exhibiting particular symmetries. At the second level,

one considers the larger class of what might be called “generic solutions”—

i.e., solutions where Tab satisfies one or more generic constraints (of which

the weak and dominant energy conditions are examples). It is at this level,

for example, that the singularity theorems of Penrose andHawking (Hawking

and Ellis [30]) are proved. Finally, at the third level, one drops all restrictions on

Tab, and Einstein’s equation plays no role. Many results about global structure

are proved at this level—e.g., the assertion that closed timelike curves exist in

any relativistic spacetime (M, gab) where M is compact.

(3)We have presented Einstein’s equation in its original form. He famously

addeda “cosmological constant” term (−�gab) in 1917 to allow for thepossibil-

ity of a static cosmologicalmodelwith aperfectfluid source, withp = 0 andρ >

0.18 (We shall see why the addition is necessary under those conditions at the

end of section 2.11.) But Einstein was never happy with the revised equation

18. He did so for other reasons as well (see Earman [14]), but we pass over them here.
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(2.7.3) Rab − 1

2
R gab −� gab = 8π Tab,

or, equivalently,

(2.7.4) Rab = 8π
(

Tab − 1

2
T gab

)
−� gab,

and was quick to revert to the original version after Hubble’s redshift observa-

tions gave convincing evidence that the universe is, in fact, expanding. After

that, he thought, there was no need to have a static cosmological model. (That

the theory suggested the possibility of cosmic expansion beforeHubble’s obser-

vations must count as one of its great successes.) Since then the constant

has often been reintroduced to help resolve discrepancies between theoretical

prediction and observation, and then abandoned when the (apparent) discrep-

ancies were resolved. (See Earman [14] for a masterful review of the history.)

The story continues. Recent observations indicating an accelerating rate of cos-

mic expansion seem to imply that our universe is characterized by a positive

value for � or something that mimics its effect.

In what follows, we shall continue to write Einstein’s equation in the form

(2.7.1) and think of the cosmological term as absorbed into the expression for

the energy-momentum field Tab. The magnitude and physical interpretation

of this contribution to Tab are topics of great importance in current physics.19

But they will play no role in our discussion.

PROBLEM 2.7.1. Equations (2.7.3) and (2.7.4) are equivalent only if the dimension

n of the background manifold is 4. Show that in the general case (at least if n ≥ 3),

inversion of equation (2.7.3) leads to

(2.7.5) Rab = 8π
(

Tab − 1

(n − 2)
T gab

)
− 2

(n − 2)
� gab.

(4) It is instructive to consider the relation of Einstein’s equation to

Poisson’s equation,

(2.7.6) ∇2φ = 4 π ρ,

the field equation of Newtonian gravitation theory. Here φ is the Newtonian

gravitational potential, and ρ is the Newtonian mass density function. In the

geometrized formulation of the theory that we shall consider in chapter 4,

19. See Earman [14], once again, and references cited there.
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one trades in the potential φ in favor of a curved derivative operator and one

recovers ρ from a mass-momentum field Tab. In the end, Poisson’s equation

comes out as

(2.7.7) Rab = 8π (T̂ab − 1

2
tab T̂ ).

Here Rab is the Ricci tensor field associated with the new curved derivative

operator, tab is the temporal metric, T̂ab = Tmn tma tnb, and T̂ = Tmn tmn. (See

equation (4.2.10) and the discussion that precedes it.) The resemblance to

equation (2.7.2) is, of course, striking. It is particularly close in the special

case where ρ = 0. For in this case, Tab = 0 and equation (2.7.7) reduces to

Rab = 0. The latter is exactly the same as Einstein’s equation (2.7.2) in the

empty space case.

Thegeometrized formulationofNewtoniangravitationwasdiscovered after

general relativity in the 1920s. But now, after the fact, we can put ourselves

in the position of a hypothetical investigator who is considering possible can-

didates for a relativistic field equation and who knows about the geometrized

formulation of Newtonian theory. What could be more natural than to adapt

equation (2.7.7) and simply replace tab with gab? This seems to me one of the

nicest routes to Einstein’s equation (2.7.2). Again, the route is particularly

direct in the empty space case. For then one starts with the Newtonian empty

space equation (Rab = 0) and simply leaves it intact.

Let us now put aside the question of how one might try to motivate

Einstein’s equation, and consider two reformulations.

Let ξa be a unit timelike vector at a point p in M, and let S be a spacelike

hypersurface containing p that is orthogonal to ξa there. (We understand a

hypersurface inM to be spacelike if, at every point, vectors tangent to the surface

are spacelike. This conditionguarantees that thehypersurface ismetric. (Recall

our discussion in section 1.10.)) Further, let hab and πab be the first and second

fundamental forms on S, and let D be the derivative operator on S determined

by hab. Associated with D is a Riemann curvature field Ra
bcd on S. We know

(recall equation (1.10.21)) that the contracted scalar fieldR = Ra
bcahbc satisfies

(2.7.8) R = π2 −πab π
ab + R − 2Rnr ξ

n ξ r

at p. In the special case where S has vanishing extrinsic curvature (πab = 0) at
p, this can be expressed as

(2.7.9) (Rab − 1

2
gabR) ξaξ b = −1

2
R.
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Figure 2.7.1. A “geodesic generated hypersurface” through a point is constructed by projecting
geodesics in all directions orthogonal to a given timelike vector there.

If Einstein’s equation holds, it therefore follows that

(2.7.10) R = −16π (Tab ξ
aξ b).20

One can also work backward. Suppose equation (2.7.10) holds for all unit

timelike vectors at p and all orthogonal spacelike hypersurfaces through p

with vanishing extrinsic curvature there. Then, by equation (2.7.9), it must be

the case that

(2.7.11) (Rab − 1

2
R gab) ξ

aξ b = 8π Tab ξ
aξ b

for all unit timelike vectors ξa at p. This, in turn, implies Einstein’s equation

(by lemma 2.1.3). So we have the following equivalence.

(�) Einstein’s equationRab − 1
2 R gab = 8π Tab holds at p iff for all unit time-

like vectors ξa at p, and all orthogonal spacelike hypersurfaces S through

p with vanishing extrinsic curvature there, the scalar curvature of S at p

is given by R = −16π (Tab ξ
aξ b).

We can give the result a somewhat more concrete formulation by casting

it in terms of a particular class of spacelike hypersurfaces. Consider the set of

all geodesics through p that are orthogonal to ξa there. The (images of these)

curves, at least when restricted to a sufficiently small open set containing p,

sweep out a smooth spacelike hypersurface that is orthogonal to ξa at p.21 (See

figure 2.7.1.) We shall call it a geodesic generated hypersurface. (We cannot speak

of the geodesic generated hypersurface through p orthogonal to ξa because we

20. There is an issue here of sign convention that is potentially confusing. We seem to be led
to the conclusion that the Riemann scalar curvature of S is less than or equal to 0—at least, if Tab
satisfies the weak energy condition. But it might be more natural to say that it is greater than or
equal to 0. We are working here with R as determined relative to the negative definite metric hab,
and a sign flip is introduced if we work, instead, with the positive definite metric −hab. The switch
from hab to −hab leaves D, Ra

bcd , and Rcd intact but reverses the sign of R = hbc Rbc .
21. More precisely, let Sp be the spacelike hyperplane in Mp orthogonal to ξa. Then for any

sufficiently small open set O in Mp containing p, the image of (Sp ∩ O) under the exponential map
exp : O → M is a smooth spacelike hypersurface in M containing p that is orthogonal to ξa there.
(See, for example, Hawking and Ellis [30, p. 33].)
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have left open how far the generating geodesics are extended. But given any

two, their restrictions to a suitably small open set containing p coincide.)

Geodesic generated hypersurfaces are of interest in their own right, the

present context aside, because they are natural candidates for a notion of “local

simultaneity slice” (as determined relative to a timelike vector at a point). We

can think of them as instances of private space. (The contrast here is with

public space, which is determined not relative to a single timelike vector or

timelike curve, but relative to a congruence of timelike curves. Formore on this

difference between private space and public space, see Rindler [53, 54] and

Page [49].)

Now suppose S is a geodesic generated hypersurface generated from p. We

claim that it has vanishing extrinsic curvature there. We can verify this with

a simple calculation very much like that used to prove proposition 1.10.7. Let

ξa be a smooth, future-directed, unit timelike field, defined on some open

subset of S containing p, that is orthogonal to S. Let hab be the corresponding

projection field on S. Further, let σ a be the tangent field to a geodesic (relative

to ∇) through p that is orthogonal there to ξa. Then along the image of the

geodesic we have σ a∇aσ
b = 0 and σ aξa = 0 (or, equivalently, ha

bσ
b = σ a).

The latter holds because the image of the geodesic is contained in S and so

is everywhere orthogonal to its normal field. Hence, by equation (1.10.16),

we have

πab σ
aσ b = (hm

a hn
b∇m ξn) σ aσ b = σmσ n∇m ξn

= σm∇m(σ nξn)− ξn σm∇mσ
n = 0

along the image of the geodesic. In particular, the condition holds at p. But

given any vector at p orthogonal to ξa, we can choose our initial geodesic so

that it has that vector for its tangent at p. Hence, πab σ
aσ b = 0 at p for all

such orthogonal vectors. Since πab is symmetric, as well as orthogonal to the

normal field ξa, it follows that πab = 0 at p.

Consider again the equivalence (�). If we rerun the argument used before,

but systematically cast it in terms of geodesic generated hypersurfaces, we

arrive at the following alternate formulation.

PROPOSIT ION 2.7.1. Let Tab be a smooth symmetric field on M, and let p be a

point in M. Then Einstein’s equation Rab − 1
2 R gab = 8π Tab holds at p iff for all

unit timelike vectors ξa at p, and all geodesic hypersurfaces S generated from p that

are orthogonal to ξa, the scalar curvature of S at p is given by R = −16π (Tab ξ
aξ b).
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Our second reformulation of Einstein’s equation is phrased in terms of

geodesic deviation. Let ξa be a smooth, future-directed, unit timelike vector

field whose associated integral curves are geodesics—i.e., a geodesic reference

frame. Further, let λa be a vector field on one of the integral curves γ satisfying

£ξ λa = 0. (So ξ b∇b λa = λb∇b ξa.) Finally, assume λa is orthogonal to ξa at

some point on γ . Then it must be orthogonal to the latter at all points on γ .

This follows because the inner product (ξaλa) is constant on γ :

ξ b∇b(ξ
aλa) = λa ξ

b∇bξ
a + ξaξ b∇bλa = ξaξ b∇bλa = ξaλb∇bξa

= 1

2
λb∇b(ξ

aξa) = 1

2
λb∇b(1) = 0.

We can think of λa as a connecting field that joins the image of γ to the

image of another, “infinitesimally close,” integral curve of ξa. Then the field

ξn∇n(ξm∇mλ
a) represents the acceleration of the latter relative to γ . We know

from proposition 1.8.5 that it satisfies the “equation of geodesic deviation”:

(2.7.12) ξn∇n (ξm∇mλ
a) = Ra

bcd ξ
b λc ξd .

Now we define the “average radial acceleration” of ξa at a point p on γ . Let
i
λa (i = 1, 2, 3) be any three connecting fields (as just described) such that, at p,

the vectors ξa,
1
λa,

2
λa,

3
λa form an orthonormal set. For each i, the (outward-

directed) radial component of the relative acceleration vector ξn∇n (ξm∇m
i
λa)

—i.e., its component in the direction
i
λ—has magnitude

− i
λa ξ

n∇n (ξm∇m
i
λ

a).

(We need the minus sign because λa is spacelike.) We now take the average

radial acceleration (ARA) of ξa at p to be

(2.7.13) ARA = −1

3

3∑
i=1

i
λa ξ

n∇n (ξm∇m
i
λ

a).

Of course, we need to check that the sumon the right side is independent of

our initial choice of connecting fields. The orthonormality condition implies

that at p we have gac = ξaξc −∑3
i=1

i
λa

i
λc . Hence, by equation (2.7.12), we also

have

ARA = − 1

3

3∑
i=1

i
λa Ra

bcd ξ
b i
λ

c ξd = −1

3
Ra

bcd ξ
b ξd

(
3∑

i=1

i
λa

i
λ

c

)

= − 1

3
Ra

bcd ξ
b ξd (ξaξ

c − g c
a )
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at p. But Ra
bcd ξ

cξd = 0, and Ra
bcd g c

a = Ra
bad = −Ra

bda = −Rbd . So we may

conclude that

(2.7.14) ARA = −1

3
Rbd ξ

bξd

holds at p. Thus, as claimed, ARA is well defined.

Now if Einstein’s equation holds at p, it follows that

(2.7.15) ARA = −8π

3

(
Tab − 1

2
T gab

)
ξaξ b

holds there as well. And conversely, if equation (2.7.15) holds at p for all

geodesic reference frames, then it must be the case, by equation (2.7.14), that

Rbd ξ
bξd = 8π (Tab − 1

2 T gab)ξ bξd holds for all unit timelike vectors ξa there.

And this, in turn, implies that Einstein’s equation holds at p. So we have the

following equivalence.

PROPOSIT ION 2.7.2. Let Tab be a smooth symmetric field on M, and let p be a

point in M. Then Einstein’s equation Rab − 1
2 R gab = 8π Tab holds at p iff for all

geodesic reference frames ξa (defined on some open set containing p), the average

radial acceleration of ξa at p is given by ARA = −8π

3

(
Tab − 1

2
T gab

)
ξaξ b.

Weconsidered three energy conditions (weak, dominant, and strengthened

dominant) in section 2.5. Let us now consider a fourth. Let Tab be the energy-

momentum field associated with a matter field F .

Strong Energy Condition (SEC): Given any timelike vector ξa at any point

in M, (
Tab − 1

2
Tgab

)
ξaξ b ≥ 0.

Equation (2.7.15) provides an interpretation. Suppose that Einstein’s equation

holds. Then F satisfies the strong energy condition iff, for all geodesic refer-

ence frames, the average (outward-directed) radial acceleration of the frame is

negative or 0. This captures the claim, in a sense, that the “gravitational field”

generated by F is “attractive”.

PROBLEM 2.7.2. Give examples of each of the following.

(1) A smooth symmetric field Tab that satisfies the SDEC (and so also the WEC

and DEC) but not the SEC
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(2) A smooth symmetric field Tab that satisfies the SEC but not the WEC (and so

not the DEC or SDEC, either)

PROBLEM 2.7.3. Consider a perfect fluid with four-velocity ηa, energy density ρ,

and pressure p. Show that it satisfies the strong energy condition iff (ρ+ p) ≥ 0 and

(ρ+ 3p) ≥ 0.

2.8. Fluid Flow

In this section, we consider fluid flow and develop the standard formalism for

representing the rotation and expansion of a fluid at a point. (Later, in sections

3.2 and 3.3, we shall consider several different notions of global rotation.)

Once again, let (M, gab) be our background relativistic spacetime. We are

assuming it is temporally orientable and endowed with a particular temporal

orientation. Let ξa be a smooth, future-directed unit timelike vector field on

M (or some open subset of M). We understand it to represent the four-velocity

field of a fluid. Further, let hab be the spatial projection field determined by ξa.

The rotation and expansion fields associated with ξa are defined as follows:

ωab = h m[a h n
b] ∇m ξn,(2.8.1)

θab = h m
(a h n

b) ∇m ξn.(2.8.2)

They are smooth fields, orthogonal to ξa in both indices, and satisfy

(2.8.3) ∇a ξb = ωab + θab + ξa(ξm∇m ξb).

(This follows since

ωab + θab = ha
m hb

n ∇m ξn = (ga
m − ξa ξm) (gb

n − ξb ξn)∇m ξn,

and ξn ∇m ξn = 0.) Our first task is to give the two fields a geometric inter-

pretation and, in so doing, justify our terminology. We start with the rotation

field ωab.

Let γ be an integral curve of ξa, and let p be a point on the image of γ .

Further, let ηa be a vector field on the image of γ that is “carried along by

the flow of ξa” (i.e., £ξ ηa = 0) and orthogonal to ξa at p. (It need not be

orthogonal to ξa elsewhere.) We think of the image of γ as the worldline of a

fluid element O, and think of ηa at p as a “connecting vector” that spans the

distance between O and a neighboring fluid element N that is “infinitesimally

close.” The instantaneous velocity of N relative to O at p is given by ξa ∇a η
b.

But ξa ∇a η
b = ηa ∇a ξ

b (since £ξ ηa = 0). So, by equation (2.8.3) and the

orthogonality of ξa with ηa at p, we have
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Figure 2.8.1. The angular velocity (or twist) vector ωa. It points in the direction of the instan-
taneous axis of rotation of the fluid. Its magnitude ‖ωa‖ is the instantaneous angular speed
of the fluid about that axis. Here ηa connects the fluid elementO to the “infinitesimally close”
fluid element N. The rotational velocity of N relative to O is given by ω a

b η
b. The latter is

orthogonal to ηa.

(2.8.4) ξa ∇a η
b = (ω b

a + θ b
a ) ηa

at the point. Here we have simply decomposed the relative velocity vector

into two components. The first, (ω b
a η

a), is orthogonal to ηa since ωab is anti-

symmetric. (See figure 2.8.1.) It is naturally understood as the instantaneous

rotational velocity of N with respect to O at p.

In support of this interpretation, consider the instantaneous rate of change

of the squared length (− ηb ηb) of ηa at p. It follows from equation (2.8.4) that

(2.8.5) ξa ∇a (− ηb ηb) = −2 θab η
a ηb.

Thus the rate of change depends solely on θab. Suppose θab = 0. Then the

instantaneous velocity ofN with respect toO at p has a vanishing radial compo-

nent. If ωab = 0, N can still have non-zero velocity there with respect to O. But

it can only be a rotational velocity. The two conditions (θab = 0 and ωab = 0)
jointly characterize “rigid rotation.”

The rotation tensorωab at a point p determines both an (instantaneous) axis

of rotation there, and an (instantaneous) speed of rotation. As we shall see,

both pieces of information are built into the angular velocity (or twist) vector

(2.8.6) ωa = 1

2
εabcd ξb ωcd

at p. (Here εabcd is a volume element defined on some open set containing p.

Clearly, if we switched from the volume element εabcd to its negation, the result

would be to replace ωa with −ωa.)



“530-47773_Ch02_2P.tex” — 1/23/2012 — 17:18 — page 169

−1

0

+1

classical relativity theory / 169

If follows from equation (2.8.6) (and the anti-symmetry of εabcd) that ωa is

orthogonal to ξa. It further follows that

ωa = 1

2
εabcd ξb ∇c ξd ,(2.8.7)

ωab = εabcd ξ
cωd .(2.8.8)

Hence, ωab = 0 iff ωa = 0. Both equations (2.8.7) and (2.8.8) are verified with

simple calculations. We do the first and leave the second as an exercise. For

the first, we have

2ωa = εabcd ξb ωcd = εabcd ξb h r[c h s
d] ∇r ξs = εabcd ξb h r

c h s
d ∇r ξs

= εabcd ξb g r
c g s

d ∇r ξs = εabcd ξb ∇c ξd .

(The second equality follows from the anti-symmetry of εabcd , and the third

from the fact that εabcdξb is orthogonal to ξa in all indices.) Notice that equation

(2.8.6) has exactly the same form as our definition (2.6.10) of themagnetic field

vector Ba determined relative to a Maxwell field Fab and four-velocity vector ξa

(Ba = 1
2 ε

abcd ξb Fcd). It is for this reason that the magnetic field is sometimes

described as the “rotational component of the electromagnetic field.”

PROBLEM 2.8.1. Prove equation (2.8.8).

PROBLEM 2.8.2. We have seen that the conditions (i) ωab = 0 and (ii) ωa = 0 are

equivalent at any point. Show that they are also equivalent (at any point) with (iii)

ξ[a∇b ξc] = 0.

Weclaimnow thatωa points in the direction of the instantaneous axis of rotation

(of the fluid flow associated with ξa). (See figure 2.8.1 again.) More precisely,

with the connecting field ηa as above, we show that, at p,

(2.8.9) ω a
b η

b = 0 ⇐⇒ ηa is proportional to ωa.

(Or, in the language of “infinitesimally close” fluid elements, the rotational

velocity of N with respect to O vanishes iff the connecting vector from O to

N is aligned with ωa.) The implication from right to left follows immediately

from equation (2.8.8) (and the anti-symmetry of εabcd). Conversely, suppose

ω a
b η

b = 0. Then, by equation (2.8.8),
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0 = (ξn ωp ε
amnp)ωba η

b = ξn ωp ε
amnp εbacd ξ

c ωd ηb

= 3! δ[mb δn
c δ

p]
d η

b ξ c ωd ξn ωp = 3! η[m ξn ωp] ξn ωp

= (ηm ωp ωp −ωm ηp ωp).

(For the final equality, here we use the fact that ξa is orthogonal to ηa at p and

orthogonal toωa everywhere.) Now ifωpωp = 0, thenωa = 0. (The twist vector
ωa is orthogonal to ξa and, by proposition 2.2.1, the only null vector orthogonal

to a timelike vector is the zero vector.) And in this case, ηa is trivially aligned

with ωa. So we may assume that ωpωp = 0. It then follows that ηa = kωa,

where k = (ωpηp)/(ωnωn).

Next, we claim that the magnitude of ωa is the instantaneous angular speed (of

the fluid flow associated with ξa). The angular speed for the connecting vector

ηa is given by the ratio of the linear speed of rotation (i.e., the magnitude of

ω a
b η

b) to the magnitude of the radius vector ρa = ηa − ηb ωb

ωn ωn
ωa. (See figure

2.8.1 again.) (If ωn ωn = 0, then ωab = 0, and the speed of angular rotation is

0.) It follows with a bit of calculation much like that done previously in this

section that

(2.8.10) (angular speed)2 = −ω a
b ηb ωca η

c

−ρn ρn
= · · · = (−ωnωn);

i.e., the angular speed is ‖ωa‖, as claimed.

PROBLEM 2.8.3. Complete the calculation in equation (2.8.10). (Hint: Do not

forget that we are doing the calculation at the initial point p where the connecting

vector ηa is orthogonal to ξa.)

The two italicized conditions concerning, respectively, the orientation and

magnitude of ωa determine it up to sign.

With the preceding remarks as motivation, we now say that our future-

directed, unit timelike vector field ξa is irrotational or twist-free at a point if

ωab = 0 there (or, equivalently, if ωa = 0 or if ξ[a∇b ξc] = 0 there). It will be

instructive to consider a condition that captures the requirement that ξa is

twist-free everywhere. Let us say that a timelike vector field ξa (not necessarily

of unit length) is hypersurface orthogonal if there exist smooth, real valuedmaps

f and g (with the same domains of definition as ξa) such that, at all points,

ξa = f ∇a g . Note that if the condition is satisfied, then the hypersurfaces of

constant g value are everywhere orthogonal to ξa. (For if σ a is a vector tangent

to one of these hypersurfaces, σ n∇n g = 0. So σ nξn = σ n( f ∇n g) = 0.) Let us
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further say that ξa is locally hypersurface orthogonal if the restriction of ξa to

every sufficiently small open set is hypersurface orthogonal.

PROPOSIT ION 2.8.1. Let ξa be a smooth, future-directed unit timelike vector

field defined on M (or some open subset of M). Then the following conditions are

equivalent.

(1) ωab = 0 everywhere.

(2) ξa is locally hypersurface orthogonal.

Proof. The implication from (2) to (1) is immediate. For if ξa = f ∇a g , then

ωab = h m[a h n
b] ∇m ξn = h m[a h n

b] ∇m ( f ∇n g)

= f h m[a h n
b] ∇m ∇n g + h m[a h n

b] (∇m f ) (∇n g)

= f h m
a h n

b ∇[m ∇n] g + h m
a h n

b (∇[m f ) (∇n] g).

But∇[m ∇n] g = 0, since∇ is torsion-free; and the second term in the final line

vanishes as well since h n
b ∇n g = f −1 h n

b ξn = 0. So ωab = 0. The converse is
non-trivial. It is a special case of Frobenius’ theorem (Wald [60, p. 436]). �

There is a nice picture that goes with the proposition. Think about an ordi-

nary rope. In its natural twisted state, the rope cannot be sliced in such a

way that the slice is orthogonal to all individual fibers. But if the rope is first

untwisted, then such a slicing is possible. Thus orthogonal sliceability is equiv-

alent to fiber-untwistedness. The proposition extends this intuitive equivalence

to the four-dimensional “spacetime ropes” (i.e., congruences of worldlines)

encountered in relativity theory. It asserts that a congruence is twist-free iff it

is, at least locally, hypersurface orthogonal.

Let us now switch our attention to the expansion tensor θab associated with

ξa. First, we decompose it into two pieces. We set

θ = θ a
a = ∇a ξ

a(2.8.11)

σab = θab − 1

3
hab θ ,(2.8.12)

so that equation (2.8.3) can be expressed in the expanded form

(2.8.13) ∇a ξb = ωab + σab + 1

3
hab θ + ξa (ξn∇n ξb).
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Notice that the two expressions for θ in equation (2.8.11) are equal since

ξn ∇m ξn = 0 and, therefore,

θ a
a = gab θab = gab h m

(a h n
b) ∇m ξn = hmn ∇m ξn = (gmn − ξm ξn)∇m ξn = ∇n ξ

n.

Notice too that

(2.8.14) σ a
a = 0,

since σ a
a = θ a

a − 1
3 (g

a
a − ξa ξa) θ = θ − θ = 0.

θ is called the scalar expansion field associated with ξa, and σab the shear

tensor field associated with it. We can motivate this terminology much as we

did that for ωab. We claim first that θ is a measure of the rate at which the

volume of an (infinitesimal) blob of fluid increases under the flow associated

with ξa. (It is the counterpart to the “divergence” of a vector field in ordinary

three-dimensional Euclidean vector analysis.) To justify this interpretation, we

do a simple calculation.

Let γ be an integral curve of ξa, and let p be any point on its image. Further,

let 1
ηa, 2
ηa, 3
ηa be three vector fields on the image of γ that (i) are carried along

by the flow associated with ξa (i.e., £ξ
i
ηa = 0, for i = 1, 2, 3), and (ii) together

with ξa, form an orthonormal basis at p. Then hab = −( 1ηa
1
ηb + 2

ηa
2
ηb + 3

ηa
3
ηb) at

p. We consider the rate of change of the volume function V = εabcd ξ
a 1
ηb 2
ηc 3
ηd

in the direction ξa. It turns out that, at p,

(2.8.15) ξn∇nV = θ V .

It is in this sense that θ gives the instantaneous rate of volume increase, per unit

volume, under the flow associated with ξa. (This is the claim we made at the end

of section 2.5.)

To verify equation (2.8.15), we compute ξn∇nV . Since £ξ
i
ηa = 0, we have

ξn∇n
i
ηa = i

ηn∇n ξ
a and, hence,

ξn∇nV = ξn∇n (εabcd ξ
a 1
ηb 2
ηc 3
ηd)

= εabcd

[
(ξn∇n ξ

a) 1
ηb 2
ηc 3
ηd + . . .+ ( 3ηn∇n ξ

d) ξa 1
ηb 2
ηc
]
.(2.8.16)

Now the vector εabcd
1
ηb 2
ηc 3
ηd is orthogonal to 1

ηb, 2
ηc , and 3

ηd . So, at p, it must

be co-aligned with ξa. Indeed, we have εabcd
1
ηb 2
ηc 3
ηd = (εnbcd ξ

n 1
ηb 2
ηc 3
ηd) ξa =

V ξa there. So, εabcd(ξn∇n ξ
a) 1
ηb 2
ηc 3
ηd = ξa (ξn∇n ξ

a)V = 0 at p. Similarly,

for example, we have

εabcd(
1
ηn∇n ξ

b) ξa 2
ηc 3
ηd = − 1

ηb (
1
ηn∇n ξ

b)V
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at p. So, after handling all terms on the right side of equation (2.8.16) this way,

we are left, at p, with

ξn∇nV = − V
[
1
ηr (

1
ηn∇n ξ

r )+ 2
ηr (

2
ηn∇n ξ

r )+ 3
ηr (

3
ηn∇n ξ

r )
]

= − V ( 1ηr
1
ηn + 2

ηr
2
ηn + 3

ηr
3
ηn)(∇n ξ

r ) = V h n
r ∇n ξ

r

= V (g n
r − ξrξn)∇n ξ

r = V ∇n ξ
n = V θ .

This gives us equation (2.8.15).

Now consider σab. It is symmetric (and orthogonal to ξa). So we can choose

our three vector fields 1
ηa, 2
ηa, 3
ηa so that, in addition to being carried along

by the flow of ξa, and (with ξa) forming an orthonormal basis at p, they

satisfy σab = −(
1

k
1
ηa

1
ηb + 2

k
2
ηa

2
ηb + 3

k
3
ηa

3
ηb) at p. (It is a basic fact of linear algebra

that we can find an orthonormal basis at p that diagonalizes the symmetric

4× 4 matrix of σab-components.) Then σ a
b

i
ηb = i

k
i
ηa, for each i; i.e., i

ηa is an

eigenvector of σ a
b with eigenvalue

i

k. And the coefficients
i

k sum to 0, since

0 = σ a
a = −(

1

k
1
ηa

1
ηa + 2

k
2
ηa

2
ηa + 3

k
3
ηa

3
ηa) = (

1

k + 2

k + 3

k).

Suppose for the moment that ωab = 0 and θ = 0 at p. Then, by equations

(2.8.4) and (2.8.12), ξn∇n
i
ηa = σ a

n
i
ηn = i

k
i
ηa, for all i, at p. So, if (as above)

we think of i
ηa as a “connecting vector” pointing from an observer O to an

(infinitesimally) close neighbor N , then the instaneous velocity of N relative to

O is directed radially away from O at p and has magnitude
i

k there. Thus, each

of the vectors 1
ηa, 2
ηa, 3
ηa is an axis of instantaneous expansion (or contraction)

with associatedmagnitude
i

k. Since themagnitudes sum to 0, expansion along

one axis can occur only if there is contraction along another. Individual expan-

sions and contractions so compensate each other that there is no net increase

in volume. (Again, we are now considering the case where θ is 0.)

In general, the expansion factors
i

k are all different. But, for purposes of

illustration, suppose that the factors on two axes are equal—say
1

k = 2

k. Further

imagine that our infinitesimal blob has the shape of a sphere at p. Then there

are twopossibilities. If the common factor is positive, then the actionof theflow

flattens it into a pancake with axis 3
ηa (“pancake shear”). If it is negative, then it

is elongated into a hot dogwith axis 3
ηa (“hot dog shear”). The secondpossibility

is illustrated in figure 2.8.2, where three possible actions are illustrated.

The full expansion tensor field θab can be given another interesting geomet-

ric interpretation in the case where it is associated with a unit timelike flow ξa

that is everywhere twist-free. In this case, by proposition 2.8.1, ξa is, at least
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Figure 2.8.2. Rotation, expansion, shear.

locally, hypersurface orthogonal. Let S be a spacelike hypersurface to which

ξa is orthogonal. The extrinsic curvature of S is given by πab = h m
a h n

b ∇m ξn.

(Recall equation (1.10.16).) But h m
a h n

b ∇m ξn = ωab + θab, by equations (2.8.1)

and (2.8.2). So in the present case (ωab = 0), we have πab = θab. Thus, the

expansion tensor field associated with a twist-free unit timelike field ξa is just the

extrinsic curvature of the spacelike hypersurfaces to which ξa is orthogonal.

This gives us another way to think about the extrinsic curvature of space-

like hypersurfaces. When πab = 0, normal vectors to the surface do not recede

from one another. “Connecting vectors” between “infinitesimally” close sur-

face normals do not expand. (See figure 2.8.3.) But when πab = 0, connecting
vectors do expand.

Figure 2.8.3. Expansion and extrinsic curvature.

Finally, we derive an expression for the rate of change of the scalar

expansion function θ (“Raychaudhuri’s equation”):

(2.8.17) ξa∇a θ = −Rab ξ
aξ b +ωab ω

ab − 1

3
θ2 − σab σ

ab + ∇a(ξn∇n ξ
a).
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We shall need it later in section 2.11. (Here ξa is still a smooth future-

directed unit timelike vector field on our background spacetime (M, gab).) The

derivation proceeds in two steps. First, it follows from equation (1.8.1) that

ξa∇a θ = ξa∇a∇b ξ
b = −ξaRb

cab ξ
c + ξa∇b∇a ξ

b

= − Rca ξ
cξa + ∇b(ξ

a∇a ξ
b)− (∇b ξ

a)(∇a ξ
b).

Next, we evaluate the term (∇b ξ
a)(∇a ξ

b) using the expansion in equation

(2.8.13): ∇a ξb = ωab + σab + 1
3 hab θ + ξa (ξn∇n ξb). A straightforward compu-

tation establishes that

(∇b ξa)(∇a ξ b) = −ωab ω
ab + 1

3
θ2 + σab σ

ab.

(All terms involving ξa or ξb are 0 because hab, ωab, σab, and ξn∇n ξa are all

orthogonal to ξa in all indices. The terms involving ωab together with either

hab or σ ab are 0 because the former is anti-symmetric whereas the latter is

symmetric. The terms involving hab and σab are 0 because σ a
a = 0.) This gives

us equation (2.8.17).

2.9. Killing Fields and Conserved Quantities

In relativity theory, there is a natural association between Killing fields and

conserved quantities. We consider it briefly in this section.

Let κa be a smooth field on our background spacetime (M, gab). Recall

(section 1.9) that κa is said to be a Killing field if its associated local flowmaps

�s are all isometries or, equivalently, if £κ gab = 0. The latter condition can

also be expressed as ∇(a κb) = 0.
Any number of standard symmetry conditions—local versions of them, at

least22—can be cast as claims about the existence of Killing fields. Here are a

few examples.

(M, gab) is stationary if it has a Killing field that is everywhere timelike.

(M, gab) is static if it has a Killing field that is everywhere timelike and locally

hypersurface orthogonal.

(M, gab) is homogeneous if its Killing fields, at every point of M, span the

tangent space.

(We shall have another example in section 3.2, where we consider “station-

ary, axi-symmetric spacetimes.”) The distinction between stationary and static

22. “Local” because Killing fields need not be complete, and their associated local flow maps
need not be defined globally. (Recall our discussion at the end of section 1.3.)
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spacetimes should be clear from our discussion in the preceding section.

(Recall proposition 2.8.1.) Roughly speaking, in a stationary spacetime there

is, at least locally, a “timelike flow” that preserves all spacetime distances. But

the flow can exhibit rotation. Think of a whirlpool. It is the latter possibility

that is ruled out when one passes to a static spacetime. For example, Gödel

spacetime, as we shall see, is stationary but not static.

PROBLEM 2.9.1. Let κa be a timelike Killing field that is locally hypersurface orthog-

onal (κ[a∇b κc] = 0). Further, let κ be the length of κa. (So κ2 = κnκn.) Show that

κ2 ∇a κb = −κ[a∇b] κ2.

By way of example, let us find all Killing fields on Minkowski spacetime.

This will be easy, as much of the work has already been prepared in sections

1.9 and 2.6.

Let κa be a Killing field on Minkowski spacetime (M, gab). Arguing exactly

as in proposition 1.9.9, we can show that, given any point p in M, there is a

unique constant, anti-symmetric field Fab on M and a unique constant field

ka on M such that

(2.9.1) κb = χa Fab + kb,

where χa is the position field relative to p. (Recall that Fab = ∇a κb, and kb =
κb −χa Fab.) Thus there is a one-to-one correspondence between Killing fields

on Minkowski spacetime and pairs (Fab, kb) at any one point, where Fab is an

anti-symmetric tensor there and ka is a vector there. It follows that the vector

space of Killing fields on Minkowski spacetime has 6+ 4 = 10 dimensions.

We can further analyze Fab as in section 2.6. Let εabcd be a volume element

on M; let ξa be a constant, future-directed, unit timelike field on M; and let

Ea and Ba be defined as in equations (2.6.9) and (2.6.10):

Ea = Fa
b ξ

b,

Ba = 1

2
εabcd ξb Fcd .

Then Ea andBa are constant fields everywhere orthogonal to ξa. And it follows

from equation (2.6.13) that we can express κa in the form

(2.9.2) κb = χa (2E[a ξb] + εabcd ξ
c Bd)+ kb.

This gives us a classification of all Killing fields (relative to an arbitrary choice

of “origin” p and constant, unit timelike field ξa). Killing fields of the form



“530-47773_Ch02_2P.tex” — 1/23/2012 — 17:18 — page 177

−1

0

+1

classical relativity theory / 177

κb = kb generate (timelike, spacelike, or null) translations. Those of the form

κb = χa εabcd ξ
c Bd generate spatial rotations, based at p, with rotational axisBa.

Those of the form κb = 2χa E[a ξb] generate boosts, based at p, in the plane

determined by ξa and Ea.

PROBLEM 2.9.2. Consider a non-trivial boost Killing field κb = 2χaE[a ξb] on

Minkowski spacetime (as determined relative to some point p and some constant

unit timelike field ξa). “Non-trivial” here means that Ea = 0. Let ηa be a constant

field on Minkowski spacetime. Show that £κ ηa = 0 iff ηa is orthogonal to both to

ξa and Ea. (It follows that the boost isometries generated by κa leave intact all two-

dimensional submanifolds orthogonal to ξa and Ea, but “rotate” all two-dimensional

submanifolds to which ξa and Ea are tangent.)

PROBLEM 2.9.3. This time, consider a non-trivial rotational Killing field κb =
χa εabcd ξ

c Bd on Minkowski spacetime (with Ba = 0). Again, let ηa be a constant

field on Minkowski spacetime. Show that £κ ηa = 0 iff ηa is a linear combi-

nation of ξa and Ba. (It follows that the isometries generated by κa “rotate”

all two-dimensional submanifolds orthogonal to ξa and Ba but leave intact all

two-dimensional submanifolds to which ξa and Ba are tangent.)

Nowwe briefly consider two types of conserved quantity. One is an attribute

of point particles with positive mass, the other of extended bodies. Let κa be

a Killing field in an arbitrary spacetime (M, gab) (not necessarily Minkowski

spacetime), and let γ : I → M be a smooth, future-directed, timelike curve,

with unit tangent field ξa. We take its image to represent the worldline of

a point particle with mass m > 0. Consider the quantity J = (Paκa), where

Pa = m ξa is the four-momentum of the particle. It certainly need not be

constant on γ [I]. But it will be if γ is a geodesic. For in that case, ξn∇n ξ
a = 0

and hence, by equation (1.9.12),

(2.9.3) ξn∇nJ = m (κa ξ
n∇n ξ

a + ξnξa ∇n κa) = m ξnξa ∇(n κa) = 0.

Thus, J is constant along the worldlines of free particles of positive mass.

We refer to J as the conserved quantity associated with κa. If κa is timelike,

we call J the energy of the particle (associated with κa).23 If it is spacelike,

23. Of course, one needs to ask what this notion of energy has to do with the one considered
in section 2.4. There, ascriptions of energy to point particles were made relative to individual unit
timelike vectors, and the value of the energy at any point was taken to be the inner product of that
vectorwith theparticle’s four-momentumvector.We take thepresent notionof energy to beprimary
and the earlier one as derived. At least in the context ofMinkowski spacetime, one can always extend
a unit timelike vector at a point to a constant unit timelike field (which is, of course, a Killing field)
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Figure 2.9.1. κa is a rotational Killing field. (It is everywhere orthogonal to a circle radius, and
is proportional to it in length.) ξa is a tangent vector field of constant length on the line L. The
inner product between them is constant. (Equivalently, the length of the projection of κa onto
the line is constant.)

and if its associated flow maps resemble translations,24 we call J the linear

momentum of the particle (associated with κa). Finally, if κa is spacelike, and

if its associated flow maps resemble rotations, then we call J the angular

momentum of the particle (associated with κa).

It is useful to keep in mind a certain picture that helps one “see” why the

angular momentum of free particles (to take that example) is conserved. It

involves an analogue of angular momentum in Euclidean plane geometry.

Figure 2.9.1 shows a rotational Killing field κa in the Euclidean plane, the

image of a geodesic (i.e., a line) L, and the tangent field ξa to the geodesic.

Consider the quantity J = ξaκa—i.e., the inner product of ξa with κa—along

and thenunderstand relativization to the vector as relativization to the associated constant field. And
perhaps the earlier usage is properly motivated only in spacetimes where individual unit timelike
vectors are extendible to constant fields or, at least, to naturally distinguished Killing fields. (Similar
remarks apply to components of “linear momentum” in particular directions.)

24. When one is dealing with Minkowski spacetime, one can assert without ambiguity that a
Killing field generates a “translation,” or a “spatial rotation,” or a “boost.” Things are not always so
simple. Still, sometimes a Killing field in a curved spacetime resembles a Killing field inMinkowski
spacetime in certain respects, and then the terminology may carry over naturally. For example,
in the case of asymptotically flat spacetimes, one can classify Killing fields by their asymptotic
behavior.



“530-47773_Ch02_2P.tex” — 1/23/2012 — 17:18 — page 179

−1

0

+1

classical relativity theory / 179

L. Exactly the sameproof as before (of equation (2.9.3)) shows thatJ is constant

along L.25 But here we can better visualize the assertion.

Let us temporarily drop indices and write κ · ξ as one would in ordinary

Euclidean vector calculus (rather than ξaκa). Let p be the point on L that is

closest to the center point where κ vanishes. At that point, κ is parallel to ξ . As

one moves away from p along L, in either direction, the length ‖κ‖ of κ grows,
but the angle ∠(κ , ξ ) between the vectors increases as well. It should seem at

least plausible from the picture that the length of the projection of κ onto the

line is constant and, hence, that the inner product κ · ξ = cos(∠(κ , ξ )) ‖κ‖ ‖ξ‖
is constant.

That is how to think about the conservation of angular momentum for free

particles in relativity theory. It does not matter that in the latter context we are

dealing with a Lorentzian metric and allowing for curvature. The claim is still

that a certain inner product of vector fields remains constant along a geodesic,

andwe can still think of that constancy as arising from a compensatory balance

of two factors.

Let us now turn to the second type of conserved quantity, the one that is

an attribute of extended bodies. Let κa be an arbitrary Killing field, and let Tab

be the energy-momentum field associated with some matter field. Assume it

satisfies the conservation condition (∇a Tab = 0). Then (Tab κb) is divergence

free:

(2.9.4) ∇a(Tabκb) = κb ∇aTab + Tab∇aκb = Tab∇(aκb) = 0.

(The second equality follows from the conservation condition and the sym-

metry of Tab; the third follows from the fact that κa is a Killing field.) It is

natural, then, to apply Stokes’s theorem to the vector field (Tabκb). Consider a

bounded system with aggregate energy-momentum field Tab in an otherwise

empty universe. Then there exists a (possibly huge) timelike world tube such

that Tab vanishes outside the tube (and vanishes on its boundary).

Let S1 and S2 be (non-intersecting) spacelike hypersurfaces that cut the

tube as in figure 2.9.2, and let N be the segment of the tube falling between

them (with boundaries included). By Stokes’s theorem,26

25. The mass m played no special role.
26. See Wald [60, Appendix B.2] for a discussion of integration on manifolds and Stokes’s

theorem. We did not take the time to develop these topics in our review of differential geometry
because we have so little need of them. This is the only place in this book where reference is made
to integration on manifolds (except for the simple case of integration over curves).
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Figure 2.9.2. The integrated energy (relative to a background timelike Killing field) over the
intersection of the world tube with a spacelike hypersurface is independent of the choice of
hypersurface.

∫
S2
(Tabκb) dSa −

∫
S1
(Tabκb) dSa

=
∫

S2∩ ∂N
(Tabκb) dSa −

∫
S1∩ ∂N

(Tabκb) dSa

=
∫
∂N

(Tabκb) dSa =
∫

N
∇a(Tabκb) dV = 0.

Thus, the integral
∫

S (T
abκb) dSa is independent of the choice of spacelike

hypersurface S intersecting the world tube, and is, in this sense, a conserved

quantity (construed as an attribute of the system confined to the tube). An

“early” intersection yields the same value as a “late” one. Again, the character

of the background Killing field κa determines our description of the conserved

quantity in question. If κa is timelike, we take
∫

S (T
abκb) dSa to be the aggregate

energy of the system (associated with κa). And so forth.

Let us now continue the discussion that led to equation (2.9.3) and derive

an inequality governing “total integrated acceleration.” Once again, let κa be a

Killing field on an arbitrary spacetime (M, gab), and let γ : I → M be a smooth,

future-directed, timelike curve, with unit tangent field ξa. We take its image

to represent the worldline of a point particle with mass m > 0. Again, we

consider the quantity J = (Paκa), where Pa = m ξa is the four-momentum of

the particle. Even without assuming that γ is a geodesic, we have

(2.9.5) ξn∇n J = m (κa ξ
n∇n ξ

a + ξnξa ∇n κa) = m κa ξ
n∇n ξ

a.

Now let α be the scalar magnitude of the acceleration field; i.e., α2 = −(ξn∇n

ξa)(ξm∇m ξa). Then we have (see problem 2.9.4)

(2.9.6) |ξn∇n J| ≤ α
√

J2 − m2 (κnκn).
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(Of course, if γ is a geodesic—i.e., if α = 0 everywhere—then |ξn∇n J| must

vanish everywhere as well. So we recover our earlier result that J is constant

in the case of geodesic motion.) If κa is causal (timelike or null) and future-

directed everywhere, then J = Paκa > 0, and it follows that

(2.9.7) |ξn∇n J| ≤ α J.

So, in this case, the total integrated acceleration of γ—the integral of α with

respect to elapsed time—satisfies

(2.9.8) TA(γ ) =
∫
γ

α ds ≥
∫
γ

|ξn∇n J)|
J

ds ≥
∣∣∣∣∫
γ

ξn∇n (ln J) ds

∣∣∣∣ .
Thus, if γ passes through points p1 and p2, the total integrated acceleration

between those points is, at least, |(ln J)|p2 − (ln J)|p1 |. (For applications of

equation (2.9.8), see Chakrabarti, Geroch, and Liang [7].)

PROBLEM 2.9.4. Derive the inequality (2.9.6).

2.10. The Initial Value Formulation

In this very brief section, we say a few words about the “initial value for-

mulation” of general relativity and make precise the sense in which it is a

deterministic theory. (See Hawking and Ellis [30] and Wald [60] for a proper

treatment of the subject.)

Let S be a smooth, achronal, spacelike hypersurface in our background

spacetime (M, gab). Recall (section 2.5) that D(S), the domain of dependence

of S, is the set of all points p in M with this property: given any smooth causal

curve without endpoint, if its image passes through p, then it intersects S. Our

goal is to explain the sense in which (at least in the empty space case) “what

happens on S uniquely determines what happens on D(S).”

Of special interest is the case where S is a Cauchy surface in (M, gab)—i.e.,

a smooth achronal spacelike hypersurface such that D(S) = M.

The first thing we must do is specify what is to count as “initial data” for

the metric gab on S. Let ξa be the (unique) smooth, future-directed, unit time-

like field that is everywhere orthogonal to S. (We will refer to it, simply, as

the normal field to S.) Our first piece of initial data on S is the induced (nega-

tive definite) spatial metric hab = gab − ξaξb. Our second piece is the extrinsic

curvature field πab on S. We can think of the latter as the time derivative of

hab in the direction ξa, at least up to the factor 1
2 , since 2πab = £ξhab. (Recall

equation (1.10.17).)
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Thus our metric initial data on S consists of the pair (hab,πab), the first

and second fundamental forms on S. They correspond, respectively, to posi-

tion and momentum in the initial value formulation of Newtonian particle

mechanics. We know from our discussion in section 1.10 that these fields

satisfy a number of constraint equations, including

R − (πa
a)2 +πab π

ab = − 2 (Rab − 1

2
R gab) ξ

a ξ b,

Dc πa
c − Da πc

c = hm
a hnp ξ rRmnpr ,

where D is the derivative operator induced on S, Ra
bcd is its associated Rie-

mann curvature field, and R is the contracted scalar curvature field. (The first

equation is just (1.10.21) and we get the second from (1.10.19) by contraction.)

Using the symmetries of Rmnpr , we can re-express the right side of the second

equation:

hm
a hnp ξ rRmnpr = hm

a (g
np − ξn ξp) ξ r Rnmrp = hm

a ξ
r Rmr

= hm
a ξ

r (Rmr − 1

2
R gmr ).

And therefore, using Einstein’s equation, we can express our two constraint

equations as

R − (πa
a)2 +πab π

ab = − 16π Tab ξ
a ξ b,(2.10.1)

Dc πa
c − Da πc

c = 8π Tmr hm
a ξ

r .(2.10.2)

For simplicity, we shall restrict attention to the empty-space case—where

Tab vanishes and it is only the evolution of themetric field gab itself thatweneed

to consider. In this special case, of course, the constraint equations assume

the form

R − (πa
a)2 +πab π

ab = 0,(2.10.3)

Dc πa
c − Da πc

c = 0.(2.10.4)

We started with a spacetime (M, gab) and moved to an induced initial data

set (hab,πab) on a smooth, achronal, spacelike hypersurface S in M satisfying

particular constraint equations. Now we reverse direction.

We need a few definitions. Let us say officially that an (empty space) initial

data set is a triple (�, h̃ab, π̃ab) where � is a smooth, connected, three-

dimensional manifold, h̃ab is a smooth negative-definite metric on �, π̃ab

is a smooth symmetric field on �, and the latter two satisfy the constraint

equations (2.10.3) and (2.10.4).
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A Cauchy development of such an initial data set (�, h̃ab, π̃ab) is a triple

((M, gab), S, ϕ) where (i) (M, gab) is a spacetime that satisfies the field equation

Rab = 0, (ii) S is a Cauchy surface in M, (iii) ϕ is a diffeomorphism of � onto

S, and (iv) h̃ab = φ∗(hab) and π̃ab = φ∗(πab), where hab and πab are the first

and second fundamental forms induced on S.

A Cauchy development ((M, gab), S, ϕ) of (�, h̃ab, π̃ab) is maximal if, in

addition, given any other Cauchy development ((M′, g ′
ab), S′, ϕ′) of (�, h̃ab,

π̃ab), there is an isometry ψ of M′ into M that respects � in the sense that

ψ ◦ϕ′ = ϕ.
Our basic result (due to Choquet-Bruhat and Geroch [8]) is the following.

PROPOSIT ION 2.10.1. Every empty space initial data set has a maximal Cauchy

development. It is unique in the following sense. If ((M, gab),S, ϕ) and ((M′, g ′
ab),

S′, ϕ′) are both maximal Cauchy developments of (�, h̃ab, π̃ab), there is a

diffeomorphism ψ : M′ → M such that ψ ◦ϕ′ = ϕ and g ′
ab = ψ∗(gab).

Proposition 2.10.1 makes precise the sense in which general relativity is a

deterministic theory. But that sense is local in character because it need not

be the case in an arbitrary spacetime (M, gab) that there is any one achronal

spacelike hypersurface S such that D(S) = M; i.e., it need not be case that

there is a Cauchy surface. (For example, the spacetime that arises by taking the

universal covering space of anti-deSitter spacetime admits no Cauchy surface.

See Hawking and Ellis [30], section 5.2.)

2.11. Friedmann Spacetimes

In this section, we briefly consider the class of Friedmann (or Friedmann-

Lemaître-Robertson-Walker) spacetimes. These are the “standard models” of

relativistic cosmology. (For a more complete discussion, see Wald [60] or

almost any text in general relativity.) We include this section, even though

we are not otherwise undertaking to survey known exact solutions to Ein-

stein’s equation, becausewe have a particular interest in comparing relativistic

cosmology with Newtonian cosmology. We consider the latter in section 4.4.

We take a Friedmann spacetime to be one that satisfies a particular

symmetry condition—“spatial homogeneity and isotropy”—togetherwith sup-

plemental constraints in the form of energy conditions, equations of state, or

both. We start with the symmetry condition.

Roughly speaking, a spacetime is spatially homogeneous and isotropic if

there is a congruence of timelike curves filling the spacetime such that “space,”
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as determined relative to the congruence, “is the same in all directions.” Here

is one way to make the condition precise. (We opt for a local version of the

condition. And to avoid certain distracting complications, we cast the defini-

tion directly in terms of the existence of isometries, rather than in terms of

Killing fields as we did with several symmetry conditions at the beginning of

section 2.9.)

Let (M, gab) be a spacetime, and let ξa be a smooth, future-directed, unit

timelike field on M that is twist-free; i.e., ξ[a∇b ξc] = 0. (So, at least locally, it is
possible to foliate M with a one-parameter family of spacelike hypersurfaces

that are orthogonal to ξa. Recall our discussion in section 2.8. We can think

of each of these hypersurfaces as constituting “space” at a given time relative

to ξa.) We say that (M, gab) is spatially homogeneous and isotropic relative to ξa

if, for all points p in M, and all unit spacelike vectors
1
σ a and

2
σ a at p that

are orthogonal to ξa, there is an open set O containing p and an isometry ϕ :

O → O that keeps p fixed, preserves the field ξa, and maps
1
σ a to

2
σ a (i.e., such

that ϕ(p) = p, ϕ∗(ξa) = ξa and ϕ∗(
1
σ a) = 2

σ a).27 We further say that (M, gab) is

spatially homogeneous and isotropic if it is so relative to some choice of ξa. The

strength of the condition will become clear as we proceed.

We assume in what follows that ξa is as in the preceding paragraph and

(M, gab) is spatially homogeneous and isotropic relative to ξa. We first abstract

a few general principles.

(1) Given any field λa on M, if it is definable in terms of, or otherwise

determined by, gab and ξa, then it must be proportional to ξa. (So λa =
λ ξa where λ = λnξ

n. And if λa is also orthogonal to ξa, then λa = 0.)

This follows, for if at some point p, λa had a non-zero component orthogonal to

ξa, it would determine a “preferred” orthogonal direction there and violate the

isotropy condition. (Here is the argument inmoredetail. Since that component

is determined by gab and ξa, it must be invariant under all maps that preserve

gab and ξa and that leave pfixed. But, by our assumption of spatial homogeneity

27. Note, we require here that ϕ map the field ξa onto itself everywhere, not just at p. If we
required only that it keep fixed the vector ξa |p, the condition would not be strong enough for our
purposes. For example, Minkowski spacetime would then qualify as spatially homogeneous and
isotropic relative to any smooth, future-directed, unit timelike vector field ξa that is twist-free. It
would not have to be the case, as we want it to be, that hypersurfaces orthogonal to ξa aremanifolds
of constant curvature. For the corresponding global version of the condition, we would require at

the outset that ξa be (globally) hypersurface orthogonal and require that, for all p,
1
σ a, and

2
σ a as

specified, there is a (global) isometry ϕ : M → M that keeps p fixed, preserves the field ξa, and

maps
1
σ a to

2
σ a. We shall later consider what turns on the difference between these two (local vs.

global) versions of the spatial homogeneity and isotropy condition.
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and isotropy, the only vector at p, orthogonal to ξa, that is invariant under

all such maps is the zero vector.) It follows from (1), for example, that the

acceleration field ξn∇n ξ
a must vanish; i.e., ξa must be a geodesic field.

(2) Given any scalar field λ on M, if it is definable in terms of, or otherwise

determined by, gab and ξa, then it must be constant on all spacelike

hypersurfaces orthogonal to ξa. (So ∇a λ = (ξn∇n λ) ξa.)

This is an immediate consequence of (1) as applied to hab ∇b λ, where hab is

the spatial projection field (gab − ξa ξb). So, for example, we have

(2.11.1) ∇a θ = (ξn∇n θ ) ξa,

where θ = ∇m ξ
m . (Recall section 2.8.)

(3) Given any symmetric field λab on M, if it is definable in terms of, or

otherwise determined by, gab and ξa, then it must be of the form λab =
α ξaξb +β hab for some scalar fieldsα andβ. (And ifλab is also orthogonal

to ξa, then it must be of the form λab = β hab.)

To see this, consider any point p. By (1) as applied to λa
b ξ

b, there is a

number α such that λa
b ξ

b = α ξa at p. Now consider the tensor (λab −α ξa ξ b)

at p. It is symmetric and orthogonal to ξa in both indices. So we can express

it in the form

(2.11.2) λab −α ξa ξ b = −(
1
σ

1
σ a 1
σ b + 2

σ
2
σ a 2
σ b + 3

σ
3
σ a 3
σ b),

where the vectors 1
σ a, . . . , 3

σ a, together with ξa, form an orthonormal

(eigen)basis for gab at p. But now, by the isotropy condition, the coefficients
1
σ ,

2
σ ,

3
σ must be equal. (For all i and j, there is an isometry that leaves p and

(λab −α ξa ξ b) fixed but takes i
σa to

j
σa.) If their common value is β, then the

right-side tensor in equation (2.11.2) can be expressed as β hab.

It follows from (3) that the shear tensor field σab associated with ξa must be

of the form σab = β hab. But σab is “trace-free,” so 0 = σa
a = 3β. Thus, ξa has

vanishing shear in addition to being geodesic. And we assumed at the outset

that it is twist-free. So, by equation (2.8.13),

(2.11.3) ∇a ξb = 1

3
hab θ .

It also follows from (3) that we can construe (M, gab) as an exact solution

to Einstein’s equation for a perfect fluid source with four-velocity ξa. For if

Rab = α ξaξb +β hab, then

(2.11.4) Rab − 1

2
Rgab = 8π (ρ ξaξb − p hab),
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where ρ = (α− 3β)

16π
and p = (α+β)

16π
. (This perfect fluid need not satisfy any

of the standard energy conditions. We shall soon add one of those conditions

as a supplemental constraint, butwill workwithout it for now.) Inwhat follows,

we take Tab to be the indicated energy-momentum field; i.e., we take Tab =
ρ ξaξb − p hab. So (after inversion of equation (2.11.4)),

(2.11.5) Rab = 8π (Tab − 1

2
T gab) = 4 π (ρ+ 3p) ξa ξb − 4 π (ρ− p)hab.

Next we consider the geometry of spacelike hypersurfaces orthogonal

to ξa. Let S be one such hypersurface, and let hab and πab be the first

and second fundamental forms induced on S. (Recall section 1.10.) Note

that, by equations (1.10.16) and (2.11.3), the latter assumes a simple form:

πab = ha
m hb

n ∇m ξn = 1

3
hab θ . Now letRa

bcd be the curvature field associated

with the induced derivative operator D. Our goal is to derive an expression for

Ra
bcd in terms of θ , ρ, and p. We do so by first deriving one for Rbc and then

invoking a general fact about the relation between the two fields that holds

in the special case of three-dimensional manifolds. It follows from equation

(1.10.20), our expression above for πab, and from equation (2.11.5) that

Rbc = πn
n πbc −πab π

a
c + hn

b h
p
c Rnp − Rmbcr ξ

m ξ r

= 1

3
θ2 hbc − 1

9
θ2 hbc − 4 π (ρ− p)hbc − Rmbcr ξ

m ξ r .

So we need only derive an expression for the fourth term on the right side.

(Here and in what follows we shall use the abbreviation θ̇ = ξn ∇n θ .) Note

that by equations (2.11.3) and (2.11.1),

∇c ∇r ξb = 1

3
∇c (hrb θ ) = 1

3
[ hrb ξc θ̇ + θ ∇c (grb − ξr ξb) ]

= 1

3
[ hrb ξc θ̇ − θ ξr∇c ξb − θ ξb∇c ξr ]

= 1

3
[ hrb ξc θ̇ − 1

3
θ2 ξr hcb − 1

3
θ2 ξb hcr ].

Hence

Rmbcr ξ
m = 2∇[c ∇r] ξb = 2

3
ξ[c hr]b

(
θ̇ + 1

3
θ2
)

and, therefore,

Rmbcr ξ
m ξ r = −1

3
hbc

(
θ̇ + 1

3
θ2
)
.

Substituting this into our expression for Rbc yields

(2.11.6) Rbc = K hbc ,
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where K = 1
3 (θ

2 + θ̇ )− 4 π (ρ− p). Now we invoke our general fact. In the

special case of a three-dimensional manifold with metric, we (always) have28

(2.11.7)

Rabcd = (hbc Rad + had Rbc − hac Rbd − hbd Rac )+ 1

2
(hac hbd − had hbc )R.

So it follows from equation (2.11.6) (and its contracted form R = 3K) that

(2.11.8) Rabcd = (
R
2

− 2K) (hac hbd − had hbc ) = K
2
(had hbc − hac hbd).

Thus, recalling our discussion at the end of section 1.9, we see that (S, hab)

has constant curvatureK/2. (We shall soon have amore instructive expression

for K.)

Now we turn to considerations of dynamics. We claim that

θ̇ = − 4 π (ρ+ 3 p)− 1

3
θ2,(2.11.9)

ρ̇ = − (ρ+ p) θ .(2.11.10)

(We shall continue to use the dot notation. Here ρ̇ = ξn∇n ρ.) We get the first

from Raychaudhuri’s equation (2.8.17), using equation (2.11.5) and the fact

that ξa is geodesic, irrotational, and shear-free. The second is the continuity

condition (2.5.5). Recall that the latter follows from the conservation condition

∇a Tab = 0 as applied to our energy-momentum field Tab = ρ ξaξb − p hab.

(And the conservation condition itself is a consequence of Einstein’s equation.)

It is convenient and customary to introduce a new field a that we can think

of as a “scaling factor.” We want it to be constant on spacelike hypersurfaces

orthogonal to ξa; i.e., hmn∇m a = 0. So we need only specify its growth along

any one integral curve of ξa. We define it, up to a multiplicative constant, by

the condition

(2.11.11)
1

3
θ = ȧ

a
.

(Certainly this equation has solutions. Indeed, if the curve is parametrized by

a time function t where ξa = ∇a t, then all functions of the form a(t) = e f (t),

with f (t) =
∫ t

t0

θ

3
dt, qualify.) The condition inherits a natural interpretation

from the one we have given for θ . It concerns the rate of volume increase for

28.We shall later prove a close analogue of this result (proposition 4.1.4) in connection with our
discussion of classical spacetimes. It should be clear how to adapt the proof to the present context.
(We present the argument there rather than here because of added complications that arise when
one is dealing with classical spacetimes.)
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a fluid with four-velocity ξa. We saw in section 2.8 that if an (“infinitesimal”)

blob of the fluid has volume V , then V̇ = V θ . (Recall equation (2.8.15).) If we

think of the blob as a cube whose edges have length a, then V = a3 and we

are led immediately to equation (2.11.11). It is in this sense that a is a scaling

factor. If we now express our equations for θ̇ and ρ̇ above in terms of a, we

have

3
ä

a
= − 4 π (ρ+ 3 p),(2.11.12)

ρ̇ = − 3
ȧ

a
(ρ+ p)(2.11.13)

where, of course, ä = ξn∇n(ξm∇m a). These two jointly imply (by integration)

that there is a number k such that

(2.11.14)

(
ȧ

a

)2

− 8π

3
ρ = − k

a2
.

(This is “Friedmann’s equation.”) Since a was only determined initially up to

a multiplicative constant, we can now normalize it so that k = −1 or k = 0 or

k = 1.

We can use the listed equations to express several fields of interest directly

in terms of the scaling factor a and k:

8π ρ = 3
(

ȧ

a

)2

+ 3
k

a2
,(2.11.15)

8π p = − 2
ä

a
−
(

ȧ

a

)2

− k

a2
,(2.11.16)

Rabcd = − k

a2
(had hbc − hac hbd).(2.11.17)

Here equation (2.11.15) is just a reformulation of (2.11.14). Equation (2.11.16)

follows from (2.11.12) and (2.11.15). For equation (2.11.17), recall that,

by (2.11.8), Rabcd = K
2
(had hbc − hac hbd), where K = 1

3
(θ2 + θ̇ )− 4 π (ρ− p).

But
1

3
(θ2 + θ̇ ) = ä

a
+ 2

(
ȧ

a

)2

by equations (2.11.9), (2.11.11), and (2.11.12). And it follows from equations

(2.11.15) and (2.11.16) that

4 π (ρ− p) = ä

a
+ 2

(
ȧ

a

)2

+ 2
k

a2
.

So K = −2
k

a2
, as claimed.
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Equation (2.11.17) tells us that (S, hab) has constant curvature −k/a2.

Remember, though, that hab is negative definite, and curvature is usually

reported in terms of the positive definite metric −hab. This introduces a sign

change. (The switch from hab to −hab leaves D, Ra
bcd , and (hadhbc − hachbd)

intact, but reverses the sign of Rabcd = han Rn
bcd .) So we shall record our

conclusion this way:

(S,−hab) is a manifold of constant curvature, and the magnitude of its curvature

is (− 1/a2), 0, or (1/a2) depending on whether k is −1, 0, or 1.

We have reached this point assuming only a local version of the spatial

isotropy condition. But now suppose for a moment that the global version

holds as well, and let S be any maximally extended spacelike hypersurface

that is everywhere orthogonal to ξa. Then we can say more about the global

structure of (S,−hab). In this case, it follows from the way the global condition

is formulated that (S,−hab) is, itself, a homogeneous, isotropic three-manifold

in this sense: for all points p in S, and all unit vectors 1
σ a and

2
σ a in the tangent

space to S at p, there is an isometryψ : S → S that keeps p fixed and thatmaps
1
σ a to

2
σ a. This is a very strong constraint and rules out all but a small number

of possibilties (Wolf [64]). If k = 0, (S,−hab) cannot be just any flat three-

manifold. It must be isometric to three-dimensional Euclidean space; i.e., it

must also be diffeomorphic to R
3 and geodesically complete.29 If k = −1,

(S,−hab) must be isometric to three-dimensional hyperbolic space H3. (We

shall return to consider one realization of three-dimensional hyperbolic space

at the end of the section.) Finally, if k = 1, (S,−hab)must be isometric either to

three-dimensional spherical space S3 or to three-dimensional elliptic spaceP3.

The latter arises if one identifies “antipodal points” in the former.

Let us now revert to the local version of the spatial homogeneity and isotropy

condition—leaving open the global structure of maximally extended space-

like hypersurface orthogonal to ξa—and continue with our consideration of

dynamics. Thedifference in strength between the two versions of the condition

plays no role here.

So far, assuming only the spatial homogeneity and isotropy condition, we

have established that the scaling function a must satisfy equations (2.11.15)

and (2.11.16). Now for the first time, just so as to have one example, we assume

29. This should seem, at least, intuitively plausible. Consider a lower dimensional case. The
Euclidean plane is not the only two-dimensional Riemannian manifold of constant 0 curvature.
The cylinder and the torus also qualify. But neither of them is isotropic in the relevant sense. For,
given a point in either, the only global isometry of the manifold that keeps the point fixed is the
identity map.
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that our perfect fluid satisfies a particular equation of state, namely p = 0,

and consider how the latter constrains the growth of the scaling function.

(We are certainly not claiming that this assumption is realistic—i.e., holds

(approximately) in our universe.)

If we insert this value for p in equation (2.11.16) and multiply by a2 ȧ, we

arrive at 2 ä ȧ a + ȧ3 + k ȧ = 0. It follows that there is a number C such that

ȧ2 a + k a = 8π

3
ρ a3 = C. (The first equality follows from equation (2.11.15).)

So our task is now reduced to solving the differential equation

(2.11.18) ȧ2 − C

a
+ k = 0.

The solutions are the following. (It is convenient to express two of them in

parametric form.)

k = −1

⎧⎪⎪⎨⎪⎪⎩
a(x) = C

2
(cosh x − 1)

t(x) = C

2
(sinh x − x)

x ∈ (0, ∞)

k = 0 a(t) =
(
9C

4

) 1
3

t
2
3 t ∈ (0, ∞)

k = +1

⎧⎪⎪⎨⎪⎪⎩
a(x) = C

2
(1− cos x)

t(x) = C

2
(x − sin x).

x ∈ (0, 2π )

These are maximally extended solutions for the case where θ is positive at

at least one point. We get additional (time-reversed) solutions if we assume

that θ is negative at at least one point.

Rough (qualitative) graphs of these solutions are given in figure 2.11.1. If

k = −1 or k = 0, expansion starts at the big bang and continues forever. In

both cases, the rate of expansion
da

dt
decreases monotonically. But there is

this difference: the rate of expansion shrinks to 0 asymptotically when k =
0, but has a limit value that is strictly positive when k = −1. (One curve is

asymptotically flat; the other is not.) In contrast, if k = 1, expansion continues

until a maximum value is reached for a (at time t = C π

2
) and then a period

of accelerating contraction begins that leads to a big crunch.

PROBLEM 2.11.1. Confirm that the three stated solutions do, in fact, satisfy equation

(2.11.18).
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Figure 2.11.1. Rough graphs of the scaling factor a in the three cases.

PROBLEM 2.11.2. Consider a second equation of state, namely that in which ρ =
3 p. (For Tab = ρ ξa ξb − p hab, this is equivalent to T = 0.) Show that in this case

there is a number C′ such that

ȧ2 a2 + k a2 = 8π

3
ρ a4 = C′.

(So in this case, the equation to solve is not (2.11.18), but rather

ȧ2 − C′

a2
+ k = 0.)

It will be instructive to consider an ultra-simple, degenerate Friedmann

spacetime and see how some of our claims turn out in this special case. Let

(M, gab) be Minkowski spacetime. Let o be any point in M, and let O be the

(open) set of all points p inM such that o � p—i.e., such that there is a smooth

future-directed timelike curve that runs from o to p. (See figure 2.11.2.) Fur-

ther, letχa be the positionfield based at o—soχa vanishes at o and∇aχ
b = 0—

and let ξa be the field

ξa = (χbχ
b)−

1
2 χa

as restricted toO. The latter is, clearly, a smooth, future-directed, unit timelike

field on O. Moreover, it is (globally) hypersurface orthogonal; i.e., there exist

smooth scalarfields f and g onO such that ξa = f ∇a g . Indeed, ifχ = (χaχ
a)

1
2 ,

then χa = χ ξa, and

(2.11.19) ∇nχ = 1

2
(χaχ

a)−
1
2 ∇n (χbχ

b) = (χaχ
a)−

1
2 χb δn

b = χ−1 χn = ξn.

We claim that the restricted spacetime (O, gab|O) is spatially homogeneous and

isotropic with respect to ξa and so qualifies as a Friedmann spacetime (with

ρ = p = 0). Indeed, this reduces to a standard claim about the symmetries

of Minkowski spacetime. Given any point p in O, and any two (distinct) unit
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Figure 2.11.2. Minkowski spacetime (in profile) as restricted to the set of all points to the
timelike future of a point o. It qualifies as a (degenerate) Friedmann spacetimewith ρ = p = 0.
A χ = constant hyperboloid is indicated. It (together with the metric induced on it) is a
realization of three-dimensional hyperbolic space.

spacelike vectors
1
σ a and

2
σ a at p that are orthogonal to ξa, there is a spatial

rotation that keeps p fixed, preserves the field ξa, and takes
1
σ a to

2
σ a.30

We know from our earlier discussion that equation (2.11.3) must hold. In

this special case, it is easy to check the result with a direct computation. By

equation (2.11.19), we have

θ = ∇a ξ
a = ∇a (χ−1 χa) = χ−1 (∇a χ

a)−χ−2 χa ∇a χ(2.11.20)

= 4 χ−1 −χ−1 = 3 χ−1,

and, hence,

∇a ξb = ∇a (χ−1 χb) = χ−1 (∇a χb)−χ−2 χb ∇a χ = χ−1 gab −χ−2 χb ξa

= χ−1 gab −χ−1 ξb ξa = χ−1 hab = 1

3
θ hab,

as expected. Notice also, that if we take a = χ , then ȧ = ξa ∇aχ = 1 by

equation (2.11.19) and
1

3
θ = ȧ

a
.

This choice of a satisfies Friedmann’s equation (2.11.14) with ρ = 0 and

k = −1.

Now consider the hyperboloids in O defined by the condition χ = constant.

(See figure 2.11.2 again.) Each is a spacelike hypersurface that is everywhere

30. Let
o
ξa be a constant unit timelike field on O that agrees with ξa at p, and let σ a be a constant

unit spacelike field that is orthogonal to all three vectors ξa,
1
σ a, and

2
σ a at p. Then the rotation in

question is generated by the Killing field κb = εabcd χ
a

o
ξ c σ d ( for either choice of volume element

εabcd ). Recall equation (2.9.2).
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orthogonal to ξa. (For if σ a is a vector at a point of one such hypersurface S
that is tangent to S, then σ n∇n χ = 0 and, therefore, by equation (2.11.19),

σ n ξn = σ n∇n χ = 0.)

Let S be one such hyperboloid. Let D be the induced derivative operator

on S, and let Rabcd be its associated curvature field. We know from equation

(2.11.17) that

Rabcd = 1

χ2 (had hbc − hac hbd),

since here a = χ and k = −1. Again, we can check this directly. To do so,

we first compute the second fundamental form πab on S. (Recall equation
(1.10.16).) Since hb

nχn = hb
n(χ ξn) = 0, we have

πab = ha
m hb

n ∇m ξn = ha
m hb

n ∇m (χ−1χn) = χ−1 ha
m hb

n ∇m χn

= χ−1 ha
m hb

n gmn = χ−1 hab.

It follows, by equation (1.10.22), that

Rabcd = πad πbc −πac πbd = 1

χ2 (had hbc − hac hbd),

as expected.

Thus, if S is characterized by the value χ , then (S,−hab) is a three-

dimensional manifold with constant curvature −1/χ2. Moreover, as we know

from our discussion above, it cannot be just any such manifold, but must be,

in fact, isometric to three-dimensional hyperbolic space H3. If we had started

with a three-dimensional version of Minkowski spacetime, our hyperboloid

(with inducedmetric)wouldbe isometric to two-dimensional hyperbolic space,

otherwise known as the “Lobatchevskian plane.” (For more about this

“hyperboloid model” for Lobatchevskian plane geometry see, e.g., Reynolds

[52].)

Finally, recall the remarks we made in section 2.7 about the cosmological

constant �. If we include the constant in Einstein’s equation—i.e., if we take

the latter to be equation (2.7.4)—then Raychaudhuri’s equation (2.8.17) yields

(2.11.21) θ̇ = −4 π (ρ+ 3 p)− 1

3
θ2 +�

rather than equation (2.11.9). This, in turn, leads to Friedmann’s equation in

the form

(2.11.22)

(
ȧ

a

)2

− 8π

3
ρ = − k

a2
+ �

3

rather than equations (2.11.14).
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Equation (2.11.21) serves to explain Einstein’s introduction of the cosmo-

logical constant. He thought he needed to find a non-expandingmodel (θ = 0)

to represent the universe properly. And, in our terms, he was considering

only Friedmann spacetimes andonly perfect fluid sources that are pressureless

(p = 0) and non-trivial (ρ > 0). It is an immediate consequence of equation

(2.11.21) that these conditions can be satisfied if, but only if, � = 4πρ > 0.

And in this case, it follows from equations (2.11.22) and (2.11.11) that

k/a2 = 4πρ. So (since k is normalized to be 1, 0, or −1), we see that the

stated conditions can be satisfied iff

� = 4πρ > 0,

1

a2
= 4πρ,

k = 1.

(These conditions characterize Einstein static spacetime.)

It is also an immediate consequence of equation (2.11.21)—at least, if our

universe can be represented as a Friedmann spacetime—that evidence for an

accelerating rate of cosmic expansion (θ̇ > 0) counts as evidence either for a

positive value for � or for a violation of the strong energy condition. (Recall

from problem 2.7.3 that a perfect fluid satisfies the strong energy condition iff

ρ+ p ≥ 0 and ρ+ 3 p ≥ 0.)
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3.1. Gödel Spacetime

Kurt Gödel is, of course, best known for his work in mathematical logic and

the foundations of mathematics. But in the late 1940s he made an important

contribution to relativity theory byfinding anewsolution toEinstein’s equation

(Gödel [25]). It represents a possible universe with remarkable properties. For

one thing, the entirematerial content of theGödel universe (on a cosmological

scale) is in a state of uniform, rigid rotation. For another, light rays and free

test particles in it exhibit a kind of boomerang effect. Most striking of all, the

Gödel universe allows for the possibility of “time travel” in a certain interesting

sense.1

Though not a live candidate for describing our universe (the real one),

Gödel’s solution is of interest because of what it tells us about the possibilities

allowed by relativity theory. In this section, we present the solution and estab-

lish several of its basic properties in a running list. We shall later use it as an

example when we consider orbital rotation in section 3.2.

It will be helpful to keep in mind two different coordinate expressions for

the Gödel metric and also a coordinate-free characterization. We start with the

former. Let us officially take Gödel spacetime to be the pair (M, gab), where M

is the manifold R
4 and where

gab = μ2
[
(dat)(dbt)− (dax)(dbx)+ e2x

2
(day)(dby)(3.1.1)

− (daz)(dbz)+ 2 ex (d(at)(db)y)
]
.

1. In addition to finding this one new exact solution to Einstein’s equation, Gödel [26] also
established the existence of solutions representing universes that are rotating and expanding,
though he did not exhibit any of the latter explicitly. For a review of Gödel’s contributions to
relativity theory and cosmology (and subsequent work on rotating solutions), see Ellis [18].

195
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Here μ is an arbitrary positive number (a scale factor), and t, x, y, z are global

coordinates on M.2

In what follows, we use the abbreviations

(3.1.2) ta =
(
∂

∂t

)a

xa =
(
∂

∂x

)a

ya =
(
∂

∂y

)a

za =
(
∂

∂z

)a

.

To confirm that gab is a metric of signature (1, 3), it suffices to check that the

fields

(3.1.3)
ta

μ
,

xa

μ
,

√
2

μ
(ta − e−xya),

za

μ

form an orthonormal basis (of the appropriate type) at each point. The first,

in particular, is a smooth, unit timelike vector field on M. That there exists

such a field shows us that Gödel spacetime is temporally orientable. It is also

orientable since the anti-symmetrized product of the four fields in equation

(3.1.3) qualifies as a volume element.

(1) Gödel spacetime is temporally orientable and orientable.

We shall work with the temporal orientation determined by ta in what follows.

We note for future reference that the inverse field of gab is

(3.1.4) gbc = 1

μ2

[
−tbtc − xbxc − 2 e−2x ybyc − zbzc + 4 e−x t(byc)

]
,

and that lowering indices in equation (3.1.2) with gab yields the following:

ta = μ2(∇a t + ex∇a y),(3.1.5)

xa = −μ2 ∇a x,(3.1.6)

ya = μ2
(

e2x

2
∇a y + ex∇a t

)
,(3.1.7)

za = −μ2 ∇a z.(3.1.8)

(Here ∇ is the derivative operator on M compatible with gab, and we have

switched from writing, for example, “dat” to “∇at”.)

2. More precisely, t, x, y, z are real-valued functions on M, and the composite map  : p �→
(t(p), x(p), y(p), z(p)) is a bijection between M and R

4 that belongs to the collection C of 4-charts
that defines the manifold R

4. The coordinates t, x, y, z correspond to u1, u2, u3, u4 in the notation

of section 1.2. So, for example, we understand the vector
(
∂

∂t

)a

at any point p to be the tangent

there to the curve r �→  −1(t(p)+ r , x(p), y(p), z(p)).
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We claim, first, that the four fields

(3.1.9) ta, ζ a = (xa − y ya), ya, za

are all Killing fields. They are, in fact, the generators, respectively, of one-

parameter (global) isometry groups { t
�r }r∈R, { ζ�r }r∈R, { y

�r }r∈R, { z
�r }r∈R on M

defined by

t
�r ( p) =  −1 (t(p)+ r , x( p), y( p), z( p)

)
,

ζ

�r ( p) =  −1(t( p), x( p)+ r , e−r y( p), z( p)),

y
�r ( p) =  −1(t( p), x( p), y( p)+ r , z( p)),

z
�r ( p) =  −1(t( p), x( p), y( p), z( p)+ r),

where  : M → R
4 is the chart defined by  ( p) = (t( p), x( p), y( p), z( p)).

Here, of course, the group operation is composition.3 An equivalent formu-

lation may be more transparent. For example, we can understand
ζ

�r to be

defined by the requirement that, for all numbers t0, x0, y0, z0,

3. There are a few things that have to be checked. First, each of these maps (for any choice of r)

is, in fact, an isometry. This follows from basic facts we have recorded in section 1.5. Consider
ζ

�r ,

for example. By equations (1.5.6) and (1.5.7), we have (
ζ

�r)∗(e2x ) = e2(x+r) and (
ζ

�r)∗(day) = da((
ζ

�r)∗
(y)) = da(e−r y) = e−r (day). Hence,

(
ζ

�r)∗(e2x (day)(dby)) = ((
ζ

�r)∗(e2x )) ((
ζ

�r)∗(day)) ((
ζ

�r)∗(dby)) = e2x (day)(dby).

Arguing in this way, we can show that all the terms in gab are preserved by (
ζ

�r)∗ and, so, (
ζ

�r)∗(gab) =
gab. Second, each of the groups does, in fact, have the indicated vector field as its generator. This

follows from our discussion in sections 1.2 and 1.3. Consider { ζ�r }r∈R, for example. Let p be a point
with coordinates  ( p) = (t0, x0, y0, z0), and let γ : R → M be the curve through p defined by

γ (r) = ζ

�r ( p) =  −1(t0, x0 + r , e−r y0, z0).

We need to show that
→
γ a = ζ a at all points on the image of γ . Let f be any smooth field on some

open set containing p. Then, by the chain rule, at all points γ (r),

→
γ a( f ) = d

dr
( f ◦ γ )= d

dr
( f ◦ −1)(t0, x0 + r , e−r y0, z0)= ∂ (f ◦ −1)

∂ x2 · 1+ ∂ ( f ◦ −1)

∂ x3 · (−e−r y0)

= ∂ f

∂ x
· 1+ ∂ f

∂ y
· (− e−r y0) = ∂ f

∂ x
− y

∂ f

∂ y
=
(
(
∂

∂ x
)a − y (

∂

∂ y
)a
)
( f ) = ζ a( f ).

So we are done. Here x1, x2, x3, x4 are the coordinate projection functions on R
4 that we con-

sidered in section 1.2. So, for example, (x3 ◦ )( p) = y( p). And the equality
∂ f

∂ y
= ∂ ( f ◦ −1)

∂ x3

is an instance of equation (1.2.7). (As mentioned in the preceding note, the coordinates t, x, y, z
correspond to u1, u2, u3, and u4 in the notation of section 1.2.)
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( ◦ ζ

�r ◦ −1) (t0, x0, y0, z0) = (t0, x0 + r , e−r y0, z0).

The field xa is not a Killing field, but it is the generator of the one-parameter

group of diffeomorphisms { x
�r }r∈R on M given by

x
�r ( p) =  −1(t( p), x( p)+ r , y( p), z( p)).

The five fields under consideration satisfy the following Lie bracket relations:

(3.1.10) [ta, ζ a] = [ta, ya] = [ta, za] = [ζ a, za] = [ya, za] = 0,

(3.1.11) [xa, ta] = [xa, ζ a] = [xa, ya] = [xa, za] = 0,

(3.1.12) [ζ a, ya] = ya.

There are various ways to see why these hold. For those in the first two rows,

it is easiest to invoke a basic result (that we did not formulate in chapter 1).

PROPOSIT ION 3.1.1. Let αa and βa be smooth fields on a manifold that generate

one-parameter groups of diffeomorphisms {α�r }r∈R and {β�r }r∈R on that manifold.

Then [αa, βa] = 0 iff
α

�r and
β

�r ′ commute for all r and r ′.

(See, for example, Spivak [57, volume 1, p. 217].) It is clear in each case that

the relevant commutation relations obtain; e.g.,
t
�r and

ζ

�s commute for all r

and s.4 For equation (3.1.12), note that

[ζ a, ya] = −[ya, ζ a] = −£ya (xa − y ya)

= [xa, ya] + (£yay) ya + y [ya, ya] = ya,

since £yay = yn∇ny = 1, and [xa, ya] = [ya, ya] = 0.

By composing the isometries
t
�r ,

ζ

�r ,
y
�r , and

z
�r (with appropriate choices

for r in each case), we can go from any one point in M to any other. Moreover,

4. For all p, r , and s, we have

t
�r (

ζ

�s ( p)) =  −1
(

t(
ζ

�s ( p))+ r , x(
ζ

�s ( p)), y(
ζ

�s ( p)), z(
ζ

�s ( p))
)

=  −1 (t( p)+ r , x( p)+ s, e−sy( p), z( p)
)
.

And a similar computation shows that

ζ

�s (
t
�r ( p)) =  −1 (t( p)+ r , x( p)+ s, e−sy( p), z( p)

)
.

So
t
�r (

ζ

�s ( p)) = ζ

�s (
t
�r ( p)).
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each of the individual isometries, and so any composition of them, preserves

the fields ta and za. (This follows from propositions 1.6.6 and 1.6.4, and the

fact that each of the generators ta, ζ a, ya, za has a vanishing Lie bracket with

ta and za.) So we have the following homogeneity claim.

(2) Gödel spacetime is (globally) homogeneous in this strong sense: given any

two points p and q in M, there is an isometryψ : M → M such thatψ( p) = q,

ψ∗(ta) = ta, and ψ∗(za) = za.

(The maps referred to here preserve temporal orientation automatically

because they preserve ta, and we are using that field to define temporal orien-

tation.) We shall repeatedly invoke this strong form of homogeneity in what

follows. For example, we shall prove an assertion about a particular integral

curve of ta (that makes reference only to gab, ta, and za), and then claim that it

necessarily holds for all integral curves of that field.

The four Killing fields ta, ζ a, ya, za are clearly independent of each other.

In fact, one can find a fifth that is independent of these four; e.g.,

κa = −2 e−x ta + y xa +
(

e−2x − 1

2
y2
)

ya

= −2 e−x ta + y ζ a +
(

e−2x + 1

2
y2
)

ya.

(To confirm that it is a Killing field, it suffices to expand ∇a κb and use our

expressions above for ta, xa, and yb to show that its symmetric part vanishes.5)

Now we do a bit of calculation and derive an expression for the Ricci tensor

field Rab. Note first that

5. We have

∇a κb = −2 e−x ∇a tb + 2 e−x (∇a x) tb + y ∇a ζb + (∇a y) ζb +
(

e−2x + 1

2
y2
)

∇a yb

−2 e−2x (∇a x) yb + y (∇a y) yb

= −2 e−x ∇a tb + y ∇a ζb +
(

e−2x+ 1

2
y2
)

∇a yb

+ (∇a x)(2 e−x tb − 2 e−2x yb)+ (∇a y)(ζb + y yb).

But (2 e−x tb − 2 e−2x yb) = μ2 ∇b y and (ζb + y yb) = −μ2 ∇b x. And the first three terms have
vanishing symmetric part since ta, ζ a, ya are Killing fields. So ∇(a κb) = 0.
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∇a tb = μ2 ex (∇[ax)(∇b]y),(3.1.13)

∇a xb = μ2
[

e2x

2
(∇ay)(∇by)+ ex (∇(ay)(∇b)t)

]
,(3.1.14)

∇a yb = μ2 [e2x (∇[ax)(∇b]y)+ ex (∇[ax)(∇b]t)
]
,(3.1.15)

∇a zb = 0.(3.1.16)

These can be checked easily by using equations (3.1.5)–(3.1.8) and the fact that

ta, ζ a, ya, za are Killing fields. Since ta is a Killing field, for example, we have

∇(a tb) = 0 and, therefore,

∇a tb = ∇[a tb] = μ2 (∇[a∇b]t + ex ∇[a∇b]y + ex (∇[ax)(∇b]y)
)

= μ2 ex (∇[ax)(∇b]y).

This gives us equation (3.1.13). The other cases are handled similarly.6 It

follows immediately that ta, xa and za are all geodesic fields:

(3.1.17) ta∇a tb = 0 xa∇a xb = 0 za∇a zb = 0.

We shall be particularly interested in the (maximally extended) integral curves

of ta. Their images are sets of the form { −1(t, x0, y0, z0) : t ∈ R}, for particular
choices of x0, y0, z0. We shall call these curves (or their images) t-lines.

Now we turn to Rab. We claim, first, that symmetry considerations alone

establish that it must have the form

(3.1.18) Rab = α t̂at̂b +β (gab − t̂at̂b − ẑaẑb)

where α and β are particular numbers (to be determined), and t̂a and ẑa are

normalized versions of ta and za. (So ta = μ t̂a and za = μ ẑa.) The argument

we use to establish this is much like that used in section 2.11 when we consid-

ered the Ricci tensor field in Friedmann spacetimes. In both cases, it turns on

an isotropy condition. Shortly, when we switch to an alternate coordinate rep-

resentation of the Gödel metric, it will be clear that given any t-line (through

any point), there is a global isometry (a rotation) that leaves fixed every point

on the line and also preserves the field za. In effect, we now make use of that

rotational symmetry, but cast the argument in terms of Killing fields rather

than of the rotations themselves.

6. For equation (3.1.14), note that since ∇[a xb] = −μ2 ∇[a∇b]x = 0, and since (xa − y ya) and
ya are Killing fields,

∇a xb = ∇(a xb) = y ∇(ayb) + (∇(ay) yb) = (∇(ay) yb) = μ2
[

e2x

2
(∇ay)(∇by)+ ex (∇(ay)(∇b)t)

]
.



“530-47773_Ch03_2P.tex” — 1/23/2012 — 17:18 — page 201

−1

0

+1

special topics / 201

Since we can find an isometry that maps any one point in M to any other

and preserves both ta and za, it will suffice to show that equation (3.1.18) holds

at one point, say p =  −1(0, 0, 0, 0). To do so, it will suffice to show, in turn,

that the two sides of equation (3.1.18) yield the same result when contracted

with each of the vectors ta, xa, (ta − ya), za. (It is convenient to work with this

basis because the vectors are mutually orthogonal at p. It does not matter that

they are not normalized.) So our task reduces to showing that the following

all hold at p ( for some values of α and β):

(i)Rab ta = α tb, (ii)Rab xa = β xb,

(iii)Rab (t
a − ya) = β (tb − yb), and (iv)Rab za = 0.

Given any Killing field λa in any spacetime, we have

(3.1.19) Rab λ
a = Rn

abn λ
a = −Ra

nb
n λa = ∇n ∇b λ

n.

(The second equality follows from the symmetries of the Riemann curvature

tensor field, and the third follows from proposition 1.9.8.) So, in particular,

applying this result to the Killing field za in Gödel spacetime, and recalling

equation (3.1.16), we have Rab za = ∇n ∇b zn = 0. This gives us (iv).
Next, consider the field

(3.1.20) κ ′a = −2 (e−x − 1) ta + y xa +
(

e−2x − 1

2
y2 − 1

)
ya.

It is a linear combination of Killing fields (κ ′a = κa + 2 ta − ya) and so is, itself,

a Killing field. What is important about it is that it vanishes at p.7 Notice that

we have

(3.1.21) [ta, κ ′a] = [za, κ ′a] = 0,

(3.1.22) [xa, κ ′a] = 2 e−x ta − 2 e−2x ya,

(3.1.23) [ya, κ ′a] = xa − y ya

everywhere,8 and so

£κ ′ xa = [κ ′a, xa] = −2(ta − ya),(3.1.24)

£κ ′ ya = [κ ′a, ya] = −xa(3.1.25)

7. It is, in fact, up to a constant, just the rotational Killing field (∂/∂φ)a that we shall consider
below. The latter, as we shall see, generates a one-parameter group of rotations that keep fixed all
points on the t-line through p (and preserve za).

8. These all follow easily from the Lie bracket relations that we have already established.
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at p. Since κ ′a vanishes at p, we have £κ ′ f = κ ′a∇af = 0 at p for all smooth

scalar fields f . So, in particular, since κ ′ Lie derives Rab (as all Killing fields

do) and Lie derives ta (by equation (3.1.21)), we have

0 = £κ ′ (Rab tayb) = Rab ta (£κ ′yb) = −Rab taxb,(3.1.26)

0 = £κ ′ (Rab taxb) = Rab ta (£κ ′xb) = −2Rab ta(tb − yb)(3.1.27)

at p. These two, together with (iv), show that Rab ta must be proportional to tb
at p, which is what we need for (i). Similarly, we have

0 = £κ ′ (Rab ya yb) = Rab £κ ′ (ya yb) = 2Rab ya (£κ ′yb) = −2Rab ya xb

at p. This, together with equation (3.1.26) and (iv), shows that (ii) must hold

for some β. Finally, (iii) follows from (ii). For if Rab xa = β xb, then

−2Rab (t
a − ya) = Rab £κ ′xa = £κ ′ (Rab xa) = £κ ′ (β xb) = β£κ ′xb

= −2β (tb − yb).

(For the final equality, we use the fact that £κ ′ gab = 0 and, so, £κ ′ xb =
£κ ′ (gab xa) = gab £κ ′xa = −2 gab (ta − ya) = −2 (tb − yb).)

Now it remains only to compute α and β in equation (3.1.18). It follows

from equation (3.1.17)—and from equation (3.1.19) as applied to the Killing

fields ta and xa—that

α = Rab t̂at̂b = μ−2 Rab tatb = μ−2 tb ∇n ∇b tn

= μ−2[∇n (tb∇b tn)− (∇n tb)(∇b tn)] = −μ−2 (∇n tb)(∇b tn)

and (by the same argument)

β = −μ−2 (∇n xb)(∇b xn).

Now, raising indices in equations (3.1.13) and (3.1.14), using equation (3.1.4),

yields

∇n tb = ex

2
xb(∇n y)+ (−e−x yb + tb)(∇n x),

∇n xb = ex

2
tb(∇n y)+ (−e−x yb + tb)(∇n t).

It follows that

(3.1.28) (∇n tb)(∇b tn) = −1 (∇n xb)(∇b xn) = 0

and, therefore, α = μ−2 and β = 0. Thus we have

(3.1.29) Rab = μ−2 t̂a t̂b.
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So R = μ−2 and

Rab − 1

2
R gab = μ−2 t̂a t̂b − μ

−2

2
gab = μ−2

2

(
t̂a t̂b − (gab − t̂a t̂b)

)
.

Therefore,

(3) Gödel spacetime is a solution to Einstein’s equation (without cosmological

constant)

Rab − 1

2
R gab = 8π

(
ρ t̂a t̂b − p (gab − t̂a t̂b)

)
for a perfect fluid with four-velocity t̂a, mass-density ρ = 1/(16π μ2), and

pressure p = 1/(16π μ2). (Equivalently, it is a solution to Einstein’s equation

with cosmological constant λ = −1/(2μ2)

Rab − 1

2
R gab − λ gab = 8πρ′ t̂a t̂b

for a dust field with mass-density ρ′ = 1/(8π μ2).)

Recall that a perfect fluid satisfies the dominant energy condition iff |p|
≤ ρ. So if we construe Gödel spacetime as a perfect fluid solution to Einstein’s

equation without cosmological constant, the perfect fluid in question is only

“borderline” for satisfying the condition.

Let us further consider the normalized field t̂a = ta/μ, whichwe nowunder-

stand to represent the four-velocity of the background source fluid. We know

that its associated expansion field θab vanishes (because it is a Killing field), as

does its acceleration (by equation (3.1.17)). Let us now compute its associated

rotation field ωa.

Let εabcd be a volume element on M. (We know that volume elements exist

since, e.g., t[a xb yc zd] is an anti-symmetric field on M that is everywhere non-

vanishing. We need only normalize it to obtain a volume element.) The field

∇a tb is anti-symmetric, and it is orthogonal to both ta and za (by equation

(3.1.13)). So we can express it in the form

∇a tb = f εabcd tc zd

for some field f . To determine f , we need only contract each side with itself

and make use of equation (3.1.28):

1 = (∇a tb) (∇a tb) = f 2 εabcd tc zd εabmn tm zn

= −4 f 2 δ[mc δ
n]

d tc zd tm zn

= −2 f 2 (tm zn − tn zm) tm zn = 2μ4 f 2.
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Taking f to be positive—we can always switch from the volume element

εabcd to −εabcd if necessary—we have

∇a tb = 1√
2μ2

εabcd tc zd .

Hence, using this volume element to compute the rotation vector field,

ωa = 1

2
εabcd t̂b ∇c t̂d = 1

2μ2 ε
abcd tb ∇c td(3.1.30)

= 1

2
√
2μ4

εabcd tb εcdmn tm zn = −4

2
√
2μ4

δ[am δ
b]

n tb tm zn

= 1√
2μ4

(tbtb) za = 1√
2μ2

za.

Let us record this result too.

(4) The four-velocity t̂a in Gödel spacetime is expansion free (θ = 0), shear

free (σab = 0), and geodesic (t̂n∇nt̂a = 0), but its rotation field ωa is non-

vanishing and constant (∇a ω
b = 0). Indeed, ωa is just (1/

√
2μ2) za. The

Gödel universe is thus in a state of uniform, rigid rotation.

It turns out that there are only two homogeneous perfect fluid solutions in

which (i) the mass density is non-zero, (ii) the fluid four-velocity is expansion

free, shear free, and geodesic, and (iii) the underlying manifold is simply

connnected,9 namely the Einstein static universe (Hawking and Ellis [30]) and

Gödel spacetime. (Gödel asserted this result, without proof, in [25]. Proofs can

be found in Ozsváth [48] and Farnsworth and Kerr [19].) So Gödel spacetime

itself is picked out if one adds the requirement that (iv) the rotation field of

the fluid is non-vanishing.

We next want to establish the existence of closed timelike curves in Gödel

spacetime and characterize its timelike and null geodesics. To do so, it will

be convenient to switch to a different coordinate representation of the metric.

This one, cast in terms of a cylindrical coordinate system t̃, r ,φ, z̃, makes

manifest the rotational symmetry of Gödel spacetime about a particular axis,

but hides its homogeneity:

gab = 4μ2
[
(dat̃)(dbt̃)− (dar)(dbr)− (daz̃)(dbz̃)(3.1.31)

+ (sh4 r − sh r2)(daφ)(dbφ)+ 2
√
2 sh2r (d(at̃)(db)φ)

]
.

(Here we write “ch” and “sh” for “cosh” and “sinh” respectively.)

9. The third condition is needed to rule out further examples that can be generated by identifying
points.
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Wehave to be a bit careful here as towhatwemeanby a “coordinate system.”

We are not quite talking about a 4-chart in the sense of section 1.1. Here is a

more precise formulation. Let A be the “axis set” consisting of all points in M

of the form −1(t, 0, 0, z), and let M− be the excised set M − A. We claim that

there exist smooth maps

(3.1.32) t̃ : M → R, r : M− → R
+, φ : M− → S1, z̃ : M → R

such that the composite map

(3.1.33) " : M− → R × R
+ × S1 × R

determined by the rule q �→ (t̃(q), r(q),φ(q), z̃(q)) is a diffeomorphism and

equation (3.1.31) holds onM−. (HereR
+ is the set of reals that are strictly posi-

tive, and S1 is identified, in the usual way, withRmod 2π .) Under these condi-

tions, we can define coordinate vector fields (∂/∂ t̃)a, (∂/∂r)a, (∂/∂φ)a, (∂/∂ z̃)a

much as we did in section 1.1.10 We shall use the following abbreviations for

them:

t̃a =
(
∂

∂ t̃

)a

ra =
(
∂

∂r

)a

φa =
(
∂

∂φ

)a

z̃a =
(
∂

∂ z̃

)a

.

The radial coordinate r can be extended to a map r : M → R
+ ∪ {0} that is,

at least, continuous on the axis A.

The relation between the new coordinates and the old is given by the

following conditions:

ex = ch 2r + (cosφ)(sh 2r),(3.1.34)

y ex = √
2 (sinφ)(sh 2r),(3.1.35)

z = 2 z̃,(3.1.36)

tan

(
φ

2
+ t − 2 t̃

2
√
2

)
= e−2r tan

φ

2
where

∣∣∣∣ t − 2 t̃

2
√
2

∣∣∣∣ < π2 .(3.1.37)

With some work, one can show directly that these conditions do, in fact,

properly define smoothmaps over the domains indicated in (3.1.32)11 and use

them to derive the expression for gab given in equation (3.1.31). (The details

are worked out with great care in Stein [58].) We skip this work and make

just two remarks about the conditions. Later, in an appendix, following Gödel

[25], we shall establish the equivalence of the two coordinate representations

10. So, for example, let q be any point inM−. Then s �→ "−1(t̃(q), r(q),φ(q)+ s, z̃(q)) is a smooth
curve through q. We understand (∂/∂φ)a at q to be the tangent vector to the curve there.

11. Strictly speaking, the conditions define only t̃ on the restricted domain M−. But it can be
smoothly extended to all of M.
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a somewhat different way. It will involve a direct appeal to a coordinate-free

description of the metric.

First, it is clear from the first two conditions in the list why we need to

restrict attention to M−. If x = y = 0, they will be satisfied iff r = 0. But if

r = 0, those conditions impose no constraints on φ (and neither do the other

conditions). So φ is not well defined on M − M−. (On the other hand, if either

x = 0 or y = 0, then equations (3.1.34) and (3.1.35) determine unique values

for both φ and r .)

Second, though the exact relation between t and t̃ is complex, their asso-

ciated coordinate fields t̃a and ta are proportional to each other; i.e, we have

t̃a = α ta for some α. This follows from the first three conditions. For when

r ,φ, z̃ are fixed, x, y, z are fixed as well. So every t̃-line (characterized by con-

stant values of r ,φ, z̃) is also a t-line (characterized by constant values for

x, y, z). And it follows from equation (3.1.37) that the proportionality factor

must be 2.12 So we have

(3.1.38) t̃a = 2 ta.

We also have

(3.1.39) z̃a = 2 za

from equation (3.1.36).

Let us now accept as given the second coordinate representation of the

Gödel metric (in terms of cylindrical coordinates). We shall work with it much

as we did the first representation. Note that the inverse of the metric now

comes out (in M−) as

gbc = 1

4μ2

[
− (sh4r − sh2r)

(sh4r + sh2r)
t̃b t̃c − rb rc − z̃b z̃c(3.1.40)

− 1

(sh4r + sh2r)
φb φc + 2

√
2

(sh4r + sh2r)
t̃(b φc)

]
.

Consider φa. Since

(3.1.41) φa φ
a = 4μ2 (sh4r − sh2r),

it qualifies as spacelike, null, or timelike at a point q in M− depending on

whether r(q) is less than, equal to, or greater than the critical value rc = ln

(1+ √
2) where sh assumes the value 1. The angular coordinate φ is defined

12. It follows from equation (3.1.37), specifically, that the difference (t − 2 t̃) is constant on
every t̃-line; i.e., once r and φ are fixed, (t − 2 t̃) is fixed as well. So t̃n∇n(t − 2 t̃) = 0. It follows that
α = α tn∇nt = t̃n∇nt = t̃n∇n(2 t̃) = 2.
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only on M−, but we can smoothly extend φa itself to all of M by taking it to be

the zero vector on M − M−—i.e., on the axis A. We shall understand it that

way in what follows. Where φa is timelike (and where it is null but non-zero)

it qualifies as future-directed, because temporal orientation is determined by

ta (or, equivalently, t̃a), and t̃aφa = 4
√
2μ2 sh2r . (So t̃aφa > 0, unless r = 0.)

Both t̃a and z̃a are, of course, Killing fields. We know that from before.

So is φa. It is the generator of a one-parameter family of (global) isometries

{φ�s}s∈S1 defined by
φ

�s ( p) =
{
"−1(t̃( p), r( p), φ( p)+ s, z̃( p)) if p ∈ M−,
p if p ∈ A.

The three Killing fields under consideration have vanishing Lie brackets with

one another:

(3.1.42) [t̃a, φa] = [t̃a, z̃a] = [φa, z̃a] = 0.

(Once again, these relations follow most easily from proposition 3.1.1.) Now

let p be any point on the axis A. The maps
φ

�s all leave p fixed, and leave t̃a

and z̃a fixed as well (by proposition 1.6.6). So if U is the two-dimensional

subspace of Mp that is orthogonal to both t̃a and z̃a, the maps
φ

�s induce a

one-parameter family of rotations of U . And what is true here of p is true

quite generally, because of homogeneity as formulated in (2). So we have the

following isotropy claim.

(5) Gödel spacetime is (globally) isotropic in the following sense: given any point p,

and any two unit spacelike vectors
1
σa and

2
σa at p that are orthogonal to both

t̃a and za, there is an isometryψ : M → M such thatψ( p) = p, ψ∗(t̃a) = t̃a,

ψ∗(z̃a) = z̃a, and ψ∗(
1
σ a) = 2

σ a.

And now it is also clear, as announced, that Gödel spacetime admits closed

timelike (and closed null) curves. Indeed, consider the set of (maximally ex-

tended) integral curves ofφa. They are closed curves, characterized by constant

values for t̃, r , and z̃. We shall call them (or their images) Gödel circles. As we

have just seen, they qualify as timelike if r > rc and null if r = rc . These

particular curves are centered on the axis A. But by homogeneity, it follows

that given any point in Gödel spacetime, there are closed timelike and closed

null curves passing through the point. Indeed, we can make a much stronger

assertion. The “causal structure” of Gödel spacetime is completely degenerate

in the following sense.

(6) Given any two points p and q in Gödel spacetime, there is a smooth, future-

directed timelike curve that runs from p and q. (Hence, since we can always
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combine timelike curves that run in the two directions and smooth out the

joints, there is a smooth, closed timelike curve that contains p and q.)

Figure 3.1.1. Gödel spacetime with one dimension (the z̃ dimension) suppressed.

Thus a time traveler in Gödel spacetime can start at any point p, return to

that point, and stop off at any other desired point q along the way. To see why

(6) holds, consider figure 3.1.1. It gives, at least, a rough, qualitative picture

of Gödel spacetime with one dimension suppressed. We may as well take the

central line to be the axis A and take p to be a point on A. (By homogeneity

once again, there is no loss in generality in doing so.) Notice first that given

any other point p′ on A, no matter how “far down,” there is a smooth, future-

directed timelike curve that runs from p to p′. We can think of it as arising

in three stages. (i) By moving “radially outward and upward” from p (i.e.,

along a future-directed timelike curve whose tangent vector field is of the

form t̃a +α ra, with α positive13), we can reach a point p1 with coordinate

value r > rc . At that radius, we know, φa is timelike and future-directed. So

we can find an ε > 0 such that (−ε t̃a +φa) is also timelike and future-directed

there. (ii)Nowconsider themaximally extended, future-directed timelike curve

γ through p1 whose tangent is everywhere equal to (−ε t̃a +φa) ( for that value

of ε). It is a spiral-shaped curve of fixed radius, with “downward pitch.” By

following γ far enough, we can teach a point p2 that is well “below” p′. (We

can overshoot asmuch as wemight want.) Now, finally, (iii) we can reach p′ by
working our way upward and inward from p2 via a curve whose tangent vector

is the form t̃a +α ra, but now with α negative. It remains only to smooth out

the “joints” at intermediate points p1 and p2 to arrive at a smooth timelike

curve that, as required, runs from p to p′.

13. Note that t̃a +α ra is timelike so long as α2 < 1.
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Now consider any point q. It might not be possible to reach q from p in the

same simple way we went from p to p1—i.e., along a future-directed timelike

curve thatmoves radially outward and upward—pmight be too “high” for that.

But we can get around this problem by firstmoving to an intermediate point p′

on A sufficiently “far down”—we have established that that is possible—and

then going from there to q. (This completes the argument for (6).)

Other interesting features of Gödel spacetime are closely related to the

existence of closed timelike curves. So, for example, a slice (in any relativis-

tic spacetime) is a spacelike hypersurface that, as a subset of the background

manifold, is closed. We can think of it as a candidate for a “global simultaneity

slice.” It turns out that there are no slices in Gödel spacetime. More gener-

ally, given any relativistic spacetime, if it is temporally orientable and simply

connected and has smooth closed timelike curves through every point, then it

does not admit any slices (Hawking and Ellis [30, p. 170]).

Next we have the following basic fact.

(7) There are no closed timelike or null geodesics in Gödel spacetime.

We can easily confirm this, even before we characterize the class of timelike

andnull geodesics. It suffices (byhomogeneity) to show that there areno closed

timelike or closed null geodesics that pass through some particular point p on

the axis A. Consider the set C = {q : r(q) < rc}. We shall call it the critical

cylinder surrounding A. We can establish our claim by showing two things: (i)

all timelike geodesics that pass through p are fully contained within C, and all

null geodesics that pass through p are fully contained within the closure of C;

and (ii) there are no (non-trivial) closed causal curves within the closure of C.

For (i), let γ be any timelike or null geodesic that passes through p, and let

λa be its tangent field. We may as well assume that γ is future-directed (since

otherwise we can run the argument on a new curve that results from reversing

the orientation of γ ). Since φa is a Killing field, the quantity λaφa is constant

on γ . (Recall problem 1.9.6.) It is equal to 0 at p, since φa is the zero vector

there. So itmust be 0 everywhere. Nowon the boundary ofC (where r = rc ), φa

is a non-zero, future-directed null vector. So its inner product there with any

future-directed timelike vector is strictly positive. It follows that if γ is timelike,

it can never reach the boundary of C. (If it did, we would have λaφa > 0 there.)

It must stay within the (open) set C. Similarly, at all points outside the closure

ofC, φa is a future-directed timelike vector. So its inner product with all future-

directed causal vectors (even null ones) is strictly positive. And therefore, if γ

is null, it must remain within the closure C. (As we shall see in a moment,

null geodesics through p do periodically intersect the boundary of C.)
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For (ii), note that, by equation (3.1.40),

gab (∇at̃) (∇bt̃) = − 1

4μ2

(sh4r − sh2r)

(sh4r + sh2r)
.

So∇at̃ is timelikewithinC and null (and non-zero) on the boundary of the set.

It is future-directed both inC and on its boundary (since t̃a∇a t̃ = 1). Now let γ

be any non-trivial future-directed causal curve that passes through p, and let λa

be its tangentfield. Then (sinceλa and∇a t̃ are co-oriented), wehaveλn∇n t̃ > 0

at all points in C and λn∇n t̃ ≥ 0 at all points on the boundary of the set. So γ

cannot possibly stay within the closure of C and still close back on itself.

Now, finally, let us characterize the set of all timelike and null geodesics in

Gödel spacetime. The z̃a direction is not very interesting here, and we may as

well restrict attention to curves that fall within a z̃a = constant submanifold—

i.e., curves whose tangent fields are orthogonal to z̃a (or equivalently to za).14

We shall first consider certain examples that admit a particularly simple

description. Then we shall argue that they are, up to isometry (and repara-

metrization), the only ones. A small bit of computation is involved. For that we

need the following simple results that are the counterparts to ones presented

earlier for the first set of coordinates. At points in M−, where r > 0, we have

φb = 4μ2 [(sh4 r − sh2 r)∇b φ+ √
2 sh2 r ∇b t̃],(3.1.43)

∇a φb = 4μ2 [ (4 sh3 r − 2 sh r)(ch r)(∇[a r)(∇b] φ)(3.1.44)

+ 2
√
2 (sh r)(ch r) (∇[a r)(∇b] t̃) ],

φa∇a φb =−4μ2 (2 sh3 r − sh r)(ch r)∇b r ,(3.1.45)

φa∇a t̃b = t̃a∇a φb = −4
√
2μ2 (sh r)(ch r)∇b r .(3.1.46)

(For the second equation, we use the fact that φa is a Killing field and, so,

∇(a φb) = 0. For the fourth, we use equation (3.1.42).)

Consider fields of the form t̃a + kφa, where k is some real number.

Their integral curves are “helices” on which r and z̃ are constant (since

t̃a∇a r = t̃a∇a z̃ = 0, and similarly for φa). Our goal is to show that some of

these helices—characterized by particular choices for k and r—are causal geo-

desics. Let k and r be fixed, and let γ be an integral curve of t̃a + kφa associated

with these values. Then, we have

14. Given any smooth curve s �→  −1(t(s), x(s), y(s), z(s)) in Gödel spacetime, it qualifies as a
geodesic iff (i) z(s) is of the form z(s) = z0 + k s, for some numbers z0 and k, and (ii) the projected
curve s �→  −1(t(s), x(s), y(s), z0) qualifies as a geodesic. This follows because ∇a zb = 0.
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(3.1.47) (t̃a + kφa)(t̃a + kφa) = 4μ2 [ k2 (sh4 r − sh2 r)+ 2
√
2 (sh2 r) k + 1 ]

and (by equation (3.1.45) and (3.1.46) and the fact that t̃a is a geodesic field),

(t̃a + kφa)∇a (t̃b + kφb) = 2 k [−4
√
2μ2 (sh r)(ch r)∇b r ](3.1.48)

+ k2 [−4μ2 (2 sh3 r − sh r)(ch r)∇b r ]
= −4μ2 k (sh r)(ch r) [2√

2

+ k (2 sh2 r − 1)] ∇b r .

Thus γ is a geodesic iff k = 0 (in which case it is just an integral curve of t̃a),

r = 0 (in which case, again, it is an integral curve of t̃a, now on the axis), or

(3.1.49) k (2 sh2 r − 1)+ 2
√
2 = 0.

It is a null geodesic iff this condition holds and the right side of equation

(3.1.47) is 0. That leaves us with two equations in two unknowns. They yield

γ is a null geodesic ⇐⇒ sh2 r = (
√
2− 1)

2
and k = 2(1+ √

2)

or, equivalently (since sh 2r = 2 (sh r)(ch r)),

γ is a null geodesic ⇐⇒ r = rc

2
and k = 2(1+ √

2).

Similarly, after excluding the trivial cases where k = 0 or r = 0, , we have

γ is a timelike geodesic ⇐⇒ r <
rc

2
and k = 2

√
2

(1− 2 sh2 r)
.

Thus, given any point q with r coordinate satisfying 0 < r < rc/2, there is

exactly one value of k for which the helix through q with tangent field t̃a + kφa

is a timelike geodesic.

The number k here has a natural physical interpretation in terms of relative

speed. Think of the tangent vector t̃a + kφa as a (non-normalized, possibly

null) velocity vector.We can extract a “speed relative to t̃a” ifwefirst decompose

it into components tangent—and orthogonal to—t̃a, and then divide the norm

of the second by the norm of the first. With just a bit of calculation, we get

v = speed relative to t̃a = k (sh r)(ch r)

1+ k
√
2 sh2 r

.

It follows that k = 2
√
2/(1− 2 sh2 r) holds iff v = √

2 (sh 2r)/(ch 2r). So we

can reformulate our equivalence this way:

γ is a timelike geodesic ⇐⇒ r <
rc

2
and v = √

2
sh 2r

ch 2r
.

(Notice that
√
2 (sh 2r)/(ch 2r) goes to 1 as r approaches rc/2.)

Here is our characterization claim.
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(8) The special geodesics we have just considered—the ones that are (maximally

extended) integral curves of t̃a + kφa for some k—are, up to isometry

and reparametrization, the only maximally extended, future-directed, null

and timelike geodesics in Gödel spacetime (confined to a z̃ = constant

submanifold).

Let us verify it, first, for null geodesics. Let γ1 be any maximally extended,

future-directed, null geodesic confined to a submanifold N whose points all

have some particular z̃ value. Let q be any point in N whose r coordinate

satisfies sh2 r = (
√
2− 1)/2. Pick any point on γ1. By virtue of the homogeneity

of Gödel spacetime—as recorded in (2)—we can find a (temporal orientation

preserving) global isometry that maps that point to q and maps N to itself. Let

γ2 be the image of γ1 under that isometry. We know that at q the vector (t̃a +
kφa) is null if k = 2(1+ √

2). So, by virtue of the isotropy of Gödel spacetime

(in the sense of (5)), we can find a global isometry that keeps q fixed, maps N

to itself, and rotates γ2 onto a new null geodesic γ3 whose tangent vector at q

is, at least, proportional to (t̃a + 2(1+ √
2)φa), with positive proportionality

factor. If, finally, we reparametrize γ3 so that its tangent vector at q is equal

to (t̃a + 2(1+ √
2)φa), then the resultant curve must be a special null geodesic

helix through q since (up to a uniform parameter shift) there can be only one

(maximally extended) geodesic through q that has that tangent vector there.

The corresponding argument for timelike geodesics is almost the same.

Let γ1 this time be any maximally extended, future-directed, timelike geodesic

confined to a submanifold N whose points all have some particular z̃ value.

Let v be the speed of that curve relative to t̃a. (The value as determined at any

point must be constant along the curve since it is a geodesic.). Further, let

q be any point in N whose r coordinate satisfies
√
2 (sh 2r)/(ch 2r) = v. (We

can certainly find such a point since
√
2 (sh 2r)/(ch 2r) runs through all values

between 0 and 1 as r ranges between 0 and rc/2.) Now we can proceed in three

stages, as before. Wemap γ1 to a curve that runs through q. Thenwe rotate that

curve so that its tangent vector (at q) is aligned with (t̃a + kφa) for the appro-

priate value of k, namely k = 2
√
2/(1− 2 sh2 r). Finally, we reparametrize the

rotated curve so that it has that vector itself as its tangent vector at q. That final

curve must be one of our special helical geodesics by the uniqueness theorem

for geodesics. (This completes the argument for (8).)

The special timelike and null geodesics we started with—the special helices

centered on the axis A—exhibit various features. Some are exhibited by all

timelike and null geodesics (confined to a z̃=constant submanifold); some are

not. It is important to keep track of the difference. What is at issue is whether
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the features can or cannot be captured in terms of gab, t̃a, and z̃a (or whether

they make essential reference to the coordinates t̃, r ,φ themselves). So, for

example, if a curve is parametrized by s, one might take its vertical “pitch”

(relative to t̃) at any point to be givenby the value of dt̃/ds there. Understood this

way, the vertical pitchof the special helices centeredonA is constant, but that of

other timelike andnull geodesics is not. For this reason, it is not correct to think

of the latter, simply, as “translated” versions of the former. On the other hand,

the following is true of all timelike andnull geodesics (confined to a z̃=constant

submanifold). If we project them (via t̃a) onto a two-dimensional submanifold

characterized by constant values for t̃ as well as z̃, the result is a circle.15

Here is another way to make the point. Consider any timelike or null

geodesic γ (confined to a z̃ = constant submanifold). It certainly need not be

centered on the axis A and need not have constant vertical pitch relative to t̃.

But we can always find a (new) axis A′ and a new set of cylindrical coordinates

t̃ ′, r ′,φ′ adapted to A′ such that γ qualifies as a special helical geodesic relative

to those coordinates. In particular, it will have constant vertical pitch relative

to t̃ ′.
Let us now consider all the timelike and null geodesics that pass through

some point p (and are confined to a z̃=constant submanifold). It may as well

be on the original axis A. We can better visualize the possibilities if we direct

our attention to the circles that arise after projection (via t̃a). Figure 3.1.2 shows

a two-dimensional submanifold through p on which t̃ and z̃ are both constant.

The dotted circle has radius rc . Once again, that is the “critical radius” at

which the rotational Killing field φa is null. Call this dotted circle the “critical

circle.” The circles that pass through p and have radius r = rc/2 are projections

of null geodesics.16 Each shares exactly one point with the critical circle. In

contrast, the circles of smaller radius that pass through p are the projections

of timelike geodesics. The diagram captures one of the claims we made in the

course of arguing for claim (7)—namely, that no timelike or null geodesic that

passes through a point can “escape” to a radial distance from it greater than rc .

We said at the beginning of this section that Gödel spacetime exhibits a

“boomerang effect.” It should now be clear what was intended. Suppose an

individual is at rest with respect to the cosmic source fluid in Gödel spacetime

(and so his worldline coincides with some t̃-line). If that individual shoots a

15. Notice that we can capture this projection condition in terms of gab, t̃a, and z̃a. It holds of
a given curve γ iff there is an integral curve of t̃a such that all points on γ are the same “distance”
from it, where distance is measured along geodesic segments that are orthogonal to both t̃a and z̃a.

16. The assertion that a certain timelike or null geodesic has a certain “radius” can be expressed
without reference to the value of a radial coordinate based on some axis. See note 15.
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Figure 3.1.2. Projections of timelike and null geodesics in Gödel spacetime. rc is the “critical
radius” at which the rotational Killing field φa centered at p is null.

gun at some point, in any direction orthogonal to z̃a, then, no matter what

the muzzle speed of the gun, the bullet will eventually come back and hit him

(unless it hits something else first or disintegrates). Here is a purely geometric

formulation.

(9) (Boomerang Effect) Let L be any t̃-line in Gödel spacetime, and let γ be any

maximally extended timelike or null (but non-degenerate) geodesic on which

the value of z̃a is constant. Then if γ intersects L once, it does so infinitely many

times; and the temporal interval between intersection points (as measured

along L) is constant.

Appendix: A Coordinate-Free Characterization of Gödel Spacetime

Here, following Gödel [25] and [27], we characterize the geometric structure

of Gödel spacetime in coordinate-free terms, and use this characterization to

establish the equivalence of our two coordinate representations of themetric.17

First, Gödel spacetime (M, gab) can be decomposed as a metric product.

One component is the manifold R together with the (negative-definite) metric

−μ2 dzadzb. The other component is the manifold R
3 together with a certain

metric hab of signature (1, 2). The latter can be expressed as

hab = h̃ab + τa τb,
where

(1) h̃ab is a geodesically completemetric onR
3 of signature (1, 2) and constant

positive-curvature 1/(4μ2), and

17. Thematerial in this appendix is taken, with onlyminor changes in notation, fromMalament
[39].
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(2) τ a = h̃ab τb is a unit timelike Killing field with respect to h̃ab.

(In (2), h̃ab is the inverse of h̃ab; i.e., we are not using some other metric to

raise indices.)

We can recover this characterization by starting with either of our two

coordinate representations of the Gödel metric. Consider the first, equation

(3.1.1). Here the coordinates t, x, y, z range over all of R. We arrive at the

structure (R3, hab) by dropping the dza dzb term and restricting the reduced

metric to any submanifold of constant z value. The reduced metric assumes

the form h̃ab + τa τb if we set

h̃ab = μ2
[
1

2
(∇a t)(∇b t)+ ex (∇(at)(∇b)y)− (∇a x)(∇b x)

]
,(3.1.50)

τa = μ√
2
(∇a t + ex ∇a y).(3.1.51)

So, to justify the proposed characterization, it will suffice to confirm that these

two fields satisfy (1) and (2).

The inverse of h̃ab is

(3.1.52) h̃bc = 1

μ2

[
4 e−x t(byc) − xb xc − 2 e−2x yb yc

]
,

and so τ a comes out to be (
√
2/μ) ta. (We are continuing to use the abbrevia-

tions in equation (3.1.2).) The latter is a unit timelike field with respect to h̃ab,

as required. It is also a Killing field with respect to that metric. (The argument

is almost exactly the same as the one used above to establish that ta is a Killing

field with respect to the original metric gab.) So we have (2). For (1), note

first that h̃ab has signature (1, 2), since the vectors (
√
2/μ) ta, (

√
2/μ) (ta −

e−x ya), and (1/μ) xa form an orthonormal triple (of the appropriate type) at

every point. Next, consider the map

� : (t, x, y) �→ (u1, u2, u3, u4)

from R
3 into R

4 where

u1 = 2μ
[

cos

(
t

2
√
2

)
ch

(x

2

)
− 1

2
√
2

y ex/2 sin

(
t

2
√
2

)]
,(3.1.53)

u2 = 2μ
[

sin

(
t

2
√
2

)
ch

(x

2

)
+ 1

2
√
2

y ex/2 cos

(
t

2
√
2

)]
,(3.1.54)

u3 = 2μ
[

−sin

(
t

2
√
2

)
sh
(x

2

)
+ 1

2
√
2

y ex/2 cos

(
t

2
√
2

)]
,(3.1.55)
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u4 = 2μ
[

cos

(
t

2
√
2

)
sh
(x

2

)
+ 1

2
√
2

y ex/2 sin

(
t

2
√
2

)]
.(3.1.56)

A straightforward computation establishes that

(3.1.57) (u1)2 + (u2)2 − (u3)2 − (u4)2 = 4μ2

and, using equation (1.5.7), that

�∗((∇a u1)(∇b u1)+ (∇a u2)(∇b u2)− (∇a u3)(∇b u3)− (∇a u4)(∇b u4)
)

(3.1.58)

= μ2
(
1

2
(∇a t)(∇b t)+ ex (∇(at)(∇b)y)− (∇a x)(∇b x)

)
.

The map �, as it stands, is not injective. It makes the same assignment to

(t, x, y) and (t + 4
√
2π , x, y). But it is injective if we restrict t to the interval

[0, 4√2π ). Indeed, if ∼ is the equivalence relation on R
3 defined by

(t, x, y) ∼ (t′, x′, y′) iff x′ = x and y′ = y and t′ = t (mod 4
√
2 π ),

then � determines a diffeomorphism between the quotient manifold R
3/∼

and the manifold

H = {
(u1, u2, u3, u4) ∈ R

4 : (u1)2 + (u2)2 − (u3)2 − (u4)2 = 4μ2} .18
By equation (3.1.58), it qualifies as an isometry with respect to the metric

induced on the latter by the background flat metric on R
4 of signature (2, 2).

But it is a standard result thatH togetherwith this inducedmetric is a complete

manifold of constant curvature 1/(4μ2). (See, for example, O’Neill [46, p. 113].)

So—since (R3, h̃ab) is an isometric covering manifold of the latter—(R3, h̃ab)

is, itself, a complete manifold of constant curvature 1/(4μ2). This gives us (1).

We can proceed in much the same way starting with equation (3.1.31), the

second coordinate representation of the Gödel metric. This time we drop the

dz̃a dz̃b term and arrive at the desired decomposition of the reduced metric

(hab = h̃ab + τa τb) if we set

h̃ab = 4μ2
[
1

2
(∇a t̃)(∇b t̃)− (∇a r)(∇b r)− sh2 r (∇a φ)(∇b φ)(3.1.59)

+√
2 sh2r (∇(at̃)(∇b)φ)

]
,

18. Note that we can invert the restricted map and explicitly solve for t, x, y in terms of
u1, u2, u3, u4. For example,

t = 2
√
2 arc cos

u1 + u4√
(u1 + u4)2 + (u2 − u3)2

.
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τa = √
2 μ (∇a t̃ + √

2 sh2 r ∇a φ).(3.1.60)

Here τ a = h̃abτb comes out as (1/
√
2μ) t̃a. So we see, once again, by equation

(3.1.38), that τ a = (
√
2/μ) ta. And this time we can show that (R3, h̃ab) is an

isometric covering manifold of H (with respect to the induced metric on H)

by considering the map19

� ′ : (t̃, r ,φ) �→ (u1, u2, u3, u4)

where

u1 = 2μ cos

(
t̃√
2

)
ch r ,(3.1.61)

u2 = 2μ sin

(
t̃√
2

)
ch r ,(3.1.62)

u3 = 2μ sin

(
φ− t̃√

2

)
sh r ,(3.1.63)

u4 = 2μ cos

(
φ− t̃√

2

)
sh r .(3.1.64)

One can check that equation (3.1.57) holds, once again, as does the counterpart

to (3.1.58):

� ′∗((∇a u1)(∇b u1)+ (∇a u2)(∇b u2)− (∇a u3)(∇b u3)− (∇a u4)(∇b u4)
)

(3.1.65)

= 4μ2
(
1

2
(∇a t̃)(∇b t̃)− (∇a r)(∇b r)− sh2 r (∇a φ)(∇b φ)

+√
2 sh2r (∇(at̃)(∇b)φ)

)
.

Here � ′ is not injective, but it is so if we restrict t̃ to the interval [0, 2√
2π ).

It should be clear now that our two coordinate expressions for the Gödel

metric are fully equivalent. They are but alternate expressions for a metric on

R
4 that we have been able to characterize in a coordinate independent way.

We can gain further insight into the two maps� and� ′ if we recast them.

Consider the (associative, distributive) algebra of “hyperbolic quaternions.”

We can construe them as elements of the form

19. As characterized here, themap is defined only where r = 0. But it can be smoothly extended
to points at which r = 0.
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ϕ = w1 + w2i+ w3j+ w4k

where w1, ...,w4 are real numbers. Addition is defined by the rule

(w1 + w2i+ w3j+ w4k)+ (w′
1 + w′

2i+ w′
3j+ w′

4k)

= (
(w1 + w′

1)+ (w2 + w′
2)i+ (w3 + w′

3)j+ (w4 + w′
4)k

)
.

Multiplication is defined by the requirement that (the real number) 1 serve as

an identity element and by the relations

i · i = −1,

j · j = k · k = 1,

i · j = −j · i = k,
j · k = −k · j = −i,
k · i = −i · k = j.

If we define the conjugate and norm of ϕ by setting

ϕ = w1 − w2i− w3j− w4k,

norm(ϕ) = ϕ ·ϕ = (w1)2 + (w2)2 − (w3)2 − (w4)2,

then it follows that ϕ ·ψ = ψ ·ϕ and, hence,

(3.1.66) norm(ϕ ·ψ) = norm(ϕ) norm(ψ)

for all ϕ and ψ . To simplify notation, we shall identify the hyperbolic quater-

nion w1 + w2i+ w3j+ w4k with the corresponding element (w1, w2, w3, w4)

of R
4. Then H is identified with the set of hyperbolic quaternions of norm

4μ2, and it acquires a natural (Lie) group structure: given any two elements

u and u′ in H, we take their product to be (1/4μ2) u · u′. The norm product

condition (3.1.66) guarantees that the product is well defined. The element u

has u for an inverse.

Notice now that for all real number t, x, y, the quadruples

(cos t, sin t, 0, 0) (ch x, 0, 0, sh x) (1, y, y, 0)

all have norm 1. So their product has norm 1. Straightforward computation

confirms that the associated map

(t, x, y) �→ 2μ (cos t, sin t, 0, 0) · (ch x, 0, 0, sh x) · (1, y, y, 0)

is essentially just the first of the two maps from (R3, h̃ab) onto H displayed in

equations (3.1.53)–(3.1.56). This is where it “comes from.” Strictly speaking,
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to match the coefficients in that map, we need to make a small change and

take the product to be

2μ
(
cos

(
t

2
√
2

)
, sin

(
t

2
√
2

)
, 0, 0

)
·
(
ch

(x

2

)
, 0, 0, sh

(x

2

))
·
(
1,

y

2
√
2
,

y

2
√
2
, 0
)
.

Similarly, we can recover the second of the maps from (R3, h̃ab) onto H, the

one displayed in equations (3.1.61)–(3.1.64), in the form

(t̃, r , φ) �→ 2μ
(

cos (
t̃√
2
), sin (

t̃√
2
), 0, 0

)
· (ch r , 0, sh r sinφ, sh r cosφ).

3.2. Two Criteria of Orbital (Non-)Rotation

In general relativity, there is a natural and unambiguous notion of rotation at

a point as it applies, for example, to a fluid. This is the notion we considered

in section 2.8. If the four-velocity field of the fluid is ξa, then we say that the

fluid is non-rotating at a given point if its associated rotation field ωab vanishes

there or, equivalently, if ξ[a∇b ξc] = 0 there. (Recall problem 2.8.1.)

But when we consider notions of rotation that make essential reference

to what happens over extended regions of spacetime, the situation changes

immediately. So, for example, consider a (one-dimensional) ring centered

about an axis of rotational-symmetry (figure 3.2.1). Just what does it mean to

say that the ring is “not rotating” around the axis? (It will be convenient to stick

with the negative formulation.) This turns out to be a subtle and interesting

question in relativity theory. Various criteria for non-rotation readily come to

mind. In garden-variety circumstances, they are equivalent. But the theory

allows for conditions under which they come apart. It can happen that the

ring is non-rotating in one perfectly natural sense but is rotating in another.

Figure 3.2.1. What does it mean to say that a ring is “not rotating” around a central axis of
rotational symmetry?
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In this section we consider two20 such natural criteria for ring non-

rotation: (i) the zero angularmomentum (ZAM) criterion, and (ii) the compass

of inertia on the ring (CIR) criterion. In each case, we give both a direct, geo-

metric formulation and also a somewhat more intuitive, quasi-operational

formulation. We verify that the ZAM and CIR criteria agree if a certain sim-

plifying condition obtains, and we show that they do not agree in Gödel space-

time.

In the next section, we step back from these two particular criteria and for-

mulate a no-go result21 that applies to a large class of “generalized criteria” of

ring non-rotation. We abstract three conditions that one might want a crite-

rion of ring non-rotation to satisfy, and show that, at least in the case of some

relativistic spacetimemodels, no generalized criterion of ring non-rotation sat-

isfies all three. The upshot is that no notion of orbital non-rotation in relativity

theory fully answers to our classical intuitions.

We need a certain amount of background structure to set things up. In

what follows, let (M, gab) be a spacetime with two complete Killing fields, t̃a

and φa, satisfying the following conditions: (i) t̃a is timelike; (ii) the orbits of

φa are closed; (iii) φa is spacelike except at “axis points” (if there are any) where

φa = 0; (iv) not all points are axis points (i.e., φa does not vanish everwhere)

(v) [t̃a, φa] = 0; and (vi) t̃[a φb∇c t̃d] = 0 and t̃[a φb∇c φd] = 0.
Gödel spacetime meets this description, at least if we restrict attention to

the open set where r < rc .22 Another example is Minkowski spacetime. Yet

a third—at least if we restrict attention, once again, to a certain open set—is

Kerr spacetime, which we shall consider very briefly in the next section.

The stated conditions are, more or less, the usual ones defining a “sta-

tionary, axi-symmetric spacetime” (Wald [60]). For convenience, we have

strengthened things a bit (compared to some formulations) by requiring that

t̃a and φa be complete. The added strength is harmless. The point here is that

even with this much structure in place, the two criteria of ring non-rotation

need not agree. In what follows, when we refer to a stationary, axi-symmetric

20. It would be easy to assemble a longer list of criteria. For example, we could consider non-
rotation as determined at “spatial infinity” (at least for the case of asymptotically flat spacetimes),
non-rotation as determined relative to the compass of inertia on the axis (CIA) criterion (Malament
[41]), and yet other criteria (see Page [50]). We are not attempting here a systematic account of
orbital rotation in relativity theory. Our goal is to give an indication of the subject’s interest and to
prepare the way for a particular no-go theorem.

21. The result presented here is a variant of the one in Malament [41].
22. That condition (vi) holds in Gödel spacetime follows from equations (3.2.11) and (3.2.12)

below. (We are deliberately using the same notation that we used in the preceding section for Gödel
spacetime so that we can easily go back and forth between claims about the general case and claims
about that one example.)
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spacetime with Killing fields t̃a and φa, it should be understood that the stated

conditions obtain.

The conditions themselves should be clear except, possibly, (vi). It asserts

that, at least locally, there exist two-dimensional submanifolds that are orthog-

onal to both t̃a and φa. (This is a consequence of Frobenius’s theorem. See

the first part of the proof of theorem 7.1.1 in Wald [60, p. 163].) In Gödel

spacetime, for example, these are submanifolds characterized by fixed values

for t̃ and φ, and free values for r and z̃.

With this structure in place, we can represent our ring as an imbedded two-

dimensional submanifold R that is invariant under the isometries generated

by t̃a and φa (and on which φa = 0). We call the latter an orbit cylinder. To rep-

resent the rotational state of the ring, we need to keep track of the motion of

individual points on it. Each such point has a worldline that can be represented

as a timelike curve on R. So we are led to consider not just R, but R together

with a congruence of smooth timelike curves on R (figure 3.2.2).

We want to think of the ring as being in a state of rigid rotation, i.e.,

rotation with the distance between points on the ring remaining constant. So

we are further led to restrict attention to just those congruences of timelike

curvesonR that are invariantunder all isometries generatedby t̃a. Equivalently

(moving from the curves themselves to their tangent fields), we are led to con-

sider future-directed timelike vector fields on R of the form (t̃a + kφa), where

k is a number. We shall call the pair (R, k) a striated orbit cylinder. And, quite

generally, we can take a “criterion of ring non-rotation” to be, simply, a specifi-

cation, for every striated cylinder (R, k), whether it is to count as “non-rotating.”

Officially, now, our two criteria can be formulated as follows. Let (R, k) be

a striated cylinder. (Recall that we say a timelike vector field ηa, normalized or

not, is non-rotating at a point if η[a∇b ηc] = 0 there.)

Figure 3.2.2. A “striated orbit cylinder” that represents a particular rotational (or non-
rotational) state of the ring.
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(1) (R, k) is non-rotating according to the zero angular momentum (ZAM)

criterion if (t̃a + kφa) is orthogonal to φa on R; i.e., (t̃a + kφa)φa = 0.

(2) (R, k) is non-rotating according to the compass of inertia on the ring (CIR)

criterion if (t̃a + kφa) is non-rotating on R; i.e., the following condition

holds on R:

(3.2.1) t̃[a∇b t̃c] + k t̃[a∇b φc] + kφ[a∇b t̃c] + k2 φ[a∇b φc] = 0.

The orthogonality condition in (1) just captures the requirement that every

point on the ring have zero angular momentum with respect the rotational

Killing field φa. (Recall our discussion in section 2.9.) So the terminology

makes sense.

Let us now recast the two criteria in quasi-operational terms. Let us start

with the second. Here is one way to set up an experimental test. Suppose

we mount a gyroscope at some fixed point on the ring in such a way that it

can rotate freely. And suppose that at some initial moment the axis of the

gyroscope is oriented so as to be tangent to the ring (figure 3.2.3). Then we

can consider whether it remains tangent over time. It turns out that it will do

so (i.e., remain tangent to the ring) iff the ring is non-rotating according to the

CIR criterion.

We shall verify this equivalence in a moment. But first, notice that the

stated experimental testdoes seemtoprovide anatural criterionofnon-rotation.

Think about it. If the ring were rotating—here we are simply appealing to

ordinary intuitions—we would expect that the angle between the gyroscope

axis and (an oriented) tangent line would shift from 0o to 90o to 180o to 270o

and back to 0o as the ring passed through one complete rotation. The intuition

here is that the tangent line changes direction as the ring rotates, but the axis

of the gyroscope does not.

Figure 3.2.3. An experimental test to determine whether the ring is non-rotating according to
the CIR criterion.
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Now consider how we can capture, most directly, the stated “gyroscope

remains tangent” condition. Let γ be a future-directed timelike curve that rep-

resents the worldline of the point on the ring where the gyroscope ismounted.

The gyroscope there does not “change (spatial) direction as determined relative

to γ .” That is what makes it a gyroscope. So the “gyroscope remains tangent”

condition will be satisfied iff the tangent field φa itself (now conceived as a

field on γ ) does not “change (spatial) direction relative to γ .” We need only

spell out the latter condition.

Let ηa = (t̃a + kφa), let η = (ηnηn)1/2, and let η̂a be the normalized field

defined by ηa = η η̂a. Finally, let hab be the spatial projection field (gab − η̂a η̂a)

determined relative to η̂a. Then the spatial direction of φa as determined rela-

tive to γ is hb
nφ

n. And φa is “not changing (spatial) direction relative to γ ” iff

(3.2.2) ha
b η̂

m∇m (hb
nφ

n) = 0.

This condition asserts that the spatial component of η̂m∇m (hb
nφ

n) as

determined relative to γ vanishes. When it holds, we say that hb
nφ

n is Fermi

transported along γ .

We can simplify the condition slightly if we cast it in terms of ηa = (t̃a +
kφa) rather than the normalized field η̂a. Here and in what follows, we make

repeated use of the fact that ηa is a Killing field and that ηa Lie derives φa and

t̃a (since the Lie bracket of φa and t̃a vanishes); i.e., we have

(3.2.3) £η φa = £η t̃a = 0 and £η gab = 0.

Expanding hab, we see that equation (3.2.2) holds iff

(ga
b − η̂aη̂b) η̂

m∇m [φb − (φnη̂n) η̂b] = 0.

But η̂m∇m η = 0 and η̂m∇m(φnη̂n) = 0 by equation (3.2.3), and η̂b η̂
m∇m φ

b =0
since φa is a Killing field. Furthermore, η̂b η̂

m∇m η̂
b = 0, since η̂b is of unit

length. So equation (3.2.2) holds iff

(3.2.4) η2 ηm∇m φ
a = (φnηn) ηm∇m η

a.

With all this as motivation, we have the following definition.

(2′) (R, k) is non-rotating according to the gyroscope remains tangent (GRT)

criterion if ηa = (t̃a + kφa) satisfies equation (3.2.4) on R (with η =
(ηnηn)1/2).

Our earlier claim of equivalence now comes out as the following pro-

position.



“530-47773_Ch03_2P.tex” — 1/23/2012 — 17:18 — page 224

−1

0

+1

224 / special topics

PROPOSIT ION 3.2.1. A striated orbit cylinder (R, k) qualifies as non-rotating

according to the CIR criterion iff it qualifies as non-rotating according to the GRT

criterion.

Proof. One direction is easy. Assume that η[n∇m ηa] = 0 on R. Then contrac-

tion with ηmφn yields

(φnηn) ηm∇m ηa + ηa η
mφn∇n ηm + (ηmηm)φn∇a ηn = 0

on R. But the Lie bracket of φa with ηa vanishes. And φa and ηa are both

Killing fields. So the second term in the sum vanishes (ηm φn∇n ηm =
ηm ηn∇n φm = 0), and the third term is equal to

(ηmηm)φn∇a ηn = −η2 φn∇n ηa = −η2 ηn∇n φa.

So equation (3.2.4) holds on R.

Conversely, assume that equation (3.2.4) holds on R. Then (once again

using the fact that ηm∇m φa = φm∇m ηa), we have

[η2 φm − (φnηn) ηm] ∇m ηa = 0

on R. Now consider the field ψm =[η2φm−(φnηn)ηm]. We have (i) ψmηm =0;

(ii) ψm = 0; and (iii) ψm ∇m ηa = 0 on R. (Condition (ii) holds because

η2 φm is spacelike and (φnηn) ηm is timelike or equal to 0.) It follows that

ψmη[n∇m ηa] =0 on R. Now assume that η[n∇m ηa] = 0 at some point p on R.

Let εabcd be a volume element defined on some open set containing p. The

space of anti-symmetric tensors αnma at p that are orthogonal to ψm is

one-dimensional. So at p, εnmad ψ
d = k1 η[n∇m ηa] for some k1. Or, equiv-

alently, ψd = k2 εdnmaηn∇m ηa at p for some k2. It follows (after expanding

ηa = t̃a + kφa) that

ψdφd = k2 ε
dnmaφd ηn∇m ηa = k2 ε

dnmaφd t̃n∇m t̃a + k2 k εdnmaφd t̃n∇m φa

at p. It now follows, by condition (vi) in our characterization of stationary axi-

symmetric spacetimes, that ψdφd = 0 at p. So η2 (φmφm)− (φnηn)2 = 0. But

this is impossible, since φa is spacelike and η > 0. So we may conclude that

η[n∇m ηa] = 0 at all points on R. �

Nowwe turn to the ZAMcriterion of ring non-rotation. Various experimen-

tal tests are possible. One involves the Sagnac effect. Imagine that wemount a

light source at somepointQ on the ring and arrange for its light pulses to travel

around the ring in opposite (clockwise and counterclockwise) directions. (See

Figure 3.2.4) This can be done, for example, using concavemirrors attached to
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Figure 3.2.4. An experimental test to determine whether the ring is non-rotating according
to the ZAM criterion.

the ring. Imagine further that we keep track of whether the pulses arrive back

at Q simultaneously, using, for example, an interferometer). It turns out that

this will be the case—i.e., they will arrive back simultaneously—iff the ring

has zero angular momentum (with the respect to the background rotational

symmetry). We shall soon verify this equivalence.

But notice, once again, that the stated experimental test does seem to pro-

vide a natural criterion of non-rotation. Suppose the ring is rotating in, say,

a counterclockwise direction. (Here, again, we are simply appealing to ordi-

nary intuitions about rotation.) Then the “C pulse,” the one that moves in a

clockwise direction, should get back to Q before completing a full circuit of

the ring, because it is moving toward an approaching target. In contrast, the

“CC pulse,” the one moving in a counterclockwise direction, is chasing a

receding target. To get back to Q it will have to traverse the entire length of

the ring, and then it will have to cover the distance that Q has moved in the

interim time. So one should expect, in this case, that the C pulse will arrive

back at Q before the CC pulse. (Here we presume that light travels at the

same speed in all directions.) Similarly, if the ring is rotating in a clockwise

direction, one would expect that the CC pulse would arrive back at Q before

the C pulse. Only if the ring is not rotating should they arrive simultaneously.

Thus, our experimental test for whether the ring has zero angularmomentum

provides what would seem to be a natural criterion of non-rotation.

Let us now make precise our claim of equivalence. Let (R, k) be a striated

orbit cylinder, let γ be any (maximally extended) integral curve of (t̃a + kφa)

on R, and let p0 be an arbitrary point on the image of γ . Further, let λ1 and

λ2 be two future-directed (maximally extended) null curves on R that start at

p0 (figure 3.2.5). The latter represent light pulses that are emitted at p0 and

traverse the ring in opposite directions. Call them “pulse 1” and “pulse 2.”

Both λ1 and λ2 must intersect γ a second time (indeed infinitely many times);
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Figure 3.2.5. Sagnac effect.

i.e., the pulses must eventually return to their point of emission on the ring.

(We shall soon verify this.) Let p1 be the next intersection point of γ with λ1,

and let p2 be the next intersection point of γ with λ2. In general, there is no

reason why p1 and p2 should coincide. We are interested in the case where

they do. So we are led to consider the following criterian of non-rotation.

(1′) (R, k) is non-rotating according to the Sagnac effect (SE) criterion if, in

the case just described, the first re-intersection points p1 and p2 coincide.

Note that the stated condition—agreement of first re-intersection points—

will hold for one choice of initial integral curve γ and initial point p0 iff it

holds for any other. The symmetries of (R, k) guarantee as much. So there is

no ambiguity inour formulation. Nowwecanverify our claimof equivalence.23

PROPOSIT ION 3.2.2. A striated orbit cylinder (R, k) qualifies as non-rotating

according to the ZAM criterion iff it qualifies as non-rotating according to the SE

criterion.

Proof. We have to verify that, in the case described,

(3.2.5) p1 = p2 ⇐⇒ (t̃a + kφa)φa = 0.

The tangent field to γ is (t̃a + kφa). The tangent fields to λ1, and λ2 can be

rescaled so that they have the form (t̃a + l1 φa) and (t̃a + l2 φa). Since the first

23. Our proof proceeds by way of a “low-brow” calculation. For a more insightful argument,
see Ashtekar and Magnon [3].
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is timelike and the second two are null, we have li = k and

(t̃a + li φ
a)(t̃a + li φa) = 0

for i = 1, 2. This equation has roots

l1 = −(t̃aφa)+
√

D

(φnφn)
,(3.2.6)

l2 = −(t̃aφa)−
√

D

(φnφn)
,(3.2.7)

where D =
[
(t̃aφa)2 − (t̃at̃a)(φbφb)

]
. (Clearly there is no loss in generality in

choosing to label them thisway.) Note thatD > (t̃aφa)2 ≥ 0, since t̃a is timelike

andφa is spacelike onR. So l1 > 0 and l2 < 0.Moreover, l2 < k < l1. (Consider

the quadratic function f (x) = (t̃a + x φa)(t̃a + x φa). It is concave downward

because (φa φ
a) is negative. So, since f (k) > 0 and f (l1) = f (l2) = 0, it must be

the case that k falls between l1 and l2.) So

(l1 − k) > 0 and (l2 − k) < 0.

It follows from our initial assumptions about the background spacetime

(M, gab) that there there exist smooth coordinate maps t̃ : R → R and φ : R →
R (mod2π ) on theorbit cylinderR such that t̃a∇a t̃ = φa∇a φ = 1and t̃a∇a φ =
φa∇a t̃ = 0.24 Now consider the hybrid field φ′ : R → R (mod 2π ) defined by

φ′ = (φ− k t̃) (mod 2π ).

It is adapted to (R, k) in the sense that it is constant on all integral curves of

(t̃a + kφa):

(t̃n + kφn)∇n (φ− k t̃) = t̃n∇n (− k t̃)+ (kφn)∇n φ = 0.

In particular, φ′ is constant on γ . In contrast, φ′ increases (respectively,

decreases) uniformly with respect to elapsed parameter distance along λ1
(respectively, λ2) since (t̃n + li φ

n)∇n φ
′ = (li − k). (It follows, as claimed that

λ1 and λ2 must reintersect γ .)

24. We can introduce the coordinates as follows. Pick any initial point on R and take its
coordinates to be t̃ = 0 and φ = 0. Given any other point on R, we can “get to it” from the initial
point by moving a certain (signed) parameter distance along an integral curve of t̃a and moving a
certain (signed) parameter distance along an integral curve of φa. It does not matter in what order
we perform the operations because the fields t̃a and φa have a vanishing Lie bracket. We take the
respective parameter distances to be the t̃ and φ coordinates of the new point.
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Let the points p0, and p1, p2 have respective t̃, φ′ coordinates (t̃0,φ′), (t̃1,φ′),
and (t̃2,φ′). They share a common φ′ coordinate since φ′ is constant on γ . But
φ′ increases along λ1 in the stretch between p0 and p1: it goes from 0 to 2π .

Similarly, φ′ decreases along λ2 in the stretch between p0 and p2: it goes from

0 to −2π .

The coordinate t̃ increases along all three curves, γ , λ1, and λ2. (Indeed,

we have (t̃n + kφn)∇n t̃ = (t̃n + li φ
n)∇n t̃ = 1.) So we can think of the curves

as parametrized by t̃ and consider the rate of change of φ′ with respect to t̃ on

them. This rate of change on λi is (by the chain rule)

dφ′

dt̃
= (t̃n + li φ

n)∇n (φ− k t̃)

(t̃n + li φn)∇n t̃
= (li − k).

So, considering the total change of φ′ along λ1 and λ2, we have

2π = (t̃1 − t̃0)
dφ′

dt̃
|on λ1 = (t̃1 − t̃0) (l1 − k),

−2π = (t̃2 − t̃0)
dφ′

dt̃
|on λ2 = (t̃2 − t̃0) (l2 − k).

It follows that

t̃1 − t̃2 = 2π (l1 + l2 − 2k)

(l1 − k) (l2 − k)
.

Hence, by equations (3.2.6) and (3.2.7),

p1 = p2 ⇐⇒ t̃1 = t̃2 ⇐⇒ (l1 + l2 − 2k) = 0 ⇐⇒ k = − (t̃aφa)

(φnφn)
.

This gives us equation (3.2.5). �

Now we consider the two criteria in the special case of Gödel spacetime.

We start with a calculation.

PROPOSIT ION 3.2.3. Let εabcd be a volume element on Gödel spacetime, and let

ηa be the field t̃a + kφc for some choice of k. Then

(3.2.8) εabcd η[b∇c ηd] = ± 2
[
k2

√
2 sh4 r + k (2 sh2 r − 1)+ √

2
]

z̃a

where, as in the previous section, z̃a = (∂ /∂ z̃)a.
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Note that in the special case where k = 0, this yields

εabcd t̃[b∇c t̃d] = ± 2
√
2 z̃a.

If we re-express this in terms of t̂a = ta/μ = t̃a/(2μ) and za = z̃a/2, and

choose a volume element so that the right side sign is+1, we recover equation

(3.1.30); i.e.,
1

2
εabcd t̂b ∇c t̂d = 1√

2μ2
za.

Proof. As before, let A be the set of axis points in Gödel spacetime where

r = 0, and let M− be the complement set M − A. The vector fields

t̃a = (∂ /∂ t̃)a, ra = (∂ /∂ r)a, φa = (∂ /∂ φ)a, z̃a = (∂ /∂ z̃)a

are linearly independent on M−. So we can express εabcd in the form

εabcd = f t̃[a rb φc z̃d]

on M−. We can determine f , up to sign, as follows. We certainly have

−(4!) = εabcd εabcd = f 2 t̃[a rb φc z̃d] t̃[a rb φc z̃d] = f 2 t̃[a rb φc z̃d] t̃a rb φc z̃d .

And by equation (3.1.31),

t̃a = 4μ2 [√2 sh2 r ∇a φ+ ∇a t̃],
rb = 4μ2 ∇b r ,

φc = 4μ2 [(sh4 r − sh2 r)∇c φ+ √
2 sh2 r ∇c t̃],

z̃d = 4μ2 ∇d z̃.

So

−(4!) = f 2 t̃[a rb φc z̃d] (4μ2)4
[
(sh4 r−sh2 r)−2 sh4 r

]
(∇at̃) (∇b r) (∇c φ) (∇d z̃)

= − f 2 (4μ2)4 (sh4 r + sh2 r)
1

4 ! = − f 2 (4μ2)4 (sh2 r) (ch2 r)
1

4 ! .

Thus, on M−, we have

(3.2.9) εabcd = ± 4!
16μ4 (sh r)(ch r)

t̃[a rb φc z̃d].

Next, we derive an expression for

(3.2.10) η[b∇c ηd] = t̃[a∇b t̃c] + k t̃[a∇b φc] + kφ[a∇b t̃c] + k2 φ[a∇b φc]
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on M−. Note first that

∇b φc = 4μ2 [(4 sh3 r−2 sh r)(ch r)(∇[b r)(∇c] φ)+ 2
√
2 (sh r)(ch r) (∇[b r)(∇c] t̃)],

∇b t̃c = 4μ2 [ 2√
2 (sh r)(ch r)(∇[b r)(∇c] φ) ],

both hold on M−. (The first is equation (3.1.44). The second is derived sim-

ilarly, using the fact that ∇(b t̃c) = 0.) These expressions, together with the

preceding ones for t̃a and φa, yield

t̃[a∇b t̃c] = 16μ4 2
√
2 (sh r)(ch r) (∇[a t̃)(∇b r)(∇c] φ),(3.2.11)

t̃[a∇b φc] = 16μ4 [ (4 sh3 r − 2 sh r)(ch r)(3.2.12)

− 4 (sh3 r)(ch r)](∇[a t̃)(∇b r)(∇c] φ),

φ[a∇b t̃c] = 16μ4 4 (sh3 r)(ch r) (∇[a t̃)(∇b r)(∇c] φ),(3.2.13)

φ[a∇b φc] =(3.2.14)

16μ4 [ √
2 (sh2 r)(ch r)(4 sh3 r − 2 sh r)

− 2
√
2 (sh r)(ch r)(4 sh3 r − 2 sh r) ](∇[a t̃)(∇b r)(∇c] φ).

If we insert these expressions in equation (3.2.10), we arrive at

η[b∇c ηd] = 32μ4 (sh r)(ch r)
[
k2

√
2 sh4 r + k (2 sh2 r − 1)+ √

2
]

(3.2.15)

(∇[a t̃)(∇b r)(∇c] φ).

Finally, combining this result with equation (3.2.9) yields

εabcd η[b∇c ηd] = ± 4!
16μ4 (sh r)(ch r)

t̃[a rb φc z̃d] η[b∇c ηd](3.2.16)

= ± 2 (k2
√
2 sh4 r + k (2 sh2 r − 1)+ √

2 ) z̃a

on M−. Since both ηa and the final vector field in equation (3.2.16) are smooth

(everywhere), the equation must hold on A as well. �

Our desired characterization result for Gödel spacetime follows as a

corollary. (For clause (2), recall that sh2 rc = 1.)

PROPOSIT ION 3.2.4. Let R be a striated orbit cylinder in Gödel spacetime gener-

ated by t̃a and φa. It is characterized by particular values for r (where 0 < r < rc)

and z̃. Let k be such that ηa = t̃a + kφa is timelike on R. Then the following both

hold.



“530-47773_Ch03_2P.tex” — 1/23/2012 — 17:18 — page 231

−1

0

+1

special topics / 231

(1) (R, k) is non-rotating according to the ZAM criterion ⇐⇒ k =
√
2

(1− sh2 r)
.

(2) (R, k) is non-rotating according to the CIR criterion ⇐⇒

r <
rc

2
and k = 2

√
2

(1− 2 sh2 r)+√
1− sh2 (2r)

.

Proof. Note that our assumption that t̃a + kφa is timelike on R comes out as

the assumption that the relation

(3.2.17) k2(sh4 r − sh2 r)+ k 2
√
2 sh2 r + 1 > 0

holds there. (We are making use of equation (3.1.31) here and shall do so

repeatedly in what follows.)

(R, k) qualifies as non-rotating according to the ZAM criterion iff (t̃a +
kφa)φa = 0 on R. The latter condition comes out as

√
2 sh2 r + k (sh4 r − sh2 r) = 0.

Moreover, as is easy to check, if k = √
2/(1− sh2 r), then equation (3.2.17) is

automatically satisfied; i.e., (3.2.17) imposes no further constraint on k in this

case. So we have clause (1).

Next, (R, k) is non-rotating according to the CIR criterion iff η[b∇cηd] =0 on
R or, equivalently, if εabcd η[b∇c ηd] vanishes there ( for either choice of εabcd).

We know from the preceding proposition that this is the case iff

(3.2.18) k2
√
2 sh4 r + k (2 sh2 r − 1)+ √

2 = 0

on R. This equation has two roots:

k1 = (1− 2 sh2 r)−√
1− sh2 (2r)

2
√
2 sh4 r

and k2 = (1− 2 sh2 r)+√
1− sh2 (2r)

2
√
2 sh4 r

.

So it is a necessary condition for (R, k) to be non-rotating according to the CIR

criterion ( for any choice of k) that sh2 2r ≤ 1 or, equivalently, that r ≤ rc/2.

So assume this condition holds. We claim that the root k2 can be ruled out

because it leads to a violation of equation (3.2.17). We also claim that k1 is

compatible with that inequality if we further restrict r so that sh2 2r < 1. To

see this, note that in the presence of (3.2.18), equation (3.2.17) holds iff

k2
√
2 sh2 r − k (2 sh2 r + 1) < 0,

and this holds, in turn, iff

(3.2.19) 0 < k <
2 sh2 r + 1√

2 sh2 r
.
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With a bit of straightforward algebra, one can easily check that k2 violates

this inequality but that k1 satisfies it if sh2 2r < 1. Finally, note that X = [(1−
2 sh2 r)+ √

1− sh2 2r ] = 0. So we have

k1 = k1
X

X
= 2

√
2

(1− 2 sh2 r)+√
1− sh2 (2r)

.

This gives us (2). �

There are two regimes to consider here. If 0 < r < (rc/2), there is one

rotational state of the ring (i.e., one choice of k) that counts as non-rotating

according to the ZAM criterion, and one that counts as non-rotating according

to the CIR criterion, but the two are different. In contrast, if (rc/2) ≤ r < rc ,

then there is still one rotational state of the ring that counts as non-rotating

according to the ZAM criterion, but now there is no state whatsoever that

counts as non-rotating according to the CIR criterion.

Notice that though the two criteria do not agree for any choice of r , there

is a sense in which they agree “in the limit” as r → 0. They have a common

limiting value for k:

lim
r→0

√
2

(1− sh2 r)
= lim

r→0

2
√
2

(1− 2 sh2 r)+√
1− sh2 (2r)

= √
2.

That this is so should not be surprising. We began this section by asserting

that there is a robust, unambiguous notion of non-rotation at a point in rela-

tivity theory. Here, in a sense, we recover that notion as we pass to the limit

of “infinitesimally small rings.” Notice that
√
2 is the unique value of k for

which ηa = t̃a + kφc is non-rotating (i.e., satisfies η[a∇b ηd] = 0) at points on
the axis where r = 0. (This follows immediately from proposition 3.2.3.) It is

that value of k that we recover in the limit as r → 0. This will be important in

what follows.

Let us now leave Gödel spacetime behind and return to the general case

with which we started (where we are dealing with an arbitrary stationary,

axi-symmetric spacetime). We claimed earlier on the section that the two cri-

teria of ring non-rotation do agree if a certain simplifying condition obtains.

The condition we had in mind is the orthogonality of t̃a and φa. But, strictly

speaking, that is not sufficient to guarantee agreement. We must, in addition,

rule out one rather special, singular possibility. We characterize it in the next

proposition. (We shall comment on the listed conditions after presenting a

proof.)
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PROPOSIT ION 3.2.5. Suppose that (in addition to satisfying conditions (i) to (vi)),

t̃a andφa are orthogonal; i.e., t̃aφa = 0. Then, for all orbit cylinders R, the following

conditions are equivalent.

(1) ∇a

(
φb φb

t̃c t̃c

)
= 0 on R.

(2) t̃a +
√

−t̃bt̃b
φcφc

φa is a null, geodesic field on R.

(3) (R, k) is non-rotating on the CIR criterion for all k (such that t̃a + kφa is

timelike on R).

Proof. It follows from our orthogonality assumption that the following

conditions all hold on R:

t̃a∇a φb = 0,(3.2.20)

φa∇a t̃b = 0,(3.2.21)

t̃[a∇b t̃c] = 0,(3.2.22)

φ[a∇b φc] = 0.(3.2.23)

The first follows since we have

t̃a∇a φb = −t̃a∇b φa = −∇b(φat̃a)+φa∇b t̃a = −φa∇a t̃b = −t̃a∇a φb.

(Here we use the fact that t̃a and φa are Killing fields for the first and third

equalities, as well as the fact that they have a vanishing Lie bracket for the final

equality.) That gives us equation (3.2.21) as well. For equation (3.2.22), we use

condition (vi) in our original list. We have φ[a t̃b∇c t̃d] = 0 or, equivalently,

φa t̃[b∇c t̃d] −φd t̃[a∇b t̃c] +φc t̃[d∇a t̃b] −φb t̃[c∇d t̃a] = 0.

Since contracting φa on any index in t̃[a∇b t̃c] yields 0, it follows that

(φaφa) t̃[b∇c t̃d] = 0. Since φa is spacelike onR, it follows that equation (3.2.22)

holds onR as well. The argument for equation (3.2.23) is verymuch the same.

For that one we start with t̃[a φb∇c φd] = 0.
Let us first check that conditions (1) and (2) are equivalent. Consider the

field

ηa = t̃a +
√

−t̃bt̃b
φcφc

φa.
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It is a null field by our orthogonality assumption. It follows from equations

(3.2.20) and (3.2.21) that

ηa∇aηb = t̃a∇at̃b − (t̃bt̃b)

(φcφc )
φa∇aφb.

(We know that t̃a∇a

(
t̃bt̃b
φcφc

)
= φa∇a

(
t̃bt̃b
φcφc

)
= 0, even without the orthogo-

nality assumption, just because φa and t̃a are commuting Killing fields.) So

(2) holds iff

(3.2.24) (φcφc ) t̃a∇at̃b − (t̃bt̃b)φ
a∇aφb = 0.

But 2 t̃a∇a t̃b = −∇b (t̃at̃a) and 2φa∇a φb = −∇b (φaφa), since φa and t̃a are

Killing fields. So this condition is equivalent to (1).

Now consider condition (3). (R, k) is non-rotating according to the CIR

criterion iff

t̃[a∇b t̃c] + kφ[a∇b t̃c] + k t̃[a∇b φc] + k2 φ[a∇b φc] = 0

on R. This reduces to

(3.2.25) k
(
φ[a∇b t̃c] + t̃[a∇b φc]

) = 0

in the case at hand by virtue of equations (3.2.22) and (3.2.23). So (3) holds iff

(3.2.26) φ[a∇b t̃c] + t̃[a∇b φc] = 0

on R. Now suppose equation (3.2.26) holds at a point. Then, contraction with

φa t̃b yields

(φaφa) t̃b∇b t̃c + (t̃bt̃b)φ
a∇c φa = 0,

which is equivalent to equation (3.2.24). So we have the implication (3)=⇒ (2).

For the converse, suppose that equation (3.2.24) holds at a point. Contracting

equations (3.2.22) and (3.2.23) with t̃a and φa respectively, yields,

(t̃nt̃n)∇b t̃c = t̃b t̃a∇a t̃c − t̃c t̃a∇a t̃b,(3.2.27)

(φnφn)∇b φc = φb φ
a∇a φc −φc φ

a∇a φb.(3.2.28)

If we substitute for φa∇a φc in equation (3.2.28) using equation (3.2.24), it

comes out as

(t̃nt̃n)∇b φc = φb t̃a∇a t̃c −φc t̃a∇a t̃b.(3.2.29)
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It now follows from equations (3.2.27) and (3.2.29) that

(t̃nt̃n)φ[a ∇b t̃c] = −(t̃nt̃n) t̃[a ∇b φc],

which gives us equation (3.2.26). So we have the implication (2) =⇒ (3). �

We mention in passing that the conditions listed in the proposition can

arise, for example, in Schwarzschild spacetime (Wald [60]). There we have

(transferring our notation)

(t̃c t̃c ) = 1− 2M

r
,

(φb φb) = −r2,

where r is a radial coordinate. A simple calculation shows that

∇a

(
φb φb

t̃c t̃c

)
= 0 ⇐⇒ d

dr

(
− 1

r2
+ 2M

r3

)
= 0 ⇐⇒ r = 3M.

So the conditions arise only for one special radius.

Notice that condition (1) cannot hold on all rings in an axi-symmetric space-

time if, for example, there are axis points in that spacetime. For if it did hold on

all rings, then the function (φb φb)/(t̃c t̃c ) would be constant on the background

manifold M. And since φa = 0 at axis points, that constant value would have

to be 0. But that is impossible, since φa is spacelike on non-axis points.

Consider the third condition in the list. It captures the claim that all (rigid

motion) states of the ring qualify as non-rotating on the CIR criterion. This

possibilitymay seem evenmore counterintuitive than the one we encountered

in the case of a restricted regionofGödel spacetime—the regionwhere (rc/2) ≤
r < rc—where no (rigid motion) states of the ring qualified as non-rotating on

that criterion. Abramowicz and coworkers [1, 2] has suggested a way of think-

ing about this situation that may be helpful.

Let us forget about our ring for a moment and consider what would hap-

pen if we carried a gyroscope in a straight line at a certain speed (possibly 0).

Suppose that at some initial moment the axis of the gyroscope is co-aligned

with the direction of motion (figure 3.2.6). Then we would expect it to remain

Figure 3.2.6. A gyroscope moving in a “straight line” will not change direction relative to that
line.
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co-aligned, no matter what the speed of transport. The speed seems irrelevant

because the trajectory of the gyroscope involves no change in direction. But

in the special case where condition (2) in the proposition obtains (we are now

switching back to the case of the ring), there is a sense in which a gyroscope

mounted on the ring is moving in a “straight line,” no matter what the rota-

tional state of the ring—at least if we use light rays as our standard for what

constitutes motion in a straight line. For condition (2) asserts that light rays,

by themselves, without the intervention of mirrors or lenses or other devices,

will follow the ring.

With all this as preparation, we can formulate our proposition about the

conditions under which the two criteria for ring non-rotation agree.

PROPOSIT ION 3.2.6. Suppose that (in addition to satisfying conditions (i) to (vi)

listed above) t̃a and φa are orthogonal. Let R be an orbit cylinder on which

(3.2.30) ∇a

(
φb φb

t̃c t̃c

)
= 0.

Finally, let k be a number for which t̃a + kφa is timelike on R. Then the following

conditions are equivalent.

(1) (R, k) is non-rotating according to the ZAM criterion.

(2) (R, k) is non-rotating according to the CIR criterion.

(3) k = 0.

Proof. (R, k) is non-rotating according to the ZAM criterion iff 0 = (t̃a +
kφa)φa = k (φa φ

a). And φa is spacelike on R. So the equivalence of (1) and

(3) is immediate. (The added assumption about R is not needed for this

equivalence.)

As we saw in the proof of the preceding proposition, (R, k) is non-rotating

according to the CIR criterion iff

(3.2.31) k
(
φ[a∇b t̃c] + t̃[a∇b φc]

) = 0

on R. (Recall equation (3.2.25).) But we also saw in that proof that equation

(3.2.30) is equivalent to

φ[a∇b t̃c] + t̃[a∇b φc] = 0.

So (R, k) qualifies as non-rotating on the (CIR) criterion iff k = 0. �
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3.3. A No-Go Theorem about Orbital (Non-)Rotation

Wehave considered two particular criteria for non-rotation of the ring. Nowwe

switch our attention to a large class of “generalized criteria” of non-rotation.

We take any one such criterion (as applied in any one stationary axi-stationary

spacetime) to be, simply, a specification, for every striated orbit cylinder (R, k)

in that spacetime, whether it is to count as “non-rotating” or not. We do not

insist in advance that the criterion have a natural geometric or quasi-

operational formulation. Our plan is to consider three conditions that one

might want such a criterion to satisfy—(i) relative rotation condition, (ii) limit

condition, and (iii) non-vacuity condition—and then show that, at least in

some stationary axi-stationary spacetimes, no generalized criterion of ring

non-rotation satisfies all three. The proof of this no-go theorem is entirely ele-

mentary when all the definitions are in place. But it may be of some interest

to put them in place and formulate a result of this type. The idea is to step

back from the details of particular proposed criteria of non-rotation and direct

attention instead to the conditions they do and do not satisfy.

Let us start with the relative rotation condition. Suppose we have two rings,

R1 and R2, centered about the same axis of rotational symmetry. (Intuitively,

we imagine that the planes of the rings are parallel but not necessarily coin-

cident. See figure 3.3.1.) Suppose further that R2 is not rotating relative to

R1. Then, one might think, either both rings should qualify as “non-rotating”

or neither should. This is the requirement captured in the “relative rotation

condition.” What it means to say that R2 is not rotating relative to R1 is not

entirely unambiguous. But all we need here is a sufficient condition for rel-

ative non-rotation of the rings. And it seems, at least, a plausible sufficient

condition for this that, over time, there is no change in the distance between

any point on one ring and any point on the other; i.e., the two rings together

Figure 3.3.1. Two rings centered about the same axis of rotational symmetry.
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form a rigid (ganged) system. So we are led to the following first formulation

of the condition.

Relative Rotation Condition (intuitive formulation): Given two rings R1 and

R2, if (i) R1 is “non-rotating,” and if (ii) R2 is non-rotating relative to

R1 (in the sense that, given any point on R2 and any point on R1, the

distance between them is constant over time), then R2 is “non-rotating.”

Now let us formulate a more precise version. Let (M, gab) be a station-

ary, axi-symmetric spacetime with Killing fields t̃a and φa, and let (R1, k1) and

(R2, k2) be two striated orbit cylinders (as determined relative to t̃a andφa). (So,

in particular, given how we have defined striated orbit cylinders, (t̃a + ki φ
a) is

timelike on Ri for i = 1, 2.) Let γi be a striation curve—i.e., an integral curve

of (t̃a + ki φ
a)—in Ri, for i = 1, 2. There are various ways we might try to

determine the “distance” between γ1 and γ2. For example, we might bounce a

light signal back and forth between them and keep track of how much time is

needed for the round trip, asmeasured by a clock following one of the striation

curves. But, presumably, nomatter what procedure we use, the measured dis-

tance will be constant over time if γ1 and γ2 are integral curves of a common

Killing field. (For, presumably, any reasonablemeasurement procedure can be

characterized in terms of some set of relations and functions that are definable

in terms gab, and all such relations and functions will be preserved under the

isometries generated by the common Killing field.) So we seem to have a plau-

sible sufficient condition for the relative non-rotation of (R2, k2) with respect to

(R1, k1)—namely, that there exists a (single) Killing field κa whose restriction

to R1 is proportional to (t̃a + k1 φa) and whose restriction to R2 is propor-

tional to (t̃a + k2 φa). But the latter condition holds immediately, of course, if

k1 = k2.

The upshot of this long-winded discussion is the proposal that it is plausible

to regard (R2, k2) as non-rotating relative to (R1, k1) if k1 = k2. (Again, all we

need here is a sufficient condition for relative non-rotation.) So we take the

relative rotation condition to be the following.

Relative Rotation Condition (precise formulation): For all k, and all striated

orbit cylinders (R1, k) and (R2, k) sharing that k, if (R1, k) qualifies as

non-rotating, so does (R2, k).

It follows immediately from proposition 3.2.6 that both the ZAM and CIR

criteria satisfy the relative rotation condition in any stationary, axi-symmetric

spacetime in which the Killing fields t̃a and φa are orthogonal—at least if one

restricts attention to rings on which equation (3.2.30) holds. (For in that case,
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on either criterion, if (R1, k) is non-rotating, it follows that k = 0; and if k = 0,

it follows that (R2, k) is non-rotating as well.) It also follows immediately from

proposition 3.2.4 that neither criterion satisfies the relative rotation condition

inGödel spacetime. (For if, say, 0 < r1 < r2 < (rc/2), then it is not the case that√
2/(1− sh2r1) = √

2/(1− sh2r2); and it is not the case that the corresponding

expressions that arise with the CIR criterion are equal.)

It is natural to ask whether there is any generalized criterion of rotation

that satisfies the relative rotation condition in Gödel spacetime. The answer

is, trivially, “yes”. Indeed, given any stationary, axi-symmetric spacetime, there

is a generalized criterion of rotation that satisfies the relative rotation condition

in that spacetime. Intuitively, all one has to do is pick one ring in one rotational

state arbitrarily, and then take other rings to be non-rotating iff they are non-

rotating relative to that one. (Or, in the formal language, oneneedonly pick one

striated orbit cylinder (R, k) arbitrarily, and then take a striated orbit cylinder

(R′, k′) to be non-rotating iff k′ = k.)

The point of the no-go theorem that follows is to show that, though there

do exist generalized criteria of non-rotation that satisfy the relative rotation

condition in any particular stationary, axi-symmetric spacetime, none are fully

satisfactory because (at least in some cases) they violate other conditions that

we would want to see satisfied.

Consider, next, the limit condition. Recall our remarks about the asymp-

totic agreement of the ZAM and CIR criteria for “infinitely small rings” in

Gödel spacetime. We suggested that this agreement should not be surprising

because in relativity theory there is an unambiguous notion of non-rotation for

a timelike vector field at a point, and we should expect any reasonable notion

of orbital non-rotation for rings to deliver that notion in the limit. The limit

condition simply makes that expectation precise. It asserts that if we have a

sequence of orbit cylinders R1, R2, R3, . . . that converges to a point p on the

axis of rotational symmetry, and ifwehave a sequence of numbers k1, k2, k3, . . .

such that (Ri, ki) qualifies as non-rotating for every i, then the latter sequence

has a well-defined limit at p, and that limit is the correct one. What does “cor-

rect” mean here? Just as in the Gödel case, the limit value should be that

(unique) k for which the field (t̃a + kφa) is non-rotating at p.

That there is a unique k at each axis point satisfying the stated condition

(in all stationary, axi-symmetric spacetimes) is confirmed in the following

proposition. To avoid interruption, we hold its proof for an appendix.

PROPOSIT ION 3.3.1. Let (M, gab) be a stationary, axi-symmetric spacetime with

Killing fields t̃a and φa. Let p be a point at which φa = 0. Then there is a unique
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number k such that ηa = t̃a + kφa is non-rotating (η[a∇b ηc] = 0) at p. Its value

is given by

(3.3.1) kcrit( p) = − (∇b t̃c )(∇b φc )

(∇m φn)(∇m φn)
.

There is one point concerning our formulation of the limit condition

that requires comment. We need to make clear what it means to say that

“a sequence of orbit cylinders R1, R2, R3, . . . converges to a point on the

axis of rotational symmetry.” Indeed, that provisional language is somewhat

misleading. It must be remembered that the axis set where φa = 0 forms a

two-dimensional submanifold of our background stationary, axi-symmetric

spacetime. (This fact is not brought out by the figures displayed to this point

because they suppress one dimension.) So, for example, in Gödel spacetime,

the axis set consists of all points with r coordinate 0 but with arbitrary t̃ and

z̃ coordinates. What the sequence R1, R2, R3, . . . can converge to, strictly

speaking, is not a point p in the axis set but rather an integral curve γ of

the Killing field t̃a that is, itself, fully contained within the two-dimensional

axis set. (In the case of Gödel spacetime, these are curves characterized by r

value 0, and some fixed value for z̃, but arbitrary values for t̃.) And we can

understand convergence here to mean, simply, that given any point p on γ

and any open set O containing p, there is an N such thatRi intersects O for all

i ≥ N .

Finally, note that because these limit curves are integral curves of t̃a on

whichφa = 0—andso aremappedonto themselves by all isometries generated

by t̃a and φa—the number kcrit( p) in our proposition must be the same for all

points p on them.

With all this by way of preparation, we now formulate the limit condition

officially as follows.25

Limit Condition: Let γ be an integral curve of t̃a on which φa = 0. Let R1,

R2, R3, . . . be a sequence of orbit cylinders that converges to γ . And

let k1, k2, k3, . . . be a sequence of numbers such that (Ri, ki) qualifies

as non-rotating for every i. Then lim
i→∞

ki = kcrit( p), where p is any point

on γ .

25. Our formulation here is slightly different from that in Malament [41] in that we avoid
reference to the “center point of the ring.” That notion played a role in [41] in the characterization
of the CIA criterion of ring non-rotation, but has not been used here.
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Though it will play no role in what follows, we claim (without proof) that

the ZAM and CIR criteria of non-rotation satisfy this limit condition in all

stationary, axi-symmetric spacetimes, not just in Gödel spacetime.

The first questions to ask is whether there is any generalized criterion of

non-rotation for the ring that satisfies both the relative rotation condition and

the limit condition in Gödel spacetime. The answer is certainly “yes” again.

In that spacetime, kcrit( p) = √
2 for all points p in the axis set. So it suffices to

take the following as our criterion: given any striated orbit cylinder (R, k),

it counts as non-rotating precisely if k = √
2. It trivially satisfies both the

relative rotation and limit conditions.

Moreover, there is a cheap sense in which one can always find a generalized

criterion of non-rotation that satisfies the two conditions—i.e., in any station-

ary, axi-symmetric spacetime. It is the degenerate criterion according to which

no striated orbit cylinder whatsoever counts as non-rotating. As a matter of

simple logic, it vacuously satisfies both conditions. The non-vacuity condition

rules out this uninteresting possibility.

Non-Vacuity Condition: There is at least one striated orbit cylinder (R, k)

that qualifies as non-rotating.

We have just seen that there is a criterion of non-rotation that satisfies all

three conditions in Gödel spacetime. But Gödel spacetime is rather special

within the class of stationary, axi-symmetric spacetimes because it has the

Killing field z̃a in addition to t̃a and φa. As a result, given any two axis points

in Gödel spacetime, there is an isometry that takes the first to the second. So

it must be the case that the function kcrit has the same value at all axis points.

But there are stationary, axi-symmetric spacetimes in which it does not have

the same value at all axis points (we shall give an example in a moment), and

in those there is no generalized criterion of non-rotation that satisfies all three

conditions.

PROPOSIT ION 3.3.2. Let (M, gab) be a stationary, axi-symmetric spacetime. It

admits a generalized criterion of ring non-rotation that satisfies the relative rota-

tion, limit, and non-vacuity conditions iff kcrit( p) = kcrit(p′) for all axis points p

and p′.

Proof. (If ) Suppose there is a number kcrit such that kcrit( p) = kcrit for all axis

pointsp. Then, trivially, there is a criterionof ringnon-rotation that satisfies the

three conditions, namely the one according to which a striated orbit cylinder

(R, k) counts as non-rotating iff k = kcrit .
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Figure 3.3.2. Two sequences of rings {Ri} and {R′
i} converging to points p and p′, respectively,

on the axis of rotational symmetry.

(Only if ) Suppose there exist axis points p and p′ such that kcrit( p) = kcrit(p′).
Let γ and γ ′ be the (maximally extended) integral curves of t̃a that contain p

and p′, respectively. Further, let R1, R2, R3, . . . and R′
1, R′

2, R′
3, . . . be

sequences of orbit cylinders that converge to γ and γ ′, respectively (figure

3.3.2). (Existence is guaranteed. Let p1, p2, p3, . . . be any sequence of points

converging to p and, for all i, let Ri be the (unique) orbit cylinder the con-

tains pi. (Ri is the set of all points of the form ψ( p), where ψ is an isometry

generated by t̃a and φa.) Then R2, R3, . . . converges to γ . And R′
1, R′

2,

R′
3, . . . can be generated in the same way.) Now assume there is a generalized

criterion of ring non-rotation C that satisfies all three conditions. By the non-

vacuity condition, there is a striated orbit cylinder (R, k) that is non-rotating

according to C. For all sufficiently large i, (Ri, k) and (R′
i, k) are striated orbit

cylinders; i.e., t̃a + kφa is timelike on Ri and R′
i. So (because we can always

dispose of particular finite initial segments), we may as well assume that

(Ri, k) and (R′
i, k) are striated orbit cylinders for all i. By the relative rota-

tion condition, then, (Ri, k) and (R′
i, k) are non-rotating according to C for

all i. Therefore, by the limit condition applied to (R1, k), (R2, k), (R3, k), . . .

and (R′
1, k), (R′

2, k), (R′
3, k), . . ., it must be the case that kcrit( p) = k =

kcrit(p′), contradicting our initial assumption. So we may conclude that there

is no generalized criterion of ring non-rotation C that satisfies all three

conditions. �

For the no-go theorem, we need now only exhibit a stationary, axi-

symmetric spacetime in which it is not the case that kcrit( p) = kcrit(p′) for all
axis points p and p′. One example isKerr spacetime (Wald [60] andO’Neill [47]).

We shall say only enough about it to establish this one fact. In Boyer-Lindquist

(spherical) coordinates t̃, r ,φ, θ , the metric is
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gab =
(
1− 2M r

ρ2

)
(dat̃)(dbt̃)− ρ

2

"
(dar)(dbr)− ρ2 (daθ )(dbθ )

−
[
r2 + a2 + 2M r a2 sin2 θ

ρ2

]
(sin2 θ ) (daφ)(dbφ)

+ 4M r a sin2 θ

ρ2
(d(at̃)(db)φ),

where

ρ2 = r2 + a2 cos2 θ ,

" = r2 − 2M r + a2,

and M and a are positive constants (O’Neill [47]). The axis set A here consists

of all points at which sin θ = 0, for it is at those points at which the rotational

Killing field φa = (∂/∂ φ)a vanishes. (So every point inA is uniquely character-

ized by its t̃ and r coordinates.) It is not the case that t̃a = (∂/∂ t̃)a is timelike

and φa is spacelike at all points in M− = (M − A). But those conditions do

obtain in restricted regions of interest—e.g., in the open set where r > 2M. If

we think of Kerr spacetime as representing the spacetime structure surround-

ing a rotating black hole, our interest will be in small rings that are positioned

close to the axis of rotational symmetry (where sin2θ is small) and far away

from the center (where r is large). There we can sidestep all complexities

having to do with horizons and singularities. The proposition we need is the

following.

PROPOSIT ION 3.3.3. Let p be an axis point in Kerr spacetime with coordinates

t̃ and r > 2M. Then

(3.3.2) kcrit( p) = 2M r a

(r2 + a2)2
.

(So kcrit does not assume the same value at all axis points.)

Proof. We can certainly verify equation (3.3.2) directly by computing

(∇b t̃c )(∇b φc )

(∇m φn)(∇m φn)

at p and then invoking equation (3.3.1). But we can save ourselves a bit of

work with an alternate approach that focuses attention on the smooth function

f : M− → R defined by

f = − (t̃a φa)

(φn φn)
= 2M r a

(r2 + a2)ρ2 + 2M r a2 sin2 θ
.
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Consider the field ηa = t̃a + f φa on M−. We claim that it can be expressed in

the form

(3.3.3) ηa = ∇a t̃

(∇n t̃)(∇n t̃)
.

To see this, let D = (t̃a t̃a)(φa φa)− (t̃n φn)2. Clearly, D < 0 on M− (since φa is

spacelike there). We have

∇a t̃ = 1

D

[
(φn φn) t̃a − (t̃n φn)φa

]
.

(This follows since both sides yield the same result when contracted with

t̃a,φa, ra, and θa.) Hence

(∇n t̃)(∇n t̃) = 1

D
(φnφn)

and, therefore,

∇a t̃

(∇n t̃)(∇n t̃)
= (φn φn) t̃a − (t̃n φn)φa

(φnφn)
= ηa,

as claimed. The right side of equation (3.3.3) has the form g ∇at̃. It follows

that η[a∇b ηc] = 0 everywhere on M−.
Now f and ηa can be smoothly extended to A. At p, the extended function

assumes the value

f ( p) = 2M r a

(r2 + a2)2

(since, once again, the axis points here are ones where sin θ = 0). So, at p, the

extended vector field satisfies

0 = η[a∇b ηc] = t̃[a∇b t̃c] + f ( p) t̃[a∇b φc]

+ f ( p)φ[a∇b t̃c] + f ( p)2 φ[a∇b φc].

But we know from proposition 3.3.1 that the final expression on the right can

be 0 only if f ( p) = kcrit( p). So we are done. �

Our main result now follows as an immediate corollary.

PROPOSIT ION 3.3.4. (No-Go Theorem) There is no criterion of ring non-rotation

on Kerr spacetime that satisfies the relative rotation, limit, and non vacuity con-

ditions.
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It is intended to bear this interpretation: given any (non-vacuous) generalized

criterion of ring non-rotation in Kerr spacetime, to the extent that it gives “correct”

attributions of non-rotation in the limit for infinitely small rings—the domain where

one does have an unambiguous notion of non-rotation—it must violate the relative

rotation condition.

Appendix: The Proof of Proposition 3.3.1

Here we prove proposition 3.3.1. It will be convenient to collect a few facts

first that will be used in the proof.

PROPOSIT ION 3.3.5. Let (M, gab) be a stationary, axi-symmetric spacetime with

Killing fields t̃a and φa. Let p be an axis point. (So φa = 0 at p.) Let εabcd be a

volume element defined on some open set O containing p, and let σ a be the smooth

field on O defined by σ a = εabcd t̃b∇c φd . Then at p,

(1) σ a = 0

(2) ∇a φb = 1

2 (t̃nt̃n)
εabcd t̃cσ d.

Furthermore, given any smooth field ψa (defined on some open set containing p),

if £φ ψa = 0 at p, then it must be of the form ψa = k1 t̃a + k2 σ a at p.

Proof. Note that σ a is orthogonal to t̃a and φa throughout O. (The first claim

follows just because εabcd is anti-symmetric, and the second by clause (vi) in

our characterization of stationary, axi-symmetric spacetimes.) Note, as well,

that

(3.3.4) t̃[a∇b φc] = 1

6
εabcd σ

d

throughout O. (We get this by contracting both sides of σ d = εdmnp t̃m∇n φp

with εabcd .) Now we argue for (1). Suppose that σ a = 0 at p. Then, by equation

(3.3.4),

0 = t̃a t̃[a∇b φc] = 1

3

[
(t̃at̃a)∇b φc + t̃c t̃a∇a φb − t̃b t̃a∇a φc

]
at p. Now t̃a∇a φb = φa∇a t̃b everywhere on O (since the fields t̃a and φa have a

vanishing Lie bracket), and φa = 0 at p. So the second and third terms on the

right vanish there. Thus ∇a φb = 0 at p. But this is impossible. For given any

Killing field κa on the (connected) manifold M, if κa and ∇a κb both vanish at

any one point, then they must vanish everywhere. (SeeWald [60, p. 443].) And

that is not possible in the present case because φa is spacelike at all non-axis

points (and some non-axis points exist). So we have (1). And for (2) we need
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only contract both sides of equation (3.3.4) with t̃c , expand the left side, and

use much the same argument we have just used to show that two terms in the

expansion vanish.

Finally, let ψa be a smooth field (defined on some open set containing

p) such that £φ ψa = 0 at p. Then ψa∇a φb = φa∇a ψb = 0 at p (since, once

again, φa = 0 at p). Hence, by (2), εabcd ψ
a t̃cσ d = 0. So the three vectorsψa, t̃a,

and σ a are linearly dependent at p. Since t̃a and σ a are non-zero at p, ψa can

be expressed as a linear combination of them at p. �

Now for the proof of proposition 3.3.1. The formulation, once again, is as

follows.

Let (M, gab) be a stationary, axi-symmetric spacetime with Killing fields

t̃a and φa. Further, let p be a point at which φa = 0. Then there is a unique

number k such that ηa = t̃a + kφa is non-rotating (η[a∇b ηc] = 0) at p, and that

number is

− (∇b t̃c )(∇b φc )

(∇m φn)(∇m φn)
.

Proof. For the first claim, what we need to show is that there a unique k

such that

(3.3.5) t̃[a∇b t̃c] + k t̃[a∇b φc] = 0

at p. (This is equivalent to η[a∇b ηc] = 0 at p sinceφa = 0 there.) We know from

clause (1) of the preceding proposition and equation (3.3.4) that t̃[a∇b φc] = 0
at p. So uniqueness is immediate. For existence, let εabcd be a volume element

defined on some open set containing p, let σ a = εabcd t̃b∇c φd (as in the pre-

ceding proposition), and let ωa = εabcd t̃b∇c t̃d . The new field ωa is orthogonal

to t̃a. And it is Lie derived by φa; i.e., £φ ωa = 0 (since φa is a Killing field

that commutes with t̃a). So, by the preceding proposition, there is a number

k2 such that εabcd t̃b∇c t̃d = ωa = k2 εabcd t̃b∇c φd or, equivalently,

t̃[a∇b t̃c] = k2 t̃[a∇b φc]

at p. Thus equation (3.3.5) holds at p iff k = −k2.

Now we compute k2. Contracting the preceding line with t̃a ∇bφc , and

then dividing by (t̃at̃a), yields

(∇b t̃c )(∇bφc ) = k2 (∇b φc )(∇bφc )
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at p. So, to complete the proof, we need only verify that (∇b φc )(∇bφc ) = 0

at p. But this follows from the preceding proposition. By clause (2) we have

(∇b φc )(∇bφc ) = 1

2 (t̃nt̃n)
εbcmn t̃mσ n(∇bφc ) = − 1

2 (t̃nt̃n)
(σnσ

n)

at p. And σ a is spacelike at p, since it is orthogonal to t̃a and (by clause (1))

non-zero there. �
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4
NEWTONIAN GRAVITATION THEORY

The “geometrized” formulation of Newtonian gravitation theory—also known

as “Newton-Cartan theory”—was first introduced by Cartan [5, 6] and Fried-

richs [21] and later developed by Dautcourt [10], Dixon [11], Dombrowski

and Horneffer [13], Ehlers [15], Havas [28], Künzle [34, 35], Lottermoser [37],

Trautman [59], and others. It is significant for several reasons.

First, it shows that several features of relativity theory once thought to be

uniquely characteristic of it do not distinguish it from (a suitably reformu-

lated version of ) Newtonian gravitation theory. The latter, too, can be cast as

a “generally covariant” theory in which (i) gravity emerges as a manifestation

of spacetime curvature, and (ii) spacetime structure is dynamical—i.e., partic-

ipates in the unfolding of physics rather than being a fixed backdrop against

which it unfolds.

Second, it clarifies the gauge status of the Newtonian gravitational poten-

tial. In the geometrized formulation of Newtonian theory, one works with a

single curved derivative operator
g
∇. It can be decomposed (in a sense) into

two pieces—a flat derivative operator ∇ and a gravitational potential φ—to

recover the standard formulation of the theory. But in the absence of special

boundary conditions, the decomposition will not be unique. Physically, there

is no unique way to divide into “inertial” and “gravitational” components the

forces experienced by particles. Neither has any direct physical significance.

Only their “sum” does. It is an attractive feature of the geometrized formula-

tion that it trades in two gauge quantities for this sum. (See the discussion at

the end of section 4.2.)

Third, the clarification just described also leads to a solution, or dissolution,

of an old problem about Newtonian gravitation theory, namely the apparent

breakdown of the theory when applied (in cosmology) to a hypothetically

infinite, homogeneous mass distribution. (See section 4.4.)

248
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Fourth, it allows one to make precise, in coordinate-free, geometric lan-

guage, the standard claim that Newtonian gravitation theory (or, at least, a

certain generalized version of it) is the “classical limit” of general relativity.

(See Künzle [35], Ehlers [15], and Lottermoser [37].)

4.1. Classical Spacetimes

We begin our discussion by characterizing a new class of geometric models

for the spacetime structure of our universe (or subregions thereof ) that is

broad enough to include the models considered in both the standard and

geometrized versions of Newtonian gravitation theory.

We take a classical spacetime to be a structure (M, tab, hab,∇) where (i)M is a

smooth, connected, four-dimensionalmanifold; (ii) tab is a smooth, symmetric

field onMof signature (1, 0, 0, 0); (iii) hab is a smooth, symmetric field onM of

signature (0, 1, 1, 1); (iv) ∇ is a derivative operator on M; and (v) the following

two conditions hold:

hab tbc = 0.(4.1.1)

∇a tbc = 0 and ∇a hbc = 0.(4.1.2)

We refer to them, respectively, as the “orthogonality” and “compatibility”

conditions.

M is interpreted as themanifold of point events (as before). Collectively, the

objects tab, hab, and ∇ on M represent the spacetime structure presupposed

by classical Galilean relativistic dynamics. It will soon emerge how they do so.

We need to explain what we mean by the “signatures” of tab and hab, since

we are using the term here in a new, somewhat extended sense. The signature

condition for tab is the requirement that, at every point inM, the tangent space

there have a basis
1
ξa, . . . ,

4
ξa such that, for all i and j in {1, 2, 3, 4}, tab

i
ξa

j

ξ b = 0

if i = j, and

tab
i
ξa i
ξ b =

{
1 if i = 1

0 if i = 2, 3, 4.

(We shall call this an “orthonormal basis” for tab, though this does involve a

slight extension of ordinary usage.) Hence, given any vectors μa = ∑4
i=1

i
μ

i
ξa

and νa = ∑4
i=1

i
ν

i
ξa at the point,

(4.1.3) tab μ
aνb = 1

μ
1
ν
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and

(4.1.4) tab μ
aμb = (

1
μ)2 ≥ 0.

Notice that tab is not a metric as defined in section 1.9, since it does not satisfy

the required non-degeneracy condition. (For example, if the vectors
1
ξa, . . . ,

4
ξa

are as above at some point, then tab
2
ξa = 0 there, even though

2
ξa = 0.)

The signature condition for hab, similarly, is the requirement that, at every

point, the cotangent space there have a basis 1
σa, . . . ,

4
σa such that, for all i and

j in {1, 2, 3, 4}, hab i
σ a

j
σ b = 0 if i = j, and

hab i
σ a

i
σ b =

{
0 if i = 1

1 if i = 2, 3, 4.

(We shall extend ordinary usage once again and call this an “orthonormal

basis” for hab.) Hence, given any vectors αa = ∑4
i=1

i
α

i
σa and βa = ∑4

i=1

i
β

i
σa

at the point,

(4.1.5) habαaβb = 2
α

2
β + 3

α
3
β + 4

α
4
β

and

(4.1.6) habαaαb = (
2
α)2 + (

3
α)2 + (

4
α)2 ≥ 0.

Notice, too, that hab is not the inverse of a metric (in the sense of section

1.9); i.e., there is no field hab such that habhbc = δc
a. (Why? If 1

σa, . . . ,
4
σa are

as in the preceding paragraph at some point, then hab 1
σ a = 0. Hence, if there

were a tensor hab at the point such that hab hbc = δc
a, it would follow that

0 = hab hbc 1
σ c = δc

a
1
σ c = 1

σ a, contradicting the assumption that 1
σ a, . . . ,

4
σ a

form a basis of the cotangent space there.)

In what follows, let (M, tab, hab,∇) be a fixed classical spacetime.

Consider, first, tab. We can think of it as a “temporal metric,” even though

it is not a metric in the sense of section 1.9. Given any vector ξa at a point, we

take its “temporal length” to be (tab ξ
a ξ b)

1
2 . (We know from equation (4.1.4)

that (tab ξ
a ξ b) must be non-negative.) We further classify ξa as either timelike

or spacelike, depending on whether its temporal length is positive or zero.

It follows from the signature of tab that the subspace of spacelike vectors at

any point is three-dimensional. (For if
1
ξa, . . . ,

4
ξa is an orthonormal basis for

tab there,
1
ξa is timelike, and the remaining three are spacelike.) Notice too

that at any point we can find a co-vector ta, unique up to sign, such that

tab = tatb. (Again, let
1
ξa, . . . ,

4
ξa be an orthonormal basis for tab at the point.

Then ta = ± tan
1
ξn satisfies the stated condition. Conversely, if tab = tatb, then
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contraction with
1
ξa 1
ξ b yields 1 = (ta

1
ξa)2. So ta

1
ξa = ±1 and, hence, tab

1
ξ b =

ta (tb
1
ξ b) = ± ta.)

So far we have considered only the decomposition tab = tatb at individual

points of M. We say that (M, tab, hab,∇) is temporally orientable if there exists

a continuous (globally defined) vector field ta that satisfies the decomposi-

tion condition at every point. (Our assumptions to this point do not guarantee

existence.) Any such field ta (which must, in fact, be smooth since tab is) will

be called a temporal orientation. A timelike vector ξa qualifies as future-directed

relative to ta if ta ξa > 0; otherwise it is past-directed. If a classical spacetime

admits one temporal orientation ta, then it admits two altogether, namely ta
and −ta.

In what follows, we shall restrict attention to classical spacetimes that

are temporally orientable and in which a temporal orientation has been

selected. (We shall say, for example, “consider the classical spacetime

(M, ta, hab,∇) . . .”.) The orthogonality condition and the first compatibility

condition can then be formulated directly in terms of ta:

hab tb = 0,(4.1.7)

∇a tb = 0.(4.1.8)

(These follow easily from the original formulations.)

Clearly, we understand a smooth curve to be timelike (respectively spacelike)

if its tangent vectors are of this character at every point. And a timelike curve is

understood to be future-directed (respectively past-directed) if its tangent vectors

are so at every point.

From the compatibility condition, it follows that ta is closed; i.e. ∇[a tb] = 0.
So (by proposition 1.8.3), at least locally, it must be exact—i.e., of the form

ta = ∇at for some smooth function t. We call any such function a time function.

Any two time functions t and t′ defined on a (common) open set can differ

only by a constant; i.e., there must be a number k such that t′(p) = t(p)+ k for

all p in the set. Given any time function t, and any smooth, future-directed

timelike curve γ : [s1, s2] → M with tangent field ξa (whose image falls within

the domain of t), the temporal length of γ is given by∫ s2

s1
(ta ξa) ds =

∫ s2

s1
(ξa∇at) ds =

∫ s2

s1

d(t ◦ γ )
ds

ds = t(γ (s2))− t(γ (s1));

i.e., it depends only on the endpoints of the curve. This shows that, at least

locally, we have a well-defined, path-independent notion of “temporal dis-

tance” between points.
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Let us say that a hypersurface S in M is spacelike if, at all points of S, all

vectors tangent to S are spacelike. Notice that the defining condition is equiv-

alent to the requirement that all time functions be constant on S. (A time

function t is constant on S iff, given any vector ξa tangent to S at some point

of S, ξa∇at = 0. But taξa = ξa∇at. So the latter condition holds iff all vectors

tangent to S are spacelike.) We can think of spacelike hypersurfaces as (at least

local) “simultaneity slices.”

If M is simply connected, then there must exist a globally defined time

function t : M → R. In this case, spacetime can be decomposed into a one-

parameter family of global (t = constant) simultaneity slices. One can speak of

“space” at a given “time.” A different choice of (globally defined) time function

would result in a different zero-point for the time scale, but would induce the

same simultaneity slices and the same temporal distances between points on

them.

We are now in a position to formulate interpretive principles correspond-

ing to (C1), (P1), and (P2). (Recall our discussion in sections 2.1 and 2.3.) For

all smooth curves γ : I → M,

(C1′) γ is timelike iff its image γ [I] could be theworldline of a point particle.
(P1′) γ can be reparametrized so as to be a timelike geodesic (with respect

to ∇) iff γ [I] could be the worldline of a free point particle.1

(P2′) Clocks record the tab-length of their worldlines.

Two points should be noted. First, in (C1′) and (P1′), we make reference

to “point particles” without qualification, whereas previously we needed to

restrict attention to particles with mass m > 0. Here there are no zero mass

particles to consider, and no null curves whose images might serve as their

worldlines. Second, there is an ambiguity as to what we mean by a “free”

particle in (P1′). In the standard formulation of Newtonian gravitation theory,

particles subject to a (non-vanishing) gravitational force do not count as free.

But on the geometrized formulation, as in relativity theory, they do.

In what follows, unless indication is given to the contrary, we shall under-

stand a “timelike curve” to be smooth, future-directed, and parametrized by

its tab–length. In this case, its tangent field ξa satisfies the normalization con-

dition taξa = 1. And in this case, if a particle happens to have the image of

the curve as its worldline, then we call ξa the four-velocity field of the particle,

1. We have seen (proposition 2.5.2) that it is possible, in a sense, to recover principle (P1) as a
theorem in general relativity. Similarly, one can recover (P1′) as a theorem in geometrized New-
tonian gravitation theory. Indeed, one can prove a result that is a close counterpart to proposition
2.5.2 (Weatherall [61]).
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and call ξn∇nξ
a its four-acceleration field. If the particle has mass m, then its

four-acceleration field satisfies the equation of motion

(4.1.9) Fa = mξn∇n ξ
a,

where Fa is a spacelike vector field (on the image of its worldline) that rep-

resents the net force acting on the particle. This is our version of Newton’s

second law ofmotion. (Recall equation (2.4.13).) Note that the equationmakes

geometric sense because the four-acceleration field is spacelike. (For, by the

first compatibility condition, ta ξn∇n ξ
a = ξn∇n (ta ξa) = ξn∇n (1) = 0.)

Now consider hab. It serves as a spatial metric, but just how it does so is

a bit tricky. In Galilean relativistic mechanics, we have no notion of spatial

length for timelike vectors—e.g., four-velocity vectors—since having one is

tantamount to a notion of absolute rest. (We can take a particle to be “at rest”

if its four-velocity field has spatial length 0 everywhere.) But we do have a

notion of spatial length for spacelike vectors—e.g., four-acceleration vectors.

(We can, for example, use measuring rods to determine distances between

simultaneous events.) hab gives us one without the other.

We cannot take the spatial length of a vector μa to be (habμ
aμb)

1
2 because

the latter is not well defined. (As we have seen, there does not exist a field hab

satisfying habhbc = δa
c .) But ifμ

a is spacelike, we can use hab to assign a spatial

length to it indirectly. Here we need a small result about spacelike vectors.

PROPOSIT ION 4.1.1. Let (M, ta, hab,∇) be a classical spacetime. Then the follow-

ing conditions hold at all points in M.

(1) For all σb, habσb = 0 iff σb is a multiple of tb.

(2) For all μa, μa is spacelike iff there is a σb such that habσb = μa.

(3) For all σb and σ ′
b, if habσb = habσ ′

b, then habσaσb = habσ ′
aσ

′
b.

Proof. The “if ” halves of (1) and (2) follow immediately from the orthogo-

nality condition (4.1.7). For the “only if ” half of (1), let 1
σ a, . . . ,

4
σ a be an

orthonormal basis for hab in the sense discussed above. (So hab i
σ a

j
σ b = 0 if

i = j, hab 1
σ a

1
σ b = 0, and hab i

σ a
i
σ b = 1 for i = 2, 3, 4.) We can take 1

σ a to be

ta, since the latter satisfies the required conditions. Now consider any vector

σb = 1

k
1
tb + 2

k
2
σ b + 3

k
3
σ b + 4

k
4
σ b, and assume habσb = 0. Then, by the orthogo-

nality condition,
2

k (hab 2
σ b)+

3

k (hab 3
σ b)+

4

k (hab 4
σ b) = 0. Contraction with i

σ b

yields
i

k = 0 for i = 2, 3, 4. So σb = 1

k
1
tb.

The “only if ” half of (2) follows by dimensionality considerations. At

any point in M, we can construe hab as a linear map from the cotangent space
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Vb there to the tangent space Va. Every vector in the image space hab[Vb]
is spacelike (by the “if ” half of (2)). Moreover, hab[Vb] is three-dimensional.

(If 2
σ b,

3
σ b, and

4
σ b are as above, then the vectors hab 2

σ b, hab 3
σ b, and hab 4

σ b

are linearly independent. For, as we have just seen, if a linear combination
2

k (hab 2
σ b)+

3

k (hab 3
σ b)+

4

k (hab 4
σ b) of the three is 0, the three coefficients must

all be 0.) So, at every point, hab[Vb] is a three-dimensional subspace of the

vector space of spacelike vectors. But the latter is itself three-dimensional. So

every spacelike vector must be in hab[Vb].
For (3), suppose habσb = habσ ′

b. Then, by (1), (σ ′
b − σb) = k tb for some k.

So habσ ′
a σ

′
b = hab(σa + k ta)(σb + k tb) = habσa σb. �

So here is the indirect procedure. If μa is spacelike, we take its spatial

length to be (habσaσb)
1
2 , where σb is a vector such that habσb = μa. Clause (2)

guarantees existence, and clause (3) guarantees that the choice of σb makes

no difference.

Proposition 4.1.1 has a number of simple consequences that will be used

again and again in what follows. Here is one. Suppose we have a tensor γ...a...
at a point such that (i) γ...a...hab = 0 and (ii) γ...a...ξa = 0 for some timelike

vector ξa there. Then γ...a... = 0. (To see this, it suffices to consider any three

linearly independent spacelike vectors 2
μa, 3
μa, 4
μa at the point. (Existence is

guaranteed by the signature of tab.) They, together with ξa, form a basis for

the tangent space there. Since we are given that γ...a...ξa = 0, it suffices to

show that γ...a...
i
μa = 0 for i = 2, 3, 4. But we know from the proposition that,

for each i = 2, 3, 4, there is a co-vector i
σb such that i

μa = hab i
σb. So our claim

follows from (i).)

This first consequence of proposition 4.1.1 can be generalized. Suppose

we have a tensor γ...ab... at a point such that, for some timelike vector

ξa there, (i) γ...ab...h
amhbn = 0, and (ii) γ...ab...ξ

ahbn = 0 = γ...ab...h
anξ b, and

(iii) γ...ab...ξ
aξ b = 0. Then γ...ab... = 0. Other tensors γ...a1 a2...an... can be

handled similarly.

PROPOSIT ION 4.1.2. Let (M, ta, hab,∇) be a classical spacetime, and let ξa be a

smooth, future-directed, unit timelike vector field on M. (So taξa = 1.) Then there

is a (unique) smooth, symmetric field ĥab on M satisfying the conditions

ĥab ξ
b = 0,(4.1.10)

ĥab hbc = δc
a − ta ξ

c .(4.1.11)

Proof. It follows by the remark in the preceding paragraph that there can be at

most one field ĥab satisfying the stated conditions. (Given any two candidates,
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we need only substract one from the other and apply the remark to the result-

ing difference field.) We can define a symmetric field ĥab by its specifying its

action, at any point, on the unit timelike vector ξa and on an arbitrary spacelike

vector μa. So consider the field ĥab that annihilates the former and makes the

assignment

ĥab μ
b = σa − ta(ξ cσc )

to the latter—where σa is any vector such that μa = habσb. It is easy to check

that the choice of σa plays no role here. (For suppose that hab 1
σb = hab 2

σb. Then
1
σa − ta(ξ c 1

σc ) = 2
σa − ta(ξ c 2

σc ). The latter follows since we get the same result

on both sides if we contract with either ξa or hab.) It now follows, as well, that

condition (4.1.11) holds. For by the very way we have defined ĥab, both sides

of (4.1.11) yield the same result when contracted with any vector σc . �

We call ĥab the spatial metric (or spatial projection field) relative to ξa. Our

notation is imperfect here because we make no explicit reference to ξa. But it

will be clear from the context which unit timelike field is intended.

Because hab is not invertible, we cannot raise and lower indices with it. But

we can, at least, raise indices, and it is sometimes convenient to do so. So,

for example, if Ra
bcd is the Riemann curvature tensor field associated with ∇,

we can understand Rab
cd to be the field hbnRa

ncd . Note that

(4.1.12) ĥa
b = δa

b − tb ξ
a.

(This is simply equation (4.1.11), since ĥa
b = ĥmb hma.) It follows immediately

from equation (4.1.12) that, given any vector μa at a point, we can express it

in the form

μa = ĥa
b μ

b + (tb μ
b) ξa.

Here the first termon the right side is spacelike, and the second is proportional

to ξa. We call ĥa
b μ

b the spatial projection (or spatial component) of μa relative

to ξa.

We also call (ĥab μ
a μb)

1
2 the spatial length of μa relative to ξa. It is easy to

check that this magnitude is just what we would otherwise describe as the

spatial length of the spatial component ĥa
b μ

b. (According to our prescription,

the spatial length of ĥa
b μ

b is given by (hmn σm σn)
1
2 , where σm is any vector

satisfying ĥa
b μ

b = ham σm . But ĥa
b μ

b = ham ĥmr μ
r . So the spatial length of

ĥa
b μ

b is given by (
hmn (ĥmr μ

r ) (ĥns μ
s)
) 1

2
.
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But hmn ĥmr ĥns = ĥrs. So the spatial length of ĥa
b μ

b comes out as (ĥrs μ
r μs)

1
2 ,

as claimed.)

It is important that the compatibility conditions ∇a hbc = 0 and ∇a tb = 0
(or, equivalently, ∇a tbc = 0) do not determine a unique derivative operator.

(There is no contradiction here with proposition 1.9.2 since neither tab nor hab

is an (invertible) metric.) In fact, we have the following characterization result.

PROPOSIT ION 4.1.3. Let (M, ta, hab,∇) be a classical spacetime. Let ∇′ =
(∇, Ca

bc ) be a second derivative operator on M (i.e., the action of ∇′ relative to that

of ∇ is given by Ca
bc). Then ∇′ is compatible with ta and hab iff Ca

bc is of the form

(4.1.13) Ca
bc = 2 han t(b κc)n

where κab is a smooth anti-symmetric field on M.

Proof. Since (M, ta, hab,∇) is a classical spacetime, ∇ is compatible with both

ta and hab. Hence, by equation (1.7.1), we have

∇′
a tb = ∇a tb + Cr

ab tr = Cr
ab tr ,(4.1.14)

∇′
a hbc = ∇a hbc − Cb

ar hrc − Cc
ar hbr = −Cb

ar hrc − Cc
ar hbr .(4.1.15)

Assume, first, that Ca
bc has the indicated form. Then ta Ca

bc = 0 and

Ca
bc hcd = han tb κcn hcd by the orthogonality condition. It follows immediately

that ∇′ is compatible with ta. It also follows that

∇′
a hbc = −ta (hbn κrn hrc + hcn κrn hbr ) = −ta (κcb + κbc ).

But κab is anti-symmetric. So ∇′ is compatible with hab as well.

Conversely, assume ∇′ is compatible with ta and hab. Then, by equations

(4.1.14) and (4.1.15),

Cr
ab tr = 0,(4.1.16)

Cb
ar hrc + Cc

ar hbr = 0.(4.1.17)

Now consider the raised index tensor fieldCabc = Ca
mn hmb hnc . It is spacelike;

i.e., contraction on any index with ta yields 0. Moreover, it satisfies the two

conditions

Cabc = Cacb,(4.1.18)

Cabc = −Ccba.(4.1.19)
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(This first follows from the symmetry of Ca
bc itself, and the second from

equation (4.1.17).) By repeated use of these two, we have

Cabc = −Ccba = −Ccab = Cbac = Cbca = −Cacb = −Cabc .

So the field vanishes everywhere:

(4.1.20) Cabc = 0.

Now let ξa be a smooth, future-directed, unit timelike field (so taξa = 1), and

let ĥab be the corresponding spatial projection field. Then we have

0 = Camn ĥmb ĥnc = Ca
rs hrm hsn ĥmb ĥnc

= Ca
rs(δ

r
b − tb ξ

r )(δs
c − tc ξ

s).

Hence,

(4.1.21) Ca
bc = tc Ca

bs ξ
s + tb Ca

rc ξ
r − tb tc Ca

rs ξ
r ξ s.

Now consider

(4.1.22) κcn = −ĥcp ĥnq C
p
r
q ξ r + t[c ĥn]q C

q
rs ξ

r ξ s.

It is anti-symmetric by equation (4.1.17) and, we claim, it satisfies equation

(4.1.13). To verify this, we compute the right side of (4.1.13 ). We have

2 han tb κcn = −2 (han ĥnq) tb ĥcp C
p
r
q ξ r + tb tc (han ĥnq)C

q
rs ξ

r ξ s.

Now, by equations (4.1.16) and (4.1.17), (han ĥnq)C
p
r
q = −(δa

q − tq ξa)C
q
r
p =

−Ca
r
p, and (han ĥnq)C

q
rs = Ca

rs. So

2 han tb κcn = 2 tb ĥcp Ca
r
p ξ r + tb tc Ca

rs ξ
r ξ s.

Furthermore, ĥcp Ca
r
p = ĥcp Ca

rs hsp = (δs
c − tc ξ s)Ca

rs. So

2 han tb κcn = 2 tb Ca
rc ξ

r − tb tc Ca
rs ξ

r ξ s.

Hence, by equation (4.1.21),

2 han t(b κc)n = 2 t(b Ca
c)r ξ

r − tb tc Ca
rs ξ

r ξ s = Ca
bc . �
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Now let Ra
bcd be the curvature tensor associated with ∇. Of course, it

satisfies the algebraic conditions listed in proposition 1.8.2:

Ra
b(cd) = 0,(4.1.23)

Ra
[bcd] = 0.(4.1.24)

The compatibility conditions (∇atb = 0 and ∇ahbc = 0) further imply that

taRa
bcd = 0,(4.1.25)

R
(ab)

cd = 0.(4.1.26)

(We have 0 = 2∇[c∇d] tb = taRa
bcd and 0 = 2∇[c∇d] hab = −Ra

mcd hmb −
Rb

mcd ham = −Rab
cd − Rba

cd .) It follows immediately fromthe conditions listed

so far that if we raise all three indices with hab, the resulting fieldRabcd satisfies

Rab(cd) = 0,(4.1.27)

Ra[bcd] = 0,(4.1.28)

R(ab)cd = 0.(4.1.29)

These, in turn, jointly imply

(4.1.30) Rabcd = Rcdab.

(The argument is the same as in the case where ∇ is determined by a (non-

degenerate) metric. Recall our proof of the fourth clause of proposition 1.9.4.)

Now consider the Ricci tensor field Rab = Rc
abc and the (spatial) scalar

curvature field R = habRab. We claim that the former is symmetric. To verify

this, we consider an arbitrary smooth, future-directed, timelike field ξa and

use the corresponding projection field ĥab to lower indices. First, it follows

easily from equations (4.1.11), (4.1.25), and (4.1.26) that

Ra
acd = ĥab Rab

cd = 0,(4.1.31)

Rbc = ĥad Rabcd ,(4.1.32)

R = ĥab Rab.(4.1.33)

(For example, we have ĥab Rab
cd = ĥab hbr Ra

rcd = (δr
a − ta ξ r )Ra

rcd = Ra
acd .

This, with equation (4.1.26), gives us equation (4.1.31).) Hence, by equations

(4.1.23) and (4.1.24),

(4.1.34) Rab − Rba = Rc
abc − Rc

bac = Rc
abc + Rc

bca = −Rc
cab.
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So, by equation (4.1.31), we have

(4.1.35) Rab = Rba,

as claimed.

Less straightforward is the following proposition.

PROPOSIT ION 4.1.4. Let (M, ta, hab,∇a) be a classical spacetime. Then the

curvature field Ra
bcd associated with ∇ satisfies

Rabcd = (hbc Rad + had Rbc − hac Rbd − hbd Rac )(4.1.36)

+ 1

2
(hac hbd − had hbc )R.

Proof. The relation is familiar from the case where we are dealing with a

derivative operator determined by an (invertible) metric and the background

manifold has dimension 3. It follows from the symmetries (4.1.27)–(4.1.30)

and (4.1.35), as well as the crucial fact that all the indices inRabcd are spacelike;

i.e., contraction on any of these indices with ta yields 0.
We prove equation (4.1.36) at an arbitrary point p of M by introducing an

appropriate basis there and considering the resulting component relations.

Let ta,
1
σa,

2
σa,

3
σa be an orthonormal basis for hab at p in the sense discussed

above. (So hab i
σ a

j
σ b = 0 if i = j, and hab i

σ a
i
σ b = 1 for i = 1, 2, 3.) Then hab =

1
σa 1
σb + 2

σa 2
σb + 3

σa 3
σb. Further, let ξa be a future-directed unit timelike vector

at p with corresponding projection tensor ĥab. Now consider the co-vectors
1
αa,

2
αa,

3
αa at p defined by

i
αa = ĥab hbc i

σ c = i
σa − ta(

i
σc ξ

c ).

It is easy to check that

(1)
i
αa ξ

a = 0 for i = 1, 2, 3.

(2) hab i
σa = hab i

αa for i = 1, 2, 3.

(3) ta,
1
αa,

2
αa,

3
αa form a co-basis at p.

(4) ĥab = 1
αa

1
αb + 2

αa
2
αb + 3

αa
3
αb.

Since all indices in Rabcd and Rab are spacelike, both tensors are determined

by their action on the basis vectors 1
αa,

2
αa,

3
αa. Consider the components

ij
R = Rab i

αa
j
αb,

ijkl
R = Rabcd i

αa
j
αb

k
αc

l
αd
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where i, j, k, l ∈ {1, 2, 3}. Because of the symmetries of Rabcd and Rab, each has

only six independent (non-zero) components, namely

11
R

12
R

13
R

22
R

23
R

33
R

and
1212
R

1313
R

2323
R

1213
R

1223
R

1323
R .

Now, by equation (4.1.32), Rab = Rrabs ĥrs =
3∑

i=1

Rrabs i
αr

i
αs. Hence, for all

j, k ∈ {1, 2, 3},
jk
R =

3∑
i=1

ijki
R . This gives us

11
R = − 1212

R − 1313
R

12
R = − 1323

R
22
R = − 1212

R − 2323
R

13
R = 1223

R
33
R = − 1313

R − 2323
R

23
R = − 1213

R .

Also, by equation (4.1.33),

R = Rab ĥab =
3∑

i=1

Rab i
αa

i
αb = 11

R + 22
R + 33

R .

Using these relations, we can check that the two sides of equation (4.1.36)

agree in their action on any quadruple
i
αa

j
αb

k
αc

l
αd . As an example, consider

1
αa

2
αb

1
αc

2
αd . We have hab 1

αa
1
αb = hab 2

αa
2
αb = 1 and hab 1

αa
2
αb = 0. So it suffices

to confirm that
1212
R = (−22

R − 11
R )+ 1

2
R. But this follows from the entries in

our table. �

Next we consider the notion of “spatial flatness.” Of course, we say that our

background classical spacetime is flat at a point if Ra
bcd = 0 there. In parallel,

we say that it is spatially flat there if Rabcd = 0. To motivate this definition,

we need to say something about “induced derivative operators” on spacelike

hypersurfaces. (Recall that a hypersurface is spacelike—in a classical space-

time as well as in a relativistic spacetime— if all smooth curves with images

in the hypersurface are spacelike.)

Let S be a spacelike hypersurface, and let ξa be an arbitrary smooth, unit,

future-directed timelike vector field on S. Let ĥab be the associated projection

field on S. Given any tensor field on S, we say that it is spacelike relative to ξa if

contraction on any of its indices with ta or ξa yields 0. We can think of fields

spacelike relative to ξa as living on the manifold S. (Recall the discussion in
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section 1.10.) Clearly, hab and ĥab both qualify as spacelike relative to ξa. So

does ĥb
a = δb

a − ta ξ b. Notice that ĥb
a preserves all vectors that are spacelike

relative to ξa; i.e., ĥb
a μ

a = μb and ĥb
a σb = σa, for all μa and σa spacelike

relative to ξa. We can thus think of ĥb
a as a “delta (or index substitution) field”

for fields on S that are spacelike relative to ξa. And we shall, on occasion, write

δ̂b
a rather than ĥb

a—just as in the case of a (non-degenerate) metric gab we

often write δb
a rather than gb

a.

What is most important here is that we can think of ĥab as a (non-

degenerate) metric that lives on S. It is non-degenerate in the relevant sense

because it does not annihilate any non-zero vectors that are spacelike relative

to ξa or, equivalently, because it has an “inverse” hab; i.e., ĥab hbc = δ̂c
a. (This

is just equation 4.1.11.) So there is a unique derivative operator D on S that is

compatible with ĥab—i.e., such thatDaĥbc = 0. We can express the action ofD

in terms of ∇ (as explained in section 1.10). Given any field spacelike relative

to ξa, the action of D on it is given by first applying ∇ and then projecting all

covariant indices with ĥb
a. So, for example,

(4.1.37) Dn α
a
bc = ĥm

n ĥr
b ĥs

c ∇m α
a
rs.

Theprojection insures that the resultantfield is spacelike relative to ξa. There is

noneed toproject the contravariant indices. Since∇atb = 0, they remain space-

like even after∇ is applied. (One can check directly thatD satisfies all the defin-

ing conditions of a derivative operator on S, and furthermore Daĥbc = 0 and

Dahbc = 0.) We refer to D as the derivative operator induced on S relative to ξa.

The following proposition serves to motivate our definition of spatial

flatness.

PROPOSIT ION 4.1.5. (Spatial Flatness Proposition) Let (M, ta, hab,∇) be a clas-

sical spacetime. The following conditions are equivalent at every point in M.

(1) Space is flat, i.e., Rabcd = 0.

(2) Rab = 0.

(3) Rab = t(a ϕb) for some ϕa.

Furthermore, given any spacelike hypersurface S in M, these conditions hold

throughout S iff parallel transport of spacelike vectors within S is, at least locally,

path independent.

Proof. Let p be a point in M, and let ξa be an arbitrary, future-directed, unit

timelike vector at pwith corresponding spatial projection tensor ĥab. The equiv-

alence of (1) and (2) follows from equations (4.1.32), (4.1.33), and (4.1.36).
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The implication (3) ⇒ (2) is immediate. For the converse, consider the

vector

ϕa = 2Rabξ
b − ta(Rmn ξ

mξn).

We have ϕaξ
a = Rab ξ

aξ b and ϕahar = 2Rab harξ b. Therefore, at any point

where Rab = 0, it must be the case that Rab = t(a ϕb), since both sides agree

in their action on ξaξ b, harξ b, and harhbs. (Recall our remarks following

proposition 4.1.1.)

Now let S be a spacelike hypersurface, and let ξa be a smooth, unit, future-

directed timelike vector field on S. Further, let ĥab be the associated projection

field on S, and let D be the derivative operator induced on S relative to ξa (as

explained in the preceding paragraphs). Finally, suppose that μa and νa are

spacelike fields onS. Then they automatically qualify as spacelike relative to ξa,

and by equation (4.1.37) we have μnDn ν
a = μn ĥr

n ∇r ν
a = μr ∇r ν

a. It follows

that D and ∇ induce the same conditions for parallel transport of spacelike vectors

on S. We know that parallel transport of such vectors on S is, at least locally,

path independent iff the Riemann curvature tensor field Ra
bcd on S associated

with D vanishes. So, for the second half of the proposition, it suffices for us

to show that, at all points on S,

(4.1.38) Rabcd = 0 ⇐⇒ Ra
bcd = 0.

This just involves a bit of computation. The right-side condition here is equiv-

alent to the requirement that, for all spacelike fields μa on S,

0 = Ra
bcd μ

b = −2D[c Dd] μa = −2 ĥr
c ĥs

d ∇[r ∇s] μa = ĥr
c ĥs

d Ra
brs μ

b.

Hence, it is equivalent to the condition

0 = ĥr
c ĥs

d Ra
prs hpb = ĥr

c ĥs
d Rab

rs.

Contracting this equation with hcm hdn yieldsRabmn = 0. Conversely, contract-
ing Rabmn = 0 with ĥcm ĥdn yields ĥr

c ĥs
d Rab

rs = 0. �

The interest of proposition 4.1.5 will become apparent in the next sec-

tion when we consider the geometrized formulation of Newtonian gravitation

theory. In that formulation, Poisson’s equation assumes the form Rab =
4 πρ tatb (where ρ is the mass density function). We see from the proposition

that Poisson’s equation (in its geometrized formulation) implies the flatness of

space. This is striking. It is absolutely fundamental to the idea of geometrized

Newtonian theory that spacetime is curved (and gravitation is just a manifes-

tation of that curvature). Yet the basic field equation of the theory itself rules

out the possibility that space is curved.
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Intermediate between the curvature conditions Ra
bcd = 0 and Rabcd = 0 is

the condition Rab
cd = 0. We shall show later (proposition 4.3.1) that it holds

throughout M iff parallel transport of spacelike vectors along arbitrary curves

is, at least locally, path independent. (Here we still restrict attention to

spacelike vectors (rather than arbitrary vectors), but consider their transport

along arbitrary curves in M (not just curves confined to a particular spacelike

hypersurface).)

Before continuing with the main line of presentation in this section, we

stop briefly to record a fact that will be needed in later sections. We place it here

because it concerns the induced derivative operator D that was considered in

the preceding proof.

PROPOSIT ION 4.1.6. Let (M, ta, hab,∇) be a classical spacetime, and let φa be

smooth spacelike field on M such that ∇[a φb] = 0. Then, at least locally, there

exists a smooth field φ such that φa = ∇aφ.

Proof. This is not quite an instance of proposition 1.8.3, but it is close. Let p

be any point in M, and let O be any open set containing p that is sufficiently

small andwell behaved that it has this property: O can be covered by a familyF
of spacelike hypersurfaces, each of which is connected and simply connected.

Let γ : I → M be any timelike curve whose image contains p and intersects

every one of the hypersurfaces in F . Finally, let ξa be a smooth, future-direc-

ted, unit timelike field on O, and let ĥab be the associated spatial projection

field.

Now consider any hypersurface S in F , and the projected field φ̂a = ĥab φ
b

on S. If D is the induced derivative operator on S defined by equation (4.1.37),

then on S we have D[a φ̂b] = ĥam ĥbn ∇[m φn] = 0. So, by proposition 1.8.3,

there is a smooth field φS on S such that φ̂a = Da φS. It is determined only up

to a constant, but we can pin it down uniquely by requiring, in addition, that

it have value 0 at the point where S intersects γ [I].
Now let φ be the “aggregated” scalar field on O that agrees with φS on each

S in F . We claim without further argument that it is smooth. It satisfies the

required condition since, given any spacelike hypersurface S in F , we have

φa = hanφ̂n = hanDn φS = han ĥr
n∇r φ = ∇aφ on S. �

Now we briefly consider the representation of fluid flow. Our formalism

here is related closely to that developed in section 2.8. Let ξa be a smooth, unit,

future-directed timelike vector field on our background classical spacetime.

We think of ξa as the four-velocity of a fluid. Let ĥab be the projection field
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associated with ξa. The rotation field ωab and expansion field θab associated

with ξa are defined by

ωab = ĥm [a ĥb]n ∇m ξ
n,(4.1.39)

θab = ĥm
(a ĥb)n ∇m ξ

n.(4.1.40)

(We can motivate the terminology here much as we did in section 2.8.) It

follows that

(4.1.41) ĥbn∇a ξ
n = ωab + θab + ta ĥbn ξ

m∇m ξ
n

and, hence, that

(4.1.42) ∇a ξ
b = ω b

a + θ b
a + ta ξ

m∇m ξ
b

and

(4.1.43) ∇aξ b = ωab + θab.

As in the relativistic case, we can decompose the expansion field to arrive at

the scalar expansion field θ and the shear field σab:

θ = θaa = ∇a ξ
a,(4.1.44)

σab = θab − 1

3
θ ĥab.(4.1.45)

(That θaa = ∇a ξ
a follows from equation (4.1.42) and the anti-symmetry

of ωab.) Clearly, σab is “trace-free” since σ a
a = θ a

a − 1
3 θ ĥ a

a = θ − 1
3θ (δ

a
a −

taξa) = θ − 1
3θ (4− 1) = 0. We note for future reference the following equiva-

lences:

ωab = 0 ⇐⇒ ∇[a ξ b] = 0,(4.1.46)

θab = 0 ⇐⇒ ∇(a ξ b) = 0.(4.1.47)

(In each case, we get the implication from left to right by raising indices

with hmn, and the one from right to left by lowering indices with ĥmn.) The

conditions in thefirst line capture the claim that ξa isnon-rotating (or twist-free).

Finally, we say just a bit about the four-momentum of point particles and

the four-momentum density of matter fields. It is instructive to consider the

situations in Newtonian and relativistic mechanics side by side. (For a more

complete and thorough comparison, see Dixon [12].) Suppose, first, that we

have a point particle with mass m and four-velocity field ξa. Then, just as in

relativity theory, we associate with it a four-momentum field Pa = m ξa along

its worldline. (In the present context we have only particles with positive mass

(m > 0) to consider.)
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Suppose particle O has four-velocity ξa at a point, and another particle O′

has four-momentum Pa = m ξ ′a there. Just as in the relativistic case, we can

decompose Pa relative to ξa.

Newtonian Mechanics Relativistic Mechanics

Pa = (tbPb)︸ ︷︷ ︸
mass

ξa + ĥa
b Pb︸ ︷︷ ︸

relative 3−momentum

Pa = (ξbPb)︸ ︷︷ ︸
relative energy

ξa + ha
b Pb︸ ︷︷ ︸

relative 3−momentum

But the decomposition works somewhat differently in the two cases. In New-

tonian mechanics, we have a component proportional to ξa with magnitude

tbPb = tb (m ξ ′b) = m, and a spacelike component

ĥa
b Pb = (δa

b − tb ξ
a) (m ξ ′b) = m (ξ ′b − ξa),

which gives the three-momentum of the particle relative to ξa. (The vector

(ξ ′b − ξa) by itself gives the relative velocity of O′ with respect to O.) Thus,

in Newtonian mechanics, the four-momentum Pa of a point particle codes its

mass and its three-momentum, as determined relative to other background

observers. So it is appropriately called the “mass-momentum vector.” In

relativistic mechanics, in contrast, as we have seen, the component of Pa pro-

portional to ξa has magnitude (ξbPb), which gives the energy of the particle as

determined relative to ξa. And we call Pa the “energy-momentum vector.”

In relativistic mechanics, the mass of the particle is given by the length of

its four-momentum (gabPaPb)
1
2 . The corresponding statement in Newtonian

mechanics is that the mass of the particle is given by the temporal length of

its four-momentum (tabPaPb)
1
2 .

Now we switch from point particles to continuous matter fields. Just as in

relativity theory, we associate with each matter field F a smooth, symmetric

field Tab. But the interpretation of Tab is different in Newtonian mechanics

(parallel to the way that the interpretation of Pa is different), and here we call

it the mass-momentum field associated with F . In both cases, Tab codes the

four-momentum density of F as determined, at any point, relative to future-

directed, unit timelike vectors ξa there. But in the Newtonian case, the four-

momentumdensity is the same for all ξa. It is given byTabtb. (In the relativistic

case, it is not invariant and is given, instead, by Tabξb. Recall section 2.5.)

Newtonian Mechanics Relativistic Mechanics

Tabtb is the four-momentum Tabξb is the four-momentum

density of F density of F
as determined relative to ξa
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The conservation equation carries over intact from relativistic mechanics:

(4.1.48) ∇a Tab = 0.

We can decompose the Newtonian four-momentum density Tabtb just as

we decomposed Pa to determine an invariant mass-density and a relative

three-momentum density. The former is given by ρ = Tabtatb. We can take

it to be a (Newtonian) “mass condition” that Tabtatb > 0 whenever Tab = 0.

When the condition is satisfied, we can further define the fields

ηa = 1

ρ
Tabtb,

pab = Tab − ρ ηaηb,

and arrive at a canonical representation of Tab:

(4.1.49) Tab = ρ ηaηb + pab.

Here ηa is a smooth, future-directed, unit timelike field, and pab is a smooth,

symmetric field that is spacelike in both indices (tapab = 0). In the case of a

fluid, for example, we can interpret ηa as the four-velocity of the fluid. In terms

of this representation, the conservations equation comes out as

(4.1.50) 0 = ∇a Tab = ρ ηa∇aη
b + ηb [ηa∇a ρ+ ρ ∇a η

a] + ∇a pab.

Contracting with tb yields the following equivalence:

∇a Tab = 0 ⇐⇒
{
ρ ηa ∇a η

b + ∇a pab = 0
ηa ∇a ρ+ ρ (∇a η

a) = 0.

The second equation on the right expresses the conservation of mass. (The

analysis we gave in the context of relativity theory carries over intact.) The first

is an equation ofmotion. In the case of a perfect fluid, for example, pab = p hab,

where p is the (isotropic) pressure of the fluid. In this case, the first equation

comes out as Euler’s equation:

(4.1.51) ρ ηa ∇a η
b = −∇b p.

Formore on the development of Newtonianmechanics within our geomet-

ric framework, see, for example, Ellis [17] and Künzle [35].

4.2. Geometrized Newtonian TheoryFirst Version

Now we turn to Newtonian gravitation theory proper. In the standard (non-

geometrized) version, one assumes that the background derivative operator ∇
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is flat and posits a gravitational potential φ. The gravitational force on a point

particle with mass m is given by − m hab ∇b φ. (Notice that this is a space-

like vector by the orthogonality condition.) Using our convention for raising

indices, we can also express the vector as− m ∇a φ. It follows that if the particle

is subject to no forces except gravity, and if it has four-velocity ξa, it satisfies

the equation of motion

(4.2.1) −∇a φ = ξn ∇n ξ
a.

(Here we have just used − m ∇a φ for the left side of equation (4.1.9).) It is

also assumed that φ satisfies Poisson’s equation

(4.2.2) ∇a ∇a φ = 4 π ρ,

where ρ is the Newtonian mass-density function. (The expression on the left

side is an abbreviation for hab ∇a ∇b φ.)

In the geometrized formulation of the theory, gravitation is no longer con-

ceived of as a fundamental “force” in the world but rather as amanifestation of

spacetime curvature, just as in relativity theory. Rather than thinking of point

particles as being deflected from their natural straight trajectories in flat space-

time, one thinks of them as traversing geodesics in curved spacetime. So we

have a geometry problem. Starting with a classical spacetime (M, ta, hab,∇),

with∇ flat andwith fieldφ onM, canwefind anewderivative operator
g
∇ onM,

also compatible with ta and hab, such that a timelike curve satisfies the equa-

tion ofmotion (4.2.1) with respect to the original derivative operator∇ iff it is a

geodesicwith respect to
g
∇? The following proposition (essentially due to Traut-

man [59]) asserts that there is exactly one such
g
∇. It also records several condi-

tions satisfied by the Riemann curvature tensor field
g
Ra

bcd associated with
g
∇.

We shall consider the geometric significance of these conditions in section 4.3.

PROPOSIT ION 4.2.1. (Geometrization Lemma) Let (M, ta, hab,∇) be a classical

spacetime with ∇ flat (Ra
bcd = 0). Further, let φ and ρ be smooth real valued

functions on M satisfying Poisson’s equation ∇a ∇a φ = 4 π ρ. Finally, let
g
∇=

(∇, Ca
bc ), with Ca

bc = −tbtc∇aφ. Then all the following hold.

(G1) (M, ta, hab,
g
∇ ) is a classical spacetime.

(G2)
g
∇ is the unique derivative operator on M such that, for all timelike curves

on M with four-velocity field ξa,

(4.2.3) ξn
g
∇n ξ

a = 0 ⇐⇒ ξn ∇n ξ
a = −∇aφ.
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(G3) The curvature field
g
Ra

bcd associated with
g
∇ satisfies

g
Rbc = 4 π ρ tb tc ,(4.2.4)

g
Ra

b
c
d = g

Rc
d

a
b,(4.2.5)

g
Rab

cd = 0.(4.2.6)

Proof. For (G1), we need to show that
g
∇ is compatible with tb and hab.

But this follows from proposition 4.1.3, for we can express Ca
bc in the form

Ca
bc = 2 han t(b κc)n if we take κcn = −t[c ∇n] φ.

For (G2), let
g
∇ = (∇,Ca

bc ) where (temporarily) Ca
bc is an arbitrary smooth

symmetric field on M. Let p be an arbitrary point in M, and let ξa be the

four-velocity field of an arbitrary timelike curve through p. Then, by equation

(1.7.1),

ξn
g
∇n ξ

a = ξn∇n ξ
a − Ca

rn ξ
rξn.

It follows that
g
∇ will satisfy (G2) iff Ca

rnξ
rξn = −∇aφ or, equivalently,

(4.2.7) [Ca
rn + (∇aφ) tr tn] ξ rξn = 0

for all future-directed unit timelike vectors ξa at all points p. But the set of

future-directed unit timelike vectors at any p spans the tangent space Mp

there. (Why? Let
1
ξ a, . . . ,

4
ξ a be an orthonormal basis for tab = tatb in the

sense discussed above. [So ta
1
ξa = 1, and ta

i
ξa = 0 for i = 2, 3, 4.] Then

1
ξ a, (

1
ξ a + 2

ξ a), (
1
ξ a + 3

ξ a), and (
1
ξ a + 4

ξ a) are all future-directed unit timelike

vectors, and the set is linearly independent.) And the field in brackets in

equation (4.2.7) is symmetric in its covariant indices. So,
g
∇ will satisfy (G2)

iff Ca
rn = −(∇aφ) tr tn everywhere.

Finally, for (G3) we use equation (1.8.2). We have

g
Ra

bcd = Ra
bcd + 2∇[c Ca

d]b + 2Cn
b[cC

a
d]n(4.2.8)

= Ra
bcd − 2 tbt[d∇c] ∇aφ = − 2 tbt[d∇c]∇aφ.

(Here Cn
b[cC

a
d]n = 0 by the orthogonality condition, and ∇[c Ca

d]b = −tb
t[d∇c]∇aφ by the compatibility condition. For the final equality, we use our

assumption that Ra
bcd = 0.) Equation (4.2.6) now follows from the orthogonal-

ity condition. Equation (4.2.5) follows from that and the fact that ∇[c∇a]φ = 0
for any smooth function φ. Finally, contraction on a and d yields
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(4.2.9)
g
Rbc = tbtc (∇a∇aφ).

So equation (4.2.4) follows from our assumption that ∇a ∇a φ = 4 π ρ. �

Equation (4.2.4) is the geometrized version of Poisson’s equation. In the

special case where ρ = 0 everywhere, of course, it reduces to
g
Rbc= 0, which

we recognize as Einstein’s equation in the corresponding special case inwhich

Tbc = 0. Even in the general case, equation (4.2.4) can be reformulated so as

to have almost exactly the same structure as Einstein’s equation. Recall our

discussion of the mass-momentum field Tab toward the end of section 4.1.

We saw there that it encodes ρ via

ρ = Tmn tmn.

(We shall temporarily revert to writing tab, rather than tatb, to emphasize the

field’s relation to a two index Lorentzian metric gab, but nothing turns on our

doing so.) So we can certainly formulate Poisson’s equation directly in terms

of Tab. Now consider the fields

T̂bc = Tmn tmb tnc = ρ tbc ,

T̂ = Tmn tmn = ρ.
(Caution is required here. It must be remembered that we cannot recover

Tbc from T̂bc by “raising indices” with hab, since T̂mn hmb hnc = 0.) Using these

fields, we can express Poisson’s equation in the form

(4.2.10)
g
Rbc = 8π (T̂bc − 1

2
tbc T̂ ),

which is very close indeed to Einstein’s equation (2.7.2).

Moreover, if we start with a version of Poisson’s equation that incorporates

a “cosmological constant”

(4.2.11) ∇a∇aφ+� = 4 π ρ,

then substitution for ∇a∇aφ in equation (4.2.9) yields

(4.2.12)
g
Rbc = 4 π ρ tbtc −� tbtc

(but everything else in the proof remains the same). And this equation, in turn,

can be expressed as

(4.2.13)
g
Rbc = 8π (T̂bc − 1

2
tbc T̂ )−� tbc ,

which matches equation (2.7.4).



“530-47773_Ch04_2P.tex” — 1/23/2012 — 17:18 — page 270

−1

0

+1

270 / newtonian gravitation theory

So far, we have seen how to pass from a standard to a geometrized formula-

tion of Newtonian theory. It is also possible to work in the opposite direction.

In Trautman’s [59] version of geometrized Newtonian gravitation theory—

one of two we shall consider2—one starts with a curved derivative operator ∇
satisfying equations (4.2.4), (4.2.5), and (4.2.6), and with the principle that

point particles subject to no forces (except “gravity”) traverse geodesics with

respect to ∇. Equations (4.2.5) and (4.2.6) function as integrability conditions

that ensure the possibility of working backwards to recover the standard for-

mulation in terms of a gravitational potential φ and flat derivative operator
f
∇.

We shall prove this recovery, or de-geometrization, theorem in this section

(proposition 4.2.5), and we shall see that, in the absence of special boundary

conditions, the pair (
f
∇,φ) that one recovers is not unique.

Later, in section 4.5, we shall consider a second, more general version of

geometrized Newtonian gravitation theory, developed by Künzle [34, 35] and

Ehlers [15], in which one of the two supplemental curvature conditions is

dropped.

Trautman Version

⎧⎪⎨⎪⎩
Rbc = 4 π ρ tbtc
Ra

b
c
d = Rc

d
a

b

}
Künzle-Ehlers Version

Rab
cd = 0

At issue here is whether “Newtonian gravitation theory” is to qualify as a limit-

ing version of relativity theory. The geometrized version of Poisson’s equation

does, in a natural sense, qualify as a limiting form of Einstein’s equation. And

thefirst of Trautman’s two supplemental curvature conditions (Ra
b
c
d = Rc

d
a

b)

holds automatically in relativistic spacetimes. (Recall the fourth clause of

proposition 1.9.4.) So it naturally carries over to any limiting version of rela-

tivity theory. But the second supplemental curvature condition does not hold

in relativistic spacetimes (unless they happen to be flat), and it is therefore not

an automatic candidate for inclusion in a limiting version of relativity theory.

It is crucially important that the conditions Rab
cd = 0 and Ra

bcd = 0 are not

equivalent for classical spacetime structures, though they are for relativistic

ones.

Starting only from the weaker assumptions of Künzle and Ehlers, one can

still prove a recovery theorem of sorts. But the (de-geometrized) gravitation

theory one recovers is not Newtonian theory proper, but rather a generalized

version of it. In this version, the gravitational force acting on a particle of unit

mass is givenby a vector field, but it neednot be of the form∇aφ. Moreover, the

2. See Bain [4] for a systematic discussion of these and yet other versions.
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de-geometrizedfield equations towhichone is led involve a “rotationfield”ωab.

We shall eventually prove this recovery theorem for the Künzle-Ehlers version

of Newtonian theory (proposition 4.5.2), and also consider special circum-

stances under which the difference between the two versions of geometrized

Newtonian theory collapses. It turns out that the second curvature condition

(Rab
cd = 0) is satisfied automatically, for example, in classical spacetimes that

are, in a certain weak sense, asymptotically flat (see section 4.5), and also

in Newtonian cosmological models that satisfy a natural homogeneity and

isotropy condition (see section 4.4).

Before turning to the TrautmanRecovery Theorem, we isolate a few needed

facts. Let ξa be a smooth, future-directed, unit timelikefield in a classical space-

time (M, ta, hab,∇). We say that it is rigid (or non-expanding) if £ξ hab = 0 or,
equivalently, ∇(aξ b) = 0. (These conditions obtain, we know, iff the expan-

sion field θab associated with ξa vanishes. Recall equation (4.1.47).) Certain

things we have established about Killing fields (which we have defined only in

connection with non-degenerate metrics) carry over to rigid fields in classical

spacetimes. So, for example, we have the following.

PROPOSIT ION 4.2.2. Let (M, ta, hab,∇) be a classical spacetime, and let ξa be a

smooth, future-directed, unit timelike field that is rigid. Then

(4.2.14) ∇n ∇a ξ b = Rba
r
n ξ r .

Proof. The proof is a just a variant of that used for proposition 1.9.8. Cycling

indices, we have

∇n∇aξ b − ∇a∇nξ b = −Rb
r
naξ r ,

∇b∇nξa − ∇n∇bξa = −Ra
r
bnξ r ,

∇a∇bξn − ∇b∇aξn = −Rn
r
abξ r .

Subtracting the third line from the sum of the first two (and using the fact that

∇(aξ b) = 0) yields

2∇n∇aξ b = (−Rb
r
na − Ra

r
bn + Rn

r
ab) ξ r .

Finally, we reformulate the expression in parentheses on the right side using

the symmetries Ra[bcd] = 0, Rab
(cd) = 0, and R(ab)

cd = 0:
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−Rb
r
na − Ra

r
bn + Rn

r
ab = (Rba

r
n + Rbna

r )− Ra
r
bn + Rn

r
ab

= Rba
r
n + (Rnb

r
a + Rn

r
ab)− Ra

r
bn

= Rba
r
n − Rnab

r − Ra
r
bn

= Rba
r
n − (Ran

r
b + Ra

r
bn)

= Rba
r
n + Rabn

r = 2Rba
r
n.

So we have equation (4.2.14). �

Our proof of the Trautman Recovery Theorem turns on the availability

of a unit timelike field ηa that is rigid and twist-free (∇aηb = 0). The latter

provides a backbone, of sorts, for our construction. The following proposition

shows that the conditionRab
cd = 0 insures the existence of such fields (at least

locally).

PROPOSIT ION 4.2.3. Let (M, ta, hab,∇) be a classical spacetime that is spatially

flat (Rabcd = 0). Let γ :I → M be a smooth, future-directed timelike curve with

unit tangent field η̂ a, and let p be any point in γ [I]. Then there is an open set O

containing p, a smooth spacelike field χa on O, and a smooth, future-directed, unit

timelike field ηa on O such that χa = 0 on γ [I], ηa = η̂ a on γ [I], and

(4.2.15) ∇aχ
b = δab − taη

b.

Furthermore, (i) if Rab
cd = 0, then ∇aηb = 0; and (ii) if Ra

bcd = 0 and if γ is a

geodesic, then ∇a η
b = 0.

Proof. First, we claim there exists a smooth spacelike field χa on some open

set O containing p such that

(4.2.16) ∇aχb = hab

and χa = 0 on γ [I]. Indeed, as restricted to any one spacelike hypersurface

S, χa is just the familiar “position vector field” (relative to the point where

γ [I] intersects S). (Recall proposition 1.7.12. All we need here is that the

[three-dimensional, invertible] metric gab induced on S by hab is flat and so,

at least locally, the pair (S, gab) is isometric to three-dimensional Euclidean

space.) Now let ξa be any smooth, future-directed, unit timelike field on

O. Consider the field ηb = (−ξa∇aχ
b + ξ b). We claim that it satisfies all the

required conditions. First, it satisfies equation (4.2.15). This follows since the

two fields (−∇aχ
b + δab) and taηb yield the same result when contracted with
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either hna or ξa. Next, it is clearly a future-directed, unit timelike field; i.e.,

tbη
b = tb(−ξa∇aχ

b + ξ b) = 1. Third, it agrees with η̂ a on γ [I]. For since χa

vanishes on γ [I], it is certainly constant along the curve; i.e., η̂ a∇aχ
b = 0.

So, by equation (4.2.15), we have 0 = η̂ a∇aχ
b = η̂ a(δab − taηb) = η̂ b − ηb

on γ [I].
Now we turn to the curvature conditions. By equation (4.2.15) again,

ηa∇n∇aχ
b = ηa∇n(δa

b − taη
b) = −∇nηb.

Hence,

∇nηb = −ηa(∇a∇nχb − Rb
m

n
aχ

m) = ηaRb
m

n
aχ

m ,

since, by equation (4.2.16), ∇a∇nχb = ∇ahnb = 0. Since χa is spacelike, we

can express it in the form χa = habχ̂b. Thus we have

(4.2.17) ∇nηb = Rbmn
a χ̂mη

a.

So, if Rbm
na = 0, it clearly follows that ∇nηb = 0. This gives us (i).

Now assume that γ is a geodesic and Ra
bcd = 0. Then ∇aη

b = 0 on γ [I].
(Why? ηa∇aη

b = 0 on γ [I] since γ is a geodesic, and hna∇aη
b = 0 everywhere

by (i).) We may assume (by moving to a smaller open set O containing p if

necessary) that every maximally extended spacelike hypersurface in O inter-

sects γ [I]. So it will suffice for (ii) to show that ∇aη
b is constant on spacelike

hypersurfaces; i.e., ∇c∇aη
b = 0. But this follows immediately from Ra

bcd = 0
and ∇aηb = 0, since ∇c∇aη

b = ∇a∇cηb − Rb
m

c
aη

m . �

Proposition 4.2.3 yields a useful characterization of the relative strength

of two curvature conditions. (Here and throughout it should be understood

that when we formulate a curvature equation without qualification, as on the

left sides of (1) and (2) that follow in proposition 4.2.4, we have in mind the

condition that the equation hold at all points.)

PROPOSIT ION 4.2.4. Let (M, ta, hab,∇) be a classical spacetime that is spatially

flat (Rabcd = 0). Then the following both hold.

(1) Rab
cd = 0 iff there exists, at least locally, a smooth unit timelike field ηa that

is rigid and twist-free (∇a ηb = 0).
(2) Ra

bcd = 0 iff there exists, at least locally, a smooth unit timelike field ηa that

is rigid, twist-free, and acceleration-free (∇a η
b = 0).

Proof. The “only if ” clauses follow from the preceding proposition. The other

drections are easy. (1) Assume that for any point p in M, there exists a smooth
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unit timelike field ηa defined on an open set containing p such that ∇aηb = 0.
We show that Rab

cd vanishes at p. We have Rab
cd η

cηd = 0 at p since Rab
cd is

anti-symmetric in the indices c and d. We also have Rab
cd hcrhds = 0 at p (by

our assumption of spatial flatness). So to prove that Rab
cd vanishes at p, it

suffices to show that contraction there with ηc hds (or hcr ηd) yields 0. But
this follows since ∇b ηa = 0 and hence, by proposition 4.2.2, Rab

cd η
c hds =

∇s ∇b ηa = 0.
(2) Next, assume that for any point p in M, there exists a smooth unit

timelike field ηa defined on an open set containing p such that ∇a η
b = 0.

We show that Ra
bcd vanishes at p. We know from part (1) of the proposi-

tion (and the fact that ∇a η
b = 0 implies ∇a ηb = 0) that Rab

cd = 0 at p. The

latter condition implies that Ra
bcd = tbRa

ncd η
n. (Contracting both sides with

either hbr or ηb yields the same result.) But since ∇a η
d = 0, we also have

Ra
ncd η

n = −2∇[c∇d] ηa = 0 at p. So we are done. �

Now we turn to our first recovery theorem. Our formulation is purely local

in character since we have opted not to impose special global topological con-

straints on the underlying manifold M. Our proof is a bit different from that

in Trautman [59].

PROPOSIT ION 4.2.5. (Trautman Recovery Theorem) Let (M, ta, hab,∇) be a

classical spacetime that satisfies

Rbc = 4 π ρ tbtc ,(4.2.18)

Ra
b
c
d = Rc

d
a

b,(4.2.19)

Rab
cd = 0(4.2.20)

for some smooth scalar field ρ on M. Then given any point p in M, there is an open

set O containing p, a smooth scalar field φ on O, and a derivative operator
f
∇ on O

such that all the following hold on O.

(R1)
f
∇ is compatible with ta and hab.

(R2)
f
∇ is flat.

(R3) For all timelike curves with four-velocity field ξa,

(4.2.21) ξn∇n ξ
a = 0 ⇐⇒ ξn

f
∇n ξ

a = − f
∇ aφ.

(R4)
f
∇ satisfies Poisson’s equation

f
∇ a

f
∇ aφ = 4 π ρ.
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The pair (
f
∇,φ) is not unique. A second pair (

f
∇′,φ′) (defined on the same open set

O) will satisfy the stated conditions iff

(U1) ∇a∇b(φ′ −φ) = 0, and

(U2)
f
∇′ = (

f
∇,C′a

bc ), where C′a
bc = tb tc∇a(φ′ −φ).

Proof. Let p be a point inM. Aswehave just seen, it follows fromRab
cd = 0 that

we can find an open set O containing p, as well as a smooth, future-directed,

unit timelike vector field ηa on O that is rigid and twist-free (∇aηb = 0). Let
φa be the acceleration field of ηa; i.e., φa = ηn∇n η

a. Then we have

(4.2.22) ∇a η
b = ta φ

b.

(This follows since contraction of the two sides with both ηa and han yields

the same result.) Further, let
f
∇ be the derivative operator on O defined by

f
∇ = (∇,Ca

bc ), where Ca
bc = tb tc φa. Clearly, ta Ca

bc = 0, Ca
bc hbn = 0, and

Ca
bc hcn = 0. It follows that

f
∇a tb = ∇a tb + tn Cn

ab = ∇a tb,

f
∇a hbc = ∇a hbc − hnc Cb

na − hbn Cc
na = ∇a hbc .

So, since ∇ is compatible with ta and hbc ,
f
∇ is compatible with them as well.

So we have (R1). Notice next that Cb
an η

n = ta φb and so, by equation (4.2.22),

(4.2.23)
f
∇a η

b = ∇a η
b − Cb

an η
n = ta φ

b − ta φ
b = 0.

Thus, ηa is constant with respect to the new derivative operator
f
∇.

Now we consider the curvature field associated with
f
∇. We have

Cn
bc Ca

dn = 0 since φn tn = 0. So, by equation (1.8.2),

f
Ra

bcd = Ra
bcd + 2∇[c Ca

d]b + 2Cn
b[c Ca

d]n(4.2.24)

= Ra
bcd + 2 tb t[d ∇c] φa.

It follows immediately that
f
Rabcd = Rabcd = 0 (since Rab

cd = 0). So
f
∇ is spa-

tially flat. But now recall the second clause of proposition 4.2.4. We have just

verified that there is a smooth, unit timelike field ηa on O that is constant
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with respect to
f
∇. So (since

f
∇ is spatially flat), the proposition tells us that

f
∇

must be flat outright; i.e.,
f
Ra

bcd = 0. So we have (R2). And equation (4.2.24)

reduces to

Ra
bcd = −2 tb t[d ∇c] φa.(4.2.25)

Now we extract further information from equation (4.2.25). Raising and

contracting indices yields

Ra
b
c
d = −tb td ∇c φa,(4.2.26)

Rbc = tb tc ∇a φ
a.(4.2.27)

Since we are assuming Ra
b
c
d = Rc

d
a

b, it follows from the first of these asser-

tions that ∇[c φa] = 0. This implies that (after possibly further restricting

O to some smaller open set containing p) there is a smooth scalar field φ

on O such that φa = ∇aφ. (Here we invoke proposition 4.1.6.) And since

we are assuming Rbc = 4 π ρ tb tc , it follows from the second assertion that

∇a∇aφ = ∇a φ
a = 4 πρ. But Ca

an = ta tn φa = 0 and, therefore,

(4.2.28)
f
∇ a

f
∇ aφ = ∇a

f
∇ aφ− Ca

an

f
∇ nφ = ∇a∇aφ.

So
f
∇ a

f
∇ aφ = 4 πρ. That is, we have (R4).

For (R3), note that for all timelike curves in O with four-velocity field ξa,

ξn
f
∇n ξ

a = ξn(∇nξ
a − Ca

nm ξ
m) = ξn∇nξ

a − (tn tm ∇aφ) ξn ξm

= ξn∇nξ
a − ∇aφ.

So ξn∇nξ
a = 0 iff ξn

f
∇n ξ

a = −∇aφ.

Finally, we consider the non-uniqueness of the pair (
f
∇,φ). Let (

f
∇′,φ′)

be a second pair on O. Consider fields C′a
bc and ψ on O defined by

f
∇′ =

(
f
∇,C′a

bc ) and ψ = φ′ −φ. We first show that if the new pair satisfies the

stated conditions of the proposition, then it must be the case that ∇a∇bψ = 0
and C′a

bc = tb tc∇aψ .

Assume (
f
∇′,φ′) satisfies (R1)–(R4). Then—since (

f
∇,φ) and (

f
∇′,φ′) both

satisfy (R3)—we have

ξn
f
∇n ξ

a+ f
∇ aφ = 0 ⇐⇒ ξn∇n ξ

a = 0 ⇐⇒ ξn
f
∇′

n ξ
a+ f

∇′aφ′ = 0



“530-47773_Ch04_2P.tex” — 1/23/2012 — 17:18 — page 277

−1

0

+1

newtonian gravitation theory / 277

for all timelike curves with four-velocity field ξa. But
f
∇′aφ′ = f

∇aφ′ = f
∇aφ+

f
∇aψ . And ξn

f
∇′

n ξ
a = ξn(

f
∇n ξ

a − C′a
nmξ

m). So it must be the case that, for

all future-directed, unit timelike vectors ξa at all points in O,

C′a
nmξ

mξn = f
∇ aψ .

And from this it follows that C′a
mn = tm tn

f
∇ aψ = tm tn∇aψ , as required.

(Recall the argument for a corresponding assertion in our proof of the

Geometrization Lemma.) Now the curvature fields of (
f
∇,φ) and (

f
∇′,φ′) are

related by

f
R ′a

bcd = f
Ra

bcd + 2 tbt[d
f
∇c]

f
∇ aψ .

(The argument here is exactly the same as given for equation (4.2.24).)

Since
f
∇ and

f
∇′ are both flat, it follows that t[d

f
∇c]

f
∇ aψ = 0 or, equivalently,

f
∇ c

f
∇ aψ = 0. But ∇c∇aψ = f

∇ c
f
∇ aψ . (Indeed,

f
∇ c and ∇c agree in their

action on all vector fields λa, since
f
∇ cλa = ∇cλa − Cac

nλ
n and Cac

n = 0.) So
∇c∇aψ = 0, and we are done with the first direction.

Conversely, assume that C′a
bc = tb tc∇aψ and ∇a∇bψ = 0. The first

assumption alone implies that
f
∇′ is compatible with ta and hab. And by revers-

ing the steps in the preceding paragraphs, we can show that (
f
∇′,φ′) satisfies

(R2) and (R3). That leaves only (R4). For this, note first that since C′a
an = 0,

f
∇′

a

f
∇′aφ′ = f

∇ a

f
∇′aφ′ − C′a

an

f
∇′nφ′ = f

∇ a

f
∇ aφ′

= f
∇ a

f
∇ aφ + f

∇ a

f
∇ aψ

= 4 π ρ + f
∇ a

f
∇ aψ = 4 π ρ+ ∇a∇aψ .

(The penultimate equality holds because (
f
∇,φ) satisfies (R3); and the argu-

ment for the final equality is exactly the same as the one given for equation

(4.2.28).) But ∇a∇bψ = 0 and, so, ∇a∇bψ = ta ξn∇n∇bψ , where ξn is any

smooth, future-directed unit timelike field on O. It follows that ∇a∇aψ = 0

and, therefore,
f
∇′

a

f
∇′aφ′ = 4 π ρ, as required for (R4). �

Just as with the Geometrization Lemma, only a small change is necessary

here if we want to work with a cosmological constant. If we replace equation
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(4.2.18) with Rbc = 4 π ρ tbtc −� tbtc , then substitution for Rbc in equation

(4.2.27) yields ∇a φ
a + � = 4 π ρ. The further argument that φa is of the

form ∇aφ is unaffected. So we are led to equation (4.2.11).

The TrautmanRecovery Theorem tells us that if∇ arises as the geometriza-

tion of the pair (
f
∇,φ), then, for any fieldψ such that∇a∇bψ = 0, it also arises

as the geometrization of (
f
∇′,φ′) where φ′ = φ+ψ and

f
∇′ = (

f
∇, tb tc∇aψ).

(
f
∇,φ)

↘ ∇↗
(

f
∇′,φ′)

We certainly have sufficient freedom here to insure that
f
∇′ is, in fact, dis-

tinct from
f
∇. We can think of ∇bψ as the “spatial gradient” of ψ . The stated

condition on ψ , namely ∇a∇bψ = 0, is just the requirement that this spatial

gradient be constant on spacelike hypersurfaces. The condition can certainly

be satisfied without that gradient vanishing at all points. (Its value can change

from one spacelike hypersurface to another.) And if∇aψ = 0 at some point p,

then
f
∇′ cannot be the same operator as

f
∇. Indeed, let ξa be the four-velocity

field of a timelike curve passing through p. Then at p,

ξa
f
∇′

aξ
b = ξa(

f
∇a ξ

b − (tatn∇bψ)ξn) = ξa
f
∇a ξ

b − ∇bψ = ξa
f
∇a ξ

b.

We can use the current discussion to capture in precise language the stan-

dard claim that gravitational force in (standard) Newtonian theory is a gauge

quantity. Consider a point particle with mass m and four-velocity ξa that is

not accelerating with respect to ∇. According to the de-geometrization (
f
∇,φ),

the particle has acceleration ξn
f
∇n ξ

a and is subject to gravitational force

−m
f
∇ aφ = −m∇aφ. (We get this from (R3).) Rather than being subject to no

forces at all—the account givenby the geometrized formulation of the theory—

it is here taken to be subject to two “forces” (inertial and gravitational) that

cancel each other. Alternatively, according to the de-geometrization (
f
∇′,φ′),

it has acceleration ξn
f
∇′

nξ
a = ξn

f
∇n ξ

a − ∇a ψ and is subject to gravitational

force −m
f
∇′a φ′ = −m∇aφ− m∇aψ . So the gravitational force on the particle is

determined only up to a factor m∇aψ , where ∇aψ is constant on any one spacelike

hypersurface but can change over time.
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Of course, if boundary conditions are brought into consideration, we regain

the possibility of unique de-geometrization. In particular, if we are dealing

with a bounded mass distribution—i.e., if ρ has compact support on every

spacelike hypersurface—then it seems appropriate to require that the gravita-

tional field die off as one approaches spatial infinity. But if ∇aψ is constant

on spacelike hypersurfaces and if it goes to 0 at spatial infinity, then it must

vanish everywhere.

4.3. Interpreting the Curvature Conditions

In this section, we consider the geometric significance of three curvature

conditions that appear in Trautman’s formulation of geometrized Newtonian

gravitation theory:

Rab = 4πρ tatb,(4.3.1)

Ra
b
c
d = Rc

d
a

b,(4.3.2)

Rab
cd = 0.(4.3.3)

We start with the third. We know already ( from proposition 4.2.4) that it

holds in a classical spacetime iff the latter is spatially flat (Rabcd = 0) and, at
least locally, admits a unit timelike vector field ξa that is rigid and twist-free

(∇aξ b = 0). We also have the following more direct interpretation.

PROPOSIT ION 4.3.1. Let (M, ta, hab,∇) be a classical spacetime. Then Rab
cd = 0

throughout M iff parallel transport of spacelike vectors within M is, at least locally,

path independent.

Proof. (If ) This direction is immediate. Let p be any point in M, and let O be

an open set containing p within which parallel transport of spacelike vectors is

path independent. We can certainly find three smooth, linearly independent,

spacelike fields 1
σa, 2
σa, 3
σa on O that are constant (∇n

i
σa = 0). (Start with three

linearly independent, spacelike vectors at p and parallel transport them, along

any curve, to other points in O.) For each one, we have

Ra
rcd

i
σr = −2∇[c ∇d]

i
σa = 0

at p. Since 1
σ a, 2

σ a, 3
σ a span the space of spacelike vectors at p, it follows

that Ra
rcd σ

r = 0 for all spacelike vectors σ a there. So Ra
rcd hrb αb = 0 for all

co-vectors αb at p; i.e., Rab
cd = Ra

rcd hrb = 0 at p.
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(Only if ) There are various ways to see this. But it is, perhaps, easiest

to make use of what we have established and reduce this to a claim about

a (different) flat derivative operator. If Rab
cd = 0, then, by proposition 4.2.4,

given any point p in M, there is an open set O containing p and a future-

directed unit timelike vector field ηa on O such that ∇aηb = 0. Now recall

our proof of the Trautman Recovery Theorem (proposition 4.2.5). Let φa be

the acceleration field of ηa, and let
f
∇ be the derivative operator on O defined

by
f
∇ = (∇,Ca

bc ), where Ca
bc = tb tc φa. We established in our proof of the

Recovery Theorem that
f
∇ is flat. (And for this part of the proof, we did not need

the additional assumptions that appear in our formulation of the theorem,

namely Ra
b
c
d = Rc

d
a

b and Rbc = 4 π ρ tbtc . We needed only Rab
cd = 0.) So

parallel transport of all vectors within O relative to
f
∇ is, at least locally, path

independent. To complete the proof, it suffices to note that
f
∇ and ∇ agree

in their action on spacelike vector fields (and so agree in their determinations

of parallel transport for such fields on arbitrary curves). This is clear. For let

σ a be a smooth spacelike vector field (defined on some open subset of O).

Then
f
∇a σ

b = ∇a σ
b − Cb

anσ
n = ∇a σ

b,

as required, since Cb
anσ

n = (ta tn φb) σ n = 0. �

The proposition also provides a physical interpretation of the third cur-

vature condition (4.3.3) in terms of the precession, or non-precession, of

gyroscopes. Suppose we hold two spinning gyroscopes at a point, side by

side, with their axes co-aligned. And suppose we then transport them (with-

out constraint) to another point along different routes. We cannot expect a

priori that, on arrival, their axes will still be co-aligned. There is no reason why

“gyroscope propagation” must be path independent. Indeed, we see from the

proposition that it will be path independent (at least locally) iff equation (4.3.3)

holds.

Now we consider the geometrized version of Poission’s equation Rab =
4 π ρ ta tb. The interpretation we offered for Einstein’s equation in terms of

geodesic deviation has a close counterpart here. Almost everything carries

over intact from section 2.7. Let ξa be a “geodesic reference frame” defined on

some open set in M—i.e., a smooth, future-directed, unit timelike vector field

whose associated integral curves are geodesics. Further, let λa be a smooth,

spacelike vectorfield along (the imageof ) oneof the integral curvesγ satisfying
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£ξ λa = 0. (Once again, we can think of λa as a connecting field that joins the

image of γ to the image of an “infinitesimally close” neighboring integral

curve.) The equation of geodesic deviation

(4.3.4) ξn∇n (ξm∇mλ
a) = Ra

bcd ξ
b λc ξd

carries over without alteration, as does the expression we derived for the

“average radial acceleration” of ξa,

(4.3.5) ARA = −1

3
Rbdξ

bξd .

The latter, in turn, leads to the followingproposition (which is proved in almost

exactly the same way as proposition 2.7.2).

PROPOSIT ION 4.3.2. Let (M, ta, hab,∇) be a classical spacetime, let ρ be a smooth

scalar field on M, and let p be a point in M. Then Poisson’s equation Rab =
4 π ρ tatb holds at p iff for all geodesic reference frames ξa (defined on some open set

containing p) the average radial acceleration of ξa at p is given by ARA = −4

3
π ρ.

We can make the result look even more like proposition 2.7.2 if we use

our alternate formulation of Poisson’s equation. In that case, the conclu-

sion is this: Poisson’s equation Rab = 8π (T̂ab − 1
2 tab T̂ ) holds at p iff for all

geodesic reference frames ξa (defined on some open set containing p) the

average radial acceleration of ξa at p is given byARA = −8π

3
π (T̂ab − 1

2
tab T̂ )

ξaξ b.

Finally, we turn to the geometric interpretation of the second condition

in our list, Ra
b
c
d = Rc

d
a

b. This will require a good deal more work than the

others. We show that it holds in a classical spacetime iff the latter admits, at least

locally, a smooth, unit timelike field ξa that is geodesic (ξn∇nξ
a = 0) and twist-

free (∇[aξ b] = 0). This equivalence is proved in Dombrowski and Horneffer

[13] and Künzle [34]. Our argument, at least for the “only if ” half (proposition

4.3.7), is a bit different from theirs. We beginwith the “if ” half of the assertion,

which is straightforward.

PROPOSIT ION 4.3.3. Let (M, ta, hab,∇) be a classical spacetime, and let p be

any point in M. Assume there is a smooth, future-directed, unit timelike field ξa,

defined on some open set containing p, that is geodesic and twist-free. Then Ra c
b d =

Rc a
d b at p.
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Proof. It suffices for us to show that, at p, contracting (Ra c
b d − Rc a

d b) with

(i) ξ bξd , (ii) hbrhds, and (iii) ξ bhds (or hbrξd) yields 0. The claim in case (ii)

comes free, without any assumptions about ξa, since Rarcs = Rcsar holds in

any classical spacetime. (Recall equation (4.1.30).)

For case (iii), we need only the fact that ξa is twist-free. We must show that

Ra cs
b ξ

b = Rcsa
bξ

b. To do so, we recast the right side using symmetries of the

curvature field, namely Ra
[bcd] = 0, Ra

b(cd) = 0, and R
(ab)

cd = 0. (The first two

hold for any derivative operator. The third follows from the compatibilty of ∇
with hab. Recall equation (4.1.26). We use the symmetries with some indices

in raised position. So, for example, since Ra
bcd + Ra

dbc + Ra
cdb = 0, it follows

that Ra cd
b + Rad c

b + Racd
b = 0.)

Rcsa
b ξ

b = −Rsca
b ξ

b = Rs ca
b ξ b + Rsa c

b ξ
b = Rs ca

b ξ b − Ras c
b ξ

b

= Rs ca
b ξ b + (Racs

b + Ra cs
b ) ξ b = Rs ca

b ξ b + Ra cs
b ξ b − Rcas

b ξ
b

= Rs ca
b ξ b + Ra cs

b ξ b + (Rc as
b + Rcs a

b ) ξ
b.

Hence,

Rcsa
b ξ

b = 1

2
(Rs ca

b ξ b + Ra cs
b ξ b + Rc as

b ) ξ b

= −(∇[c ∇a]ξ s + ∇[c ∇s]ξa + ∇[a ∇s]ξ c ).

If we now expand the final sum and use the fact ( for the first time) that

∇aξ b = ∇bξa, we arrive at

Rcsa
b ξ

b = −(∇c ∇sξa − ∇s ∇cξa) = Ra cs
b ξ

b.

Finally, we consider case (i). Here we need both the fact that ξa is twist-free

and that it is geodesic. We must show that Ra c
b dξ

bξd = Rc a
d b ξ

bξd—i.e., that

Ra c
b d ξ

bξd is symmetric in a and c. But

Ra c
b d ξ

bξd = −ξd (∇c ∇d ξ
a − ∇d ∇c ξa)

= −∇c (ξd ∇d ξ
a)+ (∇c ξd)(∇d ξ

a)+ ξd ∇d ∇c ξa.

The first term in the final sum vanishes since ξa is geodesic. The third is sym-

metric in a and c since ξa is twist-free. The second is symmetric in a and c for

the same reason, since (∇c ξd)(∇d ξ
a) = (∇d ξ c )(∇d ξ

a) = hdn(∇n ξ
c )(∇d ξ

a) =
(∇n ξ

c )(∇n ξa) = (∇n ξ
c )(∇a ξn). �
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Next we consider a particular class of derivative operators that satisfy the

curvature condition (4.3.2) (in addition to being compatible with the back-

ground metrics ta and hab).

PROPOSIT ION 4.3.4. Let (M, ta, hab,∇) be a classical spacetime, and let ξa be any

smooth, unit, future-directed timelike vector field on M. Then there exists a unique

derivative operator ∇̃ on M such that (i) ∇̃ is compatible with ta and hab and

(ii) ξa is geodesic and twist-free with respect to ∇̃.

When conditions (i) and (ii) obtain, we call ∇̃ the special derivative operator

determined by ξa. It follows immediately from the preceding proposition that

all special derivative operators (determined by some field) satisfy equation

(4.3.2). We shall soon verify (in proposition 4.3.7) that they are the only

derivative operators that do so.

Proof. Let ĥab be the projectionfield associatedwith ξa, let κab = ĥn[b ∇a]ξn, let

Ca
bc = 2 t(b κc)

a, and, finally, let ∇̃ = (∇,Ca
bc ). Then, by proposition 4.1.3 , ∇̃

is compatible with ta and hab. Moreover, we claim, ξa is geodesic and twist-free

with respect to ∇̃. To see this, note first that since ĥab hbc = δab − ta ξ b, we have

κa
b = hbrκar = 1

2
hbr (ĥnr∇a ξ

n − ĥna∇r ξ
n) = 1

2
(∇a ξ

b − ĥna∇b ξn)

and, therefore,

κab = 1

2
(∇a ξ b − ∇b ξa) = ∇[a ξ b],

κa
b ξa = 1

2
ξa∇a ξ

b.

Now

∇̃a ξ
b = ∇a ξ

b − Cb
ar ξ

r = ∇a ξ
b − (ta κr

b + tr κa
b)ξ r .

Hence, since κab is anti-symmetric, we have

∇̃[a ξ b] = ∇[a ξ b] − κab = 0,

ξa∇̃a ξ
b = ξa∇a ξ

b − 2 κa
bξa = 0,

as claimed. So we have established existence.

For uniqueness, suppose ˜̃∇ = (∇̃, C̃a
bc ) is a second derivative operator on

M that satisfies conditions (i) and (ii). We know from proposition 4.1.3 (since
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both ∇̃ and ˜̃∇ are compatible with ta and hab) that there is a smooth, anti-

symmetric field κab such that C̃a
bc = 2 han t(b κc)n. We show that κcn = 0. Now

κcnξ
cξn = 0, since κcn is anti-symmetric. So it will suffice for us to show that

κcn ξ
chns = 0 and κcn hcrhns = 0. Since ξa is geodesic with respect to both

∇̃ and ˜̃∇, we have, first,

0 = ξ c˜̃∇c ξ
a = ξ c (∇̃c ξ

a − C̃a
bc ξ

b) = −C̃a
bc ξ

b ξ c = −2 κcn ξ
c han.

Next, ˜̃∇r ξ s = hrc ˜̃∇c ξ
s = hrc (∇̃c ξ

s − C̃s
bc ξ

b) = ∇̃rξ s − κrs.

So, since ˜̃∇[r ξ s] = 0 = ∇̃[r ξ s] (and since κcn is anti-symmetric), we also have

hrc hsnκcn = 0. �

Now we extend proposition 4.1.3 and consider the most general form

for a connecting field Ca
bc that links two derivative operators on M that are

compatible with ta and hab and also satisfy equation (4.3.2).

PROPOSIT ION 4.3.5.Let (M, ta, hab,∇) be a classical spacetime such that Ra
b
c
d =

Rc
d

a
b. Let ∇′ = (∇, Ca

bc ) be a second derivative operator on M where Ca
bc =

2 han t(b κc)n and κab is a smooth, anti-symmetric field on M. (We know this is the

general form for a derivative operator on M that is compatible with ta and hab.)

Then R′a
b
c
d = R′c

d
a

b iff κab is closed; i.e., ∇[n κab] = 0. (Here, of course, R′a
bcd is

the Riemann curvature field associated with ∇′.)

Proof. We know ( from problem 1.8.1) that

R′a
bcd = Ra

bcd + 2∇[c Ca
d]b + 2Cn

b[c Ca
d]n.

In the present case, where Ca
bc = 2t(b κc)

a, we have Cn
bc Ca

dn = td tb κc
nκn

a +
td tc κb

nκn
a and, hence,

2Cn
b[c Ca

d]n = 2 tb t[d κc]nκn
a.

Similarly, ∇c Ca
db = td ∇c κb

a + tb ∇c κd
a and, hence,

2∇[c Ca
d]b = 2 t[d ∇c] κb

a + 2 tb ∇[c κd]a.

If we now raise the index c in all these terms, we arrive at

R′a
b
c
d = Ra

b
c
d + (td ∇c κb

a + tb ∇c κd
a − tb ∇d κ

ca)+ tb td κ
cn κn

a

and, therefore, also

R′c
d

a
b = Rc

d
a

b + (tb ∇a κd
c + td ∇a κb

c − td ∇b κ
ac ) + td tb κ

an κn
c .
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We are assuming that Ra
b
c
d = Rc

d
a

b. And, by the anti-symmetry of κab,

κcn κn
a = κan κn

c . So we see that R′a
b
c
d = R′c

d
a

b iff the respective middle

terms (in parentheses) in the two lines are equal—i.e., iff

(4.3.6) tb (− ∇a κd
c + ∇c κd

a − ∇d κ
ca) = td (−∇c κb

a + ∇a κb
c − ∇b κ

ac ).

In turn, this equation holds iff

(4.3.7) −∇a κd
c + ∇c κd

a − ∇d κ
ca = 0.

(Why? If equation (4.3.7) holds, then both sides of equation (4.3.6) vanish.

Conversely, assume equation (4.3.6) holds, let ψac
d = (− ∇a κd

c + ∇c κd
a −

∇d κ
ca), and let ξa be any unit timelike vector field. Contracting both sides

of equation (4.3.6) with ξ bhdr yields hdrψac
d = 0. Contracting both sides with

ξ bξd yields ξdψac
d = 0. So it must be the case that ψac

d = 0.) We can express

equation (4.3.7) in the form

(4.3.8) har hcs ∇[r κsd] = 0.

But this condition is equivalent to

(4.3.9) ∇[r κsd] = 0.

For if equation (4.3.8) holds, then, by the anti-symmetry of∇[r κsd], contraction
with ξ rξ sξd , ξ rξ shdn, ξ rhschdn, and hrahschdn all yield 0. Thus, as claimed,

R′a
b
c
d = R′c

d
a

b iff κab is closed. �

Now we make precise a sense in which condition Ra c
b d = Rc a

d b rules out

the possibility of “spontaneous rotation.”

PROPOSIT ION 4.3.6. Let (M, ta, hab,∇) be a classical spacetime such that Ra c
b d =

Rc a
d b. Let ξa be a smooth, future-directed, unit timelike field on M that is geodesic

(with respect to ∇). Then its associated rotation and expansion fields satisfy

(4.3.10) ξn∇n ω
ab = 2ωn[a θnb].

Hence, given any integral curve γ : I → M of ξa, if ξa is twist-free (ωab = 0) at

one point on γ [I], it is twist-free at all points on it. (Or, more colloquially, if it is

twist-free at one time, it is twist-free at all times.)

Proof. We know that ∇[a ξ b] = ωab. (This follows immediately from equation

(4.1.43).) Hence,

2 ξn∇n ω
ab = ξnham∇n∇m ξ

b − ξnhbm ∇n∇m ξ
a

= ξnham
(
∇m∇n ξ

b − Rb
snmξ

s
)

− ξnhbm (∇m∇n ξ
a − Ra

snmξ
s) .
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Since ξa is geodesic,

ξnham∇m∇n ξ
b = ham

[
∇m(ξn∇nξ

b)− (∇mξ
n)(∇nξ

b)
]

= −(∇aξn)(∇nξ
b)

and, similarly, −ξnhbm∇m∇n ξ
a = (∇bξn)(∇nξ

a). Furthermore, since

Rb
s(nm) = 0,

−ξnhamRb
snmξ

s + ξnhbmRa
snmξ

s =
(
Rb

s
a

n − Ra
s
b
n

)
ξnξ s

=
(
Rb

s
a

n − Ra
n

b
s

)
ξnξ s = 0.

So,

2 ξn∇n ω
ab = −(∇aξn)(∇nξ

b)+ (∇bξn)(∇nξ
a)

= −[2∇[aξn] + ∇nξa](∇nξ
b)+ [2∇[bξn] + ∇nξ b](∇nξ

a)

= −2 (∇[aξn])(∇nξ
b)+ 2 (∇[bξn])(∇nξ

a)

= −2ωan(θn
b +ωn

b)+ 2ωbn(θn
a +ωn

a)

= −2ωanθn
b + 2ωbnθn

a = 4ωn[a θnb].

Now let γ : I → M be an integral curve of ξa, and supposeωab = 0 at some

point γ (s0). It follows from the basic uniqueness theorem for systems of first-

order ordinary differential equations that equation (4.3.10) will be satisfied at

all points on γ [I] iff ωab = 0 vanishes everywhere on that set. (To see this in

detail, let 1
σa, . . . ,

4
σa beabasis for the co-tangent space at somepoint onγ [I] that

is orthonormal with respect to hab (in our extended sense of “orthonormal”).

We can extend the vectors (by parallel transport) to fields i
σa on γ [I]—we use

the same notation—that satisfy ξn∇n
i
σa = 0. Since ∇ is compatible with hab,

the generated fields will be orthonormal everywhere. Now consider the scalar

(coefficient) fields
ij
ω = ωab i

σa
i
σb. Equation (4.3.10) can then be expressed as a

system of first-order differential equations,

d
ij
ω

dt
= fij(

11
ω,

12
ω, . . . ,

44
ω),

to which the uniqueness theorem is applicable.) �

We have claimed that condition (4.3.2) holds iff, at least locally (in a

neighborhood of every point), there exists a unit timelike vector field that is

geodesic and twist-free.Wehave proved the “if ” half of the claim inproposition

4.3.3. Now, finally, we turn to the converse.
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PROPOSIT ION 4.3.7. Let (M, ta, hab,∇) be a classical spacetime such that Ra c
b d =

Rc a
d b. Then, given any point p in M, there is a smooth, future-directed, unit timelike

vector field, defined on some open set containing p, that is geodesic and twist-free

(with respect to ∇).

Proof. Letpbegiven. Ourproofwill proceed in twosteps andmake reference to

three smooth, future-directed, unit timelike fields: ξa, ξ ′a, and ξ ′′a. (They will
be defined on open sets O, O′, and O′′, respectively, where p ∈ O′′ ⊆ O′ ⊆ O.)

ξa will be an arbitrary field. ξ ′a will be twist-free. ξ ′′a will be geodesic and

twist-free. (It is the existence of the third that we need to establish.)

(Step 1) Let ξa be a smooth, future-directed, unit timelike field defined

on some open set O containing p. By proposition 4.3.4, there is a derivative

operator ∇̃ on O such that ∇̃ is compatible with ta and hab, and such that ξa is

geodesic and twist-freewith respect to ∇̃. LetCa
bc be the connectingfield (onO)

such that ∇ = (∇̃, Ca
bc ). Now, by proposition 4.3.3, R̃a c

b d = R̃c a
d b. So, since

both∇ and ∇̃ satisfy equation (4.3.2), it followsbyproposition 4.3.5 that there is

a smooth, closed, anti-symmetric field κab on O such that Ca
bc = 2 han t(b κc)n.

Since κab is closed, we know by proposition 1.8.3 that it is, at least locally,

exact. So there is an open subset O′ of O containing p, and a smooth field κa

on O′ such that κab = ∇̃[a κb]. Now consider the field ξ ′a = ξa + κa on O′. It
is a smooth, future-directed, unit timelike field. (It is of unit timelike length

since taκa = tahabκb = 0.) We claim that it is twist-free with respect to ∇.

We have

∇n ξ
′a = ∇n (ξa + κa) = ∇̃n (ξa + κa)− Ca

mn(ξ
m + κm).

But,

Ca
mn(ξ

m + κm) = (tm κn
a + tn κm

a)(ξm + κm) = κn
a + tn κm

a(ξm + κm).

Hence,

∇n ξ ′a = ∇̃nξa +∇̃nκa − κna

and, therefore (since ξa is twist-free with respect to ∇̃, and κab = ∇̃[a κb]),

∇[n ξ ′a] = ∇̃[n ξa] + ∇̃[nκa] − κna = 0.

(Step 2) So far, we established the existence of a field ξ ′a, defined on some

open set O′ containing p, that is twist-free with respect to ∇. Now let S be a

spacelike hypersurface within O′ that contains p. Then we can find a smooth,

future-directed, unit timelike vector field ξ ′′a, defined on some open subsetO′′

of O′ containing p, that is geodesic with respect to ∇ and agrees with ξ ′a on S.

(We first restrict ξ ′a to S, and then use each vector in this restricted field ξ ′a|S



“530-47773_Ch04_2P.tex” — 1/23/2012 — 17:18 — page 288

−1

0

+1

288 / newtonian gravitation theory

to generate a geodesic. This gives us a congruence of curves. We take ξ ′′a to be
its tangent field.) Now, since ξ ′a is twist-free on S, so is ξ ′′a. (The difference
field (ξ ′′a − ξ ′a) vanishes on S. So, at any point of S, its directional derivative in

any spacelike direction vanishes as well; i.e., han ∇n(ξ ′′b − ξ ′b) = 0. Hence, on

S, ∇[a ξ ′′b] = ∇[a ξ ′b] = 0.) But now, since the geodesic field ξ ′′a is twist-free

on S, it follows from proposition 4.3.6 that is it everywhere twist-free. So we

are done. �

4.4. A Solution to an Old Problem about Newtonian Cosmology

The geometrized formulation of Newtonian theory provides a satisfying

solution to an old problem about Newtonian cosmology. We present it in

this section.3

At issue is whether Newtonian gravitation theory provides a sensible pre-

scription for what the gravitational field should be like in a hypothetically

infinite, homogeneous universe. Let us first think about this in terms of a

traditional, non-geometrized, three-dimensional formulation of the theory.

Let (R3, gab) be three-dimensional Euclidean space. We take it to represent

physical space at a given time. Further, let ρ and φ be two smooth func-

tions on R
3 that, respectively, give the mass density and the gravitational

potential at different points of space.4 We assume that they satisfy Poisson’s

equation ∇a∇aφ = 4 π ρ. (Here ∇ is the derivative operator on R
3 compatible

with gab.)

Suppose thatwearedealingwith ahomogeneousdistributionofmatter; i.e.,

suppose thatρ is constant. Then, presumably, the gravitational field associated

with this matter distribution should be homogeneous as well. (Why should

it be different here from the way it is there?) The gravitational force felt by a

particle of unit mass at any point is given by −∇aφ. So, it would seem, the

naturalway to capture thehomogeneity condition on the gravitational field is to

require that the field ∇aφ be constant—i.e., require that ∇b∇aφ = 0. But now
we have a problem. If ∇b∇aφ = 0, and if Poisson’s equation is satisfied, then

4 π ρ = ∇a∇aφ = 0. So we cannot satisfy the homogeneity condition except in

the degenerate case where themass density ρ is everywhere 0. Here is another

version of the problem. It directs attention to a particular class of solutions to

3. For further discussion of the problem and its history, see Norton [43, 44, 45] and
Malament [40].

4. Caution: we have previously understood ρ and φ to be objects defined on a four-dimensional
spacetime manifold, and shall soon do so again. But now, temporarily, we take them to be defined
on a three-dimensional manifold (representing space a given time) instead.
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Poisson’s equation∇a∇aφ = 4 π ρ that do exist in the case where ρ is constant

(∇a ρ = 0). Let o be any point inR
3, and let χa be the position field determined

relative to o. So ∇aχ
b = δab, and χa = 0 at o. Let us say that a smooth field φ

on R
3 is a canonical solution centered at o if

(4.4.1) ∇aφ = 4

3
π ρ χa

i.e., if ∇aφ is a spherically symmetric, outward-directed, radial vector field,

centered at o, whose assignment to any point p has length 4
3π ρ r , where r is

the Euclidean distance between o and p.

Note that if this condition holds, then (since ∇a ρ = 0),

∇a ∇aφ = 4

3
π ρ (∇aχ

a) = 4 π ρ.

So canonical solutions centered at o (if they exist) are solutions. And they

certainly do exist; e.g.,

φ = 2

3
π ρ (χnχ

n).

Not all solutions to Poisson’s equation (in the present case where ρ is con-

stant) are canonical solutions centered at somepoint or other. (Ifφ is a solution,

then so is (φ+ψ), whereψ is any smooth field that satisfies∇a∇aψ = 0.) But
canonical solutions are the only solutions that satisfy a certain natural con-

straint, and for this reason they are the only ones that are usually considered

in discussions of Newtonian cosmology. The constraint arises if we consider

not just the distribution of cosmic matter at a given time, but also its motion

under the influence of that potential. It turns out that if we require that the

motion be isotropic in a certain natural sense, then all solutions are ruled out

except those that are canonical for some center point o. (We shall, in effect,

prove this. See proposition 4.4.3.) In any case, our problem re-emerges when

we direct our attention to the class of canonical solutions. The gravitational

field associated with any one of them is a radial field that vanishes at a unique

center point. Why, one wants to ask, should there be any such distinguished

point in a homogeneous universe? And why should it be one point rather than

another; i.e., why should any one canonical solution be a better choice for the

gravitational field in a homogeneous universe than another?

That is the problem. A solution, or dissolution, can be found in the recog-

nition that the gravitational field (in standard formulations of Newtonian

theory) is a kind of “gauge field”—i.e., a field that is, in general, systematically

underdetermined by all experimental evidence. Despite appearances, canon-

ical solutions centered at different points really are empirically equivalent.

No experimental test could ever distinguish one from another (or distinguish



“530-47773_Ch04_2P.tex” — 1/23/2012 — 17:18 — page 290

−1

0

+1

290 / newtonian gravitation theory

the center point of any one of them). Canonical solutions centered at differ-

ent points should be viewed as but alternative mathematical representations

of the same underlying state of gravitational affairs—a state that is perfectly

homogenous in the appropriate sense.

One can certainly argue for these claims directly, without reference to

geometrized formulations of Newtonian theory.5 (See, for example, Heck-

mann and Schücking [31] and Norton [44].) But some insight is achieved if

we do think about this old problem in Newtonian cosmology using the ideas

developed in section 4.2. We can develop an account of Friedmann-like cosmo-

logical models within geometrized Newtonian gravitation theory, and then recover

the class of canonical solutions (centered at different points) as but alternative “de-

geometrizations” of the initial curved derivative operator—exactly as described

at the end of that section. The choice between different canonical solutions

emerges as a choice between different ways to decompose into “gravita-

tional” and “inertial” components the net force experienced by a point particle.

Nothing more.

Before proceeding, we give an alternative characterization of the class of

canonical solutions—at least in the case of interest where ρ > 0—that will be

convenient later.

PROPOSIT ION 4.4.1. Let (R3, gab) be three-dimensional Euclidean space, and let

ρ be a constant field on R
3 with ρ > 0. Then for all smooth fields φ on R

3, the

following conditions are equivalent.

(1) φ is a canonical solution (to Poisson’s equation ∇a ∇a φ = 4 π ρ) centered

at some point in R
3.

(2) ∇a ∇b φ = 4

3
π ρ gab.

Proof. One direction is immediate. If φ is a canonical solution centered at

point o (and if χa is the position field relative to o),

∇a ∇bφ = ∇a
(
4

3
π ρ χb

)
= 4

3
π ρ (∇a χb) = 4

3
π ρ gab.

Conversely, suppose φ satisfies condition (2). Let φ′ be a canonical solution

centered at some point o′, let χ ′a be the position field relative to o′, and let κb

be the difference field

5. The important point is that if φ and φ′ are canonical solutions, based at o and o′, respectively,
the difference field (∇aφ− ∇aφ′) is constant, and constant gravitational fields are undetectable.
Only field differences can be detected. The difference field is constant since

∇a(∇bφ− ∇bφ′) = ∇a

(
4

3
π ρ χb − 4

3
π ρ χ ′b

)
= 4

3
π ρ (δa

b − δab) = 0.
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κb = ∇bφ− ∇bφ′ = ∇bφ− 4

3
π ρ χ ′b.

Then κb is constant (∇a κb = 0) and

∇bφ = 4

3
π ρ

(
χ ′b + (

3

4 π ρ
) κb

)
.

Now let o be the (unique) point where the vector field on the right side vani-

shes. (We can think of o as the point one gets if one displaces o′ by the vector
−(3/4 π ρ) κb. This makes sense since we can identify vectors at different

points in three-dimensional Euclidean space.) Then (χ ′b + (3/4 π ρ) κb) is just

what we would otherwise describe as the position field χb relative to o. (Note

that when we apply ∇a to the field, we get δab.) So φ qualifies as a canonical

solution centered at o. �

Note that the proposition fails if ρ = 0. In that case, the implication (1) ⇒
(2) still holds, but not the converse. For then all canonical solutions have

vanishing gradient (∇aφ = (4/3)π ρ χa = 0), whereas condition (2) requires

only that ∇aφ be constant.

Condition (2) in the proposition naturally lifts to the context of classical

spacetimes where it becomes

(4.4.2) ∇a ∇b φ = 4

3
π ρ hab.

(That is why it will be convenient later.) The latter holds iff the restriction

of φ to any spacelike hypersurface S (together with the restrictions of ∇ and

hab to S) satisfies (2).

Let us now shift back to the framework of geometrized Newtonian gravita-

tion theory. Our first task is to introduce a class of cosmological models that

correspond to the Friedmann spacetimes we considered in section 2.11. We

could proceed just as we did there—i.e., start with a condition of spatial homo-

geneity and isotropy (relative to some smooth, future-directed, unit timelike

field ξa) and derive the consequences of that assumption. We could show

again that ξa is necessarily geodesic, twist-free, and shear-free; that any vector

field definable in terms of the basic elements of structure ta, hab,∇, and ξa is

necessarily proportional to ξa; and so forth. Instead, we proceed directly to an

explicit characterization.

Let us first take a (classical) cosmological model to be a a structure of the

form (M, ta, hab,∇, ξa, ρ), where (M, ta, hab,∇) is a classical spacetime; ξa is

a smooth, future-directed unit timelike field on M; and ρ is a smooth field
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on M. We take ξa be the four-velocity of a cosmic fluid that fills all of space-

time, and take ρ to be the mass-density of the fluid. Next, let us say that

(M, ta, hab,∇, ξa, ρ) is Friedmann-like if the following conditions are satisfied.

(1) ξa is geodesic, twist-free, and shear-free; i.e.,

(4.4.3) ∇a ξ
b = 1

3
(δa

b − ta ξ
b) θ .

(Here θ = ∇a ξ
a is the scalar expansion field associatedwith ξa. Note that

equation (4.4.3) follows from equations (4.1.42), (4.1.45), and (4.1.12). In

more detail, since ωab = σab = 0 and ξn∇n ξ
a = 0, we have

∇a ξ
b = θa

b = θan hnb =
(
1

3
θ ĥan

)
hnb = 1

3
(δa

b − ta ξ
b) θ .)

(2) ∇a ρ = 0; i.e., ρ is constant on all spacelike hypersurfaces.

(3) Poisson’s equation Rab = 4 π ρ tab holds.

Note that we have not included Trautman’s two supplemental integrabil-

ity conditions (Ra c
b d = Rc a

d b and Rab
cd = 0) in the list. We have not done so

because, as we now show, they follow from the other assumptions. So in

this special case—the case of Friedmann-like cosmological models — the differ-

ence between our two formulations of geometrized Newtonian theory collapses. (In

section 4.5, we shall consider another case where it collapses.)

PROPOSIT ION 4.4.2. Let (M, ta, hab,∇, ξa, ρ) be a Friedmann-like cosmological

model. Then the following conditions hold.

(1) Ra c
b d = Rc a

d b and Rab
cd = 0.

(2) ξn∇n θ = −4 π ρ − 1
3 θ

2.

Proof. (1)Thefirst condition,Ra
b
c
d = Rc

d
a

b, follows immediately frompropo-

sition 4.3.3. (We need only that ξa be geodesic and twist-free for this much.)

For the second condition, Rab
cd = 0, it will suffice to establish the existence,

at least locally, of a smooth, future-directed, unit timelike field ηa on M that

is rigid and twist-free (∇aηb = 0). For then we can invoke proposition 4.2.4.

Let p be any point in M. All Friedmann-like cosmological models are spa-

tially flat (by proposition 4.1.5). So there must be an open set O containing p

and a smooth spacelike field χa on O such that ∇aχb = hab. (Recall the very

beginning of our proof of proposition 4.2.3.) Now consider the field

ηa = ξa − 1

3
θ χa
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on O. It is certainly a smooth, future-directed, unit timelike field. We claim

that it is rigid and twist-free, as required. To see this, note first that, by equation

(4.4.3),

∇aηb = ∇aξ b − 1

3
θ ∇aχb − 1

3
(∇aθ )χb =

(
1

3
θ hab − 1

3
θ hab

)
− 1

3
(∇aθ )χb.

Furthermore, ∇aθ = 0. This follows, since by equation (4.4.3) and Poisson’s

equation,

∇aθ = han ∇n∇m ξ
m = −han Rm

rnm ξ
r + han ∇m∇n ξ

m

= −han Rrn ξ
r+∇m(∇a ξm)=−han (4πρtrn) ξ r + ∇m

(
1

3
ham θ

)
= 1

3
∇aθ .

So ∇aηb = 0, as claimed.

(2) Here we start as we did in our derivation of Raychaudhuri’s equation

(2.8.17):

ξa∇a θ = ξa∇a∇b ξ
b = −ξaRb

cab ξ
c + ξa∇b∇a ξ

b

= − Rca ξ
cξa + ∇b(ξ

a∇a ξ
b)− (∇b ξ

a)(∇a ξ
b).

But now, by equation (4.4.3), ξa∇a ξ
b = 0 and (∇b ξ

a)(∇a ξ
b) = 1

3
θ2. And by

Poisson’s equation (the third condition in our characterization of Friedmann-

like cosmological models), Rca ξ
cξa = 4 π ρ. So we are done. �

Note that condition (2) in the proposition—the equation that governs the

rate of change of θ in Friedmann-like cosmologicalmodels—agreeswith equa-

tion (2.11.9) in the case where p = 0. This makes sense. Though in general

relativity the “gravitational field” generated by a blob of perfect fluid depends

on its internal pressure as well as on its mass density, only the latter plays a

role in Newtonian gravitation theory.

Now we make precise our claim about the recovery of canonical solutions.

Condition (4.4.4) in the following proposition is the condition we motivated

using proposition 4.4.1. At least if ρ = 0, we can understand it to capture

the claim that the restriction of φ to any spacelike hypersurface is a canonical

solution to Poisson’s equation. (If ρ = 0, it asserts instead that∇aφ is constant

on spacelike hypersurfaces.)

PROPOSIT ION 4.4.3. Let (M, ta, hab,∇, ξa, ρ) be a Friedmann-like cosmological

model, and let φ be a smooth field on some open set in M. If φ arises as part of a

de-geometrization (
f
∇, φ) of ∇ (on that open set), then
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(4.4.4) ∇a ∇b φ = 4

3
π ρ hab.

Conversely, if φ satisfies equation (4.4.4), then, at least locally, there is a derivative

operator
f
∇ such that (

f
∇, φ) is a de-geometrization of ∇. (Once again, to say that

(
f
∇, φ) is a de-geometrization of ∇ is to say that it satisfies conditions (R1)–(R4) in

the Trautman Recovery Theorem.)

Proof. We begin the proof of showing that, given any point p in M, there is an

open set O containing p and some de-geometrization (
f
∇ ∗, φ∗) of ∇ on O such

that

(4.4.5) ∇a ∇b φ∗ = 4

3
π ρ hab.

This will require a bit of work. But once we have established this much, our

principal claims will follow easily.

We begin just as we did in our proof of the Trautman Recovery Theorem.

(Note that all the assumptions needed for the theorem hold. In particular, the

supplemental integrability conditions Ra
b
c
d = Rc

d
a

b and Rab
cd = 0 hold. We

know this from proposition 4.4.2.) Let p be any point in M. Then we can find

an open set O containing p, and a smooth, future-directed, unit timelike field

ηa on O that is rigid and twist-free. Now consider the derivative operator
f
∇∗

on O defined by
f
∇∗ = (∇,Ca

bc ), where Ca
bc = ta tb φ

a and φa = ξn∇n ξ
a. As

we know from our proof of the Trautman Recovery Theorem, we can (after

possibly restricting O to some smaller open set containing p) find a smooth

scalar field φ∗ on O such that φa = ∇a φ∗ and such that (
f
∇ ∗,φ∗) qualifies as

a de-geometrization of ∇ on O. We claim that φ∗ satisfies equation (4.4.5).

To see this, consider the field ξa. (It gives the four-velocity of matter in our

Friedmann-like cosmological model.) It is a geodesic field with respect to ∇.

So, by condition (R3) in the Trautman Recovery Theorem,

ξn
f
∇∗

n ξ
a = − f

∇∗aφ∗.

Hence,

f
∇∗a

f
∇∗b φ∗ = − f

∇∗a (ξn
f
∇∗

n ξ
b) = −(

f
∇∗a ξn)(

f
∇∗

n ξ
b)(4.4.6)

− ξn
f
∇∗a

f
∇∗

n ξ
b

= −(
f
∇∗a ξn)(

f
∇∗

n ξ
b)− ξn

f
∇∗

n

f
∇∗a ξ b.
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(We use the fact that
f
∇∗ is flat for the final equality.) Next, we derive an

expression for
f
∇∗

n ξ
b. We have, by equation (4.4.3),

f
∇∗

n ξ
b = ∇n ξ

b − Cb
nm ξ

m = ∇n ξ
b − (tn tm φ

b)ξm = ∇n ξ
b − tn φ

b

= 1

3
(δn

b − tn ξ
b) θ − tn φ

b.

It follows that

f
∇∗a ξ b = 1

3
hab θ .

Substituting these expression for
f
∇∗

n ξ
b and

f
∇∗a ξ b in equation (4.4.6) yields

(4.4.7)
f
∇∗a

f
∇∗b φ∗ = −1

9
hab θ2 − 1

3
hab ξn

f
∇∗

n θ .

Now by the second clause of proposition 4.4.2,

ξn
f
∇∗

n θ = ξn∇n θ = −1

3
θ2 − 4 π ρ.

So, after substituting this expression for ξn
f
∇∗

n θ in equation (4.4.7), we have

f
∇∗a

f
∇∗b φ∗ = 4

3
π ρ hab.

But

f
∇∗a

f
∇∗b φ∗ = f

∇∗a ∇b φ∗ = ham (∇m ∇b φ∗ − Cb
mn ∇n φ∗)

= ham [∇m ∇bφ∗ − (tm tn φ
b)∇n φ∗] = ∇a ∇bφ∗.

So

∇a ∇b φ∗ = 4

3
π ρ hab,

as claimed. This completes the first part of the proof.

Now let φ be a smooth field on some open subset U of M. Let p be any

point in U . We know from what we have just proved that we can find an open

subset O of U containing p and a de-geometrization (
f
∇ ∗,φ∗) of ∇ on O such

that φ∗ satisfies equation (4.4.5). Suppose first that φ arises as part of a de-

geometrization (
f
∇,φ) of ∇ on U . Then we have two de-geometrizations of ∇
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on O, namely (
f
∇∗,φ∗) and (

f
∇,φ). By the final part of the Trautman Recovery

Theorem governing the non-uniqueness of de-geometrizations, it follows that

0 = ∇a ∇b (φ−φ∗) = ∇a ∇b φ− 4

3
π ρ hab.

(Here the roles of (
f
∇′,φ′) and (

f
∇,φ) in that theorem are played, respectively,

by (
f
∇,φ) and (

f
∇ ∗,φ∗).) So φ satisfies equation (4.4.4) throughout the open set

O containing p. But p was chosen arbitrarily. So φ satisfies equation (4.4.4)

everywhere in U .

Conversely, suppose φ satisfies equation (4.4.4). Then, by equation (4.4.5)

again, we have

∇a ∇b (φ−φ∗) = 4

3
π ρ hab − 4

3
π ρ hab = 0

on O. Hence, by the final part of the Trautman theorem again, if we set
f
∇ = (

f
∇∗, tb tc∇a(φ−φ∗)), then (

f
∇, φ) qualifies as a de-geometrization of ∇

on O. �

Let us think about what we would experience if we resided in a Friedmann-

like Newtonian universe of the sort we have been considering. Suppose we

were at rest in the cosmic fluid—i.e., moving along an integral curve of the

background four-velocity field ξa. Then we would experience no net force and

would observe all other mass points in the fluidmoving uniformly away from,

or toward, us. If we were inclined to describe the situation in terms of tradi-

tional, non-geometrizedNewtonian theory, wewould say (adopting, implicitly,

a particular de-geometrization) that the the gravitational field is centeredwhere

we are and vanishes there. (That is why we experience no net force.) But we

would offer a different account for why our colleagues co-moving with other

cosmic mass points experience no net force. From our point of view (i.e.,

according to our de-geometrization), they do experience a non-zero gravita-

tional force. But it is perfectly balanced by a corresponding “inertial” force.

And it is for this reason that they experience no net force. (Of course, those

colleagues have their own story to tell with the roles reversed. They take

themselves to be the ones residing where the gravitational field vanishes.)

4.5. Geometrized Newtonian TheorySecond Version

In this section, we prove a recovery or de-geometrization theorem for the

Künzle-Ehlers version of geometrized Newtonian gravitation theory. It is the
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counterpart to the recovery theorem we proved for the Trautman version

(proposition 4.2.5) and actually subsumes that earlier result as a special case.

We also consider a second set of special circumstances in which the differ-

ence between our two versions of the theory collapses. We saw in section 4.4

that Trautman’s second integrability condition Rab
cd = 0 holds automatically

in Friedmann-like cosmological models. Here we show that it holds automat-

ically if we restrict attention to classical spacetimes that are, in a certain weak

sense, asymptotically flat.

We start with a lemma. Our proof of the Trautman Recovery Theorem

turnedon the availability of a rigid, twist-freefieldηa. Existencewasguaranteed

by the second integrability condition (proposition 4.2.4). Now we have to work

with less. We cannot count on the existence of rigid, twist-free fields. But, as

we now show, we can still count on the existence of fields that are, at least,

rigid. And this will suffice. To prove the new recovery theorem, we need only

rerun the argument for the old one using a field ηa that is merely rigid. The

computations are a bit more complicated, but no new ideas are involved.

(We could have proved this version of the theorem first and then recovered

the Trautman version simply by considering what happens when ηa is also

twist-free. But there is some advantage to taking on complications one at a

time.)

PROPOSIT ION 4.5.1. Let (M, ta, hab,∇) be a classical spacetime that is spatially

flat (Rabcd = 0). Then, given any point p in M, there exist an open set O containing p

and a smooth, future-directed, unit timelike field ηa on O that is rigid (∇(aηb) = 0).

Proof. Let p be any point inM, and let γ : I → M be a smooth, future-directed,

timelike curve—with four-velocity field η̂a—that passes through p. We claim

first that we can find three smooth, linearly independent, spacelike fields
1
σa, 2
σa, 3
σa on some open set O containing p with these properties ( for all i):

(i) hab = 1
σa 1
σb + 2

σa 2
σb + 3

σa 3
σb.

(ii) ∇a i
σb = 0.

(iii) η̂n∇n
i
σa = 0 on γ [I].

We can generate the fields as follows. First we find three linearly indepen-

dent, spacelike vectors at p that satisfy condition (i)—just as we did in the proof

of proposition 4.1.4. Then we extend the vectors to an open set containing p

in two stages. First, we extend them by parallel transport along γ . (So condi-

tion (iii) is satisfied.) Then we extend them “outward” from γ [I] by parallel

transport along spacelike curves. The latter operation works this way. Let S be
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a spacelike hypersurface that intersects the image of γ at the point q. Then,

because of spatial flatness, parallel transport of spacelike vectors within S is,

at least locally, path independent. (Recall proposition 4.1.5.) So we can unam-

biguously extend the triple 1
σ a, 2
σ a, 3
σ a at q by parallel transport to points on

S sufficiently close to q. The fields generated by this construction are “con-

stant in spacelike directions”; i.e., λn∇n
i
σ a = 0 for all spacelike vectors λa.

The latter condition is equivalent to (ii). Finally, we claim, condition (i) holds

everywhere. Consider the difference field (hab − ( 1σa 1
σb + 2

σa 2
σb + 3

σa 3
σb)). It

vanishes at p. Hence, by (iii), it vanishes along γ [I]. And therefore, by (ii), it

vanishes on spacelike hypersurfaces that intersect γ [I]. So it vanishes every-

where. Thus, as claimed, we can find three smooth, spacelike fields 1
σa, 2
σa, 3
σa

on some open set O containing p that satisfy the three listed conditions. And

the fields must certainly be linearly independent throughout O—because we

started with three linearly independent vectors at p, and linear independence

is preserved under parallel transport.

It follows from (ii), of course, that ∇[a i
σb] = 0 for all i. So, restricting O to

a smaller open set containing p if necessary, we can find smooth scalar fields
i
x on O such that i

σa = ∇a i
x = hab ∇b

i
x. (Here we invoke proposition 4.1.6.)

We can pin them down uniquely by requiring that they assume the value 0 at

points on γ [I]. This guarantees that

(4.5.1) η̂n ∇n
i
x = 0

on γ [I] ∩ O for all i. And, by condition (i),

(4.5.2) hab (∇a
i
x) (∇b

j
x) = δij

holds everywhere for all i and j. (Why? Contracting (i) with (∇b
j
x) yields

j
σa = hab (∇b

j
x) =

3∑
i=1

i
σa ( i
σb ∇b

j
x).

But the vectors 1
σa, 2
σa, 3
σa are linearly independent at every point. So i

σb ∇b
j
x =

δij and, therefore, hab(∇a
i
x)(∇b

j
x) = i

σb ∇b
j
x = δij .)

Now we extend the tangent field η̂a to a smooth field ηa on O by requir-

ing that taηa = 1 and ηn∇n
i
x = 0 hold everywhere for all i. (The fields

ta, (∇a
1
x), (∇a

2
x), (∇a

3
x) form a co-basis at every point, and so a vector field

is uniquely determined by its contractions with them.) We claim that the

resultant field ηa is rigid; i.e., £η hab = 0. We have £η
i
x = ηn∇n

i
x = 0 for

all i. And £η(∇a ϕ) = ∇a(£ηϕ) for all smooth scalar fields ϕ. (This is easily
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checked using proposition 1.7.4.) So£η(∇a
i
x) = ∇a(£η

i
x) = 0 for all i. Hence,

by equation (4.5.2),

0 = £η(hab (∇a
i
x) (∇b

j
x)) = (∇a

i
x) (∇b

j
x)£η hab

for all i and j. But we also have £η ta = ηn∇n ta + tn∇a η
n = 0 and, there-

fore, ta £ηhab = £η(ta hab) = 0. Thus, contracting£ηhab with any of the basis

elements ta, (∇a
1
x), (∇a

2
x), (∇a

3
x) yields 0. So £ηhab = 0, as claimed. �

Now we turn to the recovery theorem.

PROPOSIT ION 4.5.2. (Künzle-Ehlers Recovery Theorem) Let (M, ta, hab,∇) be a

classical spacetime that satisfies

Rbc = 4 π ρ tbc ,(4.5.3)

Ra
b
c
d = Rc

d
a

b,(4.5.4)

for some smooth scalar field ρ on M. Let ηa be a smooth, future-directed, unit

timelike vector field on some open subset O of M that is rigid. (Existence of such

fields, at least locally, is guaranteed by the preceding proposition and proposition

4.1.5.) Let ĥab be the projection field associated with ηa, and let φa and ωab be the

associated acceleration and rotation fields:

φa = ηn∇n η
a,

ωab = ĥm [a ĥb]n ∇m η
n.

Then there exists a unique derivative operator
f
∇ on O such that all the following

hold on O.

(RR1)
f
∇ is compatible with ta and hab.

(RR2) ηa constant with respect to
f
∇ (i.e.,

f
∇a η

b = 0).

(RR3)
f
∇ is flat.

(RR4) For all timelike curves with four-velocity field ξa,

ξn∇nξ
a = 0 ⇐⇒ ξn

f
∇n ξ

a = −φa − 2ωn
aξn.

(RR5) φa and ωab satisfy the “field equations”:
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f
∇ [aωbc] = 0,(4.5.5)

f
∇aω

ab = 0,(4.5.6)

f
∇ [aφb] = ηn

f
∇n ω

ab,(4.5.7)

f
∇aφ

a = 4πρ−ωab ω
ab.(4.5.8)

Note that, as promised, the Trautman Recovery Theorem emerges as a

corollary. If we add the supplemental condition (Rab
cd = 0), then, by proposi-

tion 4.2.4 again, we can find timelike fields locally that are rigid and twist-free.

But if ωab = 0, it follows from equation (4.5.7) (and proposition 4.1.6) that φa

must, at least locally, be of the form φa = ∇aφ for some smooth scalar field φ.

And in this case (ωab = 0 and φa = ∇aφ), we fully recover the conclusions of

the Trautman Recovery Theorem.

The de-geometrization presented here is relativized to a rigid unit timelike

vector field ηa. Given that field, there is a unique derivative operator satisfying

the listed conditions (relative to it). But it will be clear from the proof that,

in general, different choices for ηa lead to different derivative operators—i.e.,

lead to different de-geometrizations. Indeed, one has, here, much the same

non-uniqueness that we encountered in the Trautman Recovery Theorem.

Proof. The argument here is similar in structure to the one we gave for the

Trautman Recovery Theorem, and many individual steps carry over intact or

with onlyminimal change. We just have to remember that whereas previously

we had the condition ∇aηb = 0 to work with, we now have only ∇(aηb) = 0.
Consider the fields

κab = ĥn[b ∇a]ηn,(4.5.9)

Ca
bc = 2 t(b κc)

a(4.5.10)

on O. It is easy to check that they satisfy the following conditions.

2 κa
b = ∇aη

b − ĥna∇bηn,(4.5.11)

κab = ∇aηb = ωab,(4.5.12)

2 κa
bηa = ηa∇a η

b = φb,(4.5.13)
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2 κa
b = 2∇a η

b − ta φ
b,(4.5.14)

Ca
ac = 0.(4.5.15)

Weget the second fromthe fact thatηa is rigid, and so∇aηb = ∇[aηb] = ωab.

The fourth follows from the second and third. (Note that contracting both

sides with either har or ηa yields the same result.) The fifth follows from the

anti-symmetry of κab.

Next consider the derivative operator
f
∇ = (∇,Ca

bc ) on O. We claim that it

satisfies all the listed conditions. (RR1) follows immediately from proposition

4.1.3. For (RR2), note that, by equations (4.5.13) and (4.5.14),

f
∇a η

b = ∇a η
b − Cb

an η
n = ∇a η

b − (ta κn
b + tn κa

b) ηn

= ∇a η
b − 1

2
ta φ

b −
(

∇a η
b − 1

2
ta φ

b
)

= 0.

Thus, as required for (RR2), ηa is constant with respect to the new derivative

operator
f
∇.

Now we turn to the Riemann curvature field associated with
f
∇. We have,

by equation (1.8.2),

f
Ra

bcd = Ra
bcd + 2∇[c Ca

d]b + 2Cn
b[c Ca

d]n(4.5.16)

= Ra
bcd + 2 t[d ∇c] κb

a + 2 tb∇[c κd]a + 2 tb t[d κc]n κn
a.

It follows immediately that
f
Rabcd = Rabcd . ButRabcd = 0. (By proposition 4.1.5,

this is a consequence of the geometrized version of Poisson’s equation (4.5.3).)

So
f
∇ is spatially flat. Now recall the second clause of proposition 4.2.4. Wehave

just verified that there is smooth unit timelike field ηa on O that is constant

with respect to
f
∇. So (since

f
∇ is spatially flat), the proposition tells us that

f
∇

must be flat outright; i.e.,
f
Ra

bcd = 0. So we have (RR3). And equation (4.5.16)

reduces to

(4.5.17) Ra
bcd = −2 t[d ∇c] κb

a − 2 tb∇[c κd]a − 2 tb t[d κc]n κn
a.

For (RR4), note first that for all timelike curves on O with four-velocity

field ξa,
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ξn
f
∇n ξ

a = ξn(∇nξ
a − Ca

nm ξ
m) = ξn∇nξ

a − (tm κn
a + tn κm

a)ξmξn

= ξn∇nξ
a − 2 κn

aξn.

But, by equations (4.5.14) and (4.1.42) and the fact that ηa is rigid (θna = 0),

2 κn
a = 2∇n η

a − tn φ
a(4.5.18)

= 2 (ωn
a + tn φ

a) − tn φ
a = 2ωn

a + tn φ
a.

So ξn∇nξ
a = 0 iff ξn

f
∇n ξ

a = −φa − 2ωn
a ξn. Thus we have (RR4).

Notice also that there can be at most one derivative operator
f
∇ on O sat-

isfying condition (RR4), so we get our uniqueness claim. For suppose that
f
∇′ = (

f
∇,C′a

bc ) satisfies it as well. Then, for all timelike geodesics on O (with

respect to ∇) with four-velocity field ξa, we have

ξn
f
∇n ξ

a = −φa − 2ωn
aξn = ξn

f
∇ ′

nξ
a = ξn(

f
∇n ξ

a − C′a
nmξ

m).

So, C′a
nm ξ

m ξn = 0 holds at every point. But every future-directed unit time-

like vector ξa at a point inO is the tangent vector of some geodesic (with respect

to∇) through the point, and the collection of future-directed unit timelike vec-

tors at a point spans the tangent space there. So it follows that C′a
nm = 0 at

every point in O.

Now, finally, we turn to (RR5). The four conditions wemust verify all follow

from equation (4.5.17). Contracting a with d yields

(4.5.19) 4 π ρ tb tc = Rbc = tc ∇a κb
a + tb ∇a κc

a + tb tc κa
nκn

a.

And raising c yields

(4.5.20) Ra
b
c
d = −td ∇c κb

a − tb∇c κd
a + tb∇d κ

ca − tb td κ
cnκn

a.

Let us now contract (4.5.19) with ηb hcr . This, together with equation (4.5.12),

gives us 0 = ∇a κ
ra = ∇a ω

ra. It follows that

(4.5.21)
f
∇a ω

ab = ∇a ω
ab −ωnbCa

an −ωanCb
an = 0.

(Here Ca
an = 0 by (4.5.15), and ωanCb

an = 0 because of the respective anti-

symmetry and symmetry ofωan andCb
an.) So we have the second in our list of

four (RR5) conditions. Next, let us contract equation (4.5.19) with ηbηc . Then,
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using equations (4.5.13), (4.5.14), and (4.5.18), we get

4 π ρ = 2 ηb ∇a κb
a + κa

nκn
a = 2 [∇a(κb

a ηb)− (∇a η
b)κb

a] + κa
nκn

a

= ∇a φ
a − 2 (κa

b + 1

2
ta φ

b)κb
a + κa

nκn
a

= ∇a φ
a − κa

b κb
a = ∇a φ

a −ωa
b ωb

a.

So, by equation (4.5.15) again,

(4.5.22)
f
∇a φ

a = ∇a φ
a − Ca

an φ
n = ∇a φ

a = 4 π ρ−ωab ω
ab.

Thus we have the fourth condition in the (RR5) list. That leaves the first and

the third.

Now, for the first time, we use the fact that ∇ satisfies the first supplemen-

tal curvature condition (4.5.4). Since
f
∇ satisfies it as well—as it clearly does

since
f
Ra

bcd = 0—we know from proposition 4.3.5 that κab must be closed; i.e,
f
∇ [a κbc] = 0. So, by equation (4.5.12),

f
∇ [aωbc] = f

∇ [aκbc] = 0. That is the first
condition in the list. Finally, contracting equation (4.5.20) with ηbηd and using

equations (4.5.13), (4.5.12), and (4.5.18) yields

Ra
b
c
d η

bηd = − 2 ηb ∇c κb
a + ηd ∇d κ

ca − κcnκn
a

= − 2
(
∇c (κb

a ηb)− (∇c ηb)κb
a
)

+ ηd ∇d κ
ca − κcnκn

a

= −∇c φa + ηd ∇d κ
ca + κcbκb

a = −∇c φa + ηd ∇d ω
ca +ωcbωb

a.

So, since Ra
b
c
d = Rc

d
a

b (and since ωcn is anti-symmetric), ∇[a φc] −
ηd ∇d ω

ac = 0. But, as one can easily check (with a computation much like

ones we have seen before),
f
∇a φc = ∇a φc and ηd

f
∇ d ω

ac = ηd∇d ω
ac . This

gives us the third condition in the (RR5) list, and we are done. �

We have claimed that the difference between the two versions of

geometrized Newtonian gravitation theory collapses if one restricts attention

to classical spacetimes that are, in a certain weak sense, “asymptotically flat.”

(In that case, the second supplemental curvature condition, Rab
cd = 0, follows

from the other assumptions.) Now we make the claim precise. Toward that

goal, we first prove a result of Ehlers’s [15].
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PROPOSIT ION 4.5.3. Let (M, ta, hab,∇) be a classical spacetime that is spatially

flat (Rabcd = 0). Then there is a smooth scalar field � on M such that

(4.5.23) Ra
bcd Rb

a
c
e = � td te.

Moreover,

(4.5.24) Rab
cd = 0 ⇐⇒ � = 0.

Proof. Let p be any point in M; let ηa be a smooth, future-directed, rigid, unit

timelike field defined on some open set containing p (existence is guaranteed,

once again, by proposition 4.5.1); and let ωab be the rotation field determined

by ηa. Further, let κab and
f
∇ be defined (relative to ηa) as in the preceding

proof. Then, by equations (4.5.17), (4.5.20), and (4.5.18),

Ra
bcd Rb

a
c
e = (−2 t[d ∇c] κb

a − 2 tb∇[c κd]a − 2 tb t[d κc]n κn
a)(− te ∇c κa

b − ta∇c κe
b + ta∇e κ

cb − ta te κ
cnκn

b)
= (− td ∇c κb

a)(− te ∇c κa
b) = td te (∇c ωb

a)(∇c ωa
b).

So we need only take � = −(∇c ωab)(∇c ωab) at p. Now, by equation (4.5.17)

again, we also have Rab
cd = −2 t[d ∇c] κba = −2 t[d ∇c] ωba. Hence (since con-

tracting Rab
cd with either ηcηd or hcrhds yields 0),

(4.5.25) Rab
cd = 0 ⇐⇒ ∇cωba = 0.

So the assertion that remains for us to prove, namely equation (4.5.24), is

equivalent to

(4.5.26) ∇cωba = 0 ⇐⇒ (∇c ωab)(∇cωab) = 0.

One direction is trivial, of course. And the other (right to left) follows just from

the fact that the indices in ∇cωba are spacelike (and the metric induced by hab

on the space of spacelike vectors at any point is positive definite). For future

reference, we give the argument in detail. Let 1
σa, 2
σa, 3
σa be three linearly inde-

pendent, smooth spacelike fields on some open set containing p such that (i)

hab = ∑3
i=1

i
σa i
σb and (ii) ∇a i

σb = 0. (Existence is guaranteed by our assump-

tion of spatial flatness. Recall the proof of proposition 4.5.1.) Let
1
λa,

2
λa,

3
λa be

three smooth fields such that i
σ a = hab i

λb (or, equivalently, i
σ a

j

λa = δij) for all
i and j. Now, for all i, j, and k, let

ijk
ω be the scalar field defined by

ijk
ω = k

σ c i
σ a j
σ b (∇c ωab) = k

λc
i
λa

j

λb (∇cωab).
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Then

∇c ωab =
3∑

i,j,k=1

ijk
ω

k
σ c i
σ a j
σ b,

and, hence,

(4.5.27) (∇c ωab)(∇c ωab) =
3∑

i,j,k=1

ijk
ω ( k
σ c i
σ a j
σ b∇c ωab) =

3∑
i,j,k=1

(
ijk
ω)2.

So, clearly, (∇c ωab)(∇c ωab) can vanish only if
ijk
ω = 0 for all i, j, and k; i.e., only

if ∇cωab = 0. �

Now we can formulate our notion of asymptotic flatness. It is intended to

capture the intuitive claim that “Rab
cd goes to 0 at spatial infinity.” (We could

certainly impose a restriction on the limiting behavior of Ra
bcd but, in fact, it

suffices for our purposes to work with a weaker condition that is formulated in

terms of Rab
cd .) With equivalence (4.5.24) in mind, we shall use the condition

� → 0 as a surrogate for the condition Rab
cd → 0.

We first have to insure that there is an asymptotic regime in which space-

time curvature can go (or fail to go) to zero. We do so by restricting attention to

classical spacetimes that can be foliated by a family of spacelike hypersurfaces

that are simply connected and geodesically complete. Each of these hypersur-

faces (together with the metric induced on it by hab) is then, in effect, a copy

of ordinary three-dimensional Euclidean space. Given a classical spacetime

(M, ta, hab,∇) satisfying this condition, we say officially that Rab
cd goes to 0 at

spatial infinity if, for all spacelike geodesics γ : R → M,�(γ (s)) → 0 as s → ∞.

Now we can formulate the collapse result (due to Künzle [35] and Ehlers

[15]).

PROPOSIT ION 4.5.4. Let (M, ta, hab,∇) be a classical spacetime that is spatially

flat. Suppose the following conditions hold.

(1) For all p in M, there is a spacelike hypersurface containing p that is simply

connected and geodesically complete.

(2) Rab
cd goes to 0 at spatial infinity (in the sense discussed above).

Then Rab
cd = 0 (everywhere).

Proof. Arguing as in the proof of proposition 4.5.1, but now using assumption

(1), we can show that there exist three smooth, linearly independent, globally

defined spacelike fields 1
σ a, 2
σ a, 3
σ a satisfying (i) hab = 1

σ a 1
σ b + 2

σ a 2
σ b + 3

σ a 3
σ b
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and (ii) ∇a i
σb = 0, and there exists a smooth globally defined future-directed,

unit timelike field ξa that is rigid (∇ (a ξ b) = 0). Let ωab be the rotation field

associated with the latter, and let
f
∇ be its associated flat derivative operator (as

constructed in the proof of proposition 4.5.2). Finally, let the scalar component

fields
ijk
ω be defined by

ijk
ω = k

σ c i
σ a j
σ b(∇c ωab)

as in the preceding proof.We are assuming that� = (∇c ωab)(∇c ωab) goes to 0

as one approaches spatial infinity. But, by equation (4.5.27), (∇c ωab)(∇c ωab) =∑3
i,j,k=1(

ijk
ω)2. Hence, for all i, j, and k,

(a)
ijk
ω → 0 at spatial infinity.

We claim now that the fields
ijk
ω are all harmonic; i.e.,

(b)
f
∇n

f
∇n ijk
ω = 0.

(We could equally well take the claim to be ∇n ∇n ijk
ω = 0, but it is more con-

venient to work with the flat derivative operator
f
∇.) Once we show this, we

will be done. Because it will then follow by the “minimum principle” that the

fields
ijk
ω all vanish.6 That, in turn, will imply that � = ∑3

i,j,k=1(
ijk
ω)2 = 0 and,

hence, by equation (4.5.24), that Rab
cd = 0.

As in the preceding proof, let
1
λa,

2
λa,

3
λa be three smooth fields such that

i
σ a = hab i

λb. Now
f
∇a and ∇a agree in their action on contravariant fields that

are spacelike in all indices. In particular, for all i,

f
∇a i
σ b = ∇a i

σ b,

f
∇aωbc = ∇aωbc .

6. See, e.g., Flanders [20], p. 85. The principle asserts that a harmonic function defined on a
compact set in three-dimensional Euclidean space assumes its minimum value on its boundary. It
follows—consider a nested sequence of closed balls with radii going to infinity—that if a harmonic
function defined on all of three-dimensional Euclidean space goes to 0 asymptotically along any
(or even just one) geodesic, then it must be 0 everywhere.

We here apply the principle to the fields
ijk
ω or, rather, the restrictions of those fields to individual

spacelike hypersurfaces that are simply connected and geodesically complete. Note that condition
(b) can be construed as a constraint on the restricted fields. IfD is the (three-dimensional) derivative

operator induced on a spaceike hypersurface by
f
∇—which is the same as the one induced by

∇—then it follows from (b) that Dn Dn ijk
ω = 0.
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(HereCa
bc has the formCa

bc = 2 t(b κc)
a. SoCab

c = tcκba and, hence,
f
∇a i
σ b =

∇a i
σ b − Cba

m
i
σm = ∇a i

σ b − tmκab i
σm = ∇a i

σ b. The other case is handled sim-

ilarly.) It follows that
f
∇a i
σ b = 0, and

ijk
ω = k

λc
i
λa

j

λb(
f
∇cωab) = k

σ c i
σ a j
σ b(

f
∇c ωab).

Hence,

f
∇n

f
∇n ijk
ω =

f
∇n

f
∇n ( k

σ c i
σ a j
σ b

f
∇c ωab)

=
f
∇n (

k
σ c i
σ a j
σ b

f
∇n

f
∇c ωab) =

f
∇n ( k

σ c i
σ a j
σ b

f
∇n

f
∇c ωab)

= k
σ c i
σ a j
σ b(

f
∇n

f
∇n

f
∇c ωab) = k

λc
i
λa

j

λb(
f
∇n

f
∇n

f
∇c ωab)

for all i, j, and k. So, to complete the proof, it suffices for us to show

(c)
f
∇n

f
∇n

f
∇c ωab = 0.

And this condition follows easily from the fact that
f
∇[aωbc] = 0 and

f
∇a ω

ab = 0.
(Recall equations (4.5.5) and (4.5.6) in the formulation of proposition 4.5.2.)

Since
f
∇ is flat, we can switch derivative operator position and, therefore,

f
∇n

f
∇n

f
∇cωab =

f
∇c

f
∇n

f
∇nωab =

f
∇c

f
∇n(−

f
∇bωna −

f
∇aωbn)

= −
f
∇c

f
∇b (

f
∇n ω

na)−
f
∇c

f
∇a (

f
∇n ω

bn) = 0.

So we are done.

�
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PROBLEM 1.1.1. Let (M, C) be an n-manifold, let (U ,ϕ) be an n-chart in C, let Ô

be an open subset of ϕ[U], and let O be its pre-image ϕ−1[Ô]. Show that (O,ϕ|O)
is also an n-chart in C.

Let ϕ′ be the restricted map ϕ|O. (We write it this way just to simplify our

notation.) Clearly, ϕ′[O] is open, since ϕ′[O] = ϕ[O] = Ô. And ϕ′ is one-to-
one (since it is a restriction of ϕ). So (O,ϕ′) qualifies as an n-chart on M.

To show that it belongs to C, we must verify that it is compatible with every

n-chart in C.
Let (V ,ψ) be one such. We may assume that U ∩ V is non-empty, since

otherwise the charts are automatically compatible. Since ϕ′ is a restriction of

ϕ, and O is a subset of U (and ϕ is one-to-one), we have

ϕ′[O ∩ V ] = ϕ[O ∩ V ] = ϕ[O ∩ (U ∩ V )] = ϕ[O] ∩ϕ[U ∩ V ].
But ϕ[O] is open (since it is equal to Ô), and ϕ[U ∩ V ] is open (since the

charts (U ,ϕ) and (V ,ψ) are compatible). So ϕ′[O ∩ V ] is open. Furthermore,

ψ[O ∩ V ] is open since it is the pre-image of the open set ϕ[O ∩ V ] under the
smooth (hence continuous) map

ϕ ◦ψ−1 : ψ[U ∩ V ] → ϕ[U ∩ V ].
(That the map is smooth follows, again, by the compatibility of the charts

(U ,ϕ) and (V ,ψ).) Finally, the maps

ϕ′ ◦ψ−1 : ψ[O ∩ V ] → ϕ′[O ∩ V ],
ψ ◦ϕ′−1 : ϕ′[O ∩ V ] → ψ[O ∩ V ]

are smooth since they are the restrictions to open sets, respectively, of the

smooth maps

309
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ϕ ◦ψ−1 : ψ[U ∩ V ] → ϕ[U ∩ V ],
ψ ◦ϕ−1 : ϕ[U ∩ V ] → ψ[U ∩ V ].

PROBLEM 1.1.2. Let (M, C) be an n-manifold, let (U ,ϕ) be an n-chart in C, and

let O be an open set in M such that U ∩ O = ∅. Show that
(
U ∩ O,ϕ|U∩O

)
is also

an n-chart in C.

We claim, first, that ϕ[U ∩ O] is open. To see this, let ϕ(p) be any point in

ϕ[U ∩ O]. SinceO is open, there exists ann-chart (V ,ψ) inC where p ∈ V ⊆ O.

Since (V ,ψ) and (U ,ϕ) are compatible, ϕ[U ∩ V ] qualifies as an open subset of
ϕ[U ∩ O] containing ϕ(p). So ϕ[U ∩ O] is open, as claimed. It now follows by

the result of problem 1.1.1 (taking Ô = ϕ[U ∩ O]) that the pair (U ∩ O,ϕ|U∩O
)

is an n-chart in C.

PROBLEM 1.1.3. Let (M, C) be an n-manifold and let T be the set of open subsets of

M. (i) Show that T is a topology on M; i.e., it contains the empty set and the set

M, and is closed under finite intersections and arbitrary unions. (ii) Show that T
is the coarsest topology on M with respect to which ϕ : U → R

n is continuous for

all n−charts (U ,ϕ) in C.

(i) The empty set qualifies, vacuously, as open, and M qualifies as open

since (M, C) satisfies condition (M2). So we need only show that T is closed

under finite intersections and arbitrary unions. For the first claim, it suffices

to show that if O1 and O2 are both open, then their intersection O1 ∩ O2 is

as well. (The claim will then follow by induction.) So assume that O1 and O2

are open, and let p be a point in O1 ∩ O2. (If the intersection is empty, it is

automatically open.) Since O2 is open, there is an n-chart (U ,ϕ) in C such that

p ∈ U ⊆ O2. Then, by the result in problem 1.1.2, the pair
(
U ∩ O1,ϕ|U∩O1

)
is

an n-chart in C. Thus, given an arbitrary point p in O1 ∩ O2, there is an n-chart

in C (namely, (U ∩ O1,ϕ|U∩O1 )) whose domain contains p and is a subset of

O1 ∩ O2. It follows that O1 ∩ O2 is open, as claimed. Finally, let S be a set of

open sets, and let p be a point in its union ∪S. (Again, if the union is empty,

it is automatically open.) Let O be a set in S such that p ∈ O. Since O is open,

there is an n-chart (U ,φ) in C such that p ∈ U ⊆ O ⊆ (∪ S). So, given our

arbitrary point in ∪S, there is an n-chart in C (namely (U ,ϕ)) whose domain

contains p and is a subset of ∪S. It follows that ∪S is open.

(ii) First, we claim that given any n-chart (U ,ϕ) in C, ϕ : U → R
n is contin-

uous with respect to T . Let (U ,ϕ) be one such. We need to show that, given
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any open subset Ô of ϕ[U], its pre-image ϕ−1[Ô] is open. But by the result in
problem 1.1.1, we know that there is an n-chart in C whose domain is ϕ−1[Ô].
And the domain of an n-chart in C is certainly open. So our claim follows easily.

Next, assume that T ′ is a topology on M with respect to which ϕ : U → R
n is

continuous for all n-charts (U ,ϕ) in C. We show that T ⊆ T ′. Let O be a set in

T , and let p be a point in O. (If O is empty, then it certainly belongs to T ′ since
the latter is a topology on M.) Since O is open, there is an n-chart (U ,ϕ) in C
such that p ∈ U ⊆ O. By assumption, ϕ is continuous with respect to T ′. And
ϕ[U] is an open set in R

n (by the definition of an n-chart). So its pre-image U

must belong to T ′. Thus given any point p inO, there is a T ′-open set (namely,

U) that contains p and is a subset of O. It follows that O itself is open with

respect to T ′. Thus, as claimed, every set O that belongs to T belongs to T ′

as well.

PROBLEM 1.1.4. Let (M, C) be an n-manifold. Show that a map α : M → R is

smooth according to our first definition of “smoothness” (which applies only to real-

valued maps on manifolds) iff it is smooth according to our second definition (which

applies to maps between arbitrary manifolds).

α is smooth in the first sense iff for all n-charts (U ,ϕ) in C, themap α ◦ϕ−1 :

ϕ[U] → R is smooth. It is smooth in the second sense iff for all smooth maps

β : R → R, the composedmap β ◦α : M → R is smooth in the first sense (i.e.,

(β ◦α) ◦ϕ−1 : ϕ[U] → R is smooth for all n-charts (U ,ϕ) in C). To see that the
second sense implies the first, we need only consider the special case where β

is the identitymap onR. For the converse, suppose that α is smooth in the first

sense, let β : R → R be any smooth map on R, and let (U ,ϕ) be any n-chart in

C. Then (β ◦α) ◦ϕ−1 : ϕ[U] → R is smooth since (β ◦α) ◦ϕ−1 = β ◦ (α ◦ϕ−1);

i.e., it is composition of smooth maps α ◦ϕ−1 : ϕ[U] → R and β : R → R.

In what follows, let (M, C) be an n-manifold, let p be a point in M, and let

C(p) be the set of charts in C whose domains contain p.

PROBLEM 1.2.1. Let ξ be a non-zero vector at p, and let (k1, . . . , kn) be a non-zero

element of R
n. Show there exists an n-chart in C(p) with respect to which ξ has

components (k1, . . . , kn).

Let (U1,ϕ1) be an n-chart in C(p), and let (ξ1, . . . , ξn) be the components of

ξ with respect to (U1,ϕ1). These components cannot all be 0, since ξ is not the

zero vector. So there is an isomorphism L of (the vector space) R
n onto itself
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that takes (ξ1, . . . , ξn) to (k1, . . . , kn). Let its associated matrix have elements

{aij}. Then, for all i = 1, . . . , n, ki =
n∑

j=1

aij ξ
j .

Nowconsider anewn-chart (U2,ϕ2) inC(p)whereU2 = U1 andϕ2 = L ◦ϕ1:
U2 → R

n. (That it is an n-chart and does belong to C must be checked. But these

claims follow easily from the fact that L, now construed as a map from the

manifold R
n to itself, is a diffeomorphism.) We claim that the components of

ξ with respect to (U2,ϕ2) are (k1, . . . , kn). To see this, we invoke proposition

1.2.5. As in the notes, for all i = 1, . . . , n, let x′i : ϕ1[U1 ∩ U2] → R be the

coordinate map defined by x′i = xi ◦ϕ2 ◦ϕ−1
1 . Since ϕ2 = L ◦ϕ1, we have

xi ◦ϕ2 =
n∑

j=1

aij (x
j ◦ϕ1)

and, therefore,

x′i = xi ◦ϕ2 ◦ϕ−1
1 =

n∑
j=1

aij xj .

It now follows by proposition 1.2.5 that the components of ξ with respect

to (U2,ϕ2) are

ξ ′i =
n∑

j=1

ξ j ∂x
′i

∂xj
(ϕ1(p)) =

n∑
j=1

ξ j aij = ki,

for all i.

PROBLEM 1.3.1. Let ξ be the vector field x1 ∂

∂x1 − x2 ∂

∂x2 on R
2. Show that the

maximal integral curve of ξ with initial value p = (p1, p2) is the map γ : R → R
2

with γ (s) = (p1 es, p2 e−s).

γ has initial value (p1, p2). It is an integral curve of the given vector field

since, for all s ∈ R, and all f ∈ S(γ (s)), by the chain rule,

�γγ (s)( f ) = d

ds

(
f ◦ γ )(s) = d

ds

(
f
(
p1 es, p2 e−s))

= ∂ f

∂x1 (γ (s)) (p
1 es)+ ∂ f

∂x2 (γ (s)) (− p2 e−s)

= ∂ f

∂x1 (γ (s)) x1(γ (s))− ∂ f

∂x2 (γ (s)) x2(γ (s))

=
[
x1 ∂

∂x1 − x2 ∂

∂x2

]
|γ (s)

( f ).

Finally, it is maximal because its domain is R.
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PROBLEM 1.3.2. Let ξ be a smooth vector field on M, let p be a point in M, and

let s0 be any real number (not necessarily 0). Show that there is an integral curve

γ : I → M of ξ with γ (s0) = p that is maximal in the sense that given any integral

curve γ ′ : I′ → M of ξ , if γ ′(s0) = p, then I′ ⊆ I and γ ′(s) = γ (s) for all s in I′.

Given an interval J, let us understand J + a to be the translation of J by

the number a. Let σ : J → M be the maximal integral curve of ξ with initial

value p. (Existence is guaranteed by proposition 1.3.1.) Let I be the shifted

interval J + s0, and let γ : I → M be the curve defined by γ (s) = σ (s − s0).

Then γ is an integral curve of ξ by the first clause of proposition 1.3.2, and

γ (s0) = σ (0) = p. We claim that γ satisfies the stated maximality condition.

To see this, suppose γ ′ : I′ → M is an integral curve of ξ , and γ ′(s0) = p.

Let J ′ = I′ − s0 and let σ ′ : J ′ → M be defined by σ ′(s) = γ ′(s + s0). Then σ ′

is an integral curve of ξ (by the first clause of proposition 1.3.2 again) with

initial value 0 (since σ ′(0) = γ ′(s0) = p). So, by themaximality ofσ , J ′ ⊆ J and

σ ′(s) = σ (s) for all s in J ′. It follows immediately that I′ = J ′ + s0 ⊆ J + s0 = I

and γ ′(s) = σ ′(s − s0) = σ (s − s0) = γ (s) for all s in I′.

PROBLEM 1.3.3. (Integral curves that go nowhere) Let ξ be a smooth vector field

on M, and let γ : I → M be an integral curve of ξ . Suppose that ξ vanishes (i.e.,

assigns the zero vector) at some point p ∈ γ [I]. Then the following both hold.

(1) γ (s) = p for all s in I (i.e., γ is a constant curve).

(2) The reparametrized curve γ ′ = γ ◦α : I′ → M is an integral curve of ξ for

all diffeomorphisms α : I′ → I.

(1) Suppose s0 ∈ I and γ (s0) = p. It follows from problem 1.3.2 that there is

a uniquemaximal integral curve of ξ whose value at s0 is p. The only possibility

is the constant curve γ̂ : R → M that assigns p to all s. (γ̂ is an integral curve

of ξ since, for all f ∈ S(p), f ◦ γ̂ is constant and, so,

�̂γ|γ̂ (s)( f ) = d

ds
(f ◦ γ̂ )(s) = 0 = ξ|γ̂ (s)( f )

for all s. It is maximal since its domain is R.) Hence, by maximality, γ (s) =
γ̂ (s) = p for all s in I.

(2) Let α : I′ → I be a diffeomorphism and let γ ′ be the composed map

γ ′ = γ ◦α : I′ → M. We know equation from equation (1.3.3) that γ ′ is an

integral curve of ξ iff

ξ
(
γ (α(s))

) dα

ds
(s) = ξ

(
γ (α(s))

)
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for all s in I′. But γ (α(s)) = p for all s in I′ (by the first part of the problem)

and, therefore, ξ
(
γ (α(s))

) = ξ (p) = 0 for all s in I′. So the required equation

holds for all s in I′. (Both sides are 0.)

PROBLEM 1.3.4. (Integral curves cannot cross) Let γ : I → M and γ ′ : I′ → M

be integral curves of ξ that are maximal (in the sense of problem 1.3.2) and satisfy

γ (s0) = γ ′(s′0). Then the two curves agree up to a parameter shift: γ (s) = γ ′(s +
(s′0 − s0)

)
for all s in I.

Let I′′ = I′ − (s′0 − s0), and let γ ′′ : I′′ → M be the curve defined by

γ ′′(s) = γ ′(s + (s′0 − s0)
)
.

It is an integral curve of ξ by proposition 1.3.2, and γ ′′(s0) = γ ′(s′0) = γ (s0). So
by the maximality of γ , I′′ ⊆ I and γ ′′(s) = γ (s) for all s in I′′; i.e., γ (s) =
γ ′(s + (s′0 − s0)) for all s in I′′. It remains to verify only that I′′ = I. Since

I′′ ⊆ I, it follows that I′ ⊆ I + (s′0 − s0). If we rerun the argument with the

roles of I, γ , and s0 interchanged with those of I′, γ ′, and s′0, we arrive at the
symmetric conclusion that I ⊆ I′ + (s0 − s′0). Putting the two set inclusions

together, we arrive at I ⊆ I′ + (s0 − s′0) ⊆ I + (s′0 − s0)+ (s0 − s′0) = I. So I′′ =
I′ + (s0 − s′0) = I, as claimed.

PROBLEM 1.3.5. Let ξ be a smooth vector field on M that is complete. Let p be a

point in M. Show that the restriction of ξ to the punctured set M − {p} is complete

(as a field on M − {p}) iff ξ vanishes at p.

Let ξ ′ be the restriction of ξ to M − {p}. Suppose first that ξ vanishes at p.

Then, as we know from problem 1.3.3, every integral curve of ξ that passes

through p is necessarily a degenerate constant curve that sits at p. It follows,

we claim, that ξ ′ is complete. For let q be any point in M distinct from p. Since

ξ is complete (as a field on M), there is an integral curve γ : R → M of ξ with

initial value q. The image of γ is fully contained in M − {p} (since otherwise
γ would be an integral curve of ξ passing through p that does not sit at p). So

γ qualifies as an integral curve of ξ ′. Since the domain of γ is R (and since q

was chosen arbitrarily), we see that ξ ′ is complete, as claimed.

Conversely, suppose ξ does not vanish at p. Since ξ is complete (as a field

on M), there is an integral curve γ : R → M of ξ with initial value p. γ cannot

be a constant curve that sits at p. (Otherwise, wewould have �γp = 0 and, hence,
ξ (p) = 0.) So the set D = {s ∈ R : γ (s) = p} is non-empty. It is a disjoint union

of open intervals. (If 0 is the only number s in R such that γ (s) = p, then D
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will be the union of (− ∞, 0) and (0,∞). Other possibilities arise because γ

may pass through p more than once.) Let I′ be any one of these intervals,

let γ ′ : I′ → M be the restriction of γ to I′, and let q be any point in γ ′[I′].
Then γ ′ qualifies as a maximal integral curve of ξ ′ in M − {p} that passes

through q. By shifting initial values, we can generate a maximal integral curve

γ ′′ of ξ ′ inM − {p} that has initial value q. But the domain of γ ′′ is notR (since

the pre-shifted domain I′ of γ ′ is not R). So we may conclude that ξ ′ is not
complete.

PROBLEM 1.4.1. Show that lemma 1.4.1 can also be derived as a corollary to the

following fact about square matrices: if M is an (r × r) matrix (r ≥ 1) and M2 is

the zero matrix, then the trace of M is 0.

Assume the left-side condition
r∑

k=1

k
ϕa k
ψ c = 0 holds, and let M be the r × r

matrix with entries Mij = i
ϕa

j

ψa. Then M2 is the zero matrix since

(M2)ij =
r∑

k=1

MikMkj =
r∑

k=1

( i
ϕa k
ψa)(

k
ϕb

j

ψb) = ( i
ϕa

j

ψb)
r∑

k=1

( k
ϕb k
ψa) = 0.

So, by the stated fact, 0 = tr(M) =
r∑

k=1
Mkk =

r∑
k=1

k
ϕa k
ψa.

PROBLEM 1.6.1. Show that for all smooth vector fields ξa on M, £ξ δb
a = 0.

For all smooth vector fields λa on M, we have

λa£ξ δb
a = £ξ (δb

a λ
a)− δb

a £ξ λa = £ξ λb −£ξ λb = 0.

(The first equality follows from the Leibniz rule, and the second from the fact

that δb
a functions as an index substitution operator.) Since this holds for all

smooth fields λa (at all points in M), we may conclude that £ξ δb
a = 0.

Here is a second argument. By the Leibniz rule, and the fact that δb
a

functions as an index substitution operator, we have

£ξ δb
a = £ξ (δb

c δ
c
a) = δb

c £ξ δc
a + δc

a £ξ δb
c = £ξ δb

a +£ξ δb
a.

It follows immediately that £ξ δb
a = 0.

PROBLEM 1.6.2. Let ξa and ηa be smooth vector fields on M, and let the latter be

non-vanishing. Show that if £ξ (ηaηb) = 0, then £ξ ηa = 0.
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Assume that £ξ (ηaηb) = 0, and let p be any point in M. Since ηa is non-

vanishing, there exists a smooth field λa on M such that the scalar field ηaλa

is non-zero at p. At all points we have

0 = λaλb£ξ (ηaηb) = λaλb(η
a£ξ ηb + ηb£ξ ηa) = 2(λa η

a)λb£ξ ηb.

Hence, λb£ξ ηb = 0 at p. But we also have

0 = λb£ξ (ηaηb) = λb(η
a£ξ ηb + ηb£ξ ηa) = ηaλb£ξ ηb + (λb η

b)£ξ ηa

at all points. So (λb η
b)£ξ ηa = 0 at p and, therefore, £ξ ηa = 0 at p. Since p

is an arbitrary point in M, we are done.

PROBLEM 1.6.3. Show that the set of smooth contravariant vector fields on M forms

a Lie algebra under the bracket operation; i.e., show that for all smooth vector fields

ξ , η, λ on M,

[ξ , η] = −[η, ξ ] and
[
λ, [ξ , η]]+ [

η, [λ, ξ ]]+ [
ξ , [η, λ]] = 0.

The anti-symmetry of the bracket operation is immediate. We can establish

the second conditionwith a straightforward computation. Let ξ , η, λ be smooth

contravariant vector fields on M, and let α be a smooth scalar field on M. Then[
λ, [ξ , η]](α) = λ ([ξ , η](α))− [ξ , η](λ(α))

= [
λ(ξ (η(α)))− λ(η(ξ (α)))]− [

ξ (η(λ(α)))− η(ξ (λ(α)))] .
Similarly,[

η, [λ, ξ ]](α) = [
η(λ(ξ (α)))− η(ξ (λ(α)))]− [

λ(ξ (η(α)))− ξ (λ(η(α)))][
ξ , [η, λ]](α) = [

ξ (η(λ(α)))− ξ (λ(η(α)))]− [
η(λ(ξ (α)))− λ(η(ξ (α)))] .

When we add the three lines, we get 0 on the right side because each term has

a mate with the opposite sign. Since this holds for all smooth scalar fields α

on M, we have our second claim.

PROBLEM 1.6.4. Show that for all smooth vector fields ξa, ηa on M, and all smooth

scalar fields α on M,

£(α ξ ) η
a = α(£ξ ηa)− (

£η α
)
ξa.

Given any smooth scalar field β on M, we have
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£(α ξ ) η

a)(β) = (α ξ )(η(β))− η ((α ξ )(β))
= α (ξ (η(β)))+ [

α η(ξ (β))− η(α) ξ (β)]
= α [ξ (η(β))− η(ξ (β))]− η(α) ξ (β)
= α (£ξ ηa)(β)− (£η α) ξ (β)

= [
α
(
£ξ ηa)− (£η α) ξa](β).

Since this is true for all smooth scalar fields β, it follows that £(α ξ ) η
a =

α
(
£ξ ηa

)− (
£η α

)
ξa.

PROBLEM 1.6.5. One might be tempted to take a smooth tensor field to be “constant”

if its Lie derivatives with respect to all smooth vector fields are zero. But this idea

does not work. Any contravariant vector field that is constant in this sense would

have to vanish everywhere. Prove this.

Let ηa be a smooth vector field onM. Assume that£ξ ηa = 0 for all smooth

vector fields ξa on M. Then, given any smooth scalar field α on M, it follows

from the preceding problem that

0 = £(α ξ ) η
a = α(£ξ ηa)− (

£η α
)
ξa = −(

£η α
)
ξa.

Since this is true for all smooth vector fields ξa on M, £η α = 0. Equivalently,
η(α) = 0. But this is true for all smooth scalar fields α on M. So ηa = 0.

PROBLEM 1.6.6. Show that for all smooth vector fields ξa, ηa on M, and all smooth

tensor fields αa...b
c...d on M,(

£ξ £η −£η£ξ
)
α

a1...ar
b1...bs

= £θ αa1...ar
b1...bs

,

where θa is the field £ξ ηa.

Consider first the case of a smooth scalar field α on M. The assertion

follows since(
£ξ £η −£η£ξ

)
(α) = ξ (η(α))− η(ξ (α)) = (£ξ η)(α) = £θ α.

Next consider the case of a smooth vector field αa on M. Given any smooth

scalar field β on M, we have[(
£ξ £η −£η£ξ

)
αa](β) = (

£ξ £η αa)(β)− (
£η£ξ αa)(β)

= [ξ , [η, α]](β)− [η, [ξ , α]](β)
= −[α, [ξ , η]](β)
= [[ξ , η], α](β) = (£θ αa)(β).
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(Note that the third and fourth equalities follow from the assertions in problem

1.6.3.) Since this is true for all smooth scalar fields β, (£ξ £η −£η£ξ )αa =
£θ αa. The other cases now follow in standard computational sequence. To

compute (£ξ £η −£η£ξ )αb, we consider an arbitrary smooth field λb and

make use of our previous derived expressions for (£ξ £η −£η£ξ ) (αb λ
b) and

(£ξ £η −£η£ξ )λb. And so forth.

PROBLEM 1.7.1. Let∇ be a derivative operator on a manifold. Show that∇n δ
b
a = 0.

We can use much the same argument here as used for problem 1.6.1.

By the Leibniz rule, and the fact that δb
a functions as an index substitution

operator,

∇n δ
b
a = ∇n (δb

c δ
c
a) = δb

c ∇n δ
c
a + δc

a ∇n δ
b
c = 2∇n δ

b
a.

So ∇n δ
b
a = 0.

PROBLEM 1.7.2. Let ∇ and ∇′ be derivative operators on a manifold, and let

αa1...an be a smooth n-form on it. Show that

∇[b αa1...an] = ∇′[b αa1...an].

There is a smooth, symmetric field Ca
bc on the manifold such that ∇′ =

(∇, Ca
bc ). For any smooth n-form αa1...an on M, we have

∇′
b αa1...an = ∇b αa1...an + αr a2...an Cr

b a1
+ · · · + αa1...an−1 r Cr

b an
.

So, anti-symmetrizing,

∇′[b αa1...an] = ∇[b αa1...an] + αr [a2...an Cr
b a1] + · · · + α[a1...an−1 |r| Cr

b an].

Since Ca
[b c] = 0, all terms involving Ca

bc in the sum on the right-hand side

are 0. (Notice, for example, that αr [a2...an Cr
b a1] = αr [a2...an Cr

[b a1]] = 0.) It

follows that

∇[b αa1...an] = ∇′[b αa1...an].

PROBLEM 1.7.3. Let ∇ be the coordinate derivative operator canonically associated

with (U , ϕ) on the n-manifold M. Let ui be the coordinate maps on U determined

by the chart. Further, let ∇′ be another derivative operator on U. We know (from

proposition 1.7.3) that there is a smooth field Ca
bc on U such that ∇′ = (∇,Ca

bc ).
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Show that if

Ca
bc =

n∑
i=1

n∑
j=1

n∑
k=1

ijk

C

(
∂

∂ui

)a

(dbu j) (dcu
k),

then a smooth vector field ξa =
n∑

i=1

i
ξ

(
∂

∂ui

)a

on U is constant with respect to ∇′

(i.e., ∇′
a ξ

b = 0) iff

∂
i
ξ

∂uj
=

n∑
k=1

ijk

C
k
ξ

for all i and j.

We have

∇′
b ξ

a = ∇b ξ
a − Ca

bc ξ
c

=
n∑

i=1

n∑
j=1

∂
i
ξ

∂u j

(
∂

∂ui

)a

(dbu j)

−
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

ijk

C
l
ξ

(
∂

∂ui

)a

(dbu j)(dcu
k)
(
∂

∂ul

)c

.

But (dcu
k)
(
∂

∂ul

)c

= δk l . So, continuing,

∇′
b ξ

a =
n∑

i=1

n∑
j=1

∂
i
ξ

∂u j

(
∂

∂ui

)a

(dbu j)−
n∑

i=1

n∑
j=1

n∑
k=1

ijk

C
k
ξ

(
∂

∂ui

)a

(dbu j)

=
n∑

i=1

n∑
j=1

⎡⎣ ∂ i
ξ

∂u j
−

n∑
k=1

ijk

C
k
ξ

⎤⎦( ∂
∂ui

)a

(dbu j).

Thus ∇′
b ξ

a = 0 iff every coefficient (in brackets) in the sum on the right side

is 0—i.e., iff

∂
i
ξ

∂u j
−

n∑
k=1

ijk

C
k
ξ = 0

for all i and j in {1, . . . , n}.

PROBLEM 1.8.1. Let ∇ and ∇′ be derivative operators on a manifold with ∇′
m =

(∇m ,Ca
bc ), and let their respective curvature fields be Ra

bcd and R′a
bcd. Show that

R′a
bcd = Ra

bcd + 2∇[c Ca
d]b + 2Cn

b[c Ca
d]n.
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Given any smooth field αb,

∇′
c ∇′

d αb = ∇′
c (∇d αb +αa Ca

db)

= ∇c (∇d αb +αa Ca
db)+ (∇p αb +αa Ca

pb)C
p
cd + (∇d αp +αa Ca

dp)C
p
cb.

Expanding the first term, anti-symmetrizing on the indices c and d, and using

the fact that C
p
[cd] = 0, we arrive at

1

2
R′ a

bcd αa = 1

2
Ra

bcd αa + (∇[c α|a|)Ca
d]b +αa ∇[c Ca

d]b

+ (∇[d α|p|)Cp
c]b +αa C

p
b[c Ca

d]p.

The second and fourth terms on the right-hand side differ only in their respec-

tive indices of contraction and the order in which the indices c and d occur.

So their sum is 0. Hence,

1

2
R′ a

bcd αa = 1

2
Ra

bcd αa +αa ∇[c Ca
d]b +αa C

p
b[c Ca

d]p.

But this holds for all smooth fields αa. So our conclusion follows.

PROBLEM 1.8.2. Show that the exterior derivative operator d on any manifold

satisfies d2 = 0; i.e., dn(dm αb1...bp ) = 0 for all smooth p-forms αb1...bp .

Here we use the fact that λ[a...[b...c]...d] = λ[a...b...c...d] for all tensor fields

λa...b...c...d . It follows from this that

dn(dm αb1...bp ) = ∇[n ∇[m αb1...bp]] = ∇[n ∇m αb1...bp] = ∇[[n ∇m] αb1...bp]

= 1

2

[
αr [b2...bp Rr

b1 nm] + · · · +α[b1...bp−1|r| Rr
bp nm]

]
= 1

2

[
αr [b2...bp Rr

[b1 nm]] + · · · +α[b1...bp−1|r| Rr
[bp nm]]

]
.

Since Ra
[bcd] = 0, each of the terms in the final sum is 0. So we are done.

PROBLEM 1.8.3. Show that given any smooth field ξa, and any derivative operator

∇ on a manifold, £ξ commutes with ∇ (in its action on any tensor field) iff

∇a∇b ξ
m = Rm

bna ξ
n.

Let Km
ab = Rm

bna ξ
n − ∇a∇b ξ

m . We claim that for all smooth fields αa1...ar
b1...bs

,

(£ξ ∇n − ∇n £ξ )αa1...ar
b1...bs

= αa1...ar
m b2...bs

Km
nb1

+ · · · +αa1...ar
b1...bs−1 m Km

nbs

−αm a2...ar
b1...bs

Ka1
nm − · · · −αa1...ar−1 m

b1...bs
Kar

nm .
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Consider first the case of a scalar field α. By proposition 1.6.4 (and the fact

that ∇[m ∇n]α = 0),

(£ξ ∇n − ∇n £ξ )α = (ξm∇m ∇nα+ (∇m α)∇n ξ
m)− ∇n (ξm∇m α)

= ξm∇m ∇nα+ (∇m α)(∇n ξ
m)− (∇n ξ

m)∇m α− ξm∇n ∇m α = 0.

Similarly, in the case of a smooth vector field αa, we have

(£ξ ∇n − ∇n £ξ )αa

= [ξm∇m ∇nα
a + (∇m α

a)(∇n ξ
m)− (∇nα

m)(∇m ξ
a)]

− ∇n (ξm∇m α
a −αm ∇m ξ

a)

= [ξm∇m ∇nα
a + (∇m α

a)(∇n ξ
m)− (∇nα

m)(∇m ξ
a)]

− [ξm∇n ∇m α
a + (∇n ξ

m)(∇m α
a)−αm∇n ∇m ξ

a − (∇nα
m)(∇m ξ

a)]
= 2ξm∇[m ∇n]αa +αm∇n ∇m ξ

a

= −ξm Ra
p m nα

p +αp ∇n ∇p ξ
a = −αp Ka

np.

The other cases now follow with a standard march through the indices. To

compute (£ξ ∇n − ∇n £ξ )αb, for example, we consider an arbitrary smooth

field λb and make use of our derived expressions for (£ξ ∇n − ∇n £ξ ) (αbλ
b)

and (£ξ ∇n − ∇n £ξ )λb. And so forth.

Now ifKm
ab = 0, it follows immediately fromour equation that£ξ commutes

with∇ in its action on any smooth tensor field. Conversely, if the commutation

condition holds, then αm Km
nb = 0 for all smooth fields αb. So Km

nb = 0.

PROBLEM 1.8.4. Show that given any smooth field ξa on a manifold, the operators

£ξ and dn commute in their action on all smooth p-forms.

Given any smooth p-form αb1...bp , we have, by the preceding problem,

(£ξ dn − dn £ξ )αb1...bp = £ξ ∇[nαb1...bp] − ∇[n £ξ αb1...bp]

= αm [b2...bp Km
nb1] + · · · +α[b1...bp−1 |m| Km

nbp]

= αm [b2...bp Km
[nb1]] + · · · +α[b1...bp−1 |m| Km

[nbp]].

Each of the terms in the final sum is 0, since Km[rs] = 0. (This follows, since by
the symmetries of the Riemann tensor field,

2Km[rs] = 2(Rm[s|n|r] ξn − ∇[r∇s] ξm) = Rm
snr ξ

n − Rm
rns ξ

n + Rm
nrs ξ

n

= Rm
snr ξ

n + Rm
rsn ξ

n + Rm
nrs ξ

n = 3Rm[snr] ξn = 0.)

So (£ξ dn − dn £ξ )αb1...bp = 0.



“530-47773_Ch05_2P.tex” — 1/23/2012 — 17:18 — page 322

−1

0

+1

322 / solutions to problems

PROBLEM 1.9.1. Let ∇ be a derivative operator on a manifold that is compatible

with the metric gab. Use the Bianchi identity to show that

∇a
(
Rab − 1

2
gabR

) = 0.

By the Bianchi identity, and various symmetries of the Riemann tensor

field, we have

0 = ∇mRabcd + ∇dRabmc + ∇cRabdm = ∇mRabcd − ∇dRbamc − ∇cRabmd .

If we raise indices a and b, and then perform (a, d) and (b, c) contraction, we

arrive at

0 = ∇m R − ∇a Ra
m − ∇b Rb

m .

Contracting with gmc (and changing indices of contraction) yields

0 = ∇m(gmcR)− 2∇aRac = ∇a(gacR − 2Rac ).

So, ∇a
(
Rac − 1

2 gacR
) = 0.

PROBLEM 1.9.2. Let ξa be a smooth vector field on M. Show that

£ξ gab = 0 ⇐⇒ £ξ gab = 0.

We know that £ξ δa
c = 0 (Problem 1.6.1). Hence

0 = £ξ δa
c = £ξ (gab gbc ) = gab £ξ gbc + gbc £ξ gab.

Assume that £ξ gab = 0. Then gbc £ξ gab = 0 and, therefore,

0 = gcd gbc £ξ gab = δbd £ξ gab = £ξ gad .

This gives us the implication from left to right The converse is handled

similarly.

PROBLEM 1.9.3. Show that Killing fields on M with respect to gab are affine

collineations with respect to ∇.

Let ξa be a Killing field. By proposition 1.9.8 (and various symmetries of

the Riemann curvature tensor),

∇a ∇b ξm = −Rn
abm ξn = −Rnabm ξ

n = −Rbmna ξ
n = Rmbna ξ

n.

So ∇a ∇b ξ
m = Rm

bna ξ
n. It now follows immediately from problem 1.8.3 that ξa

is an affine collineation with respect to ∇.
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PROBLEM 1.9.4. Show that if ξa is a Killing field on M with respect to gab, then the

Lie derivative operator £ξ annihilates the fields Rabcd, Rab, and R determined by

gab.

Given any smooth vector field ηa, we have

£ξ (Ra
bcd ηa) = £ξ (2∇[c ∇d]ηb) = 2∇[c ∇d] (£ξ ηb) = Ra

bcd £ξ ηa.

(The second equality follows from the preceding problem. Since ξa is a Killing

field, it is an affine collineation with respect to ∇; i.e., £ξ commutes with ∇.)
But by the Leibniz rule, we also have

£ξ (Ra
bcd ηa) = Ra

bcd £ξ ηa + ηa £ξ Ra
bcd .

Comparing these two expressions, we see that ηa £ξ Ra
bcd = 0. But this is true

for all smooth fields ηa. So £ξ Ra
bcd = 0. Hence, since £ξ δn

m = 0,

£ξ Rab = £ξ (δn
m Rm

abn) = δn
m £ξ Rm

abn = 0.

Since ξa is a Killing field, £ξ gmn = 0. (See problem 1.9.2.) So it follows that

£ξ R = £ξ (gab Rab) = gab £ξ Rab = 0.

PROBLEM 1.9.5. Show that if ξa and ηa are Killing fields on M with respect to gab,

and k is a real number, then (ξa + ηa), (kξa), and the commutator [ξ , η]a = £ξ ηa

are all Killing fields with respect to gab as well.

λa = (ξa + ηa) is a Killing field since ∇(aλb) = ∇(a ξb) + ∇(aηb) = 0.
Similarly, χa = (kξa) is a Killing field since ∇(aχb) = k∇(a ξb) = 0.
Finally, θa = £ξ ηa is a Killing field since, by problem 1.6.6, £θ gab =

£ξ£η gab −£η£ξ gab = 0.

PROBLEM 1.9.6. Let ηa be a Killing field on M with respect to gab. (i) Let γ be

a geodesic with tangent field ξa. Show that the function E = ξa ηa is constant

on γ . (ii) Let Tab be a smooth tensor field that is symmetric and divergence-free

(i.e., ∇a Tab = 0), and let Ja be the field Tab ηb. Show that ∇a Ja = 0.

Let ηa, γ , ξa, and E be as stated. Then we have

ξn ∇n E = ξn ∇n (ξa ηa) = ξn ξa ∇nηa + ηa ξ
n ∇n ξ

a.

Since ξa is a Killing field,∇nηa is anti-symmetric. So ξn ξa ∇nηa = 0. And since
ξa is the tangent field of a geodesic, ξn ∇n ξ

a = 0. So, ξn ∇n E = 0. This gives
us (1). The computation for (2) is much the same:
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∇a Ja = ∇a (Tab ηb) = Tab ∇aηb + ηb ∇a Tab.

The second term on the right side vanishes since∇aTab = 0. The first vanishes
since Tab is symmetric (and hence Tab ∇aηb = Tab ∇(aηb) = 0). So ∇a Ja is 0.

PROBLEM 1.9.7. Show that if ηa is a conformal Killing field on M, and M has

dimension n, then

∇(a ηb) = 1

n
(∇c η

c ) gab.

Assume £η
(
�2gab

) = 0. Then, by proposition 1.7.4 (and the fact that

∇m gab = 0),

0 = �2£η gab + gab £η�2 = �2 [ηm ∇m gab + ∇aηb + ∇b ηa] + gab £η�2

= �2 [∇aηb + ∇b ηa] + gab £η�2.

If we raise the index b and then contract, we obtain

0 = 2�2 (∇aη
a)+ n£η�2.

Our two equations jointly yield ∇(aηb) = 1

n
gab (∇c η

c ).

PROBLEM 1.10.1. Let S be a k-dimensional imbedded submanifold of the

n-dimensional manifold M, and let p be a point in S.

(1) Show that the space of co-vectors ηa ∈ (Mp)a normal to S has dimension

(n − k).

(2) Show that a vector ξa ∈ (Mp)a is tangent to S iff ηa ξ
a = 0 for all co-vectors

ηa ∈ (Mp)a that are normal to S.

(1) The subspace of vectors in (Mp)a tangent to S has dimension k. Let

{ 1ξ a,
2
ξ a, . . . ,

k
ξ a}be any set of k linearly independent vectors from that subspace.

We can extend it to a basis for (Mp)a by adding (n − k) more (appropriately

chosen) vectors
k+1
ξ a, . . . ,

n
ξ a. Now let { 1α a, . . . ,

n
α a} be the dual basis. So

i
α a

j
ξ a = δij . We claim that the subspace of co-vectors at p normal to S is spanned

by {k+1
αa, . . . ,

n
α a}. To see this, consider any co-vector αa = 1

α
1
α a + · · · + n

α
n
α a

at p. It is normal to S iff
i
α= αa

i
ξ a = 0 for all i = 1, . . . , k (because every vector

at p tangent to S is a linear combination of
1
ξ a,

2
ξ a, . . . ,

k
ξ a). Thus α is normal iff
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it is in the linear span of {k+1
αa, . . . ,

n
α a}. So the latter is a basis for the subspace

of co-vectors at p normal to S—and therefore that subspace has dimension

(n − k).

(2) The argument is much the same. We continue to work with the basis

and dual basis described in (1). Consider any vector ξa = 1
ξ

1
ξ a + · · · + n

ξ
n
ξ a at

p. It is killed by every covariant vector at p normal to S iff it is killed by all

the vectors
k+1
αa, . . . ,

n
α a. And the latter condition holds iff

i
ξ = i

αa ξ
a = 0 for

all i = k + 1, . . . , n. So ξa is killed by every covariant vector at p normal to S

iff it is a linear combination of
1
ξ a,

2
ξ a, . . . ,

k
ξ a—i.e., iff it is tangent to S.

PROBLEM 1.10.2. Let S be a k-dimensional imbedded submanifold of the n-

dimensional manifold M, and let gab be a metric on M. Show that S is a metric

submanifold (relative to gab) iff, for all p in S, the pull-back tensor (idp)∗(gab) is non-

degenerate; i.e., there is no non-zero vector ξ̃a ∈ (Sp)a such that
(
(idp)∗(gab)

)
ξ̃a = 0.

Let p be any point in S. The pull-back tensor (idp)∗(gab) is degenerate there

iff there is a ξ̃a ∈ (Sp)a such that, for all η̃a ∈ (Sp)a,
(
(idp)∗(gab)

)
ξ̃a η̃b =

gab
(
(idp)∗(ξ̃a)

) (
(idp)∗(η̃b)

) = 0. Since a vector in (Mp)a is tangent to S pre-

cisely if it is of the form (idp)∗(η̃a) for some η̃a ∈ (Sp)a, we see that (idp)∗(gab)

is degenerate at p iff there is a ξ̃a ∈ (Sp)a such that gab
(
(idp)∗(ξ̃ b)

)
is normal

to S; i.e., there is a vector in (Mp)a tangent to S that is also normal to S.

PROBLEM 1.10.3. Prove the following generalization of clause (2) in proposition

1.10.3. For all M-tensor fields α ...a... on S, the following conditions both hold.

(1) α ...a... is tangent to S in the index a ⇐⇒ ha
b α

...b... = α ...a... ⇐⇒ ka
b α

...b...

= 0.

(2) α ...a... is normal to S in the index a ⇐⇒ ka
b α

...b... = α ...a... ⇐⇒
ha

b α
...b... = 0.

We work with a representative case. (The proof is exactly the same no

matter how many indices are involved.) Consider the M-field αamn on S. Sup-

pose first that ha
b α

bmn = αamn. Then αamn is certainly tangent to S in a since

ha
b is. Conversely, suppose α

amn is tangent to S in a. Then, we claim, ha
b α

bmn

and αamn have the same action on any co-vector ηa (at any point of S) that

is either tangent to, or normal to, S. In the first case, ha
b α

bmn ηa = αamn ηa,

since ha
b ηa = ηb, In the second case, ha

b α
bmn ηa = 0 = αamn ηa, because both

sides are tangent to S in a. This gives us the first equivalence in (1). The



“530-47773_Ch05_2P.tex” — 1/23/2012 — 17:18 — page 326

−1

0

+1

326 / solutions to problems

second is immediate since ka
b α

bmn = (ga
b − ha

b)α
bmn = αamn − ha

b α
bmn. The

equivalences in (2) are handled similarly.

PROBLEM 1.10.4. Prove that hm
a kn

b k
p
c ∇m hnp = 0.

We have

hm
a kn

b k
p
c ∇m hnp = hm

a kn
b [∇m(hnp k

p
c)− hnp∇mk

p
c].

But hnp k
p
c = 0 = kn

bhnp (by the third clause of proposition 1.10.3). So both

terms on the right are 0.

PROBLEM 1.10.5. Derive the second Gauss-Codazzi equation:

hm[a hn
b] h

p
c kr

d∇m πnpr = 1

2
hm

a hn
b h

p
c kr

d Rmnpr .

We have

(1) hm
a hn

b h
p
c ∇m hnp = 0.

(2) hm
a kn

b k
p
c ∇m hnp = 0.

(3) πabc = hm
a hn

b k
p
c ∇m hnp = hm

a hn
b (g

p
c − h

p
c )∇m hnp = hm

a hn
b ∇m hnc .

(The first is equation (1.10.3); the secondwas proved in the preceding problem;

and the third follows from the first.) Hence

hm[a hn
b] h

p
c kr

d∇m πnpr = hm[a hn
b] h

p
c kr

d∇m (hq
n hs

p ∇q hsr ) = A + B + C,

where

A = hm[a hn
b] h

p
c kr

d(∇m h
q
n)h

s
p (∇q hsr ),

B = hm[a hn
b] h

p
c kr

dh
q
n (∇m hs

p) (∇q hsr ),

C = hm[a hn
b] h

p
c kr

dh
q
n hs

p (∇m ∇q hsr ).

By (3) and lemma 1.10.6, hm[a hn
b] (∇m h

q
n) = π q

[ab] = 0. So A = 0. Further-
more, since hn

b h
q
n = h

q
b, we have, by (3),

B = hm[a h
q
b] h

p
c kr

d (∇m hs
p) (∇q hsr ) = h

q
[b hm

a] h
p
c (∇m hs

p) k
r
d (∇q hsr )

= h
q
[b π

s
a]c kr

d (∇q hsr ).

Now πacs is tangent to S in the index a and normal to it in s. So π s
ac =

hu
a ks

v π
v

uc and therefore, continuing the computation,

B = h
q
[b π

s
a]c kr

d (∇q hsr ) = h
q
[b hu

a] ks
v kr

d (∇q hsr )π v
uc = 0.



“530-47773_Ch05_2P.tex” — 1/23/2012 — 17:18 — page 327

−1

0

+1

solutions to problems / 327

(The final equality follows from (2).) Finally, since hn
b h

q
n = h

q
b,

C = hm[a h
q
b] h

p
c kr

d hs
p (∇m ∇q hsr ) = hm

a h
q
b h

p
c kr

d hs
p (∇[m ∇q] hsr )

= 1

2
hm

a h
q
b h

p
c kr

d hs
p (hur Ru

smq + hsu Ru
rmq).

Now kr
d hur = 0 (by proposition 1.10.3) and hs

p hsu = hpu . So, continuing,

hm[a hn
b] h

p
c kr

d∇m πnpr = C = 1

2
hm

a h
q
b h

p
c kr

d hpu Ru
rmq

= 1

2
hm

a h
q
b h

p
c kr

d (gpu − kpu)Ru
rmq

= 1

2
hm

a h
q
b h

p
c kr

d Rprmq.

(The final equality follows from the fact that, once again, h
p
c kpu = 0.) But

Rprmq = Rmqpr . So we are done.

PROBLEM 1.11.1. One learns in the study of ordinary vector analysis that, for all

vectors ξ , η, θ , λ at a point, the following identities hold.

(1) (ξ × η) · (θ × λ) = (ξ · θ )(η · λ)− (ξ · λ)(η · θ ).
(2) (ξ × (η× θ ))+ (θ × (ξ × η))+ (η× (θ × ξ )) = 0.

Reformulate these assertions in our notation and prove them.

The two come out as follows.

(1′) (εabcξbηc )(εamnθ
mλn) = (ξ bθb)(ηcλc )− (ξ bλb)(ηcθc ).

(2′) εabcξb(εcmnη
mθn)+ εabcθb(εcmnξ

mηn)+ εabcηb(εcmnθ
mξn) = 0.

They followeasily fromequation (1.11.6)—in the casewheren = 3 andn− = 0.

First, we have

(εabcξbηc )(εamnθ
mλn) = (εabcεamn)ξb ηc θ

m λn = 2 δ[bm δc]
n ξb ηc θ

m λn

= 2ξb ηc θ
[bλc] = (ξ bθb)(η

cλc )− (ξ bλb)(η
cθc ).

And for the second, we have

εabcξb(εcmnη
mθn)+ εabcθb(εcmnξ

mηn) + εabcηb(εcmnθ
mξn)

= (εcabεcmn)ξb η
m θn + (εcabεcmn)θb ξ

m ηn + (εcabεcmn)ηb θ
m ξn

= 2δ[am δb]
n ξb η

m θn + 2δ[am δb]
n θb ξ

m ηn + 2δ[am δb]
nηb θ

m ξn

= 2 ξb η
[a θb] + 2 θb ξ

[aηb] + 2 ηb θ
[a ξ b]
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= [(ξb θb)ηa − (ξb η
b)θa] + [(θb ηb)ξa − (θb ξ

b)ηa] + [(ηb ξ
b)θa

− (ηb θ
b)ξa]

= 0.

PROBLEM 1.11.2. Do the same for the following assertion:

div(ξ × η) = η · curl(ξ )− ξ · curl(η).

We have

∇a (εabc ξb ηc ) = ξb εabc ∇aηc + ηc ε
abc ∇a ξb

= ηc ε
cab ∇a ξb − ξb εbac ∇aηc .

PROBLEM 1.11.3. We have seen that every Killing field ξa in n-dimensional

Euclidean space (n ≥ 1) can be expressed uniquely in the form

ξb = χa Fab + kb,

where Fab and kb are constant, Fab is anti-symmetric, and χa is the position field

relative to some point p. Consider the special case where n = 3. Let εabc be a volume

element. Show that (in this special case) there is a unique constant field Wa such

that Fab = εabcW
c.

Let Wa = 1
2ε

abcFbc . Then

εabc Wc = εabc

(
1

2
εcmnFmn

)
= 1

2
(εcmn εcab)Fmn = δ[ma δ

n]
b Fmn = F[ab] = Fab.

(The final equality follows from the fact that Fab is anti-symmetric.) Wa is

constant, since

∇b Wa = 1

2
∇b (ε

amnFmn),

and both εamn and Fmn are constant. Finally, Wa is the unique field satisfying

thegiven constraint, for ifwe alsohaveFab = εabcŴ
c , then εabc (Ŵc − Wc ) = 0,

and so

0 = εabnεabc (Ŵ
c − Wc ) = 2 δn

c (Ŵ
c − Wc ) = 2 (Ŵn − Wn).

PROBLEM 2.1.1. Consider our characterization of timelike vectors in terms of null

vectors in the proof of proposition 2.1.1. Why does it fail if n = 2?

If n = 2, the stated condition holds for spacelike as well as timelike vectors.

Indeed, in that dimension, given any two non-zero null vectors αa and γ a
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that are not proportional to one another, every spacelike (as well as every

timelike) vector ηa can be expressed in the form ηa = kαa + lγ a, where k = 0

and l = 0. So, of course, if we take βa to be the null vector lγ a, then we have

ηa = kαa +βa.

PROBLEM 2.1.2. (i) Show that it is possible to characterize timelike vectors in terms

of causal vectors. (ii) Show that it is possible to characterize timelike vectors in terms

of spacelike vectors.

The following equivalences hold for all n ≥ 2.

A vector ηa at p is timelike iff for all causal vectors αa at p, there is an

ε > 0 such that, for all k, if |k| < ε, then ηa + kαa is causal.

A vector ηa at p is timelike iff for all spacelike vectors αa at p, there is an

ε > 0 such that, for all k, if |k| < ε, then ηa + kαa is not spacelike.

PROBLEM 2.1.3. Does proposition 2.1.3 still hold if condition (1) is left intact but

(2) is replaced by

(2 ′) αa1...ar
b1...bs ξ

b1 . . . ξ bs = 0 for all spacelike vectors ξa at the point?

And what if it is replaced by

(2 ′′) αa1...ar
b1...bs ξ

b1 . . . ξ bs = 0 for all null vectors ξa at the point?

Condition (2 ′′) is certainly not sufficient. For example, if gab is a spacetime

metric and p is a point in the underlyingmanifold, then gab ξ
aξ b = 0 for all null

vectors ξa at p, but gab = 0. On the other hand, condition (2 ′) is sufficient, and

the proof is almost the same as for the original version of proposition 2.1.3.

Only one change is needed. Before we used the fact that if ξa is a timelike

vector at some point, and ηa is an arbitrary vector there, then there is an

ε > 0 such that, for all x, if |x| < ε, then (ξa + xηa) is timelike. Now we use

the corresponding assertion with both occurences of “timelike” changed to

“spacelike.”

PROBLEM 2.2.1. Let p be a point in M. Show that there is no two-dimensional

subspace of Mp all of whose elements are causal (timelike or null).

Assume there arenon-zero, linearly independent vectorsαa andβa atp such

that, for all k and l, the vector (kαa + l βa) is causal. We derive a contradiction.
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There are two cases to consider. Either (i) one of the two is timelike, or (ii)

both are null. Assume first that one of the two, say αa, is timelike. If we set

k = − (αmβ
m)

(αnαn)
l = 1,

then αn(kαn + l βn) = 0; i.e., (kαa + l βa) is orthogonal to the timelike vector

αa. Since (kαa + l βa) is causal, it follows from the first clause of proposition

2.2.1 that (kαa + l βa) = 0. This contradicts our assumption that αa and βa

are linearly independent. Assume next that αa and βa are both null. Then, for

all k and l,

0 ≤ (kαn + l βn)(kαn + l βn) = 2 k l (αnβn),

since (kαa + l βa) is causal. But this can hold for all k and l only if (αnβn) = 0.

Hence, by the second clause of proposition 2.2.1, αa and βa must be propor-

tional to one another. Once again, this contradicts our assumption that they

are linearly independent.

PROBLEM 2.2.2. Let g ′
ab be a second metric on M (not necessarily of Lorentz

signature). Show that the following conditions are equivalent.

(1) For all p in M, gab and g ′
ab agree on which vectors at p are orthogonal.

(2) g ′
ab is conformally equivalent to either gab or −gab.

The implication (2) ⇒ (1) is immediate. For the other direction, assume (1)

holds. It follows from (1) that gab and g ′
ab agree as to which vectors are null—

i.e., orthogonal to themselves. So it will suffice to show that g ′
ab has signature

(1, 3) or (3, 1). For then we can invoke proposition 2.1.1 and conclude that g ′
ab

is conformally equivalent to gab (in the first case) or to −gab (in the second

case).

Let p be any point in M, and let
1
ξa, . . . ,

4
ξa be an orthonormal basis at p with

respect to gab. Consider the vector (
1
ξa + 2

ξa). It is null with respect to gab. So it

must be null with respect to g ′
ab. Furthermore, since

1
ξa and

2
ξa are orthogonal

with respect to gab, they must be orthogonal with respect to g ′
ab. So we have

0 = g ′
ab (

1
ξa + 2

ξa)(
1
ξb + 2

ξb) = g ′
ab

1
ξa

1
ξb + g ′

ab
2
ξa

2
ξb.

Similarly, we have

0 = g ′
ab

1
ξa

1
ξb + g ′

ab
3
ξa

3
ξb

0 = g ′
ab

1
ξa

1
ξb + g ′

ab
4
ξa

4
ξb.
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Now let Xi = g ′
ab

i
ξa i
ξb, for i = 1, . . . , 4. The Xi are non-zero since the vectors

i
ξa are non-null with respect to gab. So there are only two possibilities. Either

X1 > 0 and X2,X3,X4 < 0, or X1 < 0 and X2,X3,X4 > 0. In the first case, g ′
ab

has signature (1, 3); in the second, it has signature (3, 1). (In either case, we

need only normalize the vectors
1
ξa, . . . ,

4
ξa to arrive at an orthonormal basis at

p of the appropriate type for g ′
ab.)

PROBLEM 2.2.3. Prove the second clause of proposition 2.2.3.

Let μa and νa be co-oriented, non-zero causal vectors at a point p. Then

either (μnνn) > 0, or both vectors are null andμa = k νa for some k > 0. In the

latter case, ‖μa + νa‖ = ‖μa‖ = ‖νa‖ = 0, and the assertion follows trivially.

So we may assume (μnνn) > 0. Hence, by the first clause of proposition 2.2.3,

(μnνn) ≥ ‖μa‖ ‖νa‖. Therefore,(‖μa‖ + ‖νa‖)2 = ‖μa‖2 + 2 ‖μa‖ ‖νa‖ + ‖νa‖2 ≤ (μnμn)+ 2 (μnνn)+ (νnνn)

= (
μn + νn) (μn + νn) = ‖μa + νa‖2.

(For the final equality we need the fact μa and νa are co-oriented. Otherwise,

(μa + νa) need not be causal.) Equality holds here iff (μnνn) = ‖μa‖ ‖νa‖.
But by the first half of the proposition, again, this is the case iff μa and νa

are proportional.

PROBLEM 2.5.1. Give examples for each of the following possibilities.

(1) A smooth symmetric field Tab that does not satisfy the WEC

(2) A smooth symmetric field Tab that satisfies the WEC but not the DEC

(3) A smooth symmetric field Tab that satisfies the DEC but not the SDEC

(1) Tab = −gab. (2) Tab = σa σb, where σ a is a smooth spacelike field. (3)

Tab = λa λb, where λa is a smooth, non-zero null field.

PROBLEM 2.5.2. Show that the DEC holds iff given any two co-oriented timelike

vectors ξa and ηa at a point, Tab ξ
a ηb ≥ 0.

Suppose first that the DEC holds, and let ξa be a timelike vector at

some point. Then Tab ξ
a ξ b ≥ 0 and Ta

b ξ
b is a causal vector. We claim that

Tab ξ
a ηb ≥ 0 for all timelike ηa at the point that are co-oriented with ξa. We

may assume that Tab ξ
a = 0, since otherwise the claim is trivial. And in this
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case it follows that Tab ξ
a ξ b > 0 (since otherwise Tab ξ

a is a non-zero causal

vector that is orthogonal to the timelike vector ξ b, and this is impossible by

proposition 2.2.1). SoTa
b ξ

b is a non-zero causal vector that is co-oriented with

ξa. Now let ηa be any timelike vector at the point that is co-oriented with ξa.

It must be co-oriented with Ta
b ξ

b as well (since co-orientation is an equiv-

alence relation). So Tab ξ
a ηb > 0.

For the converse, suppose that given any two co-oriented timelike vectors

ξa and ηa at a point, Tab ξ
a ηb ≥ 0. Let ξa be a timelike vector at some point.

It follows immediately (taking ηa = ξa) that Tab ξ
a ξ b ≥ 0. So what we have to

show is thatTa
b ξ

b is a causal vector. Suppose to the contrary that it is spacelike.

Then we can find a timelike vector
o
ηa at the point, co-oriented with ξa, that is

orthogonal to Ta
b ξ

b. But since
o
ηa is timelike, (

o
ηa + k Ta

b ξ
b) is also timelike

and co-oriented with ξa for all sufficiently small k > 0. Hence, by our initial

assumption,

0 ≤ Tab ξ
a(

o
ηb + k Tb

n ξ
n) = k (Tab ξ

a) (Tb
n ξ

n)

for all sufficiently small k>0. But this is impossible since (Tab ξ
a)(Tb

n ξ
n)<0.

So, as claimed, Ta
b ξ

b is causal.

PROBLEM 2.5.3. Consider a perfect fluid with four-velocity ηa, energy density ρ,

and pressure p. (i) Show that it satisfies the DEC iff |p| ≤ ρ. (ii) Show that it

satisfies the SDEC iff it satisfies the DEC.

(i) Suppose Tab = ρ ηa ηb − p (gab − ηa ηb). Then Tab satisfies the DEC con-

dition at a point iff for all unit timelike vectors ξa at that point, Tab ξ
a ξ b ≥ 0

and Ta
b ξ

b is causal. Now for all such vectors,

Tab ξ
a ξ b = (ρ+ p)(ηaξa)2 − p,

(Ta
b ξ

b)(Tac ξ
c ) = (ρ2 − p2)(ηaξa)2 + p2.

So the DEC holds iff both right-side expressions are non-negative for all

choices of ξa.

Assume first that |p| ≤ ρ, and let ξa be a unit timelike vector at the point

in question. Then, by the wrong-way Schwarz inequality (proposition 2.2.3),

(ηaξa)2 ≥ ‖ηa‖2 ‖ξa‖2 = 1. Hence,

(ρ+ p)(ηaξa)
2 − p ≥ (ρ+ p)− p = ρ ≥ 0,

(ρ2 − p2)(ηaξa)2 + p2 ≥ (ρ2 − p2)+ p2 = ρ2 ≥ 0.

So the DEC holds at the point. Conversely, suppose that Tab ξ
a ξ b ≥ 0 and

Ta
b ξ

b is causal for all unit timelike vectors ξa at the point. Then, in particular,
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Tab η
a ηb ≥ 0 and, therefore, 0 ≤ (ρ+ p)(ηaηa)2 − p = (ρ+ p)− p = ρ there.

Next we use the fact that there is no upper bound to the value of (ηaξa)2 as ξa

ranges over unit timelike vectors at the point. It cannot possibly be the case

that (ρ2 − p2)(ηaξa)2 + p2 ≥ 0 for all such vectors unless (ρ2 − p2) ≥ 0. So

we have ρ ≥ 0 and (ρ2 − p2) ≥ 0. These two together are jointly equivalent to

|p| ≤ ρ, as required.
(ii) The SDEC implies the DEC (always, not just for perfect fluids). Suppose

that at some point Tab = ρ ηa ηb − p (gab − ηa ηb) satisfies the DEC but not the

SDEC. Then there is a timelike vector ξa at the point such that Ta
b ξ

b is null

even though Tab = 0 there. We claim this is impossible. If Ta
b ξ

b is null,

then, (ρ2 − p2)(ηaξa)2 + p2 = 0. But |p| ≤ ρ, since we are assuming that the

DEC holds, and ηaξa = 0 (since no two timelike vectors are orthogonal). So

this equation can hold only if ρ = p = 0, and this contradicts our assumption

that Tab = 0 at the point in question.

PROBLEM 2.6.1. Show that Maxwell’s equations in the source free case (Ja = 0)

are conformally invariant.

Let g ′
ab = �2 gab be a second metric on the underlying manifold M, whose

dimension n we leave open. Let its associated derivative operator be ∇′. It will
suffice for us to show that

∇′
a (g

′am g ′bn Fmn) = 1

�4 (∇aFab)+ (n − 4)

�5
Fab ∇a�.

We know from proposition 1.9.5 that ∇′ = (∇,Ca
bc ), where

Ca
bc = − 1

2�2

[
δa

b ∇c �
2 + δa

c ∇b�
2 − gbc gar ∇r �

2].
We have

∇′
a (g

′am g ′bn Fmn) = g ′am g ′bn ∇′
a Fmn = �−4 gam gbn ∇′

a Fmn

= �−4 gam gbn [∇a Fmn + Cr
am Frn + Cr

an Fmr
]
.

Now

�−4 gam gbn Cr
am Frn = − 1

2�6 gam gbn [δr
a ∇m�

2+δr
m ∇a�

2−gam grs ∇s�
2] Frn

= − 1

2�6 [Fmb∇m �
2 + Fab∇a�

2 − n Fsb∇s�
2]

= (n − 2)

�5
Fab ∇a�
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and (since Fab is anti-symmetric and, therefore, grm Fmr = 0),

�−4 gam gbn Cr
an Fmr = − 1

2�6 gam gbn [δr
a ∇n�

2 + δr
n ∇a�

2 − gan grs ∇s�
2] Fmr

= − 1

2�6 [grm Fmr gbn ∇n�
2 + Fab∇a�

2 − Fbs∇s�
2]

= − 2

�5
Fab ∇a�.

So, as needed, we have

∇′
a (g

′am g ′bn Fmn) = 1

�4 (∇aFab)+ (n − 4)

�5
Fab ∇a�.

PROBLEM 2.6.2. Prove equation (2.6.19).

We have

εabcd FabFcd = εabcd [2E[a ξb] + εabrs ξ
rBs] [2E[c ξd] + εcdmn ξ

mBn] .
Whenwe expand the right side, we get four terms. Two of themvanish because

of the anti-symmetry of εabcd :

εabcd E[a ξb] E[c ξd] = εabcd Ea ξb Ec ξd = 0,

εabcd εabrs ξ
rBs εcdmn ξ

mBn = −4 δc [r δd
s] ξ rBs εcdmn ξ

mBn

= −4 ξ cBd εcdmn ξ
mBn = 0.

One of the other terms yields

2 εabcd E[a ξb] εcdmn ξ
mBn = 2 εcdab εcdmn Ea ξb ξ

mBn

= −8 δa[m δb
n] Ea ξb ξ

mBn = 4 EaBa,

since ξa Ea = ξa Ba = 0. The other yields 4 EaBa as well. (The computation is

almost exactly the same.) So we have

εabcd FabFcd = 8EaBa.

PROBLEM 2.6.3. Prove equation (2.6.21).

By equation (2.6.17), we have

(Tab ξ
b)(Tac ξc ) =

[
1

2
(−EnEn − BnBn) ξa − εars ErBs

]
[
1

2
(−EmEm − BmBm) ξa − εapq EpBq

]
.



“530-47773_Ch05_2P.tex” — 1/23/2012 — 17:18 — page 335

−1

0

+1

solutions to problems / 335

The two “cross-terms” on the right vanish because ξaεapq = ξaεapqn ξn = 0. So

(Tab ξ
b)(Tac ξc ) = 1

4
(EnEn + BnBn)2 + εars ErBs εapq EpBq.

But

εars ErBs εapq EpBq = εarsn ξ
n εapqm ξm ErBsEpBq = −6E[p Bq ξm] Ep Bq ξm

= − [
(EpEp)(BqBq)− (EpBp)2

]
.

So we may conclude, as required, that

(Tab ξ
b)(Tac ξc ) = 1

4
(EnEn − BnBn)2 + (EnBn)2.

PROBLEM 2.6.4. Prove the following equivalence.

∇a Fab = Jb ⇐⇒
{

Db Eb = μ

εabc Db Bc = ξ b ∇b Ea + ja.

Clearly, (∇a Fab −Jb) vanishes iff its projections tangent to, and orthogonal

to, ξ b both vanish; i.e.,

∇a Fab = Jb ⇐⇒
{
ξb (∇a Fab −Jb) = 0
hc

b (∇a Fab −Jb) = 0.

We shall work on the right-side equations separately. Since ξa (and, therefore,

hab) are constant, and since Ea is orthogonal to ξa,

ξb (∇a Fab −Jb) = ∇a (Fabξb)− (Jbξb) = ∇a Ea −μ = ∇a (ha
n hn

m Em)−μ
= ha

b hb
m ∇a Em −μ = Db Eb −μ.

This gives us the first equivalence. The second is handled similarly using

equations (2.6.12) and (2.6.13). We have

hc
b (∇a Fab −Jb) = ∇a (Fabhc

b)− (Jbhc
b) = ∇a (Fabhc

b)− jc

and

∇a (Fabhc
b) = ∇a

[
(2E[a ξ b] + εabrs ξr Bs) hc

b

]
= −ξa∇a Ec + εabrs ξr hc

b ∇a Bs

= −ξa∇a Ec + εcas ∇a Bs = −ξa∇a Ec + (εcmn ha
m hs

n)∇a Bs

= −ξa∇a Ec + εcmn Dm Bn.

So

hc
b (∇a Fab −Jb) = 0 ⇐⇒ εcmn Dm Bn = ξa∇a Ec + jc .
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PROBLEM 2.7.1. Show that in the general case (n ≥ 3), inversion of equation

(2.7.3) leads to

Rab = 8π
(

Tab − 1

(n − 2)
T gab

)
− 2

(n − 2)
� gab.

Contraction of

Rab − 1

2
R gab −� gab = 8π Tab

yields

R − 1

2
R n −� n = 8π T ,

or, equivalently,
(2− n)

2
R = 8π T + n�.

So, substitution for R in the first equation yields

Rab = 8π Tab + 1

2
R gab +� gab

= 8π Tab + 1

(2− n)
(8π T + n�) gab +� gab

= 8π
(

Tab − 1

(n − 2)
T gab

)
− 2

(n − 2)
� gab,

as required.

PROBLEM 2.7.2. Give examples of the following.

(1) A smooth symmetric field Tab that satisfies the SDEC (and so also the WEC

and DEC) but not the SEC

(2) A smooth symmetric field Tab that satisfies the SEC, but not the WEC (and

so not the DEC or SDEC, either)

For (1), takeTab = gab. It satisfies the SDEC.But in this case, Tab − 1
2 gabT =

−gab, and so it does not satisfy the SEC.

For (2), take Tab = −gab. It does not satisfy the WEC. But in this case,

Tab − 1
2 gabT = gab, so it does satisfy the SEC.

PROBLEM 2.7.3. Consider a perfect fluid with four-velocity ηa, energy density ρ,

and pressure p. Show that it satisfies the strong energy condition iff (ρ+ p) ≥ 0

and (ρ+ 3p) ≥ 0.
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If

Tab = ρ ηa ηb − p (gab − ηa ηb),

then T = (ρ− 3 p), and

Tab − 1

2
gab T = (ρ+ p) ηa ηb + (p − ρ)

2
gab.

It follows that Tab satisfies the SEC iff, given any unit timelike vector ξa at

any point,

(ρ+ p)(ηaξ
a)2 + (p − ρ)

2
≥ 0.

Now (ηaξ
a)2 ≥ 1 by the Schwarz inequality. So if (ρ+ p) ≥ 0 and (ρ+ 3p) ≥ 0,

then

(ρ+ p)(ηaξ
a)2 + (p − ρ)

2
≥ (ρ+ p)+ (p − ρ)

2
= (ρ+ 3p)

2
≥ 0,

and the inequality is satisfied. Conversely, suppose it is satisfied for all unit

timelike vectors ξa at some point. Then, in particular, it is satisfied for

ξa = ηa, which yields (ρ+ 3p) ≥ 0. And since (ηaξ
a)2 can assume arbitrar-

ily large values as ξa ranges over all unit timelike vectors at a point, it must be

the case that (ρ+ p) ≥ 0.

PROBLEM 2.8.1. Prove equation (2.8.8).

It follows from the definition (2.8.6) of the twist vector that

εabcd ξ
cωd = 1

2
εabcd ξ

cεdmnr ξm ωnr = 3 δm [a δn
b δ

r
c] ξ c ξm ωnr

= 3 ξ c ξ[a ωbc] = ωab.

For the final equality, we use the fact that ξa is orthogonal to ωab in both

indices (and ωab is anti-symmetric).

PROBLEM 2.8.2. Show that, at any point, ωa = 0 iff ξ[a∇b ξc] = 0.

We know from equation (2.8.7) and the anti-symmetry of εabcd that

ωa = 1

2
εabcd ξb ∇c ξd = 1

2
εabcd ξ[b ∇c ξd].

So the “if” half of the equivalence follows immediately. For the other direction,

assume that ωa = 0 holds at some point. Then at that point we have

0 = εamnr ω
a = 1

2
εamnr ε

abcd ξ[b ∇c ξd] = −3 δb[m δc
n δ

d
r] ξ[b ∇c ξd]

= −3 ξ[m ∇n ξr].
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PROBLEM 2.8.3. Complete the calculation in equation (2.8.10).

We have to compute

ω a
b ηb ωca η

c

ρn ρn
.

We work separately with the numerator and denominator. It follows, first,

from equation (2.8.8) that

ω a
b ηb ωca η

c = (εb
a

mn ξ
m ωn) ηb (εcars ξ

r ωs) ηc

= εabmn ηb ξm ωn εacrs η
c ξ r ωs

= −6 δb[c δm
r δ

n
s] ηb ξm ωn η

c ξ r ωs

= −6 η[c ξr ωs] ηc ξ r ωs

= − [
(ηcη

c )(ωsω
s)− (ηs ω

s)2
]
.

(For the final equality, we use the fact that we are doing the computation at

the “initial point” where ηa is orthogonal to ξa.) And, since

ρn = ηn − ηb ωb

ωm ωm
ωn,

we have

ρnρn =
[
ηn − ηbωb

ωm ωm
ωn

][
ηn − ηc ωc

ωr ωr
ωn

]

= (ηn ηn)− 2
(ηc ωc )2

ωr ωr
+ (ηc ωc )2

ωr ωr

= 1

(ωr ωr )

[
(ηnηn)(ωs ωs)− (ηc ωc )2

]
.

So,

ω a
b ηb ωca η

c

ρn ρn
= −ωrωr ,

as required.

PROBLEM 2.9.1. Let κa be a timelike Killing field that is locally hypersurface orthog-

onal (κ[a∇b κc] = 0). Further, let κ be the length of κa. (So κ2 = κnκn.) Show

that

κ2 ∇a κb = −κ[a∇b] κ2.
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This follows with a simple direct computation:

0 = 3 κc κ[a∇b κc] = κa κ
c∇b κc + (κc κc )∇a κb + κb κ

c∇c κa

= κa κ
c∇b κc + (κc κc )∇a κb − κb κ

c∇a κc

= 1

2
κa ∇b κ

2 + κ2 ∇a κb − 1

2
κb ∇a κ

2 = κ2 ∇a κb + κ[a∇b] κ2.

PROBLEM 2.9.2. Consider a non-trivial boost Killing field κb = 2χaE[a ξb] on

Minkowksi spacetime (as determined relative to some point p and some constant

unit timelike field ξa). “Non-trivial” here means that Ea = 0. Let ηa be a constant

field on Minkowski spacetime. Show that £κ ηa = 0 iff ηa is orthogonal to both to

ξa and Ea.

Since ηa is constant,

£κ ηa = κn∇n η
a − ηn∇n κ

a = −ηn∇n κ
a = −2 ηn∇n (χmE[m ξa])

= −2E[m ξa] ηn∇n χm = −2E[m ξa] ηn gnm = (ξm ηm)Ea − (Em ηm)ξa.

Since ξa and Ea are linearly independent, we see that £κ ηa = 0 iff (ξm ηm) =
0 = (Em ηm).

PROBLEM 2.9.3. This time, consider a non-trivial rotational Killing field κb =
χa εabcd ξ

c Bd on Minkowski spacetime (with Ba = 0). Again, let ηa be a constant

field on Minkowski spacetime. Show that £κ ηa = 0 iff ηa is a linear combination

of ξa and Ba.

The argument is very much the same as with the preceding problem.

If ηa is constant,

£κ ηa = −ηn∇n κ
a = −ηn∇n (χm ε

ma
cd ξ

c Bd)

= −εma
cd ξ

c Bd ηn∇n χm = − εma
cd ξ

c Bd ηn gnm = εa
mcd η

m ξ c Bd .

Thus £κ ηa = 0 iff ηa has no component orthogonal to both ξa and Ba.

PROBLEM 2.9.4. Let κa be a Killing field; let γ : I → M be a smooth, future-

directed, timelike curve, with unit tangent field ξa; and let J = (Paκa), where

Pa = m ξa. Finally, let αa = ξn∇nξ
a and α = (−αn αn)

1
2 . Show that

|ξn∇n J| ≤ α
√

J2 − m2 (κnκn).
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We have seen that

ξn∇nJ = m κa ξ
n∇n ξ

a = m κa α
a.

Now consider the projected spatial metric hab = gab − ξaξb. It is negative

definite. So by the Schwarz inequality (as applied to −hab) and the fact that

ξaαa = 0,

|ξn∇nJ| = |m κa α
a| = |m hab α

a κb| ≤ (− hab α
a αb)

1
2 (− m2 hab κ

a κb)
1
2

= α [J2 − m2 (κnκn)] 1
2 .

PROBLEM 2.11.1. Confirm that the three stated solutions do, in fact, satisfy equation

(2.11.18).

We consider just the k = −1 case. The others are handled similarly. We

have to show that the solution (in parametric form),

a(x) = C

2
(cosh x − 1)

t(x) = C

2
(sinh x − x)

does, in fact, satisfy equation (2.11.18) for all x ∈ (0, ∞). Note that (dt/dx) is

strictly positive in this interval. So by the inverse function theorem, (dx/dt) is

everywhere well defined and equal to (dt/dx)−1. Thus, we have

ȧ = da

dt
= da

dx

(
dt

dx

)−1

= sinh x

cosh x − 1
.

Therefore

ȧ2 − C

a
− 1 =

(
sinh x

cosh x − 1

)2

− 2

(cosh x − 1)
− 1 = 0.

PROBLEM 2.11.2. Consider a second equation of state, namely that in which

ρ = 3 p. Show that in this case there is a number C′ such that

ȧ2 a2 + k a2 = 8π

3
ρ a4 = C′.

If we multiply the right side of equation (2.11.16) by 3, and equate it with

the right side of equation (2.11.15), we arrive at
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ȧ

a

)
2 + k

a2
= −2

ä

a
−
(

ȧ

a

)2

− k

a2

or, equivalently,

ä a + ȧ2 + k = 0.

It follows (by integration) that ȧ2 a2 + k a2 = C′, for some number C′. It then
further follows from equation (2.11.15) that C′ = (8π/3)ρa4.



“530-47773_Ch05_2P.tex” — 1/23/2012 — 17:18 — page 342

−1

0

+1



“530-47773_Ch06_2P.tex” — 1/23/2012 — 17:18 — page 343

−1

0

+1

Bibliography

[1] M. Abramowicz and J. Lasota. On traveling around without feeling it and uncurving
curves. American Journal of Physics, 54:936–939, 1986.

[2] M. Abramowicz, P. Nurowski, and N. Wex. Optical reference geometry for stationary
and axially symmetric spacetimes. Classical and Quantum Gravity, 12:1467–1472, 1995.

[3] A. Ashtekar and A. Magnon. The Sagnac effect in general relativity. Journal of Mathe-

matical Physics, 16:341–344, 1975.
[4] J. Bain. Theories of Newtonian gravity and empirical distinguishability. Studies in the

History and Philosophy of Modern Physics, 35:345–376, 2004.
[5] E. Cartan. Sur les variétés a connexion affine et la théorie de la relativité généralisée.

Annales Scientifiques de l’Ecole Normale Supérieure, 40:325–412, 1923.
[6] E. Cartan. Sur les variétés a connexion affine et la théorie de la relativité généralisée.

Annales Scientifiques de l’Ecole Normale Supérieure, 41:1–25, 1924.
[7] S. Chakrabarti, R. Geroch, and Can bin Liang. Timelike curves of limited acceleration

in general relativity. Journal of Mathematical Physics, 24:597–598, 1983.
[8] Y. Choquet-Bruhat and R. Geroch. Global aspects of the Cauchy problem in general

relativity. Communications in Mathematical Physics, 14:329–335, 1969.
[9] R. Coleman and H. Korté. Hermann Weyl: Mathematician, physicist, philosopher. In

E. Scholz, editor, Hermann Weyl’s Raum-Zeit-Materie and a General Introduction to His

Scientific Work. Birkhäuser Verlag, 2001.
[10] G. Dautcourt. Die Newtonische Gravitationstheorie als strenger Grenzfall der allge-

meinen Relativitätstheorie. Acta Physica Polonica, 65:637–646, 1964.
[11] W. G. Dixon. On the uniqueness of the Newtonian theory as a geometric theory of

gravitation. Communications in Mathematical Physics, 45:167–182, 1975.
[12] W. G. Dixon. Special Relativity. Cambridge University Press, 1978.
[13] H. Dombrowski and K. Horneffer. Die Differentialgeometrie des Galileischen Relativ-

itätsprinzips. Mathematische Zeitscrift, 86:291–311, 1964.
[14] J. Earman. Lambda: The constant that refuses to die. Archives for History of Exact Sciences,

55:189–220, 2001.
[15] J. Ehlers. Über den Newtonschen Grenzwert der Einsteinschen Gravitationstheorie. In

J. Nitsch, J. Pfarr, and E. W. Stachow, editors, Grundlagen Probleme der Modernen Physik.
Wissenschaftsverlag, 1981.

[16] J. Ehlers and R. Geroch. Equation of motion of small bodies in relativity. Annals of

Physics, 309:232–236, 2004.

343



“530-47773_Ch06_2P.tex” — 1/23/2012 — 17:18 — page 344

−1

0

+1

344 / bibliography

[17] G. F. R. Ellis. Relativistic cosmology. In R. K. Sachs, editor, General Relativity and

Cosmology. Academic Press, 1971.
[18] G. F. R. Ellis. Contributions of K. Gödel to relativity and cosmology. In P. Hayek, editor,

Gödel ’96: Logical Foundations of Mathematics, Computer Science and Physics—Kurt Gödel’s

Legacy (Springer Lecture Notes in Logic 6). Springer Verlag, 1996.
[19] D. Farnsworth and R. Kerr. Homogeneous dust-filled cosmological solutions. Journal of

Mathematical Physics, 7:1625–1632, 1966.
[20] H. Flanders. Differential Forms. Academic Press, 1963.
[21] K. Friedrichs. Eine Invariante FormulierungdesNewtonschenGravitationsgesetzes und

der Grenzüberganges vom Einsteinschen zum Newtonschen Gesetz. Mathematische

Annalen, 98:566–575, 1927.
[22] R. Geroch. Differential geometry. Unpublished lecture notes, University of Chicago,

http://home.uchicago.edu/∼geroch/Links_to_Notes.html.
[23] R. Geroch. Spacetime structure from a global viewpoint. In R. K. Sachs, editor, General

Relativity and Cosmology. Academic Press, 1971.
[24] R. Geroch and P. S. Jang. Motion of a body in general relativity. Journal of Mathematical

Physics, 16:65–67, 1975.
[25] K. Gödel. An example of a new type of cosmological solutions [sic] of Einstein’s field

equations of gravitation. Reviews of Modern Physics, 21:447–450, 1949.
[26] K.Gödel. Rotatinguniverses in general relativity theory. InProceedings of the International

Congress of Mathematicians: Cambridge, Massachusetts, U.S.A. August 30–September 6,

1950, vol. 1. American Mathematical Society, 1952.
[27] K. Gödel. Lecture on rotating universes. In S. Feferman, J. W. Dawson Jr., W. Goldfarb,

C. Parsons, andR.M. Solovay, editors,Kurt Gödel, Collected Papers, vol. 3. OxfordUniver-
sity Press, 1995.

[28] P. Havas. Four-dimensional formulations of Newtonian mechanics and their relation to
the special and general theory of relativity. Reviews of Modern Physics, 36:938–965, 1964.

[29] S. Hawking, A. R. King, and P. J. McCarthy. A new topology for curved space-timewhich
incorporates the causal, differential, and conformal structure. Journal of Mathematical

Physics, 17:174–181, 1976.
[30] S. W. Hawking and G. F. R. Ellis. The Large Scale Structure of Spacetime. Cambridge

University Press, 1972.
[31] O. Heckmann and E. Schücking. Bemerkungen zur Newtonschen Kosmologie I.

Zeitschrift für Astrophysik, 38:95–109, 1955.
[32] I. Herstein. Topics in Algebra. Blaisdell Publishing, 1964.
[33] E. H. Kronheimer and R. Penrose. On the structure of causal spaces. Proceedings of the

Cambridge Philosophical Society, 63:481–501, 1967.
[34] H. Künzle. Galilei and Lorentz structures on space-time: Comparison of the correspond-

ing geometry and physics. Annales Institute Henri Poincaré, 17:337–362, 1972.
[35] H. Künzle. Covariant Newtonian limts of Lorentz space-times. General Relativity and

Gravitation, 7:445–457, 1976.
[36] S. Lang. Linear Algebra. Springer Verlag, 1987.
[37] M. Lottermoser. Über den NewtonschenGrenzwert der Allgemeinen Relativitätstheorie

und die relativistische Erweiterung Newtonscher Anfangsdaten. Unpublished disserta-
tion, 1988.

[38] D. Malament. The class of continuous timelike curves determines the topology of space-
time. Journal of Mathematical Physics, 18:1399–1404, 1977.



“530-47773_Ch06_2P.tex” — 1/23/2012 — 17:18 — page 345

−1

0

+1

bibliography / 345

[39] D. Malament. Introductory essay to a previously unpublished lecture by Kurt Gödel on
“rotating universes.” In S. Feferman, J. W. Dawson Jr., W. Goldfarb, C. Parsons, and
R. M. Solovay, editors, Kurt Gödel, Collected Papers, vol. 3. Oxford University Press,
1995.

[40] D. Malament. Is Newtonian cosmology really inconsistent? Philosophy of Science, 62:
489–510, 1995.

[41] D. Malament. A no-go theorem about rotation in relativity theory. In D. Malament,
editor, Reading Natural Philosophy, A Festschrift for Howard Stein. Open Court Press,
2003.

[42] D. Malament. Classical general relativity. In J. Butterfied and J. Earman, editors,
Philosophy of Physics. Elsevier, 2006.

[43] J. Norton. A paradox in Newtonian gravitation theory. In M. Forbes, D. Hull, and
K. Okruhlik, editors, PSA 1992: Proceedings of the Biennial Meeting of the Philosophy of

Science Association, vol. 2. Philosophy of Science Association, 1993.
[44] J. Norton. The force of Newtonian cosmology: Acceleration is relative. Philosophy of

Science, 62:511–522, 1995.
[45] J. Norton. The cosmological woes of Newtonian gravitation theory. In H. Goenner,

J. Renn, J. Ritter, and T. Sauer, editors, The Expanding Worlds of General Relativity.
Birkhäuser, 1999.

[46] B. O’Neill. Semi-Riemannian Geometry with Applications to Relativity. Academic Press,
1983.

[47] B. O’Neill. The Geometry of Kerr Black Holes. A. K. Peters, 1995.
[48] I. Ozsváth. New homogeneous solutions of Einstein’s field equations with incoherent

matter obtained by a spinor technique. Journal of Mathematical Physics, 6:590–610, 1965.
[49] D. Page. How big is the universe today? General Relativity and Gravitation, 15:181–185,

1983.
[50] D. Page. Maximal acceleration is non-rotating. Classical and Quantum Gravitation,

15:1669–1719, 1998.
[51] R. Penrose and W. Rindler. Spinors and Spacetime, vol. 1: Two-Spinor Calculus and

Relativistic Fields. Cambridge University Press, 1984.
[52] W. Reynolds. Hyperbolic geometry on a hyperboloid. American Mathematical Monthly,

100:442–455, 1993.
[53] W. Rindler. Public and private space curvature in Robertson-Walker universes. General

Relativity and Gravitation, 13:457–461, 1981.
[54] W. Rindler. Relativity: Special, General, and Cosmological. Oxford University Press, 2nd

edition, 2001.
[55] R. D. Sorkin. A specimen of theory construction from quantum gravity. In J. Leplin,

editor, The Creation of Ideas in Physics. Kluwer, 1995.
[56] R. D. Sorkin. Causal sets: Discrete gravity. In A. Gomberoff and D. Marolf, editors,

Lectures on Quantum Gravity (Proceedings of the Valdivia Summer School). Plenum, 2005.
[57] M. Spivak.A Comprehensive Introduction to Differential Geometry. Publish or Perish Press,

2nd edition, 1979.
[58] H. Stein. On the paradoxical time-structures of Gödel. Philosophy of Science, 37:589–601,

1970.
[59] A. Trautman. Foundations and current problems of general relativity. In S. Deser and

K. W. Ford, editors, Lectures on General Relativity. Prentice-Hall, 1965.
[60] R. Wald. General Relativity. University of Chicago Press, 1984.



“530-47773_Ch06_2P.tex” — 1/23/2012 — 17:18 — page 346

−1

0

+1

346 / bibliography

[61] J. Weatherall. The motion of a body in Newtonian theories. arXiv:1010.0379v1. Journal

of Mathematical Physics, 52, 2011, 16 pp.
[62] H. Weyl. Zur Infinitesimalgeometrie: Einordnung der projecktiven und konformen

Auffassung. Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen;

Mathematisch-Physikalische Klasse, 1921, 99–112, 1921.
[63] H.Weyl. Philosophy of Mathematics and Natural Science. Princeton University Press, 2nd

edition, 1950.
[64] J. Wolf. Spaces of Constant Curvature. Publish or Perish Press, 5th edition, 1984.


