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Preface

This manuscript began life as a set of lecture notes for a two-quarter (twenty-
week) course on the foundations of general relativity that I taught at the Uni-
versity of Chicago many years ago. I have repeated the course quite a few times
since then, both there and at the University of California, Irvine, and have over
the years steadily revised the notes and added new material. Maybe now the
notes can stand on their own.

The course was never intended to be a systematic survey of general relativity.
There are many standard topics that I do not discuss—e.g., the Schwarzschild
solution and the “classic tests” of general relativity. (And I have always recom-
mended that students who have not already taken a more standard course in
the subject do some additional reading on their own.) My goals instead have
been to (i) present the basic logical-mathematical structure of the theory with
some care, and (ii) consider additional special topics that seem to me, at least,
of particular interest. The topics have varied from year to year, and not all have
found their way into these notes. I will mention in advance three that did.

The first is “geometrized Newtonian gravitation theory,” also known as
“Newton-Cartan theory.” It is now well known that one can, after the fact,
reformulate Newtonian gravitation theory so that it exhibits many of the
qualitative features that were once thought to be uniquely characteristic of gen-
eral relativity. On reformulation, Newtonian theory too provides an account
of four-dimensional spacetime structure in which (i) gravity emerges as a
manifestation of spacetime curvature, and (ii) spacetime structure itself is
“dynamical” in the sense that it participates in the unfolding of physics rather
than being a fixed backdrop against which it unfolds. It has always seemed
to me helpful to consider general relativity and this geometrized reformula-
tion of Newtonian theory side by side. For one thing, one derives a sense of
where Einstein’s equation “comes from.” When one reformulates the empty-
space field equation of Newtonian gravitation theory (i.e., Laplace’s equation

ix

“530-47773_Ch00_2P.tex” — 1/23/2012 — 17:18 — page ix

N |
0



X | PREFACE

V2¢ = 0, where ¢ is the gravitational potential), one arrives at a constraint on
the curvature of spacetime, namely R,;, = 0. The latter is, of course, just what
we otherwise know as (the empty-space version of) Einstein’s equation. And,
reciprocally, this comparison of the two theories side by side provides a certain
insight into Newtonian physics. For example, it yields a satisfying solution (or
dissolution) to an old problem about Newtonian cosmology. Newtonian theory
in a standard textbook formulation seems to provide no sensible prescription
for what the gravitational field should be like in the presence of a uniform
mass-distribution filling all of space. (See section 4.4.) But the problem is
really just an artifact of the formulation, and it disappears when one passes to
the geometrized version of the theory.

The basic idea of geometrized Newtonian gravitation theory is simple
enough. But there are complications, and I deal with some of them in the
present expanded form of the lecture notes. In particular, I present two dif-
ferent versions of the theory—what I call the “Trautman version” and the
“Kunzle-Ehlers version”—and consider their relation to one another. I also
discuss in some detail the geometric significance of various conditions on
the Riemann curvature field R%,; that enter into the formulation of these
versions.

A second special topic that I consider is the concept of “rotation.” It turns
out to be a rather delicate and interesting question, at least in some cases, just
what it means to say that a body is or is not rotating within the framework of
general relativity. Moreover, the reasons for this—at least the ones I have in
mind—do not have much to do with traditional controversy over “absolute vs.
relative (or Machian)” conceptions of motion. Rather, they concern particular
geometric complexities that arise when one allows for the possibility of space-
time curvature. The relevant distinction for my purposes is not that between
attributions of “relative” and “absolute” rotation, but rather that between attri-
butions of rotation that can and cannot be analyzed in terms of motion (in the
limit) at a point. Itis the latter—ones that make essential reference to extended
regions of spacetime—that can be problematic.

The problem has two parts. First, one can easily think of different criteria
for when an extended body is rotating. (I discuss two examples in section
3.2.) These criteria agree if the background spacetime structure is sufficiently
simple—e.g., if one is working in Minkowski spacetime. But they do not agree
in general. So, at the very least, attributions of rotation in general relativity
can be ambiguous. A body can be rotating in one perfectly natural sense but
not rotating in another, equally natural, sense. Second, circumstances can
arise in which the different criteria—all of them—Iead to determinations of
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rotation and non-rotation that seem wildly counterintuitive. (See section 3.3.)
The upshot of this discussion is not that we cannot continue to talk about
rotation in the context of general relativity. Not at all. Rather, we simply have
to appreciate that it is a subtle and ambiguous notion that does not, in all cases,
fully answer to our classical intuitions.

A third special topic that I consider is Godel spacetime. It is not a live can-
didate for describing our universe, but it is of interest because of what it tells
us about the possibilities allowed by general relativity. It represents a possi-
ble universe with remarkable properties. For one thing, the entire material
content of the Godel universe is in a state of uniform, rigid rotation (accord-
ing to any reasonable criterion of rotation). For another, light rays and free
test particles in it exhibit a kind of boomerang effect. Most striking of all, it
admits closed timelike curves that cannot be “unrolled” by passing to a cover-
ing space (because the underlying manifold is simply connected). In section
3.1, I review these basic features of Gédel spacetime and, in an appendix to
that section, I discuss how one can go back and forth between an intrinsic
characterization of the Godel metric and two different coordinate expressions
for it.

These three special topics are treated in chapters 3 and 4. Much of this mate-
rial has been added over the years. The original core of the lecture notes—the
review of the basic structure of general relativity—is to be found in chapter 2.

Chapter 1 offers a preparatory review of basic differential geometry. It has
never been my practice to work through all this material in class. I have limited
myself there to “highlights” and general remarks. But I have always distributed
the notes so that students with sufficient interest can do further reading on
their own. On occasion, I have also run a separate “problem session” and used
it for additional coaching on differential geometry. (A number of problems,
with solutions, are included in the present version of the lecture notes.) I
suggest that readers make use of chapter 1 as seems best to them—as a text
to be read from the beginning, as a reference work to be consulted when
particular topics arise in later chapters, as something in between, or not at all.

I would like to use this occasion to thank a number of people who have
helped me over the years to learn and better understand general relativity.
I could produce a long list, but the ones who come first, at least, are John
Earman, David Garfinkle, Robert Geroch, Clark Glymour, Howard Stein, and
Robert Wald. I am particularly grateful to Bob; and Bob; for allowing this
interloper from the Philosophy Department to find a second home in the
Chicago Relativity Group. Anyone familiar with their work, both research and
expository writings, will recognize their influence on this set of lecture notes.
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Erik Curiel, Sam Fletcher, David Garfinkle, John Manchak, and Jim
Weatherall have my thanks, as well, for the comments and corrections they
have given me on earlier drafts of the manuscript.

Matthias Kretschmann was good enough some years ago to take my hand-
written notes on differential geometry and set them in TgX. I took over after
that, but I might not have started without his push.

Finally, Pen Maddy has helped me to believe that this project was
worth completing. I shall always be grateful to her for her support and
encouragement.
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DIFFERENTIAL GEOMETRY

1.1. Manifolds

We assume familiarity with the basic elements of multivariable calculus and
point set topology. The following notions, in particular, should be familiar.

R" (for n > 1) is the set of all n-tuples of real numbers x = (x!,...,x").
The Euclidean inner product (or “dot product”) on R" is given by x - y = x!y!
+ ...+ x"y". It determines a norm, ||x|| = /x - x. Given a point x € R" and a
realnumber e > 0, Be (x) is the open ball in R" centered at x with radius e—i.e.,
Be(x) ={y: lly— x| < €}. Clearly, x belongs to B (x) for every € > 0. A subset
S of R" is open if, for all points x in S, there is an € > 0 such that B.(x) C S.
This determines a topology on R". Given m,n > 1, and a map f: O — R™
from an open set O in R" to R™, f is smooth (or C*) if all its mixed partial
derivatives (to all orders) exist and are continuous at every point in O.

A smooth n-dimensional manifold (n > 1) can be thought of as a point set to
which has been added the “local smoothness structure” of R"”. Our discussion
of differential geometry begins with a more precise characterization.

Let M be a non-empty set. An n-chart on M is a pair (U, ¢) where U is
a subset of M and ¢: U — R" is an injective (i.e., one-to-one) map from U
into R" with the property that ¢[U] is an open subset of R". (Here ¢[U] is
the image set {¢(p) : p € U}.) Charts, also called “coordinate patches,” are the
mechanism with which one induces local smoothness structure on the set M.
To obtain a smooth n-dimensional manifold, we must lay down sufficiently
many n-charts on M to cover the set and require that they be, in an appropriate
sense, compatible with one another.

Let (Uy, ¢1) and (Uy, ¢2) be n-charts on M. We say the two are compatible if
either the intersection set U = U; N U, is empty or the following conditions
hold:

1. In this section and several others in chapter 1, we follow the basic lines of the presentation
in Geroch [22].
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2 / DIFFERENTIAL GEOMETRY

Figure 1.1.1. Two n-charts (Uy, ¢1) and (Uz, 2) on M with overlapping domains.

(1) ¢1[U] and ¢,[ U] are both open subsets of R".
2) prog; ' 9a[U] — R*and @y 097" : ¢1[U] — R" are both smooth.

(Notice that the second makes sense since ¢1[ U] and ¢,[ U] are open subsets
of R" and we know what it means to say that a map from an open subset of
R" to R" is smooth. See figure 1.1.1.)

The relation of compatibility between n-charts on a given set is reflexive
and symmetric. But it need not be transitive and, hence, not an equivalence
relation. For example, consider the following three 1—charts on R:

C1 = (U1, ¢1), with Uy = (—1,1) and ¢1(x) = %
Cy = (Uy, @), with U; = (0,1) and ¢y (x) = x
C3 = (Us, ¢3), with U3 = (— 1,1) and g3(x) = x>

Pairs Cj and C; are compatible, and so are pairs C; and C3. But C; and C3 are
not compatible, because the map ¢1 o g3 1. (=1,+1) — R is not smooth (or
even just differentiable) at x = 0.

We now define a smooth n-dimensional manifold (or, in brief, an n-manifold)
(n > 1) to be a pair (M, C) where M is a non-empty set and C is a set of n-charts
on M satisfying the following four conditions.

(M1) Any two n-charts in C are compatible.

(M2) The (domains of the) n-charts in C cover M; i.e., for every p € M, there
is an n-chart (U, ¢) in C such that p € U.

(M3) (Hausdorff condition) Given distinct points p; and p; in M, there exist n-
charts (U, ¢1) and (Uy, ¢2) inC such thatp; € U;fori =1,2and U; N U,
is empty.

(M4) C is maximal in the sense that any n-chart on M that is compatible
with every n-chart in C belongs to C.
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DIFFERENTIAL GEOMETRY / 3

(M1) and (M2) are certainly conditions one would expect. (M3) is included,
following standard practice, simply to rule out pathological examples (though
one does, sometimes, encounter discussions of “non-Hausdorff manifolds”).
(M4) builds in the requirement that manifolds do not have “extra struc-
ture” in the form of distinguished n-charts. (For example, we can think of the
pointset R" as carrying a single [global] n-chart. In the transition from the point
set R” to the n-manifold R" discussed below, this “extra structure” is washed
out.)

Because of (M4), it might seem a difficult task to specify an n-dimensional
manifold. (How is one to get a grip on all the different n-charts that make up
a maximal set of such?) But the following proposition shows that the speci-
fication need not be difficult. It suffices to come up with a set of n-charts on
the underlying set satisfying (M1), (M2), and (M3), and then simply throw in
wholesale all other compatible n-charts.

PROPOSITION 1.1.1. Let M be a non-empty set, let Co be a set of n-charts on M
satisfying conditions (M1), (M2), and (M3), and let C be the set of all n-charts on M
compatible with all the n-charts in Cy. Then (M, C) is an n-manifold; i.e., C satisfies
all four conditions.

Proof. Since Cy satisfies (M1), Cy is a subset of C. It follows immediately that
C satisfies (M2), (M3), and (M4). Only (M1) requires some argument. Let
C1 = (U1, ¢1) and C; = (Uy, ¢2) be any two n-charts compatible with all
n-charts in Cyp. We show that they are compatible with one another. We
may assume that the intersection U; N U, is non-empty, since otherwise
compatibility is automatic.

First we show that ¢1[U; N U,] is open. (A parallel argument establishes
that @2[ U1 N U] is open.) Consider an arbitrary point of ¢1[U; N Us]. It is of
the form ¢ ( p) for some pointp € Uy N U,. Since C satisfies (M2), there exists
an n-chart C = (U, ¢) in Cp whose domain contains p. So p € UN Uy N Uy.
Since C is compatible with both C; and Cj, ¢[U N Up] and ¢[U N U,] are
open sets in R", and the maps

p1o9 lig[UN U] — R, o9 i olUN U] > RY,

ol i[UNUIl = R",  gop;l:g[UN U] — R,

are all smooth (and therefore continuous). Now ¢[U N Uy N U] is open, since
it is the intersection of open sets ¢[U N U1] and ¢[U N U,]. (Here we use
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4 [ DIFFERENTIAL GEOMETRY

the fact that ¢ is injective.) So ¢1[U N U; N U,] is open, since it is the pre-
image of ¢[U N U; N Uz] under the continuous map ¢ o¢; ', But, clearly,
v1(p) € pilUN U N U], and ¢1[UN Uy N U] is a subset of ¢1[Ur N Uz]. So
we see that our arbitrary point ¢1(p) in ¢1[ U N U;] is contained in an open
subset of ¢1[ U1 N Uy]. Thus ¢1[U; N Uy ] is open.

Next we show that the map ¢; o (/)1_1 :1[U1 N U] — R"is smooth. (A par-
allel argument establishes that ¢ o @5 L o[UiN Uyl — R is smooth.) For
this it suffices to show that, given our arbitrary point g1 (p) in ¢1[U; N U, ], the
restriction of g3 o o 1 to some open subset of ¢1[ U1 N U,] containing ¢1( p) is
smooth. But this follows easily. We know that ¢1[U N Uy N U] is an open sub-
set of 1 [ Uy N U] containing ¢1( p). And the restriction of ¢; o @7 Tto o1[UN
U N U] is smooth, since it can be realized as the composition of g o ¢; 1
(restricted to @1[U N Uy N U,]) with ¢ 09~ ! (restricted to o[UN Uy N U3)),
and both these maps are smooth. O

Our definition of manifolds is less restrictive than some in that we do not
include the following condition.

(MS5) (Countable cover condition) There is a countable subset {(Uy, ¢n): 1 €
N} of C whose domains cover M; i.e., for all p in M, there is an n such
thatp € Uy,

In fact, all the manifolds that one encounters in relativity theory satisfy (M5).
But there is some advantage in not taking the condition for granted from
the start. It is simply not needed for our work until we discuss derivative
operators—i.e., affine connections—on manifolds in section 1.7. It turns out
that (M5) is actually a necessary and sufficient condition for there to exist a
derivative operator on a manifold (given our characterization). Itis also a neces-
sary and sufficient condition for there to exist a (positive definite) Riemannian
metric on a manifold. (See Geroch [23]. The paper gives a nice example of a
2-manifold that violates [M5].)

Our way of defining n-manifolds is also slightly non-standard because we
jump directly from the point set M to the manifold (M, C). In contrast, one
often proceeds in two stages. One first puts a topology 7 on M, forming a
topological space (M, 7). Then one adds the set of n-charts C to form the
“manifold” ((M, T), C). If one proceeds this way, one must require of every
n-chart (U, ¢) in C that U be open—i.e., that U belongto 7, sothatg: U — R"
qualifies as continuous.

Given our characterization of an n-manifold (M, C), we do not (yet) know
what it means for a subset of M to be “open.” But there is a natural way to use
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the n-charts in C to define a topology on M. We say that a subset S of M is open
if, for all pin S, there is an n-chart (U, ¢) in C such thatp € Uand U C S. (This
topology can also be characterized as the coarsest topology on M with respect
to which, for all n-charts (U, ¢) inC, ¢ : U — R" is continuous. See problem
1.1.3). It follows immediately that the domain of every n-chart is open.

PROBLEM 1.1.1. Let (M, C) be an n-manifold, let (U, ¢) be an n-chart in C, let 9]
be an open subset of p[ U1, and let O be its pre-image ¢ ! [O]. (So, O € U.) Show
that (O, ¢|o), the restriction of (U, ¢) to O, is also an n-chart in C.

PROBLEM 1.1.2. Let (M, C) be an n-manifold, let (U, ) be an n-chart in C, and
let O be an open set in M such that UN O # &. Show that (U N O, | UﬂO); the
restriction of (U, ¢) to UN O, is also an n-chart in C. (Hint: Make use of the result
in problem 1.1.1. Strictly speaking, by the way, we do not need to assume that U N O
is non-empty. But that is the only case of interest.)

PROBLEM 1.1.3. Let (M, C) be an n-manifold and let T be the set of open subsets
of M. (i) Show that T is, in fact, a topology on M, i.e., it contains the empty set
and the set M, and is closed under finite intersections and arbitrary unions. (ii)
Show that T is the coarsest topology on M with respect to which ¢ : U — R" is
continuous for all n-charts (U, ) in C.

Now we consider a few examples of manifolds. Let M be R", the set of all
ordered n-tuples of real numbers. Let U be any subset of M that is open (in
the standard topology on R"), and let ¢: U — R" be the identity map. Then
(U, ¢) qualifies as an n-chart on M. Let Cy be the set of all n-charts on M of
this very special form. It is easy to check that Cy satisfies conditions (M1),
(M2), and (M3). If we take C to be the set of all n-charts on M compatible
with all n-charts in Cp, then it follows (by proposition 1.1.1) that (M, C) is
an n-manifold. We refer to it as “the manifold R".” (Thus, one must distin-
guish among the point set R", the vector space R", the manifold R", and so

forth.)

Next we introduce the manifold S™. The underlying set M is the set of
points x = (x!,...,x"*1) € R" ! suchthat x| = 1. Foreachi=1,...,n+1,
we set

Ut = {(xl,...,xi,...,x”"'l) eM:x >O},

U = {(xl,...,xi,...,x”"'l) eM:x <O},

“530-47773_Ch01_2P.tex” — 1/23/2012 — 17:18 — page 5



6/ DIFFERENTIAL GEOMETRY
and define maps g0i+: U;r — R"and ¢,: U; — R" by setting
+ (.1 n+1\ _ 1 i—1 i+l n+1y _ — (.1 n+1
o (M) = (T T = (kL T,

( U;r and U;” areupper and lower hemispheres with respect to the x' coordinate
axis; ¢;” and ¢, are projections that erase the i coordinate of (x!, ..., x"*1).)
The (n+ 1) pairs of the form (U;", ¢;") and (U, ¢; ) are n-charts on M. The
set C1 of all such pairs satisfies conditions (M1) and (M2). For all p € M and
all € > 0, if Bo(p)N M is a subset of U;" (respectively U;”), we now add to
Cy the n-chart that results from restricting (Ui+’ (pi+) (respectively (U;", ¢;")) to
Be(p) N M. The expanded set of n-charts C; satisfies (M1), (M2), and (M3). If,
finally, we add to C; all n-charts on M compatible with all n-charts in C,, we
obtain the n-manifold S".

We thus have the manifolds R" and S" for every n > 1. From these we can
generate many more manifolds by taking products and cutting holes.

Let M; = (M1,C1) be an ni-manifold and let M; = (M3, C;) be an ny—
manifold. The product manifold My x M, is an (n1 + ny)-manifold defined
as follows. The underlying point set is just the Cartesian product M; x Mp—
i.e., the set of all pairs (p1, p2) where p; € M; for i = 1,2. Let (Uy, ¢1) be an
ni-chart in C; and let (Uy, ¢2) be an ny-chart in C,. We associate with them a
set Uandamap¢: U — R(M+m) We take U to be the product U; x Uy; and
given (p1,p2) € U, we take ¢((p1,p2)) to be (y!,...,y™, 2!, ..., 2"), where
o1(p1) = (L ..., y™) and ¢a(p2) = (21, ..., 2™). So defined, (U, ¢) qualifies
as an (n1 + np)—chart on M x M;. The set of all (n1 + ny)—charts on M1 x M3
obtained in this manner satisfies conditions (M1), (M2), and (M3). If we now
throw in all n-charts on M1 x M, that are compatible with all members of this
set, we obtain the manifold M; x M;. Using this product construction, we
generate the 2—manifold R! x S! (the “cylinder”), the 2—manifold S! x S!
(the “torus”), and so forth.

Next, let (M, C) be an n-manifold, and let S be a closed proper subset of M.
(So M-S is a non-empty open subset of M.) Further, let C’ be the set of all
n-charts (U, ¢)inCwhere U C (M—S). Thenthe pair(M—S, C’)isan n-manifold
in its own right. (This follows as a corollary to the assertion in problem 1.1.2.)

A large fraction of the manifolds one encounters in relativity theory can be
obtained from the manifolds R"” and S" by taking products and excising closed
sets.

We now define “smooth maps” between manifolds. We do so in two stages.
First, we consider the special case in which the second manifold (i.e., the one
into which the first is mapped) is R. Then we consider the general case. Let
(M, C) be an n-manifold. We say that a map «: M — R is smooth (or C™)
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if, for all n-charts (U, ¢) in C, ¢ o ™

: 9[U] — R is smooth. (Here we use a
standard technique. To define something on an n-manifold, we use the charts
to pull things back to the context of R"” where the notion already makes sense.)
Next let (M’, C’) be an m-manifold (with no requirement that m = n). We say
thata map ¢ : M — M’ is smooth (or C*) if, for all smooth maps o: M" — R
on the second manifold, the composed map ¢ o : M — R is smooth. One
can check that the second definition is compatible with the first (see problem
1.1.4), and with the standard definition of smoothness that applies specifically

to maps of the form ¢ : R — R™.

PROBLEM 1.1.4. Let (M, C) be an n-manifold. Show that a map o: M — R is
smooth according to our first definition (which applies only to real-valued maps on
manifolds) iff it is smooth according to our second definition (which applies to maps
between arbitrary manifolds).

Let (M, C) and (M’,C’) be manifolds. The definition of smoothness just
given naturally extends to maps of the form v : O — M’ where O is an open
subsetof M (thatneed not be all of M). It does so because we can always think of
O as amanifold in its own right when paired with the charts it inherits from C—
i.e., the charts in C whose domains are subsets of O. On this understanding it
follows, for example, that if a map ¥ : M — M’ is smooth, then its restriction
to O is smooth. It also follows that given any chart (U, ¢) in C, the maps
¢: U— R" and ¢~ !: 9[U] = M are both smooth.

The point mentioned in the preceding paragraph will come up repeatedly.
We shall often formulate definitions in terms of structures defined on mani-
folds and then transfer them without comment to open subsets of manifolds. It
should be understood in each case that we have in mind the manifold structure
induced on those open sets.

Given manifolds (M, C) and (M’,C’), a bijection ¢: M — M’ is said to
be a diffeomorphism if both v and y ~! are smooth. Two manifolds are said to be
diffeomorphic, of course, if there exists a diffeomorphism between them—i.e.,
between their underlying point sets. Diffeomorphic manifolds are as alike as
they can be with respect to their “structure.” They can differ only in the identity
of their underlying elements.

1.2. Tangent Vectors

Let (M, C) be an n-manifold and let p be a point in M. In this section, we intro-
duce the notion of a “vector” (or “tangent vector” or “contravariant vector”) at p.
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We also show that the set of all vectors at p naturally forms an n-dimensional
vector space.

Consider first the familiar case of R”. A vector & ata pointin R" can be char-
acterized by its components (£1, ..., £") with respect to the n coordinate axes.
This characterization is not available for arbitrary n-manifolds where no coor-
dinate curves are distinguished. But an alternate, equivalent characterization
does lend itself to generalization.

Let p be a point in R". We take S(p) to be the set of all smooth maps
f:0— R, where O is some open subset (or other) of R that contains p.
If i: 01 - R and f: O, — R are both in S(p), then we can define new
maps (fi+£): 01NO; — R and (fi /L): O1NO; — R in S(p) by setting
(i +£)@) = fi(a) +f>(q) and (fi f5)(q) = fi(4) fo(q) for all points g in O; N O.

Now suppose that £ is a vector at p in R" with components (£1,...,£&") and
that f is in S(p). The directional derivative of f at p in the direction & is defined
by

0
o E) =6 (W) = 26 2 (p)
i=1

It follows immediately from the elementary properties of partial derivatives
that, for all f; and f, in S(p),

(DD1) §(f1 +£2) = §(fi) +&(f2)-

(DD2) §(fif2) = filp)§(f2) +12(p)§ (1)
(DD3) If f1 is constant, £(f1) = 0.

Any map from S(p) to R satisfying these three conditions will be called
a derivation (or directional derivative operator) at p. Thus, every vector at p
defines, via equation (1.2.1), a derivation at p. Indeed, we shall see in a
moment that equation (1.2.1) defines a bijection between vectors at p (under-
stood as ordered n-tuples of reals) and derivations at p. This will give us
our desired alternate characterization of vectors in R”. But first we need a
lemma.

LEMMA1.21. Let fi: O1 — R and f,: Oy — R be elements of S(p) that agree
on some open set O C O1 N O, containing p. Then, for all derivations & at p,

§(f1) =&(f2)-

Proof. Leth: O — R be the constant map on O that assigns 1 to all points. Cer-
tainly hisin S(p). The maps h f; and h f, have domain O and agree throughout
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O;ie, hfi =hf. So&(hfi) = &(hfp). But by (DD2) and (DD3),

§(hfi) = h(p)&(f) +h(p)§(h) = 1E(A) +fi(p) 0 = §(f)-
Similarly, & (hf2) = &(f2)- So &(f1) = &(f2), as claimed. O

PROPOSITION 1.2.2. Equation (1.2.1) defines a bijection between vectors at p and
derivations at p.

Proof. Suppose firstthat& = (¢1,...,&") and n = (', ...,n") are vectors at p
that, via equation (1.2.1), determine the same derivation at p. Then & - (Vf)), =
1+ (Vf)p, for all f in S(p). Consider the special case where f is the coordinate
map x': R” — R that assigns to a point in R" its i coordinate. We have

; dx' dx' dx' 0 0.1.0 0

Vx =-—,...,—, ..., — =L,...,0,1,0,...,V),

( )|p axl 9t 9xh | ( )
p

where the sole 1 in the far right n-tuple is in the i position. So &' =
£-(Vx')p =n-(Vx'), = n'. But thisis true forall i = 1,...,n. Hence & = 1.
Thus, the map from vectors at p to derivations at p determined by equation
(1.2.1) is injective.

Next, suppose that & is a derivation at p and that the numbers &1,.. ., £" are

defined by &' = £(x'). We show that, for all f in S(p),£(f) = Zg" aa—f,(p).
i=1 X!

That is, we show that & can be realized as the image of (51, ..., &™) under the
map determined by equation (1.2.1). This will establish that the map is also
surjective.

Let f: O — R be amap in S(p). By the preceding lemma, we may assume
that O is an open ball centered at p. (If f is the restriction of f to an open
ball centered at p, £(f”) = £(f). So we lose nothing by working with f’ rather
than f.) If x is a point in O, it follows by the fundamental theorem of calculus
that

14
F =+ [ G o+t .

(We want the domain of f to be an open ball centered at p to insure that f is
defined at all points on the line segment connecting p and x.) By the “chain
rule,”

d S o
i (pHiE—p) = ;1 (;ﬂ(pﬂ(x—p») (' =p).
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Inserting the right side of this equation into the integrand above, we arrive at

122 FE) =f(p)+) gt (' = p),
i=1
. o toaf
where, forall i, themapg;: O — Ris given by g;(x) = / ?(p + t(x — p)) dt.
0 0x!
The g; belong to S(p). It now follows from (DD1), (DD2), and (DD3) that

§() =Y [sp e —p) + (= )(p) &(a0)]
i=1
(Here we are construing the numbers f(p) and p',...,p" as constant func-
tions on O.) But (x' —p')(p) =p' —p' =0, and &(x' — p’) = £(x) — £(p') =
£ —0 = &' So we have

£(f)=>_&g(p).
=1

Butitfollows from equation (1.2.2) that ;—j;(p) =gi(p).So&(f) = Z £ ;—j;(p),
i=1

as claimed. O

With proposition 1.2.2 as motivation, we now give our definition of “vec-
tors” at points of manifolds. Given a manifold (M, C) and a point p in M, let
S(p) be the set of smooth maps f: O — R where O is some open subset (or
other) of M that contains p. (Our prior remark about adding and multiplying
elements of S(p) carries over intact.) We take a vector (or tangent vector, or con-
travariant vector) at p to be a map from S(p) to R that satisfies (DD1), (DD2),
and (DD3).

The set of all vectors at p has a natural vector space structure (over R). If &
and 7 are vectors at p, and k is a real number, we can define new vectors & +
and k& by setting

E+n)(f) =& +n(f)
and

(k&)(f) = k()

for all f in S(p). The vector space M, so defined is called the tangent space to p.
We shall soon show that M, has dimension #; i.e., it has the same dimension
as (M, C). To do so, we give a second characterization of vectors on manifolds
that is of independent interest.

Let y: I — M be a smooth curve in M—i.e., a smooth map from an open
interval I € Rinto M. (Iis of the form (a, b), (— 00, b), (a, +00), or ( — 00, +00),
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where a and b are real numbers. We know what it means to say thaty: [ - M
is smooth since, as noted toward the end of section 1.1, we can think of I as
a manifold in its own right when paired with the charts it inherits from the

manifold R.) Suppose sp € I and y(sp) = p. We associate with y a vector 71,
- d
at p by setting ¥ ,(f) = % (f o¥)(s0) for all f in S(p). (This definition makes

sense since (f o y) is a smooth map from I into R.) It is easy to check that Vp,
so defined, satisfies (DD1) — (DD3). For example, (DD2) holds for all f; and f,
in S(p) since

Fathif) = (5 (Gi8)on) oo = (4 (Uion) Gren) i)
= (o)) (3 Uion) oo+ Gior)io (5 ien) s

= F(P) Vo) +5(p) V().

?p is called the tangent vector to y at p.

Suppose now that (U, ¢) is an n-chart in our n-manifold (M, C). Associated
with (U, ¢) are coordinate maps u': U — Rfori =1,..., ndefined by u'(q) =
(xi 0¢)(q). (Thus, the number that u' assigns to a point g in M is the one that
x" assigns to the image point ¢(q) in R". Equivalently, u’(q) is the i" coordinate
of ¢(q). So (q) = (u'(q), ..., u"(4)).)

Now let p be a point in U. We understand the i coordinate curve through
¢(p) = (u'(p),...,u"(p)) in R" to be the map from R to R" given by

(1.23) s> (wl(p), ..., u (p) v (p) +su T (p), ..., u"(p)).

The image of the curve is a line through ¢( p), parallel to the i coordinate axis

through the origin (see figure 1.2.1). We can pull this curve back to U via ¢!

Figure 1.2.1. Coordinate curves on M with respect to (U, ¢).
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to obtain a smooth curve y;: I — U through p:

0249 vl =¢ ' W(p) . w TN () W (P +su T (D), u (D).

Note that y;(0) = p. (We can afford to be vague about the domain I of y; since
we are interested only in the tangent to the curve at p. All that matters is
that 0 € I. How do we know that y; is smooth? This follows because ¢! is
smooth, and so y; is the composition of two smooth maps.) Extending our
previous usage, we now refer to y; as the i coordinate curve through p with
respectto (U, ¢). (Note that coordinate curves through points in R” are defined
outright, but coordinate curves through points in M are necessarily relativized

s
to n-charts.) This curve has a tangent ¥, at p. By the chain rule,

- d I(fop™)
(1.2.5) Vi\p(f) = %(foyi)(O) = <8x‘ (QO(P))
for all f in S(p). We note for future reference that, in particular, since u/ =
Wog,
— . axl
(1.2.6) Vi|p(MJ) - (8xi ) (¢(p)) = §j.

(Here §;; is the Kronecker delta function that is 1 if i = j, and 0 otherwise.)

— 9 —
Sometimes the tangent vector ¥; is written as P and ¥;(f) is written as
U
of
-

(1.2.5) and (1.2.6) come out as

Using this notation, and suppressing the point of evaluation p, equations

9 9 -1
(1.2.7) —f = M

ou' dx?
and

ul
(1.2.8) W = §j;.
Using the tangent vectors 71- |p,i =1,...,n, we can show that M, is n-

dimensional.

PROPOSITION 1.23. Let (M, C) be an n-manifold, let (U, ¢) be an n-chart in
C, let p be a point in U, and let y1, ..., yu be the n coordinate curves through p

— —
with respect to (U, ¢). Then their tangent vectors ¥V 1|p, ..., ¥ n|p at p form a basis
Jor Mp.
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Proof. First we show that the vectors are linearly independent. Let a1, ..., as

n
be real numbers such that ) a; 7_’:' jp = 0. We must show that the a; are all 0.
i=1
Now for all f in S(p), we have

0= (Zai 7i|p)(f) = Z“i;ilp ()
i=1 i=1

Consider the special case where f is the coordinate map u/ = xJo ¢ on U.
Then, by (1.2.6), ¥ |p(f) = dj;. So the equation reduces to 0 = 4;. And this is
trueforallj=1,...,n

Next, suppose that & is a vector at p. We show that it can be expressed as
a linear combination of the ;i p- First we associate with & a vector £ at o(p)-
(In what follows, we shall be going back and forth between the context of
M and R"™. To reduce possible confusion, we shall systematically use carets
for denoting objects associated with R"). We take £ to be the vector whose
action on elements f: O — R in S(¢(p)) is given by £(f) = £(f o ¢). (This
makes sense since f o ¢ is an element of S(p) with domain ¢~ 1[o[U]N O].)
By proposition 1.2.2 (applied to £ at ¢( p)), we know that there are real numbers
g1, ..., &" such that

. "L of
S(f)=2€laf£i(¢(p))
i=1

for all f in S(¢(p)). Now let f :0 — R be an arbitrary element of S(p).
Then f op~! :¢[ON U] — R belongs to S(¢(p)). So, taking f =fop~ ' in
the preceding equation and using equation (1.2.5),

n o 1
E(foe™) Z%‘l 8(f Y ZS’ Vi(f

But recalling how £ was defined, we alsohaveé(fmp*l) = 5((fo<p*1) 0p) =
£(f). Thus, §(f) = Z$i7i|p(f) for all f in S(p); i.e., & = ZE V”p So, as
i=1

l 1
claimed, & can be expressed as a linear combination of the J/i Ip* O

It follows from proposition 1.2.3, of course, that every vector & at p has a
n .
unique representation in the form & = ) & 71' |p- Equivalently, by equation

i=1
(1.2.5),

" P n 8 o -1
(1.29) S(f)ZZSL Vi|p(f)zzgl%(<ﬂ(l’))
i—1 i—1
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for all f in S(p). We refer to the coefficients 1, ..., £" as the components of £
with respect to (U, ).

We know that every smooth curve through p determines a vector at p,
namely its tangent vector at that point. Using proposition 1.2.3, we can show,
conversely, that every vector at p can be realized as the tangent vector of a
smooth curve through p.

PROPOSITION 1.2.4. Given an n-manifold (M, C), a point p in M, and a vector
—
& at p, there is a smooth curve y through p such that ¥, = &.

Proof. Let (U, ) be an n-chartin C with p € U, and let u’(i = 1,.. ., n) be the
corresponding coordinate maps on U. (Recall thatu’ = x' o ¢.) By proposition

n . —
1.2.3, we know that there are real numbers &1, ..., " such that € = Y &' v, Ip-
Now let y: I — U be the smooth map defined by =

y(s) =@ ' (u'(p)+E&'s,....u"(p)+&"s).

Note that y (0) = p. (The exact specification of the domain of y does not matter,
but we may as well take it to be the largest open interval I containing 0 such
that, forall sin I, (ul(p) +&'s,..., u"(p) +&"s) isin ¢[U].) For all f in S(p),

— n o -1 .
ot = 7o =3 (2 i) o

‘ ax’
1=1

(The second equality follows by the “chain rule,” and the third by equation
[1.2.5]) Thus, ¥, = &. O

So far, we have two equivalent characterizations of “vectors” at a point p
of a manifold. We can take them to be derivations—i.e., mappings from S(p)
to R satisfying conditions (DD1)—(DD3)—or take them to be tangents at p to
smooth curves passing through p. We mention, finally, a third characterization
that was the standard one before “modern” coordinate-free methods became
standard in differential geometry. It requires a bit of preparation. (This third
characterization will play no role in what follows, and readers may want to
jump to the final paragraph of the section.)

Let (U1, ¢1) and (Uy, ¢2) be n-charts on our background manifold (M, C)
such that (U3 N U,) # ¥. Let p be a point in (U; N Uy). Further, for all
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i=1,....nletx': 1 [U N U] —> R be the map defined by
x/i — xiogozogafl,

where x' is the i coordinate map on R". We can think of the x"* as providing
a second coordinate system on ¢1[ Uy N U,] that is connected to the first by a
smooth, invertible transformation,
n /1,1 n
(x5 x> (6 (7, x7), X
PROPOSITION 1.2.5. Under the assumptions of the preceding paragraph, let &
be a non-zero vector at p whose components with respect to (U1, 1) and (Uz, ¢2)
are (1,...,£") and (&'1,...,&'™). Then the components obey the transformation
law

(1.2.10)

(Of course, they also obey its symmetric counterpart, with the roles of x* and &'
systematically interchanged with those of x'* and £'*.)

Proof. Letf be any element of S(p). Then

pan) Za "D 4y ) zsv W) iy,

Here we have simply expressed the action of § on f in terms of the two sets
of components, using equation (1.2.9). Hence, in particular, if f = x" 0 ¢ =

xiO(pzogz)l—loq)l =xiog02,weget

In what follows, let C( p) be the set of charts in C whose domains contain p.

PROBLEM 1.2.1. Let & be a non-zero vector at p, and let (kl, ..., k™ be a non-zero
element of R". Show there exists an n-chart in C(p) with respect to which & has
components (k', ..., k".

(Hint: Consider any n-chart (U1, ¢1) in C(p), and let (1, ...,&") be the com-
ponents of & with respect to (U1, 1). Then there is a linear map from R" to itself
that takes (& LI - " to (kl, ..., k™). Let the associated matrix have elements {ay}.
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16 /| DIFFERENTIAL GEOMETRY
. " .
So, foralli=1,...,n, k= Zaij &. Now consider a new chart (Uy, ¢2) in C(p)

j=1
where Uy = Uy and ¢ is defined by the condition

xogy = Z @i (xj o ¢1).
Show that the components of & with respect to (U, ¢2) are (k, ..., k").)

We have just seen that each vector £ at p (understood, say, as a derivation)
determines a map from C(p) to R" satisfying the transformation law (1.2.10).
(The map assigns to each n-chart the components of the vector with respect to
the n-chart.) It turns out, conversely, that every map from C( p) to R" satisfying
equation (1.2.10) determines a unique vector & at p. It does so as follows. Let
(U1, ¢1) be an n-chart in C( p). We stipulate that, for all maps f in S(p),

(1.2.12) ZEJ f <,01 SD(P))

where (£1,...,£") is the element of R" associated with (Uy, ¢1). We need only
verify that this definition is independent of our choice of n-chart.

Let (U, ¢2) be any other n-chart in C(p) with associated n-tuple
('',...,&'™). Then, by assumption, the latter are related to (¢1,...,£") by
equation (1.2.10). Now consider the mapfogofl : (pl[Ul N Uz] — R. It can
be realized as the composition of two maps, f o ‘/’1 =(fo (pz o (@200 b,
Hence, by the chain rule,

(fopr") o (fewy ) I(xFoprop )
T((/’l(l’)) = gT(QDZ(P)) dxJ (1(p)
" 9(fo -1 3 'k
= %(m(l))) ;;j (#1(p),

k=

—_

for all j. Hence, by equations (1.2.12) and (1.2.10),
'k
o (wl(p))]

Z ¢ [Z M(wz(p)) ?;C

xk

= Z{Zé — (@ (p)}W(wz(ﬁ#ié’kwm(ﬁ

“530-47773_Ch01_2P.tex” — 1/23/2012 — 17:18 — page 16



DIFFERENTIAL GEOMETRY / 17

Thus, our definition of & is, indeed, independent of our choice of n-chart.
We could equally well have formulated equation (1.2.12) using (U, ¢;) and
(511’ o S’”).

The upshot is that there is a canonical one-to-one correspondence between
vectors at p and maps from C(p) to R" satisfying equation (1.2.10). This gives
us our promised third (classical) characterization of the former.

There is a helpful picture that accompanies our formal account of tangent
vectors and tangent spaces. Think about the special case of a 2-manifold (M, C)
thatis a smooth surface in three-dimensional Euclidean space. In this case, the
tangent space to the manifold My, ata point p is (or can be canonically identified
with) the plane that is tangent to the surface at p. In traditional presentations
of differential geometry, vectors at points of manifolds are sometimes called
“infinitesimal displacements.” The picture suggests where this term comes
from. A displacement from p on the surface M is approximated by a tangent
vector in M. The degree of approximation increases as the displacement on M
shrinks. In the limit of “infinitesimal displacements,” the two coincide. (Quite
generally, statements about “infinitesimal objects” can be read as statements
about corresponding objects in tangent spaces.)

1.3. Vector Fields, Integral Curves, and Flows

In what follows, let (M, C) be an n-manifold. (We shall often supress explicit
reference to C.) A vector field on M is a map & that assigns to every point p
in M a vector £(p) in M. (Sometimes we shall write &, for the value of the
field & at p rather than &(p).) We can picture it as field of arrows on M. Given
any smooth map f: M — R, & induces amap &(f): M — R defined by
E(f)(p) = &p(f)- If &(f) is smooth for all such f, we say that the vector field &
itself is smooth.

The proposed picture of a vector field as a field of arrows on M suggests
that it should be possible to “thread” the arrows—at least when the field is
smooth—to form a network of curves covering M. (See figure 1.3.1.) In fact,
this is possible.

Let & be a smooth vector field on M. We say that a smooth curve y: [ - M
is an integral curve of & if, for all s € I, 71,(5): £(y(s))—i.e., if the tangent
vector to y at y(s) is equal to the vector assigned by & to that point. Intu-
itively, an integral curve of & threads the arrows of & and is so parametrized
that it “moves quickly” (it covers a lot of M with each unit increment of the
parameter s) where & is large and “slowly” where & is small. Let us also
say that a smooth curve y: I — M has initial value p if 0 € I and y(0) = p.
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Figure 1.3.1. Integral curves “threading” the vectors of a smooth vector field.

The following is the basic existence and uniqueness theorem for integral
curves.

PROPOSITION 1.3.1. Let & be a smooth vector field on M and let p be a point in
M. Then there is an integral curve y : [ — M of & with initial value p that has the
following maximality property: if y': I' — M is also an integral curve of & with
initial value p, then I’ C I and y'(s) = y (s) forall s € I'.

It is clear that the curve whose existence is guaranteed by the proposition is
unique. (Forify’: I' - Misanother, wehave I’ C IandI C I';so I’ = I, and
also y’(s) = y (s) for all s € I'.) It is called the maximal integral curve of £ with
initial value p. It also clearly follows from the proposition that if y is an integral
curve of & with initial value p, and if its domain is R, then y is maximal. (The
converse is false. Maximal integral curves need not have domain R. We shall
soon have an example.) The proof of the proposition, which we skip, makes
use of the basic existence and uniqueness theorem for solutions to ordinary
differential equations. Indeed, the proposition can be understood as nothing
but a geometric formulation of that theorem. (See, for example, Spivak [57,
volume 1, chaper 5].)

Here are some examples. In the following, let x! and x? be the stan-
dard coordinate maps on R?. (So if p = (p!,p?) € R?, then x'(p) = p! and

#(p)=p")
a
(1) Let & be the “horizontal” vector field Pyl R2. (Given any point p and
x

a

any function f in S(p), the vector pyulls at p assigns to f the number
x

of

ax!
is the map y: R — R? with

( p).) The maximal integral curve of & with initial value p = (p', p?)

“530-47773_Ch01_2P.tex” — 1/23/2012 — 17:18 — page 18



DIFFERENTIAL GEOMETRY / 19
() = (p' +s p%).
0]
(The “vertical” vector field T2 is defined similarly.)
X

(2) Let & be the “rotational” vector field —x? % + %! % on R2. The maxi-
mal integral curve of & with initial value p = (p', p?) is the map y: R —
R? with
y(s) = (p' coss—p?sins, p' sin s+ p? cosss).

The image of y is a circle, centered at (0, 0), that passes through p. (In
the degenerate case where p is (0,0), y is the constant curve that sits at
(0,0). ) )

(3) Let £ be the “radial expansion” vector field x! Tl + xzﬁ on R?. The

x X
maximal integral curve of £ with initial value p = (p', p?) is the map
y: R — R? with
v =(p'¢p7¢).

If (p', p?) # (0,0), the image of y is a radial line starting from, but not
containing, (0,0). If p is (0, 0), y is the constant curve that sits at (0, 0).

Let us check one of these—say (2). The indicated curve is, in fact, an integral
curve of the given vector field since, for all s € R, and all f € S(y(s)), by the
chain rule,

- d d . :
Yy (f) = $(foy)(s) = %f(plcoss—pzsms,pl sms+p2coss)

- %(y(s)) (—p'sins—p® coss) + ;TJ;(V(S)) (p' coss—p?sins)
9 d
= aTJ:l(”(S)) (== () + 371:2()/(5)) (x (v (5))

0 9 )
2 1
— X —t+x — (f)-
< ax! 9x2 Iy (s)

] 9
PROBLEM 1.3.1. Let £ be the vector field x' Tl xzﬁ on R?2. Show that the
x X
maximal integral curve of € with initial value p = (p', p?) isthemapy: R — R?
with y(s) = (p' €', p* e7%). (The image of y is a (possibly degenerate) hyperbola

satisfying the coordinate condition x'x? = p'p?.)

Next we consider reparametrizations of integral curves.
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PROPOSITION 1.3.2. Let & be a smooth vector field on M, let y: I — M be an
integral curve of &, and let o : I' — I be a diffeomorphism taking the interval I’ to
the interval 1. Consider the reparametrized curve y' = yoa: I' - M.

(1) Ifthereisanumberc suchthato(s) = s+cforalls € I, then y’ is an integral
curve of .

(2) Conversely, if v’ is an integral curve of & and if & is everywhere non-zero on
v[I1, then there is a number ¢ such that a(s) = s+c foralls € I'.

Proof. Foralls € I' and all functions f € S(y’(s)), it follows by the chain rule
(and the definition of tangents to curves) that

| =

Pl = GUor)8 = g ovoa) = (o) Jew) G

S

S

- d
= Yy g 6

Thatis, foralls e I,

- — dO{
(1.3.) Yy =V yee) g5 ()

Since y is an integral curve of &, we also have
(132) Y yas)= € (¥ ((s))

foralls € I'. Now y’ is an integral curve of £ iff 7’1/(5) =£(y'(s) =&(y((9)
foralls € I'. So, by equations (1.3.1) and (1.3.2), ¢’ is an integral curve of £ iff

d
033 £y () (0 = £ ( (@)

for all s € I'. This equation is the heart of the matter. If there is a ¢ such

d
that a(s) = s+c for all s€ I, then d—a =1 everywhere, and so it follows
s
immediately that equation (1.3.3) holds for all s € I'. This gives us clause (1).
Conversely, if equation (1.3.3) does hold for all s € I’, it must be the case that
gy everywhere. (Here we use our assumption that S(y(a(s))) is non-zero

s
foralls € I')) So, clearly, @ must be of the form «(s) = s+ ¢ for some number c.
This gives us (2). O
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The qualification in the the second clause of the proposition—that & be non-
zero on the image of y—is necessary. (See problem 1.3.3.) The first clause of
the proposition tells us thatif y : I — M is an integral curve of €, then so is the
curve defined by setting y'(s) = y(s+c). We say that y’ is derived from y by
“shifting its initial value.” Several useful facts about integral curves follow from
proposition 1.3.2 (together with proposition 1.3.1). We list three as problems.
The firstis a slightly more general formulation of the existence and uniqueness
theorem.

PROBLEM 1.3.2. (Generalization of proposition 1.3.1) Again, let & be a smooth
vector field on M, and let p be a point in M. But now let so be any real number (not
necessarily 0). Show that there is an integral curve y : [ — M of € with y (so) = p
that is maximal in this sense: given any integral curvey’: I' — M of €, ify'(s0) = p,
thenI' C Iand y'(s) = y(s) forallsin I'.

(Hint: Invoke proposition 1.3.1 and shift initial values.)

PROBLEM 1.3.3. (Integral curves that go nowhere) Let & be a smooth vector field
on M, and let y: I — M be an integral curve of §. Suppose that & vanishes (i.e.,
assigns the zero vector) at some point p € y[I]. Then the following both hold.

(1) y(s) = pfor all sin I; that is, y is a constant curve.
(2) The reparametrized curve y’ =y oa: I' = M is an integral curve of & for
all diffeomorphisms a: I' — L.

(Hint: Think about the constant curve, with domain R, that assigns p to all s.)

PROBLEM 1.3.4. (Integral curves cannot cross) Let y: I — M and y': I' > M
be integral curves of & that are maximal (in the sense of problem 1.3.2) and satisfy
Y (s0) = ¥'(sp)- Then the two curves agree up to a parameter shift: y(s) = y'(s+
(so — s0)) forall s € I.

Again, let & be a smooth vector field on M. We say that & is complete if,
for every point p in M, the maximal integral curve of & with initial point p
has domain R—i.e., is a curve of the form y: R — M. For example, let M
be the restriction of R? to the vertical strip {(p’,p?) : =1 < p! < 1}, let £ be

the restriction of the “horizontal” vector field % (discussed above) to M,
and let p = (0, 0). The maximal integral curve of § with initial value p is the
map y:(—1,1) > M with y(s) = (5,0). So & is not complete. (Intuitively,
moving along any maximal integral curve of § in either direction, one “runs
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out of space” in finite parameter time.) In contrast, the “vertical field” Fywl
is complete on M. And % itself is complete when construed as a field on
(all of) R?.

Next, let M be the punctured manifold R2 — {(0,0)}, and let & be the restric-
tion of the radial vector field (the third in our list of examples) to M. Then
& is complete. This follows directly from our determination of the maximal
integral curves of &. It also follows from the assertion in the next problem.
(Intuitively, the vectors of & rapidly get small as one approaches the puncture
point, and so—moving “backward” along a maximal integral curve of §—one
cannot reach that point in finite parameter time.)

PROBLEM 1.3.5. Let & be a smooth vector field on M that is complete. Let p be a
point in M. Show that the restriction of & to the punctured manifold M — {p} is
complete (as a field on M — {p}) iff &€ vanishes at p.

The maximal integral curves of a smooth vector field suggest the flow lines
of a fluid. It turns out to be extremely useful to think of them this way. As
above, let & be a smooth vector field on the manifold M. We associate with &
aset D¢ € R x M and a “flow map” I': D¢ — M as follows. We take D¢ to be
the set of all points (s, p) with the property that if y: I — M is the maximal
integral curve of & with initial value p, then s € I; and in this case we set
I'(s,p) = v(s). (That is, if we start at p, and move s units of parameter distance
along the maximal integral curve with initial value p, we arrive at I'(s, p).) So,
in particular, (0, p) is in D¢ for all p in M, and I'(0, p) = p for all such. If the
vector field & is complete, D¢ = R x M. But, in general, D¢ is a proper subset
of the latter. (Starting at a point p, it may not be possible to move s units of
parameter distance along the maximal integral curve with initial value p.) We
have the following basic result.

PROPOSITION 1.3.3. Let & be a smooth vector field on M, and let T': Dg — M
be as in the preceding paragraph. Then Dy is an open subset of R x M, and T is
smooth.

The proposition asserts, in effect, that solutions to ordinary differential
equations depend smoothly on initial conditions. (See Spivak [57, volume 1,
chapter 5].)

Assume for the moment that our smooth vector field &€ on M is com-
plete. (So D¢ =R x M.) In this case, given any s € R, we can define a map
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[s: M — M by setting I's(p) = I'(s, p). It follows from proposition 1.3.3 that
I's is smooth. (I's can be realized as a composite map M — R x M — M with
action p — (s, p) — I'(s, p), and each of the component maps is smooth.) Fur-
thermore, the indexed set {I's}ser has a natural group structure under the
operation of composition (I'yo I'y = I's4), with the identity map I'y playing
the role of the unit element. (See the next paragraph.) It follows that I's is
injective and that its inverse (I's) ' = I'_; is smooth. So each T is a diffeo-
morphism that maps M onto itself. We say that {I"s}ser is a one-parameter group
of diffeomorphisms of M generated by &. Note that, for all p in M, the map from
R to M defined by s — I's(p) is just the maximal integral curve of § with initial
value p.

That Iy o 'y = I'sy4 for all s and t follows as a consequence of the assertion
in problem 1.3.4. Given any point pin M, and any t € R, let y: I — M be the
maximal integral curve of § with initial value I';(p). Then y (s) = I's(I'y(p)) for
all s. Let y": I' = M be the maximal integral curve of & with initial value p.
Then y'(t) = T'y(p) = y(0) and y'(s+t) = Cs44(p) for all s. Since y (0) = '(t),
it follows from the assertion in the problem that y (s) = y’(s+1¢) for all s. So
we have I'y(T'y(p)) = ¥(s) = ¥'(s+1t) = I'sys(p) forall p, ¢, and s.

Now recall the three complete vector fields on R? considered above. Each
defines a one-parameter group of diffeomorphisms {I"}scg on R?. The pattern
of association is as follows.

Field Associated Diffeomorphisms
9 1,2 1 2
el Ls(p™.p°) = (p +s,p7)
2 9 1.9 1.2 1 2 il 2
—x ijxﬁ Cs(p ,p):(p coss—p“sins,p sins+p coss)
d d
xlw _l_xzﬁ Fs(Pl:Pz) — (pl es’ pZ eS)

In the three cases, respectively, I's is a displacement by the amount s in the
x! direction, a (counterclockwise) rotation through s radians with center point
(0,0), and a radial expansion by the factor ¢° with center point (0, 0).

Let us now drop the assumption that & is complete. Then the “flow maps”
I's: M — M will not, in general, be defined for all s. But by paying attention to
domains of definition, we can still associate with & a set of “local flow maps.”
It follows from proposition 1.3.3 that, given any point p in M, there are both
an open interval I C R containing 0 and an open subset U C M containing p
such that I x U C Dg. If we set I's(q) = I'(s,q) for all (s,q) € I x U, then the
following all hold.
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(1) Ts: U — I4[U] is a diffeomorphism for all s € I.

(2) (CsoTy)(q) = Tsge(q) for all s,t, and q such that {s,t,s+1t} €I and
(¢.T'(g)} € U.

(3) For all g in U, the map y: I — M defined by y (s) = I's(¢) is a smooth
integral curve of ¢ with initial value q.

In this case, we say that the collection {I's: U — [s[Ul}ser is a local one-
parameter group of diffeomorphisms generated by &.

1.4. Tensors and Tensor Fields on Manifolds

We start with some linear algebra. We shall return to manifolds shortly.

Let V be an n-dimensional vector space. (Throughout this book, “vector
spaces” should be understood to be vector spaces over R.) Linear functionals
(or covariant vectors or co-vectors) over V are linear maps from V to R. The set
of all linear functionals on V has a natural vector space structure. Given two
linear functionals « and B, and a real number k, we take o + 8 and ka to be
the linear functionals defined by setting

(@ +B)E) = a(§) +B(E),
(ka)(§) = ka(§),

for all £ in V. The vector space V* of linear functionals on V is called the dual

1 2 n
space of V. It is easy to check that V* has dimension n. (Ifé, g&,...,6forma
basis for V, then the elements &, &, .. ., & in V* defined by

4(e) =

form a basis for V* called the dual basis ofé, é e, §)

The vector space V* has its own dual space V**, consisting of linear maps
from V* to R. V** is naturally isomorphic to V under the mapping ¢: V —
V**, defined by setting ¢(§)(«) = «(§) for all £ in V and all « in V*; i.e., we
require that ¢ (&) make the same assignment to « that « itself makes to &.

In our development of tensor algebra we shall use the “abstract index nota-
tion” introduced by Roger Penrose. (See Penrose and Rindler [51] for a
more complete and systematic treatment.) We start by considering an infi-
nite sequence of vector spaces V¢, vb . ver vyl isomorphic to
our original n-dimensional vector space V. Here a, b, ..., a1, by, ... are
elements of some (unspecified) infinite labeling set and are called “abstract
indices.” They must be distinguished from more familiar “counting indices.”
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We think of isomorphisms being fixed once and for all, and regard £%,&°, . ..
as the respective images in V%, V?,... of £ in V. The spaces V%, V?,... have
their respective dual spaces (V4)*, (V?)*,... . We designate these with low-
ered indices: V,, Vj, ... . Our fixed isomorphisms between V and V4, V?, ...
naturally extend to isomophisms between V* and V,, Vj, ... . Given « in V*
we take its image in V, to be the unique element o, satisfying the condition
g(%) = (&) for all &€ in V. It is convenient to drop parentheses and write
ag(§%) as g §% or £% ay. Thus we have o, §% = £% 0y = gb = £b gy, and so
forth. (In what follows, our notation will be uniformly commutative. In a
sense, the notation incorporates the canonical isomorphism of V with V**.
Rather than thinking of §% o as a4 (§%), we can think of it as the “action of §% on
a,” and understand that as the action on «, of the vector in (V#)** canonically
isomorphic to £%.)

Indices tell us where vectors and linear functionals reside. So rather than
writing, for example, “for all vectors £* in V%...,” it will suffice to write “for
all vectors £€4....”

We have introduced vector spaces V%, Vb, ..., V,, V,,.... Now we jump
to a larger collection of indexed spaces V%ll'.'_‘_Z:(r,s > 1) where the indices
a1,...,0r, b1, ..., bsare all distinct. (The order of superscript indices here will
make no difference; nor will that of subscript indices. So, for example, V%‘i =
V‘i"; = V‘;g = V‘iz. But it will make a difference whether particular indices
appear in superscript or subscript position—e.g., V4 # V%.) To keep the nota-
tion under control, we shall work first with a representative special case: V.

The elements of this space are multilinear maps that assign real numbers
to unordered triples of the form {ug, vy, y°}—i.e., triples containing one ele-
ment each from Vy, V},, and V. (We shall write these triples, indifferently, as
HaVpY© Or vy g y° OF Y° vy g OF vy ¥° lg, and so forth.) By “multilinearity”
we mean that if A is in V%, then

)\((Mu + k/)a)Vb Vc) = A(Ua vy VC) + k)”(/)a Vb VC):
Mea(vp +kTp)y©) = Ma vy ) +kA(ta Ty ¥°),
AMita vp(y© +k8%) = Aita v v) +kA(1a vp 8°),

for all g, pa, vy, Ty, ¥, 8¢ and all real numbers k. The set V‘zb has a natural
vector space structure. If A and A’ are two elements of V% and k is a real
number, we can define new elements (A 4+ 1) and (k 1) in V% by setting

A+ ) (o vp ¥) = AMita vy ¥©) + A (o vp ¥©),

(k1) (tta ve y©) = kA(ka vy v©),
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for all 14, vy, ¥©. The vector space V% has dimension n3. To see this, first note
that any triple of vectors {¢® ¥, x.} determines an element in V‘;b under the
rule of association

000, X}t ia vy vE > (0% 1ta) (WP i) (X ¥°)-

We write this elementas % ¥? x. or x. ¢* ¥? or ¥? x. %, and so on. The order
1 2 n

of the terms makes no difference. Next, let £%, &%, . . ., &% be a basis for V% with

dual basis &g, &g, . . ., &g. (Here we have abstract and counting indices side by

i J
side.) One can easily verify that the set of all triples of the form £* & &, with
i,j, k ranging from 1 to n, forms a basis for V% . Thus, every element of V%
can be uniquely expressed in the form

LN
ijk iy Iy k
Sy
i=1 j=1 k=1
Sometimes it will be convenient to recast sums such as this in terms of a single
summation index and absorb coefficients—i.e., in the form

n3
N2
i=1

(Rather than three indices that range from 1 to n, we have one index that
ranges from 1 to n’.)

Generalizing now, the tensor space V‘le'zg (r,s = 1) consists of multilinear
maps assigning real numbers to unordered (r 4 s)-tuples, containing one ele-
ment each from V,,,..., V,,, V1, ..., Vb Itis a vector space with dimension
n"*5) and its elements can be realized as linear combinations of the form

nlr+s)

; L i
DR e PRI
i=1

We have assumed (r,s > 1). But the definition scheme we have given makes
sense, too, when r = 0 and s = 1, and when r = 1 and s = 0. In the former
case, we recover indexed dual spaces as previously characterized. (The ele-
ments of Vj, recall, are just linear maps from VP to R). And in the latter case,
we recover our initial indexed vector spaces, at least if we allow for the identifi-
cation of those spaces with their “double duals.” We can even allowr =s =0
and construe the tensor space over V with no indices as just R. The elements
of tensor spaces are called tensors. Tensor indices in superscript (respec-
tively, subscript) position are sometimes called “contravariant” (respectively,
“covariant”) indices.
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We have noted that abstract indices give information about where vectors
and co-vectors reside; e.g., 1% belongs to the space V* and v, belongs to V},. We
can extend this pattern of “residence labeling” to elements of arbitrary tensor
spaces. For example, we can attach the index configuration % to elements of
V% and make statements of the form “for all A%%....” But things are a bit
delicate in the case where the total number of indices present is greater than
one.

Though the order of superscript indices and the order of subscript indices
make no difference when it comes to labeling tensor spaces, they do make a
difference when it comes to labeling tensors themselves. For example, though
Vap = Vi, for an arbitrary element «y, of that space it need not be the case
that oy, = g (The latter equality captures the condition, not true in general,
that the tensor «,, is “symmetric.”) To see why, suppose, once again, that

1 2 n

&%, €% ...,&% is a basis for V% and &a,&a, ..., 0 is its dual basis. Let ag, be
the element &, &, for some particular i and Jj. Then, according to the Penrose
notation (as will be explained below), oy, is the element &) &g. It follows from

what has been said so far that the tensors &, &, and &, &, are simply not equal
unless i = j. (Why? Assume they are equal. Then they have the same action

i J
on all pairs u® v?. So, in particular, they have the same action on &% £P. But

and , ‘
G &a(E°EY) = &a(E)dp (%) = (85)2

Sod; =1;ie,i=]j)

A second point about the delicacy of the index notation should be men-
tioned, though it will not concern us until we reach section 1.9 and work with
tensors in the presence of a (non-degenerate) metric g,;,. We will then want to
follow standard practice and use the metric and its inverse g* to “lower and
raise indices.” (The rest of this paragraph can be skipped. It is included only
for readers who already know about lowering and raising indices and who may

anticipate the problem mentioned here.) For example, we shall write ab

asan
abbreviation for ag, g"™. A problem will arise, though, when we try to lower or
raise an index on a tensor that has indices in both subscript and superscript
position. For example, do we write A?b g as A%P or as 199 or as A% > The
latter three will not, in general, be equal (for the reasons given in the preceding
paragraph). To cope with the problem, when the time comes, we shall adopt

the convention that superscript indices should never be aligned with subscript
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indices. Instead, each index will have its own vertical “slot.” So, for example,
the elements of the space V% will carry the index structure ®_ or @ » or ;% (or
ba orb @ or %), and we will not assume, for example, that 1?2, = 1%.b. (For the
rest of this section—indeed until section 1.9—we shall not bother with index
slots.)

One final preliminary remark about notation is called for. As mentioned
before, we want the notation to be uniformly commutative, at least as regards
the order of tensors within an expression (in contrast to the order of indices
within a tensor). So, for example, the number A% (11, v, y©) that the tensor A%
assigns to a triple pq vy, ¥ © will be written as A?b Mg VpYEoras g vy y© A?b or as
vy ¥° k?b g, and so forth. Furthermore, if k?b is the tensor ¢® /! x., we shall
write A?b(ua vp ¥°) as ¢* Wb xc g vy € or as xe pa WP v, % y° or as any other
string with the individual vectors in some order or other. The order does not
matter because it is the indices here that determine the crucial groupings: ¢*
with g, P with vy, xc with y°.

We now have in hand the various tensor spaces V‘le‘lz Within each one
(just because it is a vector space), there is an addition operation that is associa-
tive and commutative. We will be interested in three other tensor operations:
outer multiplication, index substitution, and contraction. We will consider
them in turn.

“Outer multiplication” (or, perhaps, “tensor multiplication”), first, is an

operation of structure

al...ar C1..-Cm ai1...0¢C1...Cm
Vi o XV a = Vi bdrdy

where the indices a1, ...,a;,b1...bs,¢c1,...,¢m,d1,...,dy, are all distinct. It is

defined in an obvious way. Consider a representative special case:
ab ab
VexVg—>V o

The outer product of a?b and &g, written oz?b &y or &y a?b, is defined by
setting

(2 &a) (ka5 1/ ) = (@2 1 3 67) (& 1/ )

for all A4, pp, 85, /Lf v%. As usual, generally we shall drop parentheses and
write terms in any order. So the action of a?b &u on Ag ppd° w v will be
expressed, indifferently, as a?b da Py Ef w v or as ol

as ha pp & 8° w ocf}h v?, and so forth. It should be clear that outer multipli-

b &g g pp6° 1 14 or
cation, as defined here, is commutative, associative, and distributive over

addition. Notice, also, that our notation is consistent. Consider, for example,
the expression 7% ? ¢ B, ¥©. We can construe it as the action of % &” ¢, on
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g By v©, or as the action of &? ¢, oy on 7% B}, y°, or as the action of y°¢ ¢, 7% &?
on a, By, and so on. (The third reading makes sense: y© ¢, t% £? is the element
of V% that arises if one multiplies the element 7% ¢? by the number y°€ ¢..)
Each of these functional operations yields the same number, so no consistency
problem arises.
The operation of “(x — y) index substitution” has the structure
Vit = Visob, O Vs = Vi

where the indices x,y,41,...,0:,b1,...,bs are all distinct. In defining the
operation, it is, again, easiest to consider a representative special case, say
Ve — v Given a tensor @, it can be expressed as a sum of the form

n3

ab iaib i
ag =Z/L VT,
i=1

db

We take the result of (¢ — d) index substitution on a®?, which we write as o,

to be the sum
n3 ) . )
o = 3 AP
i=1

(This makes sense because we already have a fixed isomorphism between V*
and V¥ that takes each /1% to /id.) Of course, it must be checked that this
definition is independent of the choice of expansion for «?. That is, one must
check that if

i .
Sidt=Y kb,
i=1 =1
then
1’L3 n3
. i i
id {)b = Sd [;b bc
i=1 =1

But this follows from the fact that /* A, = /i A4 and & Ag = & Mg foralliand
all A,.
It can easily be checked that index substitution commutes with addition,
outer multiplication, and other index substitutions. For example, if a?b =
9 4y, then o = b 4y 1f )\gfz’ = o &p, then )\g% = o &g And the
tensor that results from first applying (@ — b) index substitution and then
(¢ — d) index substitution to otgf is the same as that resulting from reversing
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the order and applying first (¢ — d) index substitution and then (¢ — b) index
substitution. It is written as “Zf‘ All these facts, in a sense, are built into our
notation.
Our final tensor operation, “(x, y) contraction,” has the structure
Xal...0r al...ar

Vit = Vi by
where the indices x,y,a1,...,4s,b1,...,bs are all distinct. Consider, for
example, (a, c) contraction with action V% — V?. Suppose

n3
ab iaibi
af = E uwi’ .
i=1

We take the result of applying (a, ¢) contraction to a®” to be

VL3
ab ial ib
o) = E w g
i=1

3 3

3

(This could also be expressed as i 1€ T, P or as i 1€ P 7 or as i (g bb,
and so forth. The last of the listle_(i possibilities 1Ls_ 1equal to the ﬁlr_s’i because
L — %d forall 4 and %a) We write this result as ong (or aéb or cxgb ,and so
forth). Itis important that contracted indices on a tensor—i.e., ones that appear
in both contravariant and covariant position—play no role in determining the
space in which the tensor resides. a®” belongs to V¥, not some space V2.
Indeed, there is no such space as we have set things up.

To prove that contraction is well defined—i.e., independent of one’s choice

of expansion—a simple lemma is needed.

k
LEMMA1.4.1. Forallr > 1, and all &3“ and Y (k=1,...

-
~

r o b
@Y, =0.

r
ko Kk
E (pal)[fczo ——4
k=1 k=1

1 2 n
Proof. Let&%, &%, ..., 8% be a basis for V* with dual basis &a, &a, ..., 0. Then,

for each k =1,...,r, there exist numbers ¢; and dkj (i,j=1,...,n) where
n j k n i _
&1“ =) giEfandy, = ) dy .. Assume the left-side condition holds. Then (1)
i=1 j=1 _
41
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foralll=1,...,n,

r k ! r n ; n X !
0=< éa“vfc) o€ = <ch15“) Y dyjac | ags
k=1 j=1

Cui i 8y 81 =Y cta -
k=1 i=1 j=1 k=1

It follows that the right-side condition holds, since

r r n . n X r n n
P = > (chié“) Yodyaa | =Y D cididy
=1

k=1 k=1 \i=1 k=1 i=1 j=1
noor
= Z Cri dg; = 0.
i=1 k=1

.
(Each term )" ¢; dj; in the final sum is 0 by the calculation just given.) O
k=1

PROBLEM 1.4.1. Show that lemma 1.4.1 can also be derived as a corollary to the
following fact (Herstein [32, p. 272]) about square matrices: if M is an (r X r) matrix
(r = 1) and M? is the zero matrix, then the trace of M is 0. (Hint: Consider the

i
r x r matrix M with entries My = ¢"r,.)

k k
COROLLARY1.42. Forallr > 1,andall p*, %, ¥ (k=1,...,7),

Shi-0 — 3 (k)
k=1

.
Proof. Tt follows from the left-side condition that, for all A;, Y ,g“()’}b)\b)
k=1

k . .1 kg kb \ g
¥, = 0. Applying the lemma (with ¢* = (y°1,)p% forallk=1,...,r), we
r
may infer that > (E“ 1’} a))lib Xy = 0. But here A, is arbitrary. So it must be the
k=1

case that the rig?lt-side condition holds. O 0

“530-47773_Ch01_2P.tex” — 1/23/2012 — 17:18 — page 31



32 / DIFFERENTIAL GEOMETRY

It follows immediately that contraction is well defined for our tensor .

For if

n3

thbt _Zéa)l'(bim

i=1

3 3.
we can apply corollary 1.4.2 to the difference i pevb g, — i 8 xb b, (con-
i=1 i=1
strued as a sum over 2n® terms). And the corollary can be recast easily for
tensors with other index structures.

The contraction operation commutes with addition, outer multiplication,
index substitution, and other contractions. Note, once again, the consis-
tency of our notation. The expression B%y,, for example, can be construed
as the action of the functional y, on B% or as the outer product of g%
with y, followed by (a,b) contraction, or as the outer product g? with y,
followed by (a,b) contraction, and so forth. There is no need to choose

¢ can be understood as

among these different readings. Similarly, a% 1,0
the action of & on A,0°, or as the outer product of a® with 1,0¢ fol-
lowed by (a, b) and (c, d) contractions, or as the action of A, on «? ¢, and so
forth.

The operations we have introduced on tensors may seem a bit complex. But
one quickly gets used to them and applies them almost automatically where
appropriate. That is one of the virtues of the abstract index notation. One gets
to manipulate tensors as easily as one manipulates components of tensors in
traditional tensor analysis. One has the best of both worlds: complete basis
(or coordinate) independence, and the computational convenience that comes
with indices.

Two bits of special notation will be useful. First, we introduce the “delta
tensor” §. It is the element of V' defined by setting §; n, & b— &% forall n,
and g°. (Clearly, ,» o defined, is a tensor since it is linear in both indices.)
Notice that the defining condition is equivalent to the requirement that 6 gh =
g% forall €%, and also to the requirement that 8, na = np for all n,. We can think
of §; as an (a — b) index substitution operator acting on covariant indices,
or as a (b — a) index substitution operator acting on contravariant indices.

So, for example, 8 a’* = a%. To see this, suppose that o} Z Wbe gy

Then

n’ n’

oo = 37 (0 ) iF by = 3 i = o
i=1 i=1
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Given a basis é“,é“, .. .,5“ for V% with dual basis &g, &a, ..., &, 8} can be

expressed as 8} = Xn: é‘“ &, (This follows since the left- and right-side tensors
i=1

in this equation have the same action on the basis elements éb , éb, .. ,Eb.) It

follows that 5 = n.

The second bit of useful notation is for “symmetrization” and “anti-
symmetrization” of tensors. Consider, for example, the tensor f%. Corre-
sponding to it is the tensor . One can think of the latter as arising from
the former by a series of index substitutions: 8% — g% — g — ghd _, gha,
(We have already discussed the fact that, though 8% and g% belong to V,
in general it is not the case that 8% = %) We take B(*Y and g% to be the
respective symmetrization and anti-symmetrization of S%:

1
ﬂ(ab) — E(/Bab _l_,Bbu)’

1

ﬂ[ab] — E(ﬂab _'Bba).

Similarly, given a tensor y!fig, we set

1
b b b b b b b
V(cdg) = 6 (ycdg + 7/gczil + ydgc + ycgd + J/galc + J/dcg)’

1
b _ b b b b b b
Vedg) = 6 (ycdg + Yocd + Vige ~ Vegd — Vgde — J/dcg)‘
In general, a tensor with round brackets surrounding a collection of p con-
1
secutive indices (all contravariant or all covariant) is to be understood as =

times the sum of the p! tensors obtained by taking the selected indices in
all possible permutations. (Each permutation can be achieved by multiple
index substitutions.) In the case of square brackets, the only difference is that
each term in the sum receives a coefficient of (+ 1) or (— 1) depending on
whether the indices in that term form a positive or negative permutation of
the original sequence. The operations of symmetrization and antisymmetriza-
tion commute with addition, outer multiplication, and index substitution. So,
for example, if % = y% 4 p%, then ) = (@) 4 o) If y!zig = hedg £b,
then y(l; dg) = A (cdg) £P. And if one applies (¢ = f) index substitution to )/CZ:jg
and then symmetrizes over the indices f, d, and g, the resulting tensor is the
same one obtained if one first symmetrizes over ¢, d, and g and then applies
(¢ = f) index substitution.

We say that a tensor of the form oy "}" is (totally) symmetric in indices
b1, ..., bsif interchanging any two of these indices leaves the tensor intact, or,
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ar
bs)
indices if the 1nterchange in each case has the effect of multiplying the tensor

by (—1) or, equivalently, if o', = o' )", (The conditions of symmetry

equivalently, if “(b = agllg ". We say it is (totally) anti-symmetric in those

and anti-symmetry in indices al, ce O are deﬁned similarly.) The following
proposition will be useful in what follows.
PROPOSITION 1.43. If

m aZ;_':Ab’ is symmetric in indices by, . . ., bs, and

() ozgll_':.“s' el gl =0forallginV,

Zs’ = 0. (A parallel proposition holds if azllgsr is symmetric in indices

Proof. We prove the proposition by induction on s. The case s = 11is trivial. So
assume s > 1 and assume the proposition holds for s — 1. For all vectors u and
vin V, and all real numbers k, we have, by (2), 0 = cxgl P (1 kv)br . (u+
kv)bs. Expanding the right side of the equation and usmg (1), we arrive at

s
0=ozgl1 Z’M /Lbs—k(l)kozgll Z’/L Lopbbeg
s s—1 o 0---0r by s ,01...0r b by
+<s—1>k blb“ Ly oy +kabl_”bsvl...v.

But k is arbitrary here. The only way the right-side sum can be 0 for all
values of k is if each of the terms in the sum (without the coefficient) is 0.

In particular, ozZ1 Z’ wht b1 b = 0. Now let oz’“‘ Z' = aZl ;’ vbs. The

tensor a’zl ;’ is completely symmetric in the mdlces bi,...,bs_1, and

ay oy ubr . b1 =0 for all 4 in V. So, by our induction hypothesis,
-

it must be the case that ab’“ Z’ vbs = 0. But v was an arbitrary vector. So

aball Z’ =0, as claimed. O

Sometimes it will be convenient to work with this proposition in a slightly
more general form. Let £ and IT be strings of indices, possibly empty, in

which aq,...,ar,b1,...,bs do not appear. Then we can say that a tensor
gy s (totally) symmetric in indices by, ..., by if o (b b) =gy

The case of (total) anti- symmetry is handled similarly. It follows as a corollary

to the proposition that if a, b [ is symmetric in indices by, ..., bs, and if
2211 ‘z*n g gbs =0 for allé in V, then O‘):le...{z:r[ = 0. (It follows because

we can always contract on all the indices in ¥ and IT with arbitrary, distinct
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vectors and generate a tensor to which the proposition is directly applicable.)
Of course, a similar generalization of the proposition is available in the case
where the “extra indices” are in covariant position.

This completes our discussion of tensor algebra. We now return to man-
ifolds. Suppose (M, C) is an n-manifold and p is a point in M. Then M, is
an n-dimensional vector space. We can take it to be our fundamental space
V and construct a hierarchy of tensor spaces over it. A tensor field on M is
simply an assignment of a tensor (over M,) to each point p in M, where
the tensors all have the same index structure. So, for example, a vector field
&% on M (as defined in section 1.3) qualifies as a tensor field on M. The
tensor operations (addition, outer multiplication, index substitution, and con-
traction) are all applied pointwise, and so they extend naturally to tensor
fields.

We already know what it means for a scalar field or a (contravariant) vector
field on M to be smooth. We now take a covariant vector field «,; on M to be
smoothif (§% ag) is smooth for all smooth vector fields £* on M. Quite generally,
we say that a tensor field AZ;:_'ZS' on M is smooth if)»‘;i:_'zs’ el onbag, ... B
is smooth for all smooth fields &1, ..., nbs, Qays - -, Ba, o0 M.

This pattern of definition is extremely common. One starts with a con-
cept (in this case smoothness) applicable to scalar fields, then extends it to
contravariant vector fields by considering their action on scalar fields, then
extends it to covariant vector fields by considering their action on contravariant
fields, then extends it to tensor fields of arbitrary index structure by consider-
ing their action on (appropriate combinations of) contravariant and covariant
vector fields.

It follows from the definition of smoothness for tensor fields just given that
the four tensor operations take smooth tensor fields to smooth tensor fields.

1.5. The Action of Smooth Maps on Tensor Fields

In this section, we consider when and how it is possible to use a smooth map
between manifolds to carry tensors at a point, and tensor fields, from one
manifold to the other.

We start with tensors at a point. Let (M, C) and (M’, C') be manifolds,
not necessarily of the same dimension; let ¥: M — M’ be a smooth map of
M into M’; and let p be a point in M. There is no natural way to transfer
arbitrary tensors between p and ¥ ( p)—at least, not without further assump-
tions in place. But it is possible to associate with v two restricted transfer
maps.
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Let us say that a tensor (at some point on some manifold) is contravariant
(respectively, covariant) if all of its indices are in contravariant (respectively,
covariant) position. The rank of such a tensor is the number of its indices.
We allow the number to be 0; i.e., we regard scalars (real numbers) as both
contravariant and covariant tensors of rank 0.

The first of our two restricted transfer maps, the “push-forward map” (),
takes contravariant tensors at p to contravariant tensors of the same rank at
¥ (p)- The second, the “pull-back map” (1/,)*, takes covariant tensors at ¥(p)
to covariant tensors of the same rank at p. We define (1), and (y)* in four
stages. (For clarity, we mark objects defined on M’ with a prime.)

(Stage 0) Given any real number ¢, we set (/,)«(c) = (¥p)*(c) = c.

(Stage 1) Given a vector £ at p, we define (,)«(§%) at ¥ (p) as follows.
Leto’: O’ — R be an element of S(v/(p)). Then (¢’ o /): ¥ 1[O'] — R
is an element of S(p). We need to specify what assignment (/). (£%)
makes to o’. We set

as3) (Wp)e(9) (@) = E%(e 0 ).

This makes sense because (o’ o ¥) is an object of the sort to which &%
makes assignments.

(Stage 2) Next, consider a covariant tensor 77271 b, At ¥(p). We define the
pull-back tensor (wp)*(ni)1 _.p,) at p by specifying its action on arbitrary

o g
vectors £°1, ..., £ there. We set
(1.5.2)

. 1b1 sbs_ , 1101 Sbs
((‘/fp) (”bl‘..bs))g LR = Ubl‘,.hs((‘/fp)*(é& )) ((Wp)*(g ))

Here, of course, we understand the right side because we know (from

stage 1) how to push forward the vectors aj—lbi.
(Stage 3) Finally, consider a contravariant tensor £*1 % at p with r > 2.
We define the push-forward tensor ()« (£% %) at ¥/ ( p) by specifying

1 r
its action on arbitrary vectors 7, , ..., 1, there:
1 ar

(1.5.3)

(W)€ 9) My o T = E5 (W) (M) -~ (W)™ ( 7)),

This completes the definition of (/). and (¥p)*.
Several basic facts about them are recorded in the next proposition.
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PROPOSITION 1.5.1. Let ¥: M — M’ be a smooth map of the manifold M into
the manifold M'. Let p be any point in M. Then (yrp)« and ()" have the following
properties.

(1) (Wp)x and (rp)* commute with addition.
For example, (p)« (£ + p) = (p)(E7°) + (¥p)s (0°°).
(2) (¥p)« and (Yrp)* commute with outer multiplication.
For example, (Yp)* (1) 145,) = ((Wp)* (1,50)) (¥ (144,)).
(3) (¥p)s and (Yp)* commute with index substitution.
(4) For all tensors 901 gnd pb1-br gt pand all tensors Ngy..a, NG

Wy bydy..ds PV (D),
054 (W)™ 9) 1y g, = (W) (E™ 5 (W) (0y..a)))

055) (Vo) hybaya)) P70 = W) (1) b ay..a. (Wp)e(0” "))

Note that we cannot replace clause (4) with the simpler assertion that ()«
and (¥p)* commute with contraction. We cannot claim, for example, that
(Vp)«(E 1a) = ((¥p)+(E™)) ((¥p)«(na)), since the second term on the right
side is not well formed. The push-forward map ()« makes assignments only
to contravariant vectors at p.

Note also that it follows as a special case of clause (2) that (/). and (yp)*
commute with scalar multiplication. For example, (V)«(c& aby — ((¥p)«(€))
(W)« (™)) = ¢ ((¥p)«(E™)). So, clearly, () and ()" are linear maps
(when restricted to tensors of a fixed rank).

Proof. All four clauses in the proposition follow easily from the definitions
of (Yp)*x and (¥)*. For the fourth clause, one first considers contrac-
tions involving (contravariant or covariant) vectors—i.e., ((¥p)«(§*“%)) 0, or
((¥p) (M g,...0,)) pP—and then uses the fact that every tensor Ngy..a, OF plr-br
can be represented as a sum over products of such vectors. The desired con-
clusion then follows from clauses (1) and (2). By way of example, let us verify

one instance of the fourth clause, say

(W) (E)) mo = (Yp)o(E° (¥p)" (m2)))-

To show that the two (right- and left-side) vectors at v/ ( p) are equal, it suffices
to demonstrate that they have the same action on any vector ., there. But this
follows, since

(W) (E° (o) (m2))) e = E° ()" () (W) " (12c)) = ((Wp)(E°)) i
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Both equalities are instances of equation (1.5.3). The role of £*-% is played
by (6% ((¥p)*(n,))) in the first and by £ in the second. O

Now we turn our attention to fields on M and M’. At each point p in M,
we have transfer maps ()« and (p)*. The question arises whether they can
be “aggregated” to carry contravariant fields on M to ones on M’ or, alter-
natively, to carry covariant fields on M’ to ones on M. Here an asymmetry
arises.

Consider first a tensor field %% on M. For all pin M, (yr,)«(£%1% (p)) is
atensoraty(p). (§%1% ( p) is the value of the field at p, and it is pushed forward
by (¥p)«.) But these individual assignments do not, in general, determine a
field on M’. For one thing, if v is not injective, there will be distinct points p
and q such that ¥ (p) = ¥(q), and nothing guarantees that () (6% (p)) =
(¥q)« (% (g)). Furthermore, even if v is injective, this prescription will not
transfer a tensor to a point p’ in M’ unless it is in the range of ¢y—i.e., unless
p = ¥(p) for some pin M.

But no problems arise if we work in the other direction. Consider a field
My, .5, ©0 M. Then at every point p, there is a well-defined pull-back tensor
(¥p)*(m, ., (¥(p)))- It just does not matter whether y is injective or whether
its range is all of M’. So we can aggregate the individual pull-back maps at
different points to generate a map ¢* that takes covariant tensor fields on M’
to ones on M of the same rank.

In particular, ¢* takes scalar fields «’: M’ — R on M’ to scalar fields

(158 V) = (@ o)

on M. (Think about it this way. The pull-back field ¥ *(«’) assigns to any
point p in M the same number that «’ assigns to ¥ (p). (Recall the 0-th stage
in the definition of (y,)*.) So, for all p in M, ¥*(&')(p) = &'(¥(p)) = (&'
¥)(p))

Three of the (pointwise) algebraic conditions listed in proposition 1.5.1
carry over immediately. Thus, ¥* commutes with addition, outer multipli-
cation, and index substitution (if these are now understood as operations on
tensor fields rather than as operations on tensors at a point). The fourth con-
dition, the one involving contraction, does not carry over because it refers
to individual push-forward maps ()« (and these, we know, cannot, in gen-
eral, be aggregated). In addition, y* satisfies a natural smoothness condition;
namely, it takes smooth fields on M’ to smooth fields on M. This is immedi-
ate for the case of scalar fields. (If «’: M’ — R is smooth, then certainly the
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composed map y¥*(e') = (&' o ¥) is smooth as well.) But a short detour will
be required for the other cases.

Let us temporarily put aside our map ¢ between manifolds and consider
a general fact about the representation of covariant vector fields on a man-
ifold M. Given any smooth scalar field @: M — R, we associate with it a
smooth covariant vector field dsor on M, called its “exterior derivative.” (Here
we partially anticipate our discussion of exterior derivative operators in sec-
tion 1.7.) It is defined by the requirement that, for all p in M and all vectors
£%atp, E%dyo = E(w); ie., §% dya is the directional derivative of « at p in the
direction &“. (The condition clearly defines a covariant vector—i.e., a linear
functional over M), at each point p. And the resultant field dy« is smooth
since, given any smooth vector field £* on M, §% d,« is a smooth scalar field
on M.) The fact we need is the following.

LEMMA 1.5.2. Let A4 be a smooth field on an n-dimensional manifold (M, C). Then,

given any point p in M, there exists an open set O containing p, and smooth
1 n1 n 1 1 non
real-valued maps f,....f,8,...,8 on O, such that Ag =f dg8 +---+ f da8§

on O.

Proof. Let p be a point in M, let (O,¢) be a chart in C with p € O, and
let ul,...,u" be the associated coordinate maps on O. At every point q in

— —
O, the coordinate curve tangent vectors ( ¥114)%, ..., ( ¥ njq)* associated with
1

u',...,u" form a basis for (M,)®. (Recall proposition 1.2.3.) Now consider
the vector fields d,u',...,d,u" on O. We claim that they determine a dual
basis at every g; ie., ( 7i|q)“(dauj) =g for all i,j € {1,...,n}. Indeed, this
follows immediately since ( ?ﬂq)“(dauj ) =7ﬂq(uj ) (by the definition of d,)

and 7i|q(uj) = §;; (by equation (1.2.6)). So we can express A, in the form

1 n i
ha =f dgul +...+ fdau" on O, where f= ( 7,')“)\“. The coordinate maps

1 n

ul,...,u" are certainly smooth. And the maps f,...,f must be smooth as
— —

well since A4 and the coordinate tangent fields ( ¥1)%,...,( Vu)*areso. O

With the lemma in hand, let us return to the original discussion. Again, let ¢
be a smooth map from the manifold M into the manifold M’. Note that given
any smooth field «’: M’ — R on M’, we have

(15.7) V¥ (da') = da(¥* ().
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(To see this, let p be any point in M and let £ be any vector at p. Then
(W (@), = (W)« (E) (oo N = (¥p)(E") (@)
=" oy) = € (dp(v* (@) -

The first equality is an instance of equation (1.5.2), with (dya’) |y () playing the
role of i, ; the third is an instance of equation (1.5.1). The second follows from
the definition of the operator d,, and the fourth from that definition together
with equation (1.5.6). So equation (1.5.7) holds at all points p in M.)

It is our goal, once again, to show that, for all smooth fields ’72;14..115 on M/,
the pull-back field y*(y, ;) on M is smooth as well. Consider the case of a
smooth vector field 7, on M. Suppose M" has dimension n. We know from
the lemma that given any point p’ in M’, we can ﬁnd an open set O’ containing

p’ in which 7, admits the representation nj, = Z f dbg (with the constituent

i=1
maps all smooth). Hence, we have

=w*(2f’dbé’> va(f “(da) Zwmdb (&)
i=1

throughout ¥ ~![O/]. (We get the second equality from the fact that /* respects
the tensor operations of addition and outer multiplication (in the sense dis-
cussed above). The third equality follows from equation (1.5.7).) But the
constituent fields in the far right sum are all smooth. (We have already seen
that ¢/* takes smooth scalar fields to smooth scalar fields.) So ¥*(n,) itself is
smooth on ¥ ~1[O']. But as p’ ranges over M/, the corresponding pull-back
sets ¢ ~1[O'] cover M. It follows that ¥*(n,) is smooth on (all of) M.

It remains to consider the general case: smooth fields on M’ of the form
M, ..p,- But this case quickly reduces to the preceding one. We can express any
such ﬁeld, at least locally, in the form

n, .
’ _ L Ly
D DY
i=1

I .
where %1 e, %S (i=1,...,n% areall smooth fields on M'. Since the individ-

ual pull-back fields y*( /wlb’b1 )y UH( %s) are smooth (and since ¥* commutes
with addition and outer multiplication), it follows that w*(ni;l...bs) must be
smooth on M.

In summary, we have established the following.
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PROPOSITION 1.53. Let : M — M’ be a smooth map of the manifold M into
the manifold M'. Then y* is a map from smooth covariant tensor fields on M’
to smooth covariant fields on M of the same rank that commutes with addi-
tion, outer multiplication, and index substitution and that also satisfies equation
(1.5.7).

The complications and asymmetries we have encountered all have their
origin in the fact that we have only been assuming that ¢ is a smooth map
of M into M’'. Now, finally, let us consider the case where v is, in fact, a dif-
feomorphism of the first onto the second; i.e., there is a well-defined inverse
map ¥ ~!: M’ — M that is also smooth. Then, as one would expect, there is
induced a natural one-to-one correspondence between smooth tensors fields
of arbitrary index structure on the two manifolds, and this correspondence
fully respects the four tensor operations. We already know how ¥* acts on
smooth covariant tensor fields (and scalar fields) on M’. Now we can char-
acterize its action on a smooth field )‘/l’:ll.'.'.'?ir of unrestricted index structure
on M’. We stipulate that, given any point p in M, and any smooth fields

ﬁal,...,ha,,ébl,...,ébs on M,
U (hay - %)
(153) = W e ()< ha)) - ()E")) -

Of course, the right side makes sense only if we understand how v, acts
on smooth vector fields 7, and £” on M. But we do understand (in this new
context where ¥ is a diffeomorphism). Here we can aggregate the individual
push-forward maps ()« to generate a map v that knows how to act on con-
travariant vector fields—just as previously we aggregated the maps ()" to
generate a map y* that knows how to act on covariant vector fields. And we
can take ¥ (n4) to be (¥ ~1)*(n4). This completes the definition of y*.

Notice that this general characterization of ¢* reduces to the one given
previously in the special case where it acts on a covariant field A’ b by

The way to remember equation (1.5.8) is this. A trade-off is involved. Pulling
back A/ legs " from v (p) to p and having it act there on particular vectors yields
the same result as pushing those vectors forward from p to ¥ (p) and having
A/le.'_'_'i' act on them there.

We have just seen how to extend ¥ * so that it acts on smooth fields on M’
of unrestricted index structure (when v is a diffeomorphism). Of course, we
can extend v, similarly. Indeed, we can take it to be (¥ ~1)*.
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It is a straightforward matter to confirm that ¥* (and so v,) commutes
with addition, outer multiplication, contraction, and index substitution. By
way of example, we verify that, for all smooth fields o'} and & b on M/,

(1.5.9) Y ED) = v @yt E).

Let ng be any smooth field on M. Then, invoking equation (1.5.8) and dropping
explicit reference to points of evaluation, we have

VDY E )0 = IV (W (E) Vi (na) = @8 E Yu(na) = ¥ (@ EY) 1a

(For the second equality, we use the fact that (¥, o ¥*) = the identity map.)
Since this holds for all smooth fields 7, on M, we have equation (1.5.9).

1.6. Lie Derivatives

Let (M, C) be a fixed manifold, and let £% be a smooth vector field on M. The Lie
derivative operator £ associated with £% is a map from smooth tensor fields
(on M) to smooth tensor fields (on M) of the same index structure. Roughly
speaking, £ A", represents the “rate of change” of the field A, " relative
to a standard of constancy determined by £%. We now have the tools in place to
make this precise. (It is not important, but we write “.£¢” rather than “.£g+” to
avoid the impression that the operator adds a new index. There is no chance
for confusion since the object X in £x is always a contravariant vector field
and the index it carries makes no difference.)

Let A,1" be a smooth field on M, and let p be a point in M. Further,
let {T';: U — T't[Ul}ier be a local one—parameter group of diffeomorphisms
generated by §% with p € U. Here I is an open interval of R, U is an open
subset of M, and the maps I';: U — T;[U] C M satisfy conditions (1)—(3) at
the close of section 1.3. We set

(£eage), = me [(roresa), — 1]
The right-side limit is to be understood this way. We start with the tensor
(A 75 ) ru(p) at Te(p), carry it back to p with the pull-back map (I';)*, subtract
(A 7y )ip, divide by t, and then take the limit as ¢ goes to 0. (That the limit
exists, and that the resultant field (£ )»Zi:_’_'zs’) on M is smooth, follows from
proposition 1.3.3.) Note that we need to carry ()\Zi_'_':zs') Iry(p) back to p before

comparing it with (A71""')|, because the two tensors live in different spaces.
by...bs /1P

) _ )\al...a,
IC(p) by...bsIp
The following proposition lists several basic properties of Lie derivatives.

The expression [(AZ:_':_'Z: ] is not well formed.

(The proof is straightforward.)
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PROPOSITION 1.6.1. The operator £¢ has the following properties.

(1) It commutes with addition.
For example, £¢(a® + p2P) = L () + L (B%).

(2) It satisfies the Leibniz rule with respect to outer multiplication.
For example, £¢ (Ol?b Bar) = Otgb Le Bas + Bar Le Oé‘clb.

(3) It commutes with the operation of index substitution.

(4) It commutes with the operation of contraction.

PROBLEM 1.6.1. Show that £¢ 82 = 0. (Hint: Recall that 82 can be thought of as
an index substitution operator, and make use of proposition 1.6.1.)

PROBLEM 1.6.2. Let n* be a smooth, non-vanishing field on M. Show that if
Lem®nP) =0, then £:n* = 0.

Two cases are of special interest, namely Lie derivatives of scalar fields and
of contravariant vector fields. We consider them in order.

PROPOSITION 1.6.2. Let €% and o be smooth fields on M. Then £¢ (o) = & («);
i.e., at every point in M, L o is just the ordinary directional derivative of « in the
direction £%.

Proof. Let p be any point in M, and let {[;: U — I't[Ul}tes be a local one—
parameter group of diffeomorphisms generated by §* with p € U. Since the
curve y: [ — M defined by y (t) = I'y(p) is an integral curve of £ with initial
point p, we have

—

d d
Sip(@) =Vple) = Z(@oy)(0) = a[(a oTe)(p)] o

But (I';)*(«t) = (@ o I't) for all t € I. (Recall equation (1.5.6).) So we also have
1 1
(£ @), = lim= [ (M) (@), —@p | = lim— [(€o L) (p) = (e To) (p)]

d
= a[(ot o Ft)(p)]\t:O'

So (£ a))p = &p(x) at all points p in M. O
We need a lemma for the second special case (Lie derivatives of contravari- E—
ant vector fields). 0
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LEMMA 1.63. Let &% be a smooth vector field on M, let p be a point in M, and, once
again, let {T'y: U — Ty[Ulher be a local one—parameter group of diffeomorphisms
generated by £° with p € U. Then, given any smooth scalar fielda: M — R, there
is a one—parameter family of smooth scalar fields {@:}re1 on U such that

(M) aoly=a+t-g foralltin I, and
(2) vo = §(a).

Proof. Consider the family of smooth scalar fields {gi};c; on U defined by
setting

14
@i(q) :/o T [(O‘oru)(q)]m:tx dx

foralltin I and q in U. We claim that it satisfies conditions (1) and (2). First,
foralltin I,

Td
t-oi(q) = /0 i [(aoru)(q)]m:mtd"

la
= /0 ™ [(a ol"tx(q))] dx

= (coT)(g) — (2 oT0)(q).

But I'g(q) = q for all g in U. So we have condition (1). Next, differentiation
with respect to ¢t yields

d d
t a%(‘ﬁ +oi(q) = a7 [(Ol Ort)(‘J)]-

Evaluating both sides at t = 0 gives us

d
vola) = - (@ole)(@)]— -

But now, since {I';: U — T'y[Ul}eg is a local one—parameter group of diffeo-
morphisms generated by £%, the curve y: I — O defined by y(t) = I'1(q) is
an integral curve of £ with initial value g. Thus,

- d d
§igl@) =Y jgle) = (@ oy)=o = - [(@oT1)(@)]) -
So ¢o(q) = &j4() for arbitrary g in U. This is just condition (2). O

PROPOSITION 1.6.4. Let &% and A% be smooth vector fields on M. Then £¢(1%) =
[€,1]%, where[&, 1]% is the smooth (“commutator”) vector field on M whose action
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on a smooth scalar field «: M — R is given by

&, A1) = & (A () — A(§ (@)

(Another remark about notation. One must make some decision about how to
handle abstract indices when dealing with commutator vector fields. Depend-
ing on context, we shall write, for example, either “[£, A]*” or “[&,1]” or “[£%,
A%1"—Dbut never “[£%, A*]*.” Nothing of importance turns on this decision.)

Proof. Let p be any point in M, and let {[;: U — I't[Ul}tes be a local one—
parameter group of diffeomorphisms generated by £ with p € U. Given a
smoothscalarfielda: M — R, let {¢;};c; be a one-parameter family of smooth
scalar fields on U satisfying conditions (1) and (2) in the lemma. For all ¢ such
that both ¢t and —¢ are in I, we have

[T (), (@) = A%y 0 Tt) = A%y (@ = £+ 9)-

The first equality follows directly from equation (1.5.1) and the fact that (I';)* =
(C—¢)«. The second follows from condition (1) of the lemma (with ¢ replaced
by —t). So

1
(£62) fe) = lim [0 (), (o) = 2% (e)]

1 .
= lim~ [2%1ry(p) (@) = A% () ] — lim 2%, ) (1)

3 1 a a a
= lim~ [ (@) ir(p) — (A (@)ip] = A% p(0)

d
= = [(“@ o T)(p)] o = 2% (90)-

Now the first term on the right side of the final line is equal to & (A(2)). (The
argument is the same as used in the final stage of the proof of the lemma.)
And ¢y = £(«), by condition (2) of the lemma. So

(Lea) (@) = §%p(Me) — A% € (@)).

Since p and « are arbitrary, this establishes our claim. O

PROBLEM 1.6.3. Show that the set of smooth contravariant vector fields on M forms
a “Lie algebra” under the bracket operation (defined in the preceding proposition);
i.e., show that for all smooth vector fields &,n, 1 on M,

(&, 0] =—[n,&] and [A[€n]]+[n (A E]]+[& [0, A]] = 0.
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PROBLEM 1.6.4. Show that for all smooth vector fields %, n® on M, and all smooth
scalar fields o on M,

Lagn® = a(Len®) — (£, a)8"

PROBLEM 1.6.5. One might be tempted to take a smooth tensor field to be “constant”
if its Lie derivatives with respect to all smooth vector fields are zero. But this idea
does not work. Any contravariant vector field that was constant in this sense would
have to vanish everywhere. Prove this.

PROBLEM 1.6.6. Show that for all smooth vector fields %, n®, and all smooth tensor
fields a®+2,
(£e £y = Ly Le)alg = Loalg,

where 6% isthe field £z n®. It follows that £¢ and £, commute iff [&,n] = 0. (Hint:
First prove the assertion, in order, for scalar fields o and contravariant fields o®. It
will then be clear how to continue with covariant fields o, and arbitrary tensor fields
a%b )

c..d

Although itis important to know how Lie derivatives are defined, in practice
one rarely makes direct reference to the definition. Instead, one invokes propo-
sitions 1.6.1, 1.6.2, and 1.6.4. In fact, Lie derivatives can be fully characterized
in terms of the properties listed there.

PROPOSITION 1.6.5. Let £% be a smooth vector field on M. Let D be an operator
taking smooth tensor fields on M to smooth tensor fields on M of the same index
structure that satisfies the following three conditions.

(1) For all smooth scalar fields o on M, D(at) = & ().

(2) For all smooth vector fields A* on M, D(A%) = [&, A]*.

(3) D commutes with the operations of addition, index substitution, and con-
traction; it further satisfies the Leibniz rule with respect to tensor multiplica-
tion.

Then D = £¢; i.e., D and £¢ have the same action on all smooth tensor fields.

Proof. We are assuming outright that D and £: have the same action on
scalar field and contravariant vector fields. We must show that (3) induces
agreement on tensor fields of all other index structures. Consider, first, the
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case of a field y,. Given any smooth field A% on M, we must have D(y, A%) =
E(yar®) = Le(va2?) by (1). Hence, by (3),

Ya D(A") + D(va)A® = va £6(2%) + £ (va)2".

But D(A%) = £ (%) by (2). So, for arbitrary smooth fields A% on M, (D(ya) —
Le(va))2* = 0. Thus, D(ya) = Le(a)-

We can now jump to the general case of a smooth tensor field AZ:ZS' on M.
We do so with an argument that is much like the one just used to handle the
case of covariant vector fields. Let AP1, . . ., ,obf, Hays - - - » Vg, be arbitrary smooth
fields on M, and consider the scalar field o« = &;! "} AP P g, .. vg,. By
(1), D(a) = £¢ (). We can expand the terms D(«) and £¢(«) using the fact
that both operators, D and £¢, satisfy the Leibniz rule. The result will be an
equation with r+ s+ 1 terms on each side. The terms will agree completely,
except that where D appears on the left, £¢ will appear on the right. In r+5
terms, the operator (D or £¢) will act on a vector field. So all these terms will
cancel since D and £L¢ agree in their action on contravariant and covariant
vector fields. For example, the terms

Ml DAY o ey ve, and AZP (£ AP % gy v,

will cancel since D(A"1) = £ AP, So we may conclude that
.Gy -Gy b bs —
(DO = LGt [ 27 o ptay o ve, =0

for all smooth fields AP, .. ., pbs, Ways- -, Ve, on M. Thus D and £ agree in

their action on A7, O
by...bs
We record one more fact for future reference. For any smooth field AZi"'Z’,
..bs

al...ar

Lg Ay " is supposed to represent the “rate of change” of the field ;! " rela-
tive to a standard of constancy determined by (the flow maps associated with)
£%. So one would expect that £¢ AZ}ZSV vanishes (everywhere) iff those flow
maps preserve AZ;ZS' . We make the claim precise in the following proposition.
The only slightly delicate matter is the need to keep track of the domains of

definition of the local flow maps.

PROPOSITION 1.6.6. Let&® and Ay} be smooth fields on M. Then the following

conditions are equivalent.
(1) £Le AZ:Z; = 0 (everywhere on M).
(2) For all local one—parameter groups of diffeomorphisms {T'y: U — T[Ul}er

generated by £°, and allt € I, (Ty)* (1 37) = A1)
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Proof. The proof is essentially the same no matter what the index structure
of the field under consideration. So, for convenience, we work with a field
Aj,. One direction ((2) = (1)) is immediate. Let {T';: U — M};es be any local
one-parameter group of diffeomorphisms determined by &%, and let p be any
point in U. If (2) holds, then, in particular, ((Ft)*(kg))‘p =y, forallte L.
Hence

1 1
(£:29),, = lim ~ [(C0* (), = 34, | = lim 135, = 25,1 =0.

The converse requires just a bit more work. Suppose that (1) holds. Let
{T's: U — M}ier be any local one—parameter group of diffeomorphisms deter-
mined by £%, and let p be any point in U. Further, let 5, and p? and be any
two vectors at p, and let f : I — R be the smooth map defined by

£y = ((T)*(34)),, 71a 0"

We show that f/(t) = 0 for all t € I. This will suffice. For then it will follow
that f is constant; i.e., [(Ft)*(k‘;)]lp na p? = [(FO)*()‘Z)]@ na p® = AL, na p? for
all t € I. Hence, since n, and p® are arbitrary vectors at p, it will follow that
((Ft)*(kg))‘p = Ap, forallt € I, as needed.

So let t be any number in I. Then we have

1
f(t) =lim— [((Ft+s)*(kZ))|p nap” = () (45)) , ma pb] :

s—0S

Now suppose s is sufficiently small in absolute value that {s,t+s} € I and
[s(p) € U. Then I'ii5(p) = (Tt o Ts)(p)- (Recall condition (2) in the final para-
graph of section 1.3.) Hence, for all such s, we have

((Ft)*()‘g))\p nap’ = Mpiruo ((Ft)*(”a))m(p) ((Ft)*(pb))m(p)

and

((Ft+s)*()‘2))\p nap’ = ((FS)*()‘Z))\rt(p) ((Ft)*(nu))m(p) ((l"t)*(pb))m(p).

So, substituting into our expression for f’(t), we have

’ . 1 %9 0 a
() = |:11_r)% g <((Fs) ()”b))\r‘t(p) —)\bm(p)>i| ((Ft)*(na))m(p) ((Ft)*(Pb))IF:(P)
= (£ 1)1,y (P)+(10)) 1,y (T)(0")) -

Since £¢ A = 0 everywhere, we may conclude that f'(t) = 0. O
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1.7. Derivative Operators and Geodesics

We have already introduced one kind of derivative operator, namely £;, asso-
ciated with a smooth contravariant vector field A%. In this section, we discuss
a different kind. It is, in a sense, a generalization of the gradient operator V
that one encounters in standard vector analysis on R™.

Let M be a manifold, and let V be a map that acts on pairs (c,agll"_'_‘gs'),
where the second is a smooth tensor field on M and the first is an abstract
index distinct from aq ..., a,, by, ..., bs, and associates with them a smooth
tensor field Vcazll_'_'_'gs' on M in which c appears as a covariant index. (Given any
one index ¢, we understand V, to be the operator that takes the field agll_'::gs’ to

the field Vcagll”'g ".) We say that V is a (covariant) derivative operator on M if it
..bs

satisfies the following conditions.

(DO1) V commutes with addition on tensor fields.
For example, Vn(oeC“b + ,BZ?“) = Vna?b +V, f“.

(DO2) V satisfies the Leibniz rule with respect to tensor multiplication.
For example, Vn(cxcab éfd) = a?b Va6 + (Y a?b)ffd.

(DO3) V commutes with index substitution.
For example, the result of applying (a — d) index substitution to a%® and
applying V, is the same as that arising from applying (4 — d) substitution
to V, %%, Furthermore, the result of applying (n — m) index substitution
to V, a® is the same as that arising from applying V, to a2,

(DO4) V commutes with contraction.
For example, the result of applying (a, ¢) contraction to V, a® is the same
as that arising from applying V, to a%?.

(DO5) For all smooth scalar fields « and all smooth vector fields &”,
E"Vho = &(w).

(DOG) For all (distinct) indices a and b, and for all smooth scalar fields «,
VoVya = ViV, a.

The first four conditions should seem relatively innocuous. Condition (DOS5)
is suggested by the situation in ordinary vector analysis on R". There the
directional derivative of « in the direction £ is given by & - V. (Recall equation
(1.2.1).) We want to interpret £” V, o as the analog of & - V. Sowe set " V, o
equal to the (generalized) directional derivative & («). Condition (DO6) is a bit
more delicate. One can imagine strengthening the condition to require that
V, and Vj, commute on all tensor fields. This leads to the class of “flat” deriva-
tive operators and is far too restrictive for our purposes. One can also imagine
dropping the condition altogether. This leads to the larger class of “derivative
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operators with torsion.” It will be clear later why we have included (DOG6). (The
derivative operators determined by metrics are necessarily torsion free.)

Some authors refer to the associated maps V, as “derivative operators”
rather than reserving that term for the map V itself. We shall do so as well, on
occasion.

Having defined derivative operators, we can now pose the question of their
existence, and uniqueness on manifolds. Concerning existence, one has the
following basic result (Geroch [23, appendix]).

PROPOSITION 1.7.1. A connected manifold admits a derivative operator iff a
countable subset of the manifold’s charts suffice to cover it.

The restriction to connected manifolds here is harmless since, clearly, a
manifold admits a derivative operator iff each of its components does. Prac-
tically all the manifolds one ever deals with in differential geometry satisfy
the stated countable cover condition. Indeed, one has to work hard to find a
manifold that does not. So proposition 1.7.1 has the force of a strong exis-
tence theorem. (And, of course, it implies that all manifolds admit derivative
operators locally.)

The question of uniqueness is easier to deal with, and we give a complete
answer. But first a lemma is needed.

LEMMA1.7.2. Let V be a derivative operator on the n-dimensional manifold M,
and let &, be a co-vector at the point p. Then there is a smooth scalar field o in S(p)
such that &, = (W, ).

Proof. Here we use coordinates as in section 1.2. Suppose (U, ¢) is a chart on
M with p € U, and ul,...,u" are the corresponding coordinate maps on U.

— —
The coordinate curve tangent vectors ¥ 1jp, ..., ¥ njp form a basis for M. Let

{é;} .. .,,1’.‘15} be a dual basis. Then

( 7,-“,);]3 = §; foralliandjin {1,...,n},
no

¢ such that & = ) ¢ B;. Now we define

i=1

. 1
and there exist real numbersc,.. .,

=

a smooth scalar field «: U — R by setting a(q) = 3 cu'(q). We claim &, =
1
(% a)p-
We must show that n? &, = »? (W a)p holds for arbitrary vectors nb at p. Let
noi -
n’ =Y d(v; |p)b be one such. Then, by (DO5), and the fact that
i=1

1

—

i\p(uj) = ‘Sij

(recall equation (1.2.6)), we have
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oy no no.
b 1 J . 1 i
- (Me)p =nla)p = (Zd(yilp)> doew | =) de
i=1 j=1 i=1
Since we also have
"o b L no.
1 j 1 i
n"sb=< d(mp)) cBy| =) dc,
i=1 j=1 i=1
we are done. O
PROPOSITION 1.7.3. Let V and V' be derivative operators on the manifold M.

Then there exists a smooth symmetric tensor field C})_on M that satisfies the following
condition for all smooth tensor fields a! " on M:

/ ar...ar __ ar...ar n
02 (Vie = V)l =0 Gy
a1...0r no__nay.0r ~a; _ 01010 g
+ab1...b5_1n mbs — @by . b, Cli—. .. o, Corae

Conversely, given any derivative operator V on M and any smooth symmetric tensor
field C} on M, if V' is defined by equation (1.7.1), then V' is also a derivative
operator on M. (To get a grip on equation (1.7.1), note that for each index in
agi"'.'bi' there is a corresponding term on the right. That term carries a + or —
depending on whether the index is a subscript or superscript. In that term, the index

is contracted into C} .)
C

Proof. Let V and V' be derivative operators on M. Note first that given any
smooth scalar field @ on M, Vi @ = V. (This follows from the fact that given
any vector £% at any pointin M, §4 Vi = §(a) = £* V)

Next we claim that given any smooth co-vector field y, on M, if y, =0
at a point p, then V), y, = V, y, at p. To see this, let £” be any smooth field
on M and consider the scalar field y, £*. We have 0 = (Vi — V) (y,£%) =
(Vi — Va)&2 + £°(Vi, — V) y), everywhere. So, in particular, we have 0 =
gb (V& — V%) yp at p. Since this is true for arbitrary &%, it must be the case that
(Va—V)yp = 0 as claimed.

It follows from the claim that given any smooth field o, on M, the value
of (Vi — Vin)ay at a point p is determined solely by the value of ay, itself at p.
(For suppose that apand &, agree at p. Then the claim is applicable to ap —
and therefore (V, — Vm)&b =(Vin— Vm)&b atp.)

“530-47773_Ch01_2P.tex” — 1/23/2012 — 17:18 — page 51



52 / DIFFERENTIAL GEOMETRY

Now we define a tensor field C . Given any point p and a vector Qg atp,
be
we set

C*,an = (Vin — Vi)

where a;, is any smooth field on M that assumes the value &;, at p. (Our
preliminary work shows that the choice of o, makes no difference.) It follows
immediately that C”", satisfies C, oy, = (Vi — Vin)ay, for all smooth fields o,
and, therefore, is smooth itself.

C; is symmetric. To see this, consider any smooth scalar field @ on M. Since
Via = Vo, itfollows that C?, Vo = (Vi — Vi) %o = Vin Vo — Viu Vo =
VinVia —ViuV, a. So, by (DO6), we may conclude that Cp, Vo = C} V.
But by our lemma, all covariant vectors at a point can be realized in the form
V,, o for some scalar field @. So we have Cb“c = Cfb.

Next we show that C}. satisfies condition (1.7.1). This involves a now famil-
iar sequential form of argument—from scalar fields, to vector fields, to
arbitrary tensor fields. We have already seen that all derivative operators agree
on scalar fields. And it follows directly from our definition of C}_ that (1.7.1)
holds for covariant vector fields. So let £% be an arbitrary smooth contravariant

field on M. Then, given any smooth field y, on M,

0= (Vo) (%) = 6°(Va— Vo) v+ 7 (Via — V)&"
=£CY v+ (Ve —V)E?

=[£" Cl, + (Va— )& v

Since this holds for all smooth fields y,, it follows that (Vi — V;)£4 = —&P Cgb,
as required by (1.7.1).

To check equation (1.7.1) for tensor fields o} , one expands 0 = (Vin — Vin)
(ozgC gbpe na) for arbitrary fields & b A% ns and uses the known expres-
sions for (V, — Vm)“g‘b, (Vin — Vin)A¢, and (Vi — V) 7a. The calculation is
straightforward. Tensor fields of arbitrary index structure can be handled
similarly.

The second half of the proposition is also straightforward. O

Itis worth noting that condition (DO6) entered the proof only in the demon-
stration that Cj must be symmetric. If in the statement of the proposition
one drops the requirement of symmetry on Cj , then one has the appropriate

formulation for derivative operators with torsion.
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In what follows, if V/ and V are derivative operators on a manifold that,
together with the field C} , satisfy condition (1.7.1), then we shall write V' =
(V,CL). Clearly this is equivalent to V = (V/, —Cf. ).

We have introduced two kinds of derivative operators. The next proposition
shows how the action of one can be expressed in terms of the other.

PROPOSITION 1.7.4. Suppose V is a derivative operator on the manifold M, and
A% is a smooth vector field on M. Then for all smooth fields «' " on M, we have

by...bs
ar...dr __ 1 n ai...ar ai...ar n
(1.7.2) £y a, = AV, o T Vb, A
al...or n
+... +ab1mb571nvbsx
___haa..ar o __G1..Gr-1h a
o Vi A ceemay Vi A7,
1t . ai...a,
(Condition (1.7.2), of course, resembles (1.7.1). The difference Ly oy ™" —

n 1.0y ¢ , , ai...ar
ANy Ty is a sum of terms, one for each index in a, The terms carry

a + or — depending on whether the associated index is a subscript or a superscript.
Each term is contracted with V; A.)

Proof. The proof is another simple sequential argument, like the one used
in the preceding proof. (Note that we shall not need to invoke the definition
of Lie derivatives. It will suffice to make use of the properties collected in
propositions 1.6.1 and 1.6.4.)

Firstof all, trivially, if @ is a smooth scalar field, then £, & = A (o) = A" V, «.
Next, suppose £% is a smooth vector field. Then for arbitrary smooth scalar
fields o, we have, by proposition 1.6.4),

(£.8)(@) = 2(E(@) —E(M@) = 1(8* V%) —£ (2" Vaar)
=P (6" Vo) — £P G, (1 Vo)
=P Voo + (WY E) e — £ 2 Vo — ("W A%) Vi,
The first and third term of the last line cancel each other by (DO6). So we have
(£28)(@) = (A" %E" ~ 6"V a%) % = (A & — £V 2%) (@),
Since « is arbitrary, it follows that
L5" =10 G 50— 5"V,

as required by equation (1.7.2).
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Next let o, be a smooth covariant vector field. Then for arbitrary smooth
fields £,

fx(aaéa) =aa£A§a+$av€X“a
= aa(AP V6% — £2 9, 0%) + 69 £y .

Here we have used both the fact that £, satisfies the Leibniz condition and
our previous expression for £, £%. But we also have

£1(0ag®) = 1" V(o §?) = A ata V6% + 27 €% Vy .
Therefore,
£ Ly ap = E°(AP Yag +ap Vi AP).
Since &% is arbitrary, we have
L og =20 Yag+ay VAl

as required by equation (1.7.2).
Continuing this way, we can verify equation (1.7.2) for tensor fields of
arbitrary index structure. O

PROBLEM 1.7.1. Show that if V is a derivative operator on a manifold, then
b _
V.80 = 0.

With the notion of a derivative operator in hand, we can now introduce the

idea of “parallel transport” of tensors along curves.
Suppose M is a manifold with derivative operator V. The directional deriva-
tive of a scalar field « at p in the direction £%, we know, is given by £" V, «.
al...0m

Generalizing now, we take the directional derivative of a smooth field ay
by
at p in the direction &% (with respect to V) to be

n ai...am
§ Voo, "

Furthermore, if y : [ — M is a smooth curve with tangent field £%, we say that
ay! " is constant along y (with respect to V) if £" Vo = 0.

Derivative operators are sometimes called “connections” (or “affine con-
nections”). That is because, in a sense, they “connect” the tangent spaces of
points “infinitesimally close” to one another, i.e., they provide a standard of
identity for vectors at distinct, but “infinitesimally close” points.

So far, our tensor fields have always been defined over an entire manifold
or—this amounts to the same thing—to open subsets of a manifold. It is

useful also to consider tensor fields defined on curves. Suppose y: I — M is
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a smooth curve on the manifold M. A tensor field (of a given index structure) on
y is just a map that assigns to each s in I a tensor of that index structure at
y(s). (Note that this is not quite the same as assigning a tensor of that index
structure to each point in y[I], since we are not here excluding the possibility
that the curve may cross itself—i.e., that y (s1) = y(s2) for distinct s; and s in
I. We do not want to insist in such a case that the tensor assigned to s; is the
same as the one assigned to s,.) So, for example, the tangent field to y counts
as a tensor field on y.

It is clear what the appropriate criterion of smoothness is for tensor fields
on y. A scalar field on y is just a map o: I — R. So we certainly understand
what it means for it to be smooth. We take a vector field £% on y to be smooth
if, for all smooth scalar fields « on M, & («) is a smooth scalar field on y. Next,
we take a co-vector field i, on y to be smooth if, for all smooth fields €% on M,
&%, is a smooth scalar field on y. One can continue in this way following the
usual pattern. Note that the tangent vector field to any smooth curve qualifies
as smooth.

Now suppose that y: I — M is a smooth curve on the manifold M with
tangent field £%, o' ™ is a smooth field on y, and V is a derivative operator
on M. We cannot meaningfully apply V to ;™. But we can make sense
of the directional derivative field £" Vnozgll_""'g:” on y. We can do so using the
following proposition.

PROPOSITION 1.7.5. Suppose V is a derivative operator on the manifold M and
y: I — M is a smooth curve with tangent field £*. Then there is a unique operator

a1...0m a1...0m
b D(“bl...h, )

taking smooth tensor fields on y to smooth tensor fields on y of the same index
structure that satisfies the following conditions.

(1) D commutes with the operations of addition, index substitution, and contrac-
tion; it further satisfies the Leibniz rule with respect to tensor multiplication.
dot
(2) For all smooth scalar fields s — a(s) on y, D(a) = I
s
(3) Letst— aZ;Z:” (s) be a smooth tensor field on y . Suppose there is an open set
O and a smooth field &' ;™ on O such that, for all s in some open interval
1..-Or
al...0m ~aq...0m . al...0m
el o™y (s) =ay "y Then, forall sin I, D(“bll...b, )(s) =

(5 "V 52211::;:" ) ly(s)-
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a1...0m

Proof. Suppose first that D satisfies the stated conditions, and suppose a,
is a smooth tensor field on y. We shall derive an explicit expression for
D(agll".'_'g:") in terms of a local coordinate chart. This will show that there can be,
at most, one D satisfying the stated conditions. To avoid drowning in indices,
we shall work with a representative case—a smooth field aj—but it will be
clear how to adapt the argument to fields with other index structures.
Suppose our background manifold (M, C) has dimension n. Let s be any
pointin I, and let (U, ¢) be an n-chart in C whose domain U contains y (s). For

alli € {1,...,n}, let n® be the smooth coordinate-curve tangent field ( 71')“ on
1, 2 .
U. We know that the fields %, 1%, ..., %“ form a basis for the tangent space at

every pointin U. Let /iu, ,LZLa, ..., [la be corresponding smooth co-vector fields
on U that form a dual basis at every point. Now let o be a smooth field on y.
We can certainly express it in terms of these basis and co-basis fields. That
is, we can find an open subinterval I’ C I containing s, and smooth functions

1
gz: I’ — R such that, at all points sin I’,

o) = 3 a0y Elye:

ij=1

i o ‘ ,
Here, of course, &= oy nb ,lJLg,. We can construe the restrictions of 7% and ;JL;,
to y[I'] as smooth fields on (a restricted segment of) y. It follows, therefore,
that at all points in I’,

D) =YD (357“ iib) -y [p(é{) (1 Do) + D3 im].

ij=1 ij=1

Here we have just used the fact that D commutes with tensor addition and
satisfies the Leibniz rule (and suppressed explicit reference to the evaluation

point s). But now it follows from conditions (2) and (3), respectively, that

i da iy o . .

D) = I and D(n® ) = E"Vu(n® itp). So, we have our promised explicit
s

expression for D(ayp):

n j

da i, j ij igJ

D a — - a nv a

(o) =2 | 55 (1" 1)+ a€"Vali” 1)
ij=1

To show existence, finally, it suffices to check that the operator D defined

by this expression (and the counterpart expressions for fields with other index

structures) satisfies all three conditions in the proposition. O
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Under the stated conditions of the proposition, we can now understand
a1...0m

£"Vya,! ™ to be the smooth field on y given by D (abl b ) Note that condi-
tion (3) in the proposition just makes precise the requirement that "V, agllg:"
is “what it should be” in the case where ozgll:_'“:” arises as the restriction to y[I]
of some smooth tensor field defined on an open set.

We have already said what it means for a tensor field defined on an open
set to be “constant” along a curve y with tangent field £%. We can now extend
that notion to fields o' )™ defined only on y itself. The defining condition,
"V, agllg:" = 0 carries over intact.

The fundamental fact about constant fields on curves is the following.

PROPOSITION 1.7.6. Givenamanifold M, a derivative operator V on M, a smooth
curvey: I — M, and a tensor &Z:Z’” at some point y (s), there is a unique smooth
by

tensor field ozleZ " on y that is constant (with respect to V) and assumes the value
Oy

0a1...0m,
ahl-nbr ats.

When the conditions of the proposition are realized, we say that ale'”Z’”
by

results from parallel transport of &Ziz:ﬂ along y (with respect to V).

Finally, we introduce “geodesics.” We say thata smooth curve y : [ — M is
a geodesic (with respect to V) if its tangent vector field £ is constant along y—
ie., if PV, €% = 0. The basic existence and uniqueness theorem for geodesics
is the following. (In what follows, we shall drop the qualification “with respect
to V” except in contexts where doing so might lead to ambiguity.)

PROPOSITION 1.7.7. Given a manifold M, a derivative operator V on M, a point
pin M, and a vector % at p, there is a unique geodesic y : I — M with y(0) = p
and & :7|p that satisfies the following maximality condition: if y': I' — M is also
a geodesic with y'(0) = p and 7’|p =&, thenl’ CIandy'(s) = y(s) forallse I'.

To prove propositions 1.7.6 and 1.7.7, one formulates the assertions in
terms of local coordinates and then invokes the fundamental existence and
uniqueness theorem for ordinary differential equations.

A derivative operator determines a class of geodesics. It turns out that a
derivative operator is actually fully characterized by its associated geodesics.
This will be important later in our discussion of relativity theory.

PROPOSITION 1.7.8. Suppose V and V' are both derivative operators on the man-
ifold M. Further suppose that V and V' admit the same geodesics (i.e., for all smooth
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curvesy: I — M, y is a geodesic with respect to V iff it is a geodesic with respect to
V'). ThenV' = V.

Proof. The argument provides a good example of how proposition 1.7.3 is
used. Given V and V', there must exist a smooth symmetric field Cj on M
such that V' = (V, C} ). It will suffice to show that C})_vanishes everywhere.

Given an arbitrary point p and an arbitrary vector 3“ at p, there is a geodesic
y with respect to V that passes through p and has tangent 5“ at p. Let £% be
the tangent vector field of y. Then we have £§" V, €% = 0. By our hypothesis, y
must also be a geodesic with respect to V'. So "V}, % = 0 too. Now, since
Vi = (W, C}), we have V', AP =V, AP — b A" for all smooth fields A%, So,
in particular, we have

0=§°V, el =gov, b b goen
=0

00 0
at all points on the image of . So C2 £"£% = 0 at p. But £€* and p were arbi-
trary, and C? is symmetric. So, by proposition 1.4.3, C,. must vanish every-
where. O

The property of being a geodesic is not preserved under reparametrization
of curves. The situation is as follows.

PROPOSITION 1.7.9. Suppose M is a manifold with derivative operator V, and
y: I — M is a smooth curve with tangent field £*. Then y can be reparametrized
so as to be a geodesic (i.e., there is a diffeomorphism a: I' — I of some interval I’
onto I suchthaty’ =y o isa geodesic) iff €" V,, €% = f &% for some smooth scalar
field f on y. Furthermore, if y is a non-trivial geodesic (i.e., a geodesic with non-
vanishing tangent field), then the reparametrized curve y' = y o« is a geodesic iff
a is linear.

Proof. Suppose a: I’ — I is a diffeomorphism and &’ is the tangent field to
d
Y =yoa:I' — M. Sett = afs). By the chain rule, we have &’ = & d—a. (This
s

d
abbreviates  &'j,/( = &y (a(s) d—(:(s). Recall equation (1.3.1) in the proof of

do
ds

do
assigns to s the number d—(s) at the point y (s)—and we can make sense of
s

proposition 1.3.2.) Now we can construe — as a smooth scalar field on y—it
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the rate of change £§" V, {Z—a. So we have
s

" ,a_dan daa_dozzn a doa\ 4., do
§"V, & —<$§)Vn <a§)—<g) §"V, & +<£>5 & Vn%-

d
Now d—a(s) # 0 for all sin I, since « is a diffeomorphism. So, by the chain
s

rule again,
da d (da\ d?a (da\7!
n —_— =)= — —_
§ Vnds dt(ds) ds? <ds> '
It follows that
2 2
(1.7.3) EMV, 8 = d é”%$“+dl$“~
ds ds?

Both our claims follow from this last equation. First, ¥’ is a geodesic, i.e.,

o (da\7?
EMV,EP =0iff £"V, % = [ £%, where [ = el <d—) . Second, if y is
s s
d2
a geodesic (i.e., if £"V, &% =0), then y’ is also a geodesic iff K‘ZX £=0.

On the assumption that £% is non-vanishing, the latter condition holds iff

da . -
—— = 0—i.e., o is linear. O
ds?

We know that a derivative operator is determined by its associated class of
geodesics. Let us now consider a different question. Suppose one does not
know which (parametrized) curves are geodesics, but only which ordered point
sets on a manifold are the images of geodesics. To what extent does that partial
information allow one to determine the derivative operator? We answer the
question in the next proposition. Let us say that two derivative operators V and
V' on a manifold are projectively equivalent if they admit the same geodesics
up to reparametrization (i.e., if any curve can be reparametrized as to be a
geodesic with respect to V iff it can be reparametrized so as to be a geodesic
with respect to V).

PROPOSITION 1.7.10. Suppose V and V' are derivative operators on a manifold
M and V' = (V, CZC). Then V and V' are projectively equivalent iff there is a
smooth field ¢, on M such that

CZC = 5? oc+ 5? Op-
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Proof. Suppose first that there does exist such a field ¢.. Further suppose that
y is an arbitrary smooth curve with tangent field £%. Then

E'VLES = £ (Vg — Cpy §7) = 6" V& — (85 om + 55, )8 E

=$nvn§a_2$a((pm$m)'

It follows by the first part of proposition 1.7.9 that y can be reparametrized so
as to be a geodesic with respect to V iff it can be reparametrized so as to be a
geodesic with respect to V'.

Conversely, suppose that V and V' are projectively equivalent. We show
there is a smooth field . on M such that C} = §; ¢c + ¢ ¢p. Let y be an
arbitrary geodesic with respect to V with tangent field £%. Then £"V, &% = 0
and §" V;, % = f &% for some smooth field f on y. (Here again we use the first
part of proposition 1.7.9.) It follows that

fer=8"(%E" - C&°) = - 876"
Therefore, (Cb“c gd— Cgc S“)“g‘b &° = 0. This can be expressed as
(Ch 87 = Ci 87)E" 676" = 0.

Now let (pgfr be the field (C“ 84 — cd 8“). Symmetrizing on the indices b, ¢, r,

bc “r bc “r
we have

Vi ST EET =0,
Since this equation must hold for all choices of y, and hence all vec-

tors & (at all points), and since ‘/’(Zfr) is symmetric in b, ¢, r, it follows

from proposition 1.4.3 that ¢ (chr = 0. Therefore, using the fact that Cj_isitself

)
symmetric,

Cposd —cl st 4o st — o st Cl st —cl sl =o.

rh“c rh “c

Now suppose n is the dimension of our underlying manifold. Then (r, d)
contraction yields

nCje = Cpe + Cly = Cayp 32 + CG = Cig 8 = 0.

1
Thus, (n+1)Cp. =6} Cfd—i-rS? ng. If we set ¢, = ﬁCfd, this can be

expressed as

Cp. =8, 9 + 8¢ vy O
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We close this section with a few remarks about the “exterior derivative oper-
ator” and about “coordinate derivative operators” (associated with particular
charts on a manifold).

An m-form (for m > 0) on a manifold M is a tensor field on M with m
covariant indices that is anti-symmetric—i.e., a tensor field of the form oy, _g,,
where &g, 4, = ®[a;..a,]- (Scalar fields qualify as 0-forms.)

Suppose &g, .4, is a smooth m-form on M, and ¢ is an index distinct from
a1,...,0m. Then, given any covariant derivative operator V, M. og, . 4,,] quali-
fies asa smooth (m + 1)-form on M. Itturns out that this field is independent of
the choice of derivative operator V. (See problem 1.7.2.) In this way, we arrive
at an operator d (the exterior derivative operator) that acts on pairs oy, g4, and
¢, and satisfies

(1.7.4) de gy ..ay = VicOay. ay]

for all choices of V. So, in particular, we have d,a = V& for all smooth
scalar fields . We have d, oy = Mpog) = %(% ag — Vyap) for all smooth co-
vector fields «,. And so forth.

One can certainly introduce the exterior derivative operator directly, without
reference to covariant derivative operators. Most books do so. But there is no
loss in proceeding as we have, since covariant derivative operators always
exist locally on manifolds, and local existence is all that is needed for our
characterization.

Officially, we are taking the exterior derivative operator d to be a map that
acts on a pair of objects—an index and a smooth m-form (for some m or other).
One might also use the term to refer to the associated map d, that assigns
de &q; . a,, 1O Agy. a,,. Some authors do so, and we shall too on occasion.

PROBLEM 1.7.2. LetV and V' be derivative operators on a manifold, andletog, g,
be a smooth n-form on it. Show that

%b Agq..a,] = V/[la Qgy...a,]-
(Hint: Make use of proposition 1.7.3.)
It is worth asking why we do not allow the exterior derivative operator to
act on arbitrary smooth covariant tensor fields. The problem is not a failure to

be well defined. (Note that given any smooth covariant field «g,._4,, and any
two derivative operators V and V’, it follows from problem 1.7.2 that

Vib%y...an] = Vb Xaranll = Vb Xaranll = Vb %ay...a,]")
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Rather, the problem is that we cannot both extend the application of the exterior
derivative operator and have it satisfy the Leibniz rule—and presumably the
latter is a requirement for any derivative-like operator. Here is the argument.
Let orgp be any smooth symmetric field. Then (if we allow ourselves to apply
dn), dnetgy = Vinogy = 0. Now let f be any smooth scalar field. By the same
argument, we have d,(fa,) = 0. So, if the Leibniz rule obtains, we have

0 = dn(fau) = f (dntap) + (dnf) tap = (Anf) Xap-

But this is impossible since, given any point p, we always choose f and a4, so
that neither o, nor (d,f) vanishes at p.

We have introduced three types of derivative operator on manifolds. It is
helpful to contrast them with respect to two features: the background geomet-
ric structure they presuppose (if any) and the types of tensor fields to which they
can be applied. One finds a trade-off of sorts. The exterior derivative operator
ds presupposes no background structure (beyond basic manifold structure).
But it is only applicable to smooth m-forms (for some m or other). In con-
trast, the Lie derivative operator £¢ and the covariant derivative operator V,
can both be applied to arbitrary smooth tensor fields. But the first presup-
poses (i.e., is defined relative to) a smooth contravariant vector field &; and the
latter can itself be thought of as a layer of geometric structure beyond pure
manifold structure. (Another difference, of course, is that £ leaves intact the
index structure of the tensor field on which it acts, whereas d; and V, both add
a as a covariant index.)

Let us now consider “coordinate differentials.” Let (U, ¢) be an n-chart on
the n-manifold (M, C), andletu’: U — R (i = 1,.. ., n) be the coordinate maps
on U determined by ¢. We know that the associated smooth coordinate-curve
tangent fields ;1, ...,y form a basis for the tangent space at every point in
U. (Recall the discussion in section 1.2.) The notation

2 (L
aul )7 \qur
is often used for these fields. And give any smooth scalar field f on U, the

] b
action of (;) on f is often written, simply, as <87f> Using this notation,
u u

i

we have, by equation (1.2.5),

(1.7.5) (aui)lp— <3ui>|p (f) —thp(f)_ ( dxt )\rp(p)
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for all p in U. In particular, if we take f to be uJ, it follows from equation
(1.2.6) that

(1.7.6) el Rl o (W) =vi(w) = 5y

at all points in U. Furthermore, if V is a derivative operator on M, we have,
by condition (DO5),

022 (ai) (dof) = (ai) (Vaf) = (%) (f) = (%)

So, taking f to be u/ once again, we have

3\ ul
= Jy = = 5.
(1.7.8) <8ui> (dan!) = <8ui) = Jjj.

This shows that the co-vectors

(daul), ..., (dau™)

a 8 a

i) o g at every point in U.
u u

Many useful facts follow from the preceding lines. For example, it follows

form a dual basis to (a—

that the index substitution field &} can be expressed as

2 \* a \*
(1.7.9) 8 = (ﬁ) (dbu1)+"'+(au”> (dpu™.

And it follows that, for all smooth scalar fields f on U,
n
(1.7.10) apf = Z <i) (dyud).
J

(In both cases, the left- and right-side fields must be equal since they have

b
a
the same action on the basis fields <a—) . Consider equation (1.7.10). We

ui
b
know from equation (1.7.7) that contraction with (F) on the left side yields
u
b
a
(%) and we know from equation (1.7.8) that contraction with (F) on
U U
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]
the right side yields (a—f> as well.) If we were not using the abstract index

n

notation, we would express equation (1.7.10) in the form
n
af ;
¥ Z ouJ
J=1
Next we consider “coordinate derivative operators.” The basic fact is this.

PROPOSITION 1.7.11. Let M be an n-manifold, let (U, ) be an n-chart with non-
empty domain on M (in the atlas that defines the manifold), and let u': U — R
(i=1,...,n) be the coordinate maps determined by ¢. Then there is a unique

b
d
derivative operator V on U such that V“(F) =0foralli?
u

Proof. Uniqueness follows easily from proposition 1.7.3. Suppose V and V’
are derivative operators on U with V' = (V, C} ). Then, for all i,

R abcba”
Va oul = Va gui) T \oui )

So if V and V’ both satisfy the stated condition, it must be the case that

a n
ch (;) = 0, foralli. This, in turn, implies that C?, = 0. (Somewhat more
U

generally, if two derivative operators agree in their action on a set of vector
fields that span the tangent space at each point, the derivative operators must
be equal.)

We now establish existence by explicitly exhibiting a derivative operator
V on U that satisfies the stated condition. First, given any smooth scalar field
f on U, we take V,f to be the field on the right side of equation (1.7.10).
(We have no choice here, since d, f = V. f for all derivative operators.) Next
consider any smooth tensor field on U that carries at least one abstract index.

Y\ ,
It can be expressed uniquely as a sum over the basis fields (F) and (dgul).
U
Consider an example. The field ¥ can be expressed uniquely in the form

. n n nij 9 a 3 b
= Zy"(ﬁ) (@) (dcu").

i=1 j=1 k=1

2. Here, as usual, we have suppressed explicit reference to manifold atlases. We mean, of
course, that (M, C) is an n-manifold, (U, ¢) is an n-chartin C, and V is a derivative operator on the
restricted manifold (U, Cjy).
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We take the action of Vj, on y%? to be given by

2EED)H DY E,u( )(3 J)<du><dmu)

i=1 j=1 k=1 I=1
Here we introduce a new summation variable [, take the partial derivative of

the scalar field ’if with respect to u!, and add (dyu') to the list of fields on
the right. This prescription can be generalized. In every case, we determine
the action of Vj, on a tensor field by first expressing the field as a sum over the

3\ .
basis fields (;) and (dyu’), and then generating a new sum (with m as a
u

new covariant index) in three steps: we introduce a new summation variable ¢,
take the partial derivative of the scalar coefficient field with respect to u‘, and
then add (dp,u') to the list of fields in the sum. One can easily check that the
operator so-defined satisfies conditions (DO1) through (DO6). And it is clear

3 b
that V, (F) = 0 for all i. For when we (vacuously) represent any particular
u
9 b
field <—> in the indicated way,
outo

boon b
0 (9
<8u"0> - ;a <8u"> ’

1

L . dat .
the coefficients & are constant (either 0 or 1), and so — =0 for all i

and [. 0

We call this derivative operator—the one identified in the proposition—
the coordinate derivative operator canonically associated with (U, ¢). Sometimes,
when the there is no ambiguity about the n-chart with which it is associated,

b
9
the operator is written as 9. So 8“(?) = 0 for all i. As we shall see in the
u

next section, all coordinate derivative operators are flat; i.e., their Riemann
curvature fields vanish.

PROBLEM 1.7.3. Let V be the coordinate derivative operator canonically associated
with (U, @) on the n-manifold M. Let u' be the coordinate maps on U determined
by the chart. Further, let V' be another derivative operator on U. We know (from
proposition 1.7.3) that there is a smooth field C; on U such that V' = (V, C}).
Show that if

e = ZZZ% )dbui)(du)

i=1 j=1 k=1
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n ; a a
then a smooth vector field £ = ZE (;) on U is constant with respect to V'
u
i=1
(i.e, V. b = 0) iff
o8 2”: i 1
w
foralli and j. (The “Christoffel symbol” ij is often used to designate the coefficent
ik
field C.)

Next, we make use of proposition 1.7.11 to prove a useful proposition about
“position fields.”

PROPOSITION 1.7.12. Let V be the coordinate derivative operator canonically
associated with (U, @) on the n-manifold M. Let u' be the coordinate maps on U
determined by the chart, and let p be a point in U. Then there exists a unique smooth
vector field x® on U such that (1) V x® = 8L and (2) x* = 0 at p.

Proof. (Existence) Consider the field x* defined by

a __ . i i i Y
(1.7.11) x4 = ; (u'—u (p))(aui) .
Clearly itsatisfies condition (2) since (' — u/(p)), = (u'(p) — u'(p)) = 0. And

it satisfies (1) because

U= Y —ui<p>)(3ii)b 5 <vaui)(aii)b = 5.
i=1

i=1

b~

(The first equality follows from the fact that the basis fields (%) are constant
U

with respect to V; the second equality follows from the fact that (all) derivative
operators annihilate all constant scalar fields; and the third equality follows
from equation (1.7.9).)

(Uniqueness) Assume x’% satisfies conditions (1) and (2) as well, and con-
sider the difference field (x'* — x%). It is constant with respect to V (because
Va(x"? — xP) = 82 — 82 = 0), and it is the zero vector at p. So it must be the
zero vector everywhere; i.e., x'* = x%. O

We refer to x“ as the position field relative to p (associated with the coordinate

derivative V ).
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In the last few paragraphs we have dealt with the derivative operator
V canonically associated with an arbitrary n-chart (U, ¢) on an arbitrary n-
manifold M. Let us now consider the special case where M is the manifold
R", (U, ) is the (global) n-chart where U = R", and ¢: U — R"is the identity
map. (So u' = (xi o <p) = x'.) In this case, we get

(1.7.12) (%) = (%)(f)

from equation (1.7.5). Of course, we have already encountered the fields

i) They were the first examples of vector fields that we considered in

x

section 1.3. (There we used equation (1.7.12) to characterize the fields.)
Many familiar textbook assertions about “differentials” fall out as conse-

quences of the claims we have listed. For example, the equation
n
af ;
af = — | dx/
f Z <8xJ )
j=1
comes out in our notation as
n
of ;
d = —_— d xJ,
=Y (35 )4

and the latter is just an instance of equation (1.7.10).

The coordinate derivative operator V canonically associated with the coordi-
nates x', ... , x" is defined on the entire manifold R" (because the coordinates
are). So, too, the associated positions fields x # (relative to particular points) are
defined on the entire manifold. Note that we have encountered these position
fields before as well. Suppose we take p to be the origin (i.e., suppose x*(p) = 0
for all 7). Then, recalling equation (1.7.11), we have

a _ . i Y
=245
In the case n = 2, the right-side field is precisely what we called the “radial
expansion” field in section 1.3. We can picture it as follows. Given any point
g in R?, there is a natural isomorphism between the vector space R? and the
tangent space to the manifold R? at q defined by

(s x2)|—>x1 2 ) + x? i )
’ oxt /g 0x2 )y

If we identify these two, then we can think of x*|; as just the “position vector”
04 that runs from the origin o to q. (See figure 1.7.1.)
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|

Figure 1.7.1. The position field x% on R? (relative to point o).

1.8. Curvature

In this section we introduce the Riemann curvature tensor field R} ; and
discuss its intuitive geometric significance. We start with an existence claim.

LEMMA1.8.1. Suppose V is a derivative operator on the manifold M. Then there
is a (unique) smooth tensor field Ry ; on M such that for all smooth fields & b,

(1.8.1) Rgcdéb = =2V Vy £°

Proof. Uniqueness is immediate since any two fields that satisfied this con-
dition would agree in their action on all vectors &” at all points. For existence,
we introduce a field R} ; and do so in such a way that it is clear that it satisfies
the required condition. Let p be any point in M and let §b be any vector at p.
We define R} §b by considering any smooth field £¥ on M that assumes the
value §b at p and setting R} , §b = —2 V[ Vy £%. It suffices to verify that the
choice of the field &% plays no role. For this it suffices to show that if 5? is a
smooth field on M that vanishes at p, then necessarily Vi Vj, n® vanishes at
p as well. (For then we can apply this result, taking n” to be the difference
between any two candidates for £”.)

The usual argument works. Let A, be any smooth field on M. Then we
have, by condition (DO6),

0= ViV (77“ }\u) = (V[c Uu) (Vd] )\a) +n* Vic Vi Aa

+ (Vic Map) (Va1 ) + 2a Vie Vg n*.

(Note: In the third term of the final sum the vertical lines around the index
indicate that it is not to be included in the anti-symmetrization.) Now the first
and third terms in that sum cancel each other. And the second vanishes at
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p. So we have 0 = A, V. V3 n* at p. But the field A, can be chosen so that it
assumes any particular value at p. So V[V n* = 0 at p, as claimed. O

R}, is called the Riemann curvature tensor field (associated with V). It codes
information about the degree to which the operators V, and Vj fail to commute.
Several basic properties of R} ; are collected in the next proposition.

PROPOSITION 1.8.2. Suppose V is a derivative operator on the manifold M. Then
the curvature tensor field R, associated with V satisfies the following conditions:

(1) For all smooth tensor fields o' ;" on M,

...bg

at...or ai...ar n al...ar n
2V Vy o Ryt --ta Ry ca

br..bs — %nby..bs by..bs_1n
nay...ar pal ai...ar—1n pay
—oy T Ry — oy Ty ned*

a —
2) Rfy = 0.

a —
3) R[bcd] =0.
4) V[’”R\Z\cd] =0 (Bianchi’s identity).

Proof. Condition (1) is proved in the now familiar way using (D06) and lemma
1.8.1. We proceed in two steps. First, we show that 2 V|; Vjj a), = an R}, for all
fields o, on M. To do so, we consider an arbitary smooth field £ on M, expand
0 = V[ V4 (6% 2s), and invoke the lemma. Then we turn to the general case.
We contract agll"_'_‘gs' with s smooth contravariant vector fields and r smooth
covariant vector fields, apply V|.Vj, expand, and then use our previous
results. Condition (2) follows immediately from lemma 1.8.1. For (3), notice

that given any smooth scalar field @ on M, we have, by (1),
R, Vea =2V VYo
and hence, by (D06),
R Ve =2V VYo = 0.

Since any covariant vector at any point can be realized in the form V, « (recall
lemma 1.7.2), it follows that R ;, = 0 everywhere.

The argument for (4) is just a bit more complicated. Given any smooth field
ap on M, we have

2NV ap =V (Rch ag) = (W Rch)a“ + Rcblcd Vi .
But we also have, by (1),

2V VaVyay, = Rgm Vi oy + RZrc V; ay.
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If we anti-symmetrize these two equationsin (r, ¢, d), then we have 2 V;, V. V5
on the left side of both. So (equating their right sides),

(Vir Ripja)) e + Ripea % @a = R Yoty + Ry Vi e

The second term on the left here is equal to the second term on the right. So,
by condition (3), we have

(Vir Ripjea)a = 0.

But «, is arbitrary, and so we have (4). O

PROBLEM 1.8.1. Let V and V' be derivative operators on a manifold with Vi, =
(Vin, Cpr.), and let their respective curvature fields be Ry ; and Ry ;. Show that

(1:8.2) Ry = Ry +2Vie Gy +2Cj1 €y,

PROBLEM 1.8.2. Show that the exterior derivative operator d on any manifold
satisfies d* = O'ie O (dm abl b,) = 0forall smoothp-formsoqJl b, (Hint: Make

A, b..c..d)

PROBLEM 1.8.3. Show that given any smooth field £, and any derivative operator
Vona manifo d, £¢ commutes with V (in its action on any tensor field) iff
ViV €™ = R} E". (Here, of course, R}  is the curvature field associated with V.
If this conditions holds, we say that €% is an “affine collineation” with respect to V.
Hint: First show that if Kj} = Ry» &" — ;% &™, then for all smooth fields a! ",

(L&Y% —Va Le)ay ) = ap! o KN+ gt K

mby .bs_1m “nbs
a2...0r o ay..0r—1M 1,q
—abl . Kk, — .. —ay " b’ K
PROBLEM 1.8.4. Show that given any smooth field £* on a manifold, the operators
Le and d, commute in their action on all smooth p-forms. (Hint: Make use of the
equation stated in the hint for problem 1.8.3.)

Itis not our purpose to attempt to develop systematically the theory of forms
on a manifold, but we shall pause for one comment on the result stated in
problem 1.8.2. Let ay, .4, be a smooth n-form on a manifold M withn > 1. We
say that is closed if its exterior derivative vanishes. And we say that it is exact
if there is a (n — 1)-form on M of which it is the exterior derivative. (So, for
example, the form ay, is closed if d, o = 0, and it is exact if there is a smooth
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form B, such that oy, = dy Bp.) It follows immediately from the problem that
every exact form is closed. It turns out that the converse is true as well, at
least locally, but the proof is non-trivial. We record the fact here for future
reference.

PROPOSITION 1.83. Let ag,. 4, be a smooth closed n-form on the manifold M
with n > 1. Then, for all p in M, there is an open set O containing p, and an
(n—1)-form Bg,. a, , on O such that ag,. 4, = da; Ba,...a,-

Global assertions can also be made if M satisfies suitable conditions. If M
is simply connected, for example, then all closed 1-forms are (globally) exact.
And if M is contractible then, for all n > 1, all closed n-forms are (globally)
exact. (See Spivak [57, volume I] for proofs of the two claims. Proposition 1.8.3
is a consequence of the second, since all manifolds are locally contractible.)

Suppose M is a manifold with derivative operator V and associated cur-
vature field R} ;. We say that V is flat (or that M is flat relative to V) if R}
vanishes everywhere on M. The next proposition makes clear the intuitive
geometric significance of flatness.

PROPOSITION 1.8.4. Let V be a derivative operator on the manifold M. If parallel
transport of vectors on M relativeto V is path independent, then V is flat. Conversely,
if V is flat, then, at least locally (i.e., within some open neighborhood of every
point), parallel transport of vectors relative to V is path independent. (If M is
simply connected, the converse holds globally.)

Proof. Firstassume thatparallel transport of vectors on M is path independent.
Let p be any point in M, and let §“ be any vector at p. We extend §“ to a smooth
vector field £% on all of M by parallel transporting § @ (via any curve) to other
points of M. The resulting field is constant in the sense that V, £¥ = 0 every-
where. (This follows from the fact that all directional derivatives of £” at all
points vanish.) Hence, R} ;& b= —2VVy&* = 0 at all points. In particular,
Ry, §b = 0 at p. Since §b was arbitrary, we have R} , = 0 at p.

Conversely, suppose that R} ; vanishes on M. To show that parallel trans-
port on M is, at least locally, path independent, it will suffice to show that
given any vector g % at point p, there is an extension of § % to a smooth
field £* on some open set O containing p that is constant; i.e., V£ =0
everywhere in O. (For then, given any point g € O, and any curve y from

p to q whose image falls within O, parallel transport of §“ along y must
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yield Sl‘;.) To see that a vector field satisfying V. &P =0 and Sl‘; = §“ does
exist locally, one writes out these two conditions in terms of local coordi-
nates and generates a set of partial differential equations. These equations,
it turns out, have a solution if a certain “integrability condition” is satis-
fied. That condition, is nothing but the equation R}, = 0 expressed in local
coordinates. (For further details, see, for example, Spivak [57], volume 2,
chapter 4.) O

We know from proposition 1.7.11, that given any n-chart (U, ¢) (with non-

empty domain) on an n-manifold, there is a unique derivative operator V on
b

U such that V, i) = 0 for all i. (Here u!, ..., u" are the coordinate maps
U

on U determined by (U, ¢).) We called it the “coordinate derivative oper-
ator canonically associated with (U, ¢).” It follows immediately, of course,

that N’ 3\
de<—.) =2V Vd](—.> =0
e\ out oul

for all i. This, in turn, implies that Ry, =0, since the fields

9 b b
<F> (8 n) span the tangent space at every point. Thus we see
u u

that coordinate derivative operators canonically associated with local charts are
flat.

The geometric significance of the curvature tensor field can also be expli-
cated in terms of “geodesic deviation.” Suppose &% is a smooth vector field on
the manifold M whose integral curves are geodesics with respect to V. (We
shall say that £% is a geodesic field with respect to V.) Further suppose that A% is
a smooth field that satisfies £z A* = 0. Then we can think of the restriction of
A% to an integral curve y of €% as a field that connects y to an “infinitesimally
close” integral curve y’. If we do, the second derivative field £" Vn(g:m Vin k“)
along y represents the “relative acceleration” of y’ with respect to y. The
following proposition shows how this field can be expressed in terms of the
Riemann curvature field.

PROPOSITION 1.85. Suppose £% is a geodesic field on the manifold M with
respect to V. Further suppose A* is a smooth field that satisfies £¢ A% = 0.
Then

(1.83) E" VL (™ Vud®) = chdébxc g4,

“530-47773_Ch01_2P.tex” — 1/23/2012 — 17:18 — page 72



DIFFERENTIAL GEOMETRY [ 73
Proof. We have £"V, &% =0 (since &% is a geodesic field) and §"V, A% =
AV, €% (since ££ A% = 0). The rest is just a calculation.
E'VL(EM Vi AY) = E" V(A" Vi £%) = (E" VU A" ) Vi EC +EM A LV, E°
= (E" VA" )V £+ E" A Vi £+ E AT R 6T
= (E" VA" )V €4+ A" N (E" V€Y — (A" Vi EM V€
+E"A"REET
= Ry §" A" E"

rmn
from the fact that in the sum before the equality sign, the second term is 0,

and the first and third terms cancel each other.) O

(The third equality follows from R%  &" = —2 V[, W, §%. The final one follows

PROPOSITION 1.8.6. Suppose V is a derivative operator on the manifold M.
Then V is flat iff all geodesic deviation on M (with respect to V) vanishes; i.e.,
given any smooth geodesic field £%, and any smooth field A% such that £¢ A* = 0,
E" Vi (E™ VuA®) = 0.

Proof. The “only if” half follows immediately from proposition 1.8.5. So sup-
pose that all geodesic deviation vanishes. Then, given any vectors E“ and % ata

0, 0 0
point p, it must be the case that R}, , g0 )¢ % = 0. (We can always choose field &*
and A on an open set containing p such that £ is a geodesic field, £z 1* =0,

and £% and A% assume the values g“ and 3% at p, respectively.) Equivalently,

0,0 0
it must be the case that R}, gb g4 = 0 for all vectors P at p. Our conclusion
now follows by the symmetries of the Riemann tensor recorded as conditions

(2) and (3) in proposition 1.8.2. By (2), first, it follows that R} , §b §C = 0 forall
vectors .f,’%b at p. Hence, by proposition 1.4.3,
(1.8.4) R(ZC) i=0
at p. Next, by (2) and (3), we have (everywhere)
Ricq + Ripe + Rigy = 0.
But condition (2) and equation (1.8.4) jointly imply
Rica = Ripe = Rigp

atp. So R}, = 0 at our arbitrary point p. O
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Equation (1.8.3) is called the equation of geodesic deviation. Notice that it
must be the second derivative field £€"V, (E’” Vin k“) that enters the equation,
and not the first derivative field £" V, A%. The latter is unconstrained by the
curvature of the manifold. It can assume any value at a point.

1.9. Metrics

A (semi-Riemannian) metric on a manifold M is a smooth field g,;, on M that
is symmetric and invertible; i.e., there exists an (inverse) field g¥ on M such
that g,;, g = 6¢.

It is easy to check that the inverse field g% of a metric g, is symmetric and
unique. It is symmetric since

nb ¢c b _mc be
S, =g".

gt =g"8;=g" (gumg™) = (gmng"™) g™ =8}, 8

(Here we use the symmetry of g, for the third equality.) It is unique because

1bc

if g’’¢ is also an inverse field, then

/ncab_
"=

g/bc =g g/nc (gnm gmb) — (gmn g/nc) gmb — (Sﬁn gmb — gcb — gbc.

(Here again we use the symmetry of g, for the third equality; and we use
the symmetry of g for the final equality.) One can also check that the inverse
field gh° of a metric g, is smooth. This follows, essentially, because given
any invertible square matrix A (over R), the components of the inverse matrix
A~! depend smoothly on the components of A.

The requirement that a metric be invertible can be given a second formula-
tion. Indeed, given any field g,;, on the manifold M (not necessarily symmetric
and not necessarily smooth), the following conditions are equivalent.

(1) There is a tensor field g? on M such that g, g? = &¢.
(2) Forall pin M, and all vectors €% at p, if g, &* = 0, then &% = 0.

(When the conditions obtain, we say that g,;, is non-degenerate.) To see this,
assume first that (1) holds. Then given any vector £ atany pointp, if g, §* = 0,
it follows that £° = 8¢ £* = gb° g, €% = 0. Conversely, suppose that (2) holds.
Then at any point p, the map from (M) to (M,), defined by £* > g,;, &% is
an injective linear map. Since (Mp)* and (Mp);, have the same dimension, it
must be surjective as well. So the map must have an inverse g defined by
ghc(gab %) =& or ghcgab = ;.

In the presence of a metric g, it is customary to adopt a notation conven-
tion for “lowering and raising indices.” Consider first the case of vectors.
Given a contravariant vector £ at some point, we write g, §* as &j; and given
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a covariant vector 7y, we write gbc 1y as n°. The notation is evidently consistent
in the sense that first lowering and then raising the index of a vector (or vice
versa) leaves the vector intact.

One would like to extend this notational convention to tensors with more
complex index structure. But now one confronts a problem. (It was men-
tioned in passing in section 1.4.) Given a tensor a?’ at a point, for example,
how should we write g™ «%> As a™@? Or as a®™> Or as «®™? In gen-
eral, these three tensors will not be equal. To get around the problem, we
introduce a new convention. In any context where we may want to lower or

raise indices, we shall write indices, whether contravariant or covariant, in a

ab
c

tensors may be equal—they belong to the same vector space—but they need

particular sequence. So, for example, we shall write «*’. or oz"cb or occ"b. (These
not be.) Clearly this convention solves our problem. We write g"¢ «® as o®";
g™ a®b as «*; and so forth. No ambiguity arises. (And it is still the case that
if we first lower an index on a tensor and then raise it (or vice versa), the result
is to leave the tensor intact.)

We claimed in the preceding paragraph that the tensors o, and a®? (at
some point) need not be equal. Here is an example. (It is just a variant of
the one used in section 1.4 to show that the tensors @ and a?® need not be
equal.) Suppose é“, é“, ce g“ is a basis for the tangent space at a point p.

Further suppose o = é“ é‘b §C at the point. Then o% = é“ éc §b there. Hence,
lowering indices, we have a“bc = é“éb §C but oz“cb = é“éc §b at p. These two
will not be equal unless j = k.

We have reserved special notation for two tensor fields: the index sub-
stiution field 8, and the Riemann curvature field R ; (associated with some
derivative operator). Our convention will be to write these as §%, and R ,—
i.e., with contravariant indices before covariant ones. As it turns out, the order
does not matter in the case of the first since §%, = §,”. (It does matter with the
second.) To verify the equality, it suffices to observe that the two fields have
the same action on an arbitrary field o”:

8y’ = (gmg ™ ") o = grng™ o = grng™ o = 8% o,

Similarly we can verify (if we are raising and lowering indices with g,;) that
8%, = g and 84 = ggp. (We shall take these different equalities for granted in
what follows.)

Now suppose g;;, is a metric on the n-dimensional manifold M and p is a

1 2 n
pointin M. Then there exists an m, with 0 < m < n,and abasis§%, &%, ..., &°
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for the tangent space at p such that

gt =11 if l1<i<m,

gabé“éb:—l if m<i<n,
i J . , .

gah&°E = 0 if Q]

Such a basis is called orthonormal. Orthonormal bases at p are not unique,
but all have the same associated number m. We call the pair (m, n —m) the
signature of g,;, at p. (The existence of orthonormal bases and the invariance
of the associated number m are basic facts of linear algebraic life. See, for
example, Lang [36].) A simple continuity argument shows that any connected
manifold must have the same signature at each point. In what follows we shall
restrict attention to connected manifolds and refer simply to the “signature
Ofgab-”

A metric with signature (n, 0) is said to be positive definite. With signature
(0, n), it is said to be negative definite. With any other signature it is said to be
indefinite. One case will be of special interest to us later. A Lorentzian metric is
a metric with signature (1, n — 1). The mathematics of relativity theory is, to
some degree, just a chapter in the theory of four-dimensional manifolds with
Lorentzian metrics.

Suppose g, has signature (m, n — m), andé“, é“, ..., E%isan orthonormal

basisata point. Further, suppose 1% and v* are vectors there. If i = Y 1, I é“
and v =31, v é“, then it follows from the linearity of g,;, that

mm m+1m+1l nn

b 11
= uUv+...+pv— g VvV —...— Q.

(1.9.1) Gap 5V

In the special case where the metric is positive definite, this comes to

11
1.9.2) gabu“vb=uu+...+ﬁ3.

And where it is Lorentzian,
a b 11 22 nn
(1.93) G WV =pv—pv—...—pv.

So far we have introduced metrics and derivative operators as independent
objects. But, in a quite natural sense, a metric determines a unique derivative
operator.

Suppose g, and V are both defined on the manifold M. Further suppose
y: I — M is a smooth curve on M with tangent field £% and A% is a smooth
field on y. Both V and g,;, determine a criterion of “constancy” for A%. A% is
constant with respect to V if §" V,A* = 0 and is constant with respect to g,
if g A% A is constant along y—i.e., if £" Vi, (gzp A% ") = 0. It seems natural
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to consider pairs gy, and V for which the first condition of constancy implies
the second.

Let us say that V is compatible with g, if, for all y and A% as above, A% is
constant with respect to g,, whenever it is constant with respect to V. The next
lemma gives the condition a more economical formulation.

LEMMA 1.9.1. Suppose V is a derivative operator, and gy, is a metric, on the
manifold M. Then V is compatible with g, iff V; gy = 0.

Proof. Suppose y is an arbitrary smooth curve with tangent field £ and A% is
an arbitrary smooth field on y satisfying £" V, A% = 0. Then

£" Vi(gap 17 1%) = gy A" " Vi A +gap A €7 %A% +AT AT €7V g
—— ——
=0 =0
= 1720 €" % gap.
Suppose firstthat V, gz, = 0. Then it follows immediately that £" ¥, (g, A% A7) =
0. So V is compatible with g,;,. Suppose next that V is compatible with g,;,. Then
for all choices of y and A% (satisfying £" V, A* = 0), we have A% AP £" V}, g, = 0.
Since the choice of A% (at any particular point) is arbitrary and g,;, is symmetric,

it follows (by proposition 1.4.3) that £" V, g;, = 0. But this must be true for
arbitrary €% (at any particular point), and so we have V,, g, = 0. O

Note that the condition of compatibility is also equivalent to V, g = 0. To
see this, recall (problem 1.7.1) that V; 6™, = 0. Hence,
0= gbn Vaacn — gbn va(gm grc) — gbn Gnr Vagrc +gbngrc i Gor
= 8" Vg + 8" g Vg = Vu g™ +8" g™ Y gur.

S0 if V, gy =0, it follows immediately that V, g? = 0. Conversely, if V, g = 0,
then g?" g™ V, g, = 0. And therefore,

0=gu e 8”8 Vagnr = 8" 8, Vi gor = Vo gps-

The basic fact about compatible derivative operators is the following.

PROPOSITION 1.9.2. Suppose g, is a metric on the manifold M. Then there is a
unique derivative operator on M that is compatible with ggy,.
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Proof. To prove that M admits any derivative operator at all is a bit involved,
and we skip the argument. (See Geroch [23]. It turns out that if a manifold
admits a metric, then it necessarily satisfies the countable cover condition
(M5) that we considered in section 1.1. And the latter, as noted in proposition
1.7.1, guarantees the existence of a derivative operator.) We do prove that if M
admits a derivative operator V, then it admits exactly one V’ that is compatible
with Zab-

Every derivative operator V' on M can be realized as V' = (V, C%, ), where
C%,. is a smooth, symmetric field on M. Now

V/agbc = Vaghc + 8nc Cnab + 8bn Cr:,w = Vagp + Ceab + Chac-
So V'’ will be compatible with g, (i.e., Vi g, = 0) iff
(1.9.4) Vagbe = —Coeab — Chag-

Thus it suffices for us to prove that there exists a unique smooth, symmetric
field C%,_on M satisfying equation (1.9.4). To do so, we write equation (1.9.4)
twice more after permuting the indices:

Vegap = — Chea — Cach>
Vb 8ac = —Copa — Cape-
If we subtract these two from the first equation, and use the fact that C,, is
symmetric in (b, ), we get
1
(1.9.5) Cabe = E(Va 8be — Vb 8ac — chub)r

and, therefore,

1
(1.9.6) ch = > g% (Y gbe — Vb Gne — Ve gub)-

This establishes uniqueness. But clearly the field C = defined by equation
(1.9.6) is smooth, symmetric, and satisfies equation (1.9.4). So we have exis-
tence as well. O

In the case of positive definite metrics, there is another way to capture the
significance of compatibility of derivative operators with metrics. Suppose the
metric g, on M is positive definite and y : [s1,52] — M is a smooth curve on
M.3 We associate with y a length

3. Officially (in section 1.2), we have taken a “smooth curve on M” to be a smooth map of the form
y: I — M where I is an open (possibly infinite or half infinite) interval in R. Let us now agree to
extend the definition and allow for the possibility that the interval I is not open. In this case, we take y
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s 1
vl = f (gan°8")7 ds,
51
where £% is the tangent field to y. This assigned length is invariant under
reparametrization. For suppose o : [t1, t2] — [s1, s2] is a diffeomorphism (we
shall write s = o (t)) and &'? is the tangent field of y’ = y oo : [t1, ] &> M.

d
Then§'% = g“d—i. (Recall equation (1.3.1) in the proof of proposition 1.3.2.) We

may as well require that the reparametrization preserve the orientation of the
_ . . , ds
original curve—i.e., require that o (t1) = s1 and o (t2) = s;. In this case, pri 0

everywhere. (Only small changes are needed if we allow the reparametrization

) : ds
to reverse the orientation of the curve. In that case, i 0 everywhere.) It

d
follows that
ty b 1 t
lv'| =f (an &8’ th:/
51

t

? agb % @
(gan&°87)7 —
) bl
=/ (ap&°£°)2 ds = |y|.
s1

Let us say that y: I — M is a curve from p to q if I is of the form [s1,s2],
p=vy(s1), and q = y(s2). In this (positive definite) case, we take the distance
from p to g to be

d(p.q) = g1b.{ly| : ¥ is a smooth curve from p to g}.

Further, we say that a curve y: I — M is minimal if, for all s € I, there
exists an ¢ > 0 such that, for all s1,s; € I with s1 <s <, if s —s1 < ¢ and
if y' = y|1s1.5,) (the restriction of y to [s1, 1), then |y'| = d(y(sl), y(sz)). Intu-
itively, minimal curves are “locally shortest curves.” Certainly they need not
be “shortest curves” outright. (Consider, for example, two points on the “equa-
tor” of a two-sphere that are not antipodal to one another. An equatorial
curve running from one to the other the “long way” qualifies as a minimal
curve.)

One can characterize the unique derivative operator compatible with a pos-
itive definite metric g, in terms of the latter’s associated minimal curves. But
in doing so, one has to pay attention to parametrization.

tobe smooth ifthereisanopeninterval I' C R,withI € I’,andasmoothmapy’: I’ - M, suchthat
y'(s) = y(s) forall s € I. And in this case, of course, we obtain the “tangent field of y” by restricting
that of y” to I. Furthermore, if o : I’ — I is a bijection betweeen (not necessarily open) intervals in
R, we understand it to be a diffeomorphism if o and ¢! are both smooth in the sense just given.
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Let us say that a smooth curve y:I — M with tangent field £% is
parametrized by arc length if for all £%, g, £¢ £ = 1. In this case, if I = [s1, 5],

then ) .
|y|=/ (gup£°£7) ds / Lds=s—s1.
$1 S1

(Any non-trivial smooth curve can always be reparametrized by arc length.)
Our characterization theorem is the following.

PROPOSITION 1.93. Suppose g, is a positive definite metric on the manifold
M and V is a derivative operator on M. Then V is compatible with g, iff for all
smooth curves y parametrized by arc length, y is a geodesic with respect to V iff it
is minimal with respect to g,p.

Note that the proposition would be false if the qualification “parametrized
by arc length” were dropped. The class of minimal curves is invariant under
reparametrization. The class of geodesics (determined by a derivative operator)
is not.

We skip the proof of proposition of 1.9.3, which involves ideas from the
calculus of variations. And we assert, without further discussion at this stage,
that more complicated versions of the theorem are available when the metric
gap under consideration is not positive definite. (We shall later consider the
Lorentzian case.)

We have already demonstrated (proposition 1.8.2) that the Riemann tensor
field associated with any derivative operator exhibits several index symmetries.
When the derivative operator is determined by a metric, yet further symmetries
are present.

PROPOSITION 1.9.4. Suppose g,y is a metric on a manifold M, V is the derivative
operator on M compatible with g,,, and R% , is associated with V. Then Rgpeg
(= gam R, satisfies the following conditions.

(1) Rap (cd) = 0.
(2) Rafpea) = 0.
() Riahyea = 0.
(4) Rabed = Redab-

Proof. Conditions (1) and (2) follow directly from clauses (2) and (3) of propo-
sition 1.8.2. And by clause (1) of that proposition, we have, since V, g, = 0,

0=2VcVi18ab = Eub R”Md + an Rnbcd = Ryacd + Rabed-
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That gives us (3). So it will suffice for us to show that clauses (1)—(3) jointly
imply (4). Note first that

0 = Rypeg + Ragbe + Racap

= Rabed — Riabe — Racbd-
(The first equality follows from (2), and the second from (1) and (3).) So
anti-symmetrization over (a, b, c) yields
0 = Riabcid — Rafabe) — Riachid-

The second term is 0 by clause (2) again, and Rygpcjg = — Rygepja- So we have
an intermediate result:

(1.9.7) Rigpca = 0.

Now consider the octahedron in figure 1.9.1. Using conditions (1)—-(3) and
equation (1.9.7), one can easily verify that the sum of the terms corresponding
to each triangular face vanishes. For example, the shaded face determines the
sum

Rabcd + Rbdca + Radbc = _Rabdc - Rbdac - Rdabc =-3 R[abd]c =0.

So if we add the sums corresponding to the four upper faces, and subtract the
sums corresponding to the four lower faces, we get (since “equatorial” terms
cancel),

4 Ryped — 4 Regap = 0.

This gives us (4). O

Rcdab

Figure 1.9.1. Symmetries of the Riemann tensor field R4
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We say that two metrics gy, and g7, on a manifold M are projectively equiva-
lent if their respective associated derivative operators are projectively
equivalent—i.e., if their associated derivative operators admit the same
geodesics up to reparametrization. (Recall our discussion in section 1.7.) In
contrast, we say that they are conformally equivalent if thereisamap Q: M — R
such that

gab = 2 gab.

Q is called a conformal factor. (If such a map exists, it must be smooth and non-
vanishing since both g,;, and g, are.) Notice thatif g,; and g7, are conformally
equivalent, then, given any point p and any vectors £% and n“ at p, they agree
on the ratio of their assignments to the two; i.e.,

abE°E" _ g8’

gan®n®  gapn®n®

(if the denominators are non-zero).

If two metrics are conformally equivalent with conformal factor €2, then
the connecting tensor field C _that links their associated derivative operators
can be expressed as a function of Q.

PROPOSITION 1.9.5. Ifg,, andgl, = Q? g, are metrics on the manifold M, and
V' =(V, C“bc), then

1
(1.9.8) o= —E[S“b%ﬂz—ké‘t Vi 2% — gy gV Q7).

Proof. Since V' is compatible with g, it follows that
1
g/dr Crbc = E[Vd g/bc -V g/dc - ch/db]

(Recall equation (1.9.5) in the proof of proposition 1.9.2.) If we substitute
Q2 g, for g, and use the fact that V is compatible with g, this gives us

1
Qg ', = E[gbc Vi Q% — g4 Vi Q% — gap Vi 7).
Contracting both sides with g* yields
1
Q2cY, = 58 gV Q? -84 v, Q2 — 84V 27,

as claimed. O

The next proposition asserts that if metrics are both projectively and confor-
mally equivalent, then they can differ by—at most—a multiplicative constant.
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(The converse implication is immediate.) The result will later (in section 2.1)
be of crucial importance in our discussion of the physical signficance of the
spacetime metric.

PROPOSITION 1.9.6. Suppose the hypotheses of proposition 1.9.5 obtain and, in
addition, ggp, andg’, are projectively equivalent. Further suppose that the dimension
of M is at least 2. Then 2 is constant on M.

Proof. Let the dimension of M be n > 2. We know that C‘ must satisfy
equation (1.9.8). But by proposition 1.7.10, we also have

(1.9.9) e = 8% 0+ 8% ¢

for some smooth field ¢.. The proof proceeds by playing off equations (1.9.8)
and (1.9.9) against each other. Contracting the two equations (and using the
fact that §%, = n), we get

n
22

a

1 2 2 2 2
cba_—ﬁ[%sz +nV, Q% -V, Q] = Vi 7,

e = 9p 1oy = (n+1)gy.

So

1 n+1
1.9.10 -V, Q% = .
(1.9.10) IRIAL b
Substituting into equation (1.9.8), this yields

n+1
abc = " [ ab(pc+8aC (%] _gbcgm Wr]~

Comparing this expression for C% with equation (1.9.9), we get
8% ¢+ 8% pp = (n+1)8uc 8" or-
If we contract both sides with g, we are left with
" +¢% = (n+1)ne’.

Hence, since n > 2, 9% = 0. So V}, Q% = 0, by equation (1.9.10). O

Note that in one-dimensional manifolds, all metrics are projectively equiv-
alent. (All smooth curves are geodesics up to reparametrization with respect
to all derivative operators.) For this reason the proposition fails if n = 1.
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In the case where a derivative operator V is determined by a metric g, the
Riemann tensor field R ; associated with the former admits an instructive
decomposition. Consider first the Ricci tensor field Ry, and scalar curvature
field R defined by

Rap = Rcab

C

R=R%(=g" Ry).
The first is symmetric since, by conditions (1), (3), and (4) of proposition 1.9.4,

Ryp = ng Riape = ng Repad = Rpg-

It also follows from the symmetries listed in proposition 1.9.4 that these are,
up to sign, the only fields that can be obtained by contraction from RY, ;.
(Contraction on any two indices yields either the zero field or R, and, there-
fore, contraction on all four indices [two at a time] yields either the zero field
or £R.)

PROBLEM 1.9.1. Let V be a derivative operator on a manifold M compatible with
the metric g, Use the Bianchi identity (in proposition 1.8.2) to show that

V‘I(Rab_%gﬂbR) =0.

(This equation will figure later in our discussion of Einstein’s equation.)

The Weyl (or conformal) tensor field Cypy is defined by
(1.9.11)

2
Cabcd = Rabcd - m [gu[d Rc]b +gb[c Rd]a] - Rga[c gd]b

(n—1)(n—2)

(if the dimension n of the underlying manifold is at least 3). The second
and third terms on the right side exhibit symmetries (1)—(4) from proposition
1.9.4. Therefore, Cyey does so as well. Furthermore, as is easily checked,
Cabca
a decomposition of R, in terms of R,p, R, and that part of R,y whose

= 0. So all contractions of Cpp.4 vanish. Thus equation (1.9.11) provides

contractions all vanish. Later we shall see that Einstein’s equation in relativity
theory correlates R, and R with the presence of mass-energy but does not
constrain Cype4. So, in a sense, the Weyl field is that part of the full Riemann
curvature field that is left free by the dynamical constraints of the theory.

It turns out that the Weyl field is conformally invariant; i.e., we have the
following basic result.
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PROPOSITION 1.9.7. Let g, and gly, = Q% g,;, be metrics on a manifold with
respective Weyl fields Cypeq and Clapeg. Then C'%q = CPyy.

One can prove this with a laborious but straightforward calculation using
problem 1.8.1 and proposition 1.9.5. (See Wald [60, pp. 446—467].)

We have said that a metric gy, is flat if its associated Riemann tensor
field Ryy4 vanishes everywhere. In parallel, we say that it is conformally flat if
its Weyl tensor field C,j4 vanishes everywhere. It follows immediately from
proposition 1.9.7 (and the definition of Cy) that if a metric is conformally
equivalent to a flat metric, then it is conformally flat. It turns out that the
converse is true as well in manifolds of dimension at least 4. (In dimension 3,
Capeq vanishes automatically.)

Our next topic is “isometries” and “Killing vector fields.” Given two man-
ifolds with a metric, (M, g,;) and (M’,gl;), we say that a smooth map ¢:
M — M’ is an isometry if 9*(glp) = gap- (Recall our discussion of “pull-back
maps” in section 1.5.) This condition captures the requirement that ¢ pre-
serve inner products. To see this, consider any point p in M and any two
vectors £% and p” at p. The two have an inner product gy, § pP at p. The
push-forward map (¢p) carries them to vectors ((¢p)«(6%)) and ((¢p)«(0%)) at
¢(p), whose inner product there is ggp,,, ((¢9p)«(67)) ((#p)«(p?)). In general,
there is no reason why these two inner products should be equal. But they will
be if ¢* (g75) = gup, for then

Zabyy §°0" = (07 (8ab)) €40 = Gabiyi) ((00)+(6D) (@p)(0"))-

The second equality is just an instance of the condition (equation 1.5.2) that
defines ¢*(g/).

Now suppose A% is a smooth (not necessarily complete) vector field on M.
We say that A% is a Killing field (with respect to g,p,) if £3 g, = 0 or, equivalently,
if it satisfies “Killing’s equation”

(1.9.12) Viaty =0.

(Here V is understood to be the derivative operator on M compatible with g,;,.)
Equivalence here follows from proposition 1.7.4:

£)Lgub =" vngub +gnbvu)¥n+ganvb}\n = va)‘b +Vb)\a~
Note that

A% is a Killing field <= the (local) flow maps determined
by A% are isometries.
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This assertion is just a special case of proposition 1.6.6, and it explains the
classical description of Killing fields as “infinitesimal isometries.”

The following proposition is useful when one undertakes to find or classify
Killing fields.

PROPOSITION 1.9.8. Let g, be a metric on the manifold M with associated
derivative operator V. Further, let A* be a Killing field on M (with respect to gy ).
Then

ViV de = —R" gpc A

Proof. Given any smooth field A* on M, we have
2Via% e = R™ ), hom,

Zv[cva,] Ap = R Am,

bea

2VpVe ha = R™, Am.

abc

If we subtract the third equation from the sum of the first two, and then use
the fact that V; o) = 0, we get

2V, Vyhe = (R™, + R — R™, Vim

cab bca —
=3R",Am— 2Ry .
But R”[‘ubc] = 0, and so our claim follows. O

In the following problems, assume that g,; is a metric on a manifold M
and V is its associated derivative operator.

PROBLEM 1.9.2. Let &% be a smooth vector field on M. Show that

.f:ggab =0 < Legyp=0.

PROBLEM 1.9.3. Show that Killing fields on M with respect to g, are affine
collineations with respect to V. (Recall problem 1.8.3.)

PROBLEM 1.9.4. Show that if £ is a Killing field on M with respect to g, then
the Lie derivative operator £¢ annihilates the fields Rypeq, Ry, and R (determined

bY gab)'

PROBLEM 1.9.5. Showthatif§% and n® are Killing fields on M (with respectto gy, ),
and k is a real number, then (§% + n®), (k£%), and the commutator [, n]* = £Lg n®
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are all Killing fields as well. (Thus, the set of Killing fields has the structure of a Lie
algebra.)

PROBLEM 1.9.6. Let n® be a Killing field on M with respect to ggp. (i) Let y be
a geodesic with tangent field £°. Show that the function E = £% ng is constant on
y. (i) Let T° be a smooth tensor field that is symmetric and divergence free (i.e.,
ViT% =0), and let J* be the field T®n,,. Show that V;J* = 0. (Both of these
assertions will be important later in connection with our discussion of conservation

principles.)

PROBLEM 1.9.7. A smooth field n® on M is said to be a “conformal Killing field”
(with respect to gap) if £(2%gap) = 0 for some smooth scalar field Q. Show that
if n® is a conformal Killing field, and M has dimension n, then

1 c
Vianp = — (M n") Gab-

n

The set of Killing fields on a manifold with a metric has a natural vec-
tor space structure (problem 1.9.5). It turns out that if n is the dimension
of the manifold and d is the dimension of this vector space, then 0 <d <
% n (n+ 1). We will not prove this inequality but will show that “n-dimensional
Euclidean space” does, in fact, admit % n(n+ 1) linearly independent Killing
fields.

Let V be the flat derivative operator on the manifold R" (with n > 1)
canonically associated with the (globally defined) projection coordinate maps

x!,...,x". (Recall our discussion toward the end of section 1.7.) We know that
a a
the basis fields 2 e 0 and co-basis fields (dyx1), ..., (dx") are
ax1 dx"

all constant with respect to V. We take the Euclidean metric on R" to be the
field
(1.9.13) Zab = (dax)(dpx!) + . . 4 (dax") (dpx™)

and take n-dimensional Euclidean space to be the pair (R",g,;). It follows
that

9 \*/ 3 b n i 9 \* ; 9 b n
8 \ 57 )\ 5k ) = D (dax) Fw (dpx’) k) T > 8o = 8y
i=1 i=1

a
for all j and k. Thus the fields (i) (i
axl ax"

basis for g, at every point, and the signature of g, is (n,0). It also follows

a
) form an orthonormal
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0 a \* .

that (—) = gan<—,> = (dgx') for all i. (This does not hold in gen-
ax' J, ax?

eral. For example, as we shall see later, when we raise and lower indices

9 ,
with the Minkowski metric on R", (?) = —(dgx") for some choices of i.)
x a

‘ . 9 3\
A%ty = g™ dn Iy — gon i — i
(@°x") =g (dnx') =g <8x> <8x>

for all i and, therefore, the inverse metric field g® can be expressed in the

Hence

form

b 3\ /o \ AR I
(1.9.14) 8" =5.7) 54 .+ o) (57 ) -

Note also that V; g, = 0—i.e., that V is the unique derivative operator com-
patible with gy,.. (This follows immediately since the scalar coefficient fields
on the right side of equation (1.9.13) are all constant.)

Now we proceed to find all Killing fields in n-dimensional Euclidean space.
Doing so is easy given the machinery we have developed.

PROPOSITION 1.9.9. Let % be a Killing field in n-dimensional Euclidean space
(R", gsp) (with n> 1), let V be the flat derivative operator on R"™ canonically
associated with the projection coordinate maps x',...,x" (which is compatible
with g,y ), let p be any point in R", and let x* be the position field on R" determined
relative to p and V. (Recall proposition 1.7.12.) Then the following both hold.

(1) There exist a unique constant, anti-symmetric field F,y, and a unique constant
field k%, such that

(1.9.15) & = x* Fap + kp.

(Here, of course, “constant” means “constant with respect to V.”)
(2) The vector space of Killing fields in (R", g,p) has dimension % n(n+1).

Proof. (1) (Existence) Consider the fields Fy, = V; &), and k, = & — x* Fy.
Since % is a Killing field, V(4 &) = 0. So Fyy, is anti-symmetric. Clearly, the two
fields satisfy equation 1.9.15. So what we need to show is that they are both
constant with respect to V. Fy, is, since Vi, Fy, = V, Vp§, = —R" |, &, = 0.
(The second equality follows from proposition 1.9.8, and the third from the
fact that V is flat.) Furthermore, kj, is constant, since
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Viky = V&, — Vi (x“ Fap) = Fup — Fap Vo x* = Fup — Fap 8%, = Fup — Fpp = 0.

(For the second equality we use the fact that V, F,;, = 0, and for the third that
Va X #= Ban')

(Uniqueness) Assume that the fields F/;, and k), also satisfy the stated
conditions. It follows that

Fap = Fupd"a = Fupy Vo x" = Va (X" Fup +kp) = Va &y
= Vll(XnF/nb +k/b)
= F/nbvaxn = F/nbsna = F/ab
and, therefore, k;, = k.
(2) Let d be the dimension of the vector space of Killing fields in (R", g,3).
It follows from part (1) that d is of the form d = d; + dp, where d; is the

dimension of the vector space of constant, anti-symmetric fields F,;, on
(R", gsp), and d, is the dimension of the vector space of constant fields k*

a a
on the manifold. Clearly, <88—1> e, (i> form a basis for the latter.
x

ax"
. n(n—1) L
So d; = n. We claim that d; = . This will suffice, of course, for
-1 1
then d =n+ =1 = nn+ ). To verify the claim, consider the expan-

sion of any constant, anti-symmetric field F,;, in terms of the co-basis fields
(dax1), ..., (dax™). The coefficient fields are all constant (since F, is). So they
determine an n x n anti-symmetric (real) matrix. (The ™ entry is the coeffi-
cient of (d,x")(dpxJ) in the expansion.) Thus the problem reduces to that of
determining the dimension of the vector space of all n x n anti-symmetric real
matrices. Since all numbers on the diagonal must be 0, and the ij" and ji"
entries must sum to 0, the number of independent entries is just the num-

ber of ordered pairs (i,j) where 1 <i <j < n. And this number is certainly
n(n—1)

. So we are done. |

Consider, for example, the case of two-dimensional Euclidean space where
there should be 3 (: ¥> linearly independent Killing fields. Here the
space of constant vector fields k% is two-dimensional and is generated by
(8(11)“ and (8(12)“ The space of constant, anti-symmetric fields F,, is

one-dimensional and is generated by

Fap, = (dax?) (dpx?) — (dax?) (dpx?).
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So the full vector space of Killing fields is generated by the three fields
b
1 3
& b= (F) ,
x
2 9\
§ b= (ﬁ) ,
X

3 3 Y 3 Y
£ = x"F, = (' —xl(p))(@) - —xz(p))(@) :

The expression for the third is easily derived using our expression for F,; and
equation (1.7.11) (in the case where u’ = x'):

3
%-b — XaFangnb

Y 3\
= (xl—xl(p»(ﬁ) +<x2—x2<p>)(@)

[(dax") (dnx?) — (da?) (dx") | 8"
= [0 o) + - () |

[(daxh(aiz)b : (dax2)<(,fxl>b:|
o - xl(p))(a‘iz)b ~ - xz(p))@l)h.

The first two are the “infinitesimal generators” of horizontal and vertical
translations. (See figure 1.9.2.) The third is the generator of counterclock-
wise rotations centered at p. If p = (0,0), the third reduces to the field

b b
0 9
x! (ﬁ) —x? ( | ) that we have already encountered in section 1.3.
x x

N T /
\ ~ _ 7/
I I
—_— > —— ~ -
T == -1
0
Figure 1.9.2. Killing fields in the Euclidean plane. +1
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Finally, we briefly consider “manifolds of constant curvature,” a topic that
will arise when we discuss Friedmann spacetimes in section 2.11.

We say that a manifold with metric (M, g,;) has constant curvature k at a
point in M if

(1.9.16) Rabed = & (8ad b — Zac bd)

holds there. (And, of course, we say that is has constant curvature at a point
if it has constant curvature « there for some «.) Note that it is “possible”
for equation (1.9.16) to hold only because the field g;;00 = (824 8bc — Zac vd)

exhibits the same index symmetries as Ry (recall proposition 1.9.4):

(1.9.17) Riabyea =0 8(abjed = 0,
(1.9.18) Rapedy =0 Sab(cd) = 0,
(1.9.19) Ratbea) = 0 8afbed) = 0,
(1.9.20) Rabed = Redab 8abed = Eedab-

To motivate the definition, let us temporarily assume that g, is positive-
definite. (That makes things a bit easier.) Let p be a point in M and let W be a
two-dimensional subspace of M. We take the W-sectional curvature of (M, ga)
at p to be the number

Rgped @® 0 a® B4
(gud 8bc — Bac gbd) at ﬂb af lgd

(1.9.21)

where «* and B* are any two vectors at p that span W. Note that the definition
is well posed. First, the denominator cannot be 0, for that would violate our
stipulation that «® and 8% span W. (Using a more familiar notation, the point
is this: if u and v are vectors such that (u,v)2 = ||u||2 |v||?, then u and v
must be linearly dependent.) Second, the expression is independent of the
choice of &* and B%. For suppose that @* and A* form a basis for W as well,
with @* = f a® +g 8% and % = ha® +k % Then, by equations (1.9.17) and
(1.9.18),

Raped a* Bb a‘ Bd = (fk —gh)2 Rubed o ﬂb ot 'Bd
(80d 8bc — ac 85a) &° B &° B = (fk —gh)? (8ad 8bc — Gac gba) o B o B,

and the factor (fk — gh)? simply drops out.
In the special case of a smooth surface in three-dimensional Euclidean
space (with the metric induced on it), the sectional curvature at any point is
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just what we would otherwise call the “Gaussian curvature” there. (See Spivak
[57], volume 2, chapter 4.)

Now we show that constancy of curvature at a point can be understood to
mean equality of sectional curvatures there.

PROPOSITION 1.9.10. Let M be a manifold of dimension at least 2, let g,;, be a
positive-definite metric on M, and let k be a real number. Then

Rabed = K (8ad bc — Zac 8bd)

holds at a point iff all sectional curvatures there (i.e., all W-sectional curvatures for
all two-dimensional subspaces W) are equal to k.

Proof. The “only if” half of the assertion is immediate. For the converse,
assume that all sectional curvatures are equal to x at some point p in M. Our
goal is to show that the difference tensor

Daped = Rabed — & (8ad 8bc — Gac 8bd)

vanishes at p. Note that D,y inherits the symmetry conditions (1.9.17)-
(1.9.20). Note, as well, that (i) Dpeg @® B2 «® B = 0 for all vectors a* and B
at p. For if @% and B¢ are linearly independent, the claim follows from the fact
that all sectional curvatures at p are equal to k. And if they are not linearly
independent, it follows from (1.9.17) (or (1.9.18)). What we show is that D4
cannot satisfy (i) and the listed symmetry conditions without vanishing.

Let 4%, [1%, . .., Ju* be a basis for M,. We claim that (ii) Dypeq ﬁ“ ,{Lb ;iLC /lld =
0, for all 1,j and k. This is clear, since by (i) and the symmetry (1.9.20),

0 = Dapea f1° (i? + A%) 1 (1 + [1%) = 2 Dypeq 1 1® f2° .

We also claim that (iii) D,y = — Dygp- For this, note that by (i) and (ii)—and
by the symmetries (1.9.17), and (1.9.18), (1.9.20)—

0 = Dihea (1e° + 1) (1 + [2P) (A° + 1) (A% + 12

Jecld

i k
=2 Dapea (1 AP 11 12 b

iglhJck
A )

iglphkel
= 2 (Dacbd + Dadbe) 1% it 1€ 2.

Since this holds for all ,tiﬂ /ij ;kﬁ ;lLd (and since L% [0, ..., % is a basis for M),
we have (iii). Finally, it follows from (iii) and the other symmetries of Dy
that
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Dabcd = _Dadcb = Dadbc = _Dacbd = Dadcb + Dabdc = _Dabcd - Dabcd'
So Dabcd =0. g

Now we drop our temporary assumption that we are dealing with a positive-
definite metric and return to the general case.

So far, we have considered only the property of having constant curvature at
a point. We say that (M, g,;,) has constant curvature if it has constant curvature
at every point and the value of the curvature is everywhere the same. The
second clause (same value at every point) needs to be added because it does
not follow automatically—at least, not if M is two-dimensional. (In that special
case, the property of having constant curvature at every point is vacuous and
there is no reason why sectional curvatures at different points need be equal.)
But, perhaps surprisingly, it does follow automatically if the dimension of M
is at least 3.

PROPOSITION 1.9.11. (Schur’s Lemma) Let M be a manifold of dimensionn > 3,
and let g;;, be a metric on M (not necessarily positive-definite). Suppose there is a
smooth scalar field k on M such that

Rabed = K (8ad be — Zac 8bd)-

Then « is constant.

Proof. By Bianchi’s identity (proposition 1.8.2), V[mR“de] = 0. It follows that
if we apply V,, to « (8% 8% — 8% 8%4), and anti-symmetrize over m, ¢, d, we
get 0. But (8% 8%, — 8% 8,) is already anti-symmetric in ¢, d. So

0= V[m (I( (Sad (Sbc]) = 5a[d (Sbc Vm] K.
Contracting on indices a, d and on b, ¢ yields
0=(n—1)(n—2) Vyk.

So (given our assumption that n > 3), we may conclude that V,,, x = 0—i.e,,
that « is constant on M. O

As it happens, the assertion of the proposition is also true if n = 1, for in
that case we have (at every point) Ryped = 0 = (84 8bc — Zac &pd)- (Every tensor
over a one-dimensional vector space vanishes if it is anti-symmetric in two
indices.) The proposition fails only if n = 2.

Let (M, ggp) and (M’, g/,) be two manifolds with metric. We say they are
locally isometric if, for all points p € M and p’ € M/, there exist open sets O C
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M and O' € M’ containing p and p’, respectively, such that the restricted
manifolds (O, gap0) and (O, g, ) are isometric.

Suppose (M, g;) and (M’, g/} both have constant curvature and their
respective curvature values are x and «’. Then, one can show, they are locally
isometric iff (i) M and M have the same dimension, (ii) g,; and g, have the
same signature, and (iii) k = «’. (See Wolf [64], proposition 2.4.11.) But these
conditions certainly do not guarantee that (M, gg;) and (M, g/, are (globally)
isometric. (We will have more to say about this in section 2.11.)

1.10. Hypersurfaces

Let (S, Cs) and (M, Cp) be manifolds of dimension k and n, respectively, with
1 <k < n. A smooth map ¥: S — M is said to be an imbedding if it satisfies
the following three conditions.

(I1) W is injective.

(I2) At all points p in S, the associated (push-forward) linear map (¥p).:
Sp — My (y) is injective.

(I3) For all open sets Oq in S, ¥[O1] = W[S]N O, for some open set O, in
M. (Equivalently, the inverse map ¥~1: W[S] — S is continuous with
respect to the relative topology on W[S].)

(Recall our discussion of push-forward and pull-backward maps in section
1.5.)

Several comments about the definition are in order. First, given any point
p in S, (12) implies that (¥p)«[S,] is a k-dimensional subspace of My ). So
the condition cannot be satisfied unless k < n. Second, the three conditions
are independent of one another. For example, the smooth map ¥: R — R?
defined by W(s) = (cos(s), sin(s)) satisfies (I12) and (I3) but is not injective. It
wraps R round and round in a circle. On the other hand, the smooth map
¥: R — Rdefined by W(s) = s satisfies (I1) and (I3) but is not an imbedding
because (Wo).: Ro — Rp is not injective.4 (Here Ry is the tangent space to the
manifold R at the point 0). Finally, a smooth map W: S — M can satisfy (I1)

4. (Vo) annihilates the vector — in R¢ (and so has a non-trivial kernel). This is clear since,

x
for any smooth real-valued function f defined on some open subset of R containing W (0) = 0, we

have
(o ()= (zuom) = () =0 =0
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Figure 1.10.1. The map W is not an imbedding, because its image bunches up on itself.

and (12) but still have an image that “bunches up on itself.” It is precisely this
possibility that is ruled out by condition (I3). Consider, for example, a map
¥: R — R? whose image consists of part of the image of the curve y = sin(1/x)
smoothly joined to the segment {(0,y) : y < 1}, as in figure 1.10.1. It satisfies
conditions (I1) and (I2) but is not an imbedding because we can find an open
interval O; in R such that given any open set O, in R2, W[0O1] # O, NW[R].

Suppose (S, Cs) and (M, Cps) are manifolds with S € M. We say that (S, Cs)
is an imbedded submanifold of (M, Cy) if the identity map id: S — M is an
imbedding. If, in addition, k = n — 1 (where k and n are the dimensions of the
two manifolds), we say that (S, Cs) is a hypersurfacein (M, Cp). In what follows,
we first work with arbitrary imbedded submanifolds and then restrict attention
to hypersurfaces. Where confusion does not arise, we suppress reference to
charts.

Once and for all in this section, let (S, Cs) be a k-dimensional imbedded
submanifold of the n-dimensional manifold (M, Cuy), and let p be a point
in S. We need to distinguish two senses in which one can speak of “tensors
at p.” There are tensors over the vector space S, (call them S-tensors at p) and
ones over the vector space M, (call them M-tensors at p). So, for example, an
S-vector £% at p makes assignments to maps of the form f: O — R where O
is a subset of S that is open in the topology induced by Cs, and f is smooth
relative to Cs. In contrast, an M-vector £% at p makes assignments to maps
of the form f: O — R where O is a subset of M that is open in the topology
induced by Cy, and f is smooth relative to Cp.> Our first task is to consider
the relation between S-tensors at p and M-tensors there.

5. As an aid to clarity, we shall sometimes mark S-tensors with a tilde, and sometimes we shall
indicate the character of a vector £ simply by indicating, explicitly, its membership in (S,)* or
(Mp)* (Co-vectors 1, shall be handled similarly.)
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Let us say that £% € (Mp)“ is tangent to S if £* € (idp)+[(Sp)*]. (This makes
sense. We know that (idp).[(Sp)®] is a k-dimensional subspace of (Mp)*; &¢
either belongs to that subspace or it does not.) Let us further say that n, in
(Mp), is normal to S if n, &% = 0 for all £* € (M,)” that are tangent to S. Each
of these classes of vectors has a natural vector space structure. The space
of vectors £* € (Mp)* tangent to S has dimension k. The space of co-vectors
Na € (Mp)y normal to S has dimension (n — k) (see problem 1.10.1).

PROBLEM 1.10.1. Let S be a k-dimensional imbedded submanifold of the n-
dimensional manifold M, and let p be a point in S.

(1) Show that the space of co-vectors ng € (Mp)q normal to S has dimension
(n—k). (Hint: Consider a basis for (Mp)* containing (as a subset) k vectors
tangent to S. Then consider a dual basis.)

(2) Show that a vector £% € (M,)® is tangent to S iff n, &% = 0 for all co-vectors
Na € (Mp)a that are normal to S.

We note for future reference that a co-vector n, € (Mp), is normal to S iff
(idp)*(na) = 0. Itis worth giving the argument in detail to help gain familiarity
with our notation. (idy)*(na) is the zero vector in (Sp)q iff ((idp)*(14)) £* =
0 for all €% € (S,)* But (by the definition of the pull-back operation),
((idp)*(na)) §* = na ((idp)«(§%)). S0 (idp)* (na) = O iff na ((idp)«(§?)) = O for all
£% e (Sp)*. But a vector £* € (Mp)* is tangent to S precisely if it is of the form
((idy)+ (%)) for some &% € (Sp)*. So (idy)*(na) = 0 iff ns &* = 0 for all vectors
£% € (Mp)® that are tangent to S; i.e., 1, is normal to S.

The classification we have introduced can be extended to indices on M-
tensors of higher index structure. Consider, for example, the M-tensor a“bc g
at p. We take it to be tangent to S in its first contravariant index if naa”bc ;=0
for all n, € (Mp), that are normal to S. (Note that this characterization, which
applies to all M-tensors with contravariant indices, is consistent with the one
given initially for the special case of contravariant vectors by virtue of the
second assertion in problem 1.10.1.) And we take it to be normal to S in its
second covariant index if & da“bc ;= 0forallg de (Mp)d that are tangent to S.

So far, M-tensors at p can be tangent to S only in their contravariant indices
and normal to S only in their covariant indices. But now (and henceforth in
this section), let us assume that a metric g, is present on M. Then the clas-
sification can be extended. We can take take the tensor to be tangentto Sina
covariant index if it is so after the index is raised with g,;,. And we can take it to
be normal to S in a contravariant index if it is so after the index is lowered with

“530-47773_ChO1_2P.tex” — 1/23/2012 — 17:18 — page 96



DIFFERENTIAL GEOMETRY / 97

gap- Now we have four subspaces to consider side by side. In addition to the
old k-dimensional space of contravariant M-vectors at p tangent to S, we have
a new (n — k)-dimensional space of contravariant M-vectors at p normal to S.
And in addition to the old (n — k)-dimensional space of covariant M-vectors
at p normal to S, we have a new k-dimensional space of covariant M-vectors
at p tangent to S. As one would expect, it is possible to introduce “projection
tensors” that, when applied to (contravariant and covariant) M-vectors at p,
yield their respective components in these four subspaces. We shall do so in a
moment.

Let us say that an M-tensor at p is (fully) tangent to S (or normal to S) if it

is so in each of its indices. The subspace of M-tensors ™%

by, AL P tangent
to S has dimension k(" +9).

Nothing said so far rules out the possibility that there is a non-zero vector
£% € (Mp)*® that is both tangent to, and normal to, S. Such a vector would
necessarily satisfy g,;, £% &% = 0. (Since £% is tangent to S, and g,; £? is normal
to S, the contraction of the two must be 0.) There cannot be non-zero vectors
satisfying this condition if g, is positive definite. But the possibility does arise
when, for example, the metric is of Lorentzian signature.

We say that our imbedded submanifold S is a metric submanifold (relative to
the background metric g;;, on M) if, for all p in S, no non-zero vector in (M,)*
is both tangent to S and normal to S. An alternative formulation is available.
The pull-back field id*(g,;) is always a smooth, symmetric field on S. But it is
non-degenerate (and so a metric) iff S is a metric submanifold (see problem
1.10.2).

PROBLEM 1.10.2. Let S be a k-dimensional imbedded submanifold of the
n-dimensional manifold M, and let g,;, be a metric on M. Show that S is a met-
ric submanifold (relative to ggp) iff for all p in S the pull-back tensor (idy)*(g,p)
at p is non-degenerate; i.e., there is no non-zero vector €% € (S,)* such that

((1dp)* (gap)) ° = 0.

In what follows, we assume that S is a metric submanifold (relative to gg;).
Non-metric submanifolds do arise in relativity theory. (“Null hypersurfaces,”
for example, are non-metric.) But they are not essential for our purposes, and
it will simplify our discussion to put them aside. The assumption that S is a
metric submanifold, for example, implies—and, indeed, is equivalent to the
assertion that—there is a basis for My, consisting entirely of vectors that are either
tangent to, or normal to, S (but not both). It is convenient to be able to work with
such a basis. (It is always true (in the presence of a metric) that we can find k
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linearly independent vectors at p tangent to S, and (n — k) linearly independent
vectors there normal to S. But the combined set of n vectors will be linearly
independent iff the subspaces spanned by the two individual sets share no
non-zero vector; i.e., there is no non-zero vector that is both tangent to, and
normal to, S.)

The vector space of S-tensors at p of a given index structure has the same
dimension as the vector space of M-tensors there that are of the same index
structure and that are tangent to S. In fact, as we now show, there is a canoni-
cally defined linear map ¢, from the first to the second that is injective and so
qualifies as an isomorphism.® We define this isomorphism 6:”1”'“3}1.__195 —
op (&““'“'bl_“m) in stages, considering, in order, scalars (0" order tensors),
contravariant vectors, covariant vectors, and then, finally, arbitrary tensors.

For scalars «, we set ¢,(«) = a. (We do not place a tilde over the first o
because there is no distinction to be drawn here. Scalars are just scalars.) For
vectors £%, we set

Dp(E®) = (idp)«(E®).

It follows immediately from (I2)—the second condition in the definition of
an imbedding—and the definition of tangency that ¢, determines an isomor-
phism between S, and the space of contravariant M-vectors at p tangent to S.
Next, we define ¢ (i4) by specifying its action on vectors £% € (Mp)* that are
either tangent to, or normal to, S. (This suffices since, as we have seen, we
can always find a basis for (My)* consisting entirely of such vectors.)

iia ((#p)~1(%) if&%is tangentto S

if £% is normal to S.

Pp(ila) € =

Clearly, ¢,(7j4) is tangent to S. That much is guaranteed by the second clause
within the definition. Moreover, the action of ¢, on (S;), is injective. (Suppose
¢p(7ia) is the zero vector in (Mp)a. Then s ((¢p) (%)) = 0, for all tangent
vectors £% € (M,)?. But every vector in (Sp)? is of the form (¢,) ! (§%) for some
tangent vector £* € (Mp)®. So 7, is the zero vector in (Sp),.)

Finally, we consider the case of an S-tensor at p of higher order index
structure — say @*,. There are no surprises. We define qbp(&“bc), once again,
by specifying its action on vectors that are all tangent to, or normal to, S.

6. We are presenting a great deal of detail here. Some readers may want to skip to proposition
1.10.1.
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@ ((0p) ™ (1)) (@p) " () (@)1 (£9))
qbp(&“bc) HaVp &= if f1g, vy, and £Care tangent to S

0 if pg, vy, or £¢isnormal to S.

Clearly, ¢, (@) is tangent to S, and the argument that ¢p is injective in its
action on (Sp)Zb is very much the same as in the preceding case. This completes
our definition.

We have established, so far, that for every index structure “”““’bl”b , there

is an isomorphism between the vector space of S-tensors &““'“'bl p. at pand
--Os

the vector space of M-tensors aal"‘“’blmbs at p that are tangent to S. If we
now “aggregate” the different isomorphisms, we arrive at a map ¢, (we use
the same notation) that commutes with all the tensor operations — addition,
outer multiplication, index substitution, and contraction. It follows from our
definition, for example, that ¢, (@, f%) = ¢p(@,) ¢p(B%*) and ¢, (@°?, f*) =
¢p(@) ¢p(B%). In summary, we have established the following.

PROPOSITION 1.10.1. Let S be a metric submanifold of the manifold M. Then
the tensor algebra of S-tensors at any point of S is isomorphic to the tensor algebra
of M-tensors there that are tangent to S.

The map ¢, is closely related to (idy).. Indeed, it agrees with the latter in
its action on contravariant tensors at p. But (idy)« makes assignments only to
contravariants tensors there, whereas ¢, makes assignments to all tensors.
(Similarly, (¢,)~! agrees with (idy)* in its assignment to covariant tensors at
p that are tangent to S.)

Now we switch our attention to tensor fields on S—i.e., assignments of
tensors of the same index structure to every point of S. Of course, we have
to distinguish between assignments of S-tensors and assignments of M-
tensors. Buttheisomorphisms we have been considering (defined atindividual
f-0r ) between

b1...bs
S-fields and M-fields that are tangent to S—i.e., tangent at every point.

. . ~071...0, ~
points of S) induce a correspondence & O M (¢

The correspondence respects differential structure in the following sense
(in addition to algebraic structure). Let a“l"'a’blmbs be an M-field on S that is
tangent to S. There are two senses in which it might be said to be “smooth.”
Let us say that it is M-smooth if, for every p in S, there is an open set O € M
containing p and an extension of «™ %, , ‘to a field &““'“rblmbs on O that
is smooth relative to the charts Cp. (This sense of smoothness applies to all
M-fields on S, whether they are tangent to S or not.) Let us also say that it
is S-smooth if the corresponding S-field ¢~* (™™, ;) is smooth relative to

...bg
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the charts Cs. One would like these two senses of smoothness to agree, and in
fact they do. By direct consideration of charts, one can establish the following.
(We skip the proof.)

PROPOSITION 1.10.2. Let S be a metric submanifold of the manifold M. Further,

leta™ % bean M-field on S that istangent to S. Then ™%, | is M-smooth
1...Dg 1---Ds

iff it is S-smooth.

In what follows, we shall sometimes say that an M-field on S is smooth
without further qualification. If the field is not tangent to S, this can only
mean that it is M-smooth. If it is tangent to S, the proposition rules out any
possibility of ambiguity.

Consider now the S-field hyj, = id*(gy) on S. It is called the induced metric
or first fundamental form on the manifold S.” (That it is a metric follows from
our assumption that S is a metric submanifold of M. Recall problem 1.10.2.)
Associated with hy, is a unique compatible derivative operator D on S. (So it
satisfies D, hy, = 0.) Itis our goal now to show that it is possible, in a sense, to
express D in terms of the derivative operator V on M that is compatible with
gab- The sense involved is a bit delicate because it makes reference to the map
¢ we have been considering that takes S-fields to M-fields on S tangent to S.
Theidea, in effect, is to translate talk about the former into talk about the latter.

Corresponding to hap is a smooth, symmetric M-field hy, = (f)(ﬁab) =
¢(id*(gsp)) on S that is tangent to S. (It is tangent to S because the image
of every S-field under ¢ is so. How do we know it is smooth? Since gy, is a
smooth field on the manifold M, id*(g,3) is a smooth field on the manifold S.
But id*(g,;) = ¢~ (hap). SO hgp is S-smooth (and, hence, M-smooth as well).)
We can characterize hy, directly, without reference to ’:Lub or ¢, in terms of its
action (at any point of S) on M-vectors that are tangent to, or normal to, S.
10 hop 10 P = gap A% 0P if A% and n® are both tangent to S

if A% or n* is normal to S.
The equivalence is easy to check.?

Several properties of h,j, as well as a companion field k,;, = (g, — hgp) are

listed in the following proposition. Clearly, k,j, is also a symmetric, smooth

7. Warning: the latter (perfectly standard) expression is potentially confusing because hap is not
a “form” in the special technical sense introduced in section 1.7; i.e., it is not anti-symmetric.

8. Suppose A% and n“ are both tangent to S. Then, by the definitions of ¢ and the pull-back map
id*, hop A n® = (id*(gan) 20 0" = id*(gap) $I (A1) T (1) = gap ide (67 (A7) (™ () =
gap A% 0. Alternatively, if either A% or n is normal to S, then hg, A% P = 0 since hyy, is tangent
to S.
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M-field on S. (Here and in what follows, whenever we lower and raise indices
on M-tensors, it should be understood that we do so with gg;,.)

PROPOSITION 1.10.3. Let S be a metric submanifold of the manifold M (with
respect to the metric g, on M). Let hyy, be the M-field on S defined by equa-
tion (1.10.1), and let k,y, be the companion M-field (g, — hyy) on S. Then all the
following hold.

(1) hgy is tangent to S and ky, is normal to S.
(2) For all M-vector fields «® on S,

a) a®istangentto S <= h%a? =a% < k%ab=0and
g b b
b) a%isnormalto S <= k% a? =a® & hiab=0.
b b

(3) h% k. = h® and k% kb, = k% and h% kb = 0.

Proof. (1) We have already given an argument to show that hy, is tangent
to S. (Once again, hy, = ¢(ftab), and the image of every S-field under ¢ is
tangent to S.) Now let £% be any M-vector tangent to S (at any point of S).
Then kyy, % = g, §% — hyy £%. But g, % = hyp &%, since they agree in their
action on both vectors tangent to S and normal to it. So k,, £* = 0. It follows
that k;j, is normal to S in its first index. But kg, is symmetric. So it is (fully)
normal to S. (2) Suppose first that h% af = a® Then a® is certainly tangent to
S, since h“b is tangent to S in the index a. Conversely, suppose «“ is tangent
to S. Then, we claim, h ab and «® have the same action on any vector 7,
(at any point of S) that is either tangent to, or normal to, S. In the first case,
h% ol 1y = gy n® @ = a® n,. In the second case, h“bcxb ng = 0 = a® n,. This
gives us the first equivalence in (a). The second is immediate since k“, ab =
g% —h%) of =% — he, ab. The equivalences in (b) are handled similarly. (3)
It follows from (2) that h* hP and h® have the same action on any vector £° (at
any point of S) that is either tangent to, or normal to, S. So h* hb = h%. The
arguments for k%, kb = k% and h%, kP = 0 are similar. O

PROBLEM 1.10.3. Prove the following generalization of clause (2) in proposition
1.10.3. For all M-tensor fields o %~ on S,

(1) a% is tangent to S in the index a < h“ba"'b'“ =t =

k“boz“'b“' =0.
(2) a~* is normal to S in the index a < k“boz“'b“' =a" =
he o b = 0.
b
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We have formulated the preceding problem in terms of contravariant M-
fields on S. But, of course, this involves no essential loss of generality. For
given one, instead, of form, say, o “ cde» We can always apply the stated results
to gobede — @b gmegndgre and then lower indices.

We can think of h% and k“ as projection operators. Given an M-field
&%, he, £P is its component tangent to S, and k& b is its component normal
to S. More generally, we can use the two operators to decompose an M-field
of arbitrary index structure into a sum of component tensor fields, each of
which is either tangent to S or normal to S in each of its indices (which is not
to say that each of the component fields will be either [fully] tangent to S or
[fully] normal to S). So, for example, in the case of a field ¢ on S, we have
the following decomposition:

a a n m a n m a m a n m
afy =ho, h' ol +ho K ol kY RS e RS K el

(Notice that the two fields, left and right, have the same action (at any point)
on any pair of vectors 1, £°, each of which is either tangent to S or normal
to S.)

We are ready to explain the sense in which the action of D can be expressed
in terms of V. We start with a lemma.

LEMMA1.104. Let S be a metric submanifold of the manifold M (with respect to
the metric gy, on M). Let hyy, be the M-field on S defined by equation (1.10.1).

, 1 2
Finally, leter %, anda ', besmooth Mfields on an open set O C M

that agree on S. Then at all points of SN O,

1 2
n al...ar _ n ai...ar
WinVa @ broby = WV by..bs"

2

. 1 .
Proof. Consider ™%, | =a®% | —a®%  Itvanisheson S.Let
-Ds «e:bs .05

p be a point in SN O. We need to show that

hnmvnﬁalmarblmbs = 0

at p. To do so, it suffices to show that if we contract the left side with any vector
&™ at p that is either tangent to, or normal to, S, the result is 0. That is true
automatically if £ is normal to S (since h",, is tangent to S). And if §™ is
tangent to S, h", £™ = £". So it suffices to show that

§ N BT b =0

for all £ at p tangent to S. The proof of this assertion is similar to other
“well-definedness” arguments given before, and proceeds by considering the

“530-47773_Ch01_2P.tex” — 1/23/2012 — 17:18 — page 102



DIFFERENTIAL GEOMETRY / 103

index structure of ﬂal"'“'blmbs. If B is a scalar field on S, then £"V}, 8 is just
the directional derivative &(B). This has to be 0 because g is constant on S.
One next proves the statement for contravariant vector fields 8 on S using
the result for scalar fields together with the Leibniz rule. And so forth. O

Now suppose a“l“‘“'blmbs is a smooth M-field on S. We cannot expect to be
able to associate with it a field ¥, a“l'"“'blmbs on S. (The latter, if well defined,
would encode information about how a“l'”“’blmbs changes as one moves away
from S in arbitrary directions.) But, by the lemma, we can introduce a field

ai...ar

ai...a . .
W, Vo™ 1., 00 S. At any point of S, we simply extend o™, toa

1
smooth field o ““'“’blmb on some open set O, and set
a1...ar 1 41..ar
W Voo =R N a T
This field need not be tangent to S even if a“l'“a'blu_b is. But we can “make it
tangent” if we project all indices onto S with the field 4", . This action defines
ai...ay

an operator D, on the set of all smooth M-tensor fields o™, “on S that
are tangent to S:

ai...a, _ a a, dl d n C1...6
(1.10.2) Dy o ’blmhs_hlcl...hrcsh bl...hsbshmvnoz r

The basic result toward which we have been working is the following.

dy...ds”

PROPOSITION 1.10.5. For all smooth S-fields ™%, ,
«Dg

¢(Dn &al...ayblmbs) = Dy ¢(&a1‘..uyblmbs).

Proof. Let D be the operator on smooth S-fields that is defined by the condition

= ~01...0 _ 41 ~01...0
Dud™ %, 5 =07 (Dao@ %, )
It suffices for us to show that it is a derivative operator on S and that it is

compatible with k. For then it will follow (by proposition 1.9.2) that b=b.
Consider, first, the compatibility condition. Since ¢ (hy;) = hyp, we have

Dy, I:‘ab

¢_1 (Dn ¢(I:Lub)) = ¢_1(Dn hab) = 4’_1 (hra hsb hmnvm hrs)
¢ (B, " [ Vi (0 Brs) = s Vi BT, ])
.

Y1y h™ Vi has — BTy B Vi hig) = ¢71(0) = 0.
Note that we have used the Leibniz rule (in reverse) to arrive at the fourth

equality. We are justified in doing so because we are here working “within
the shadow” of the projection operator h™,. We can always (locally) extend
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the tensor fields in question, invoke the Leibniz rule for V in its standard
form (where we are working with fields defined on open sets in M rather than
fields defined only on S), and then invoke our lemma to show that it does
not matter how we do the extension. Note also that the fifth equality follows
from the third clause of proposition 1.10.3, and the sixth from the symmetry
of hab- 5

Next we need to verify that D satisfies conditions (DO1) through (DOG)
(section 1.7). The first five are straightforward. The argument is very much
the same in each case. Let us consider, for example, a representative instance
of the Leibniz rule. We have

Du(@® 7ic) = ¢~ (Duld (@) p(7ie)1) = ¢ (h% W 1% ™V, [$(&") (7))
s hq[¢> ) K" Vo $(iig) + (i) K", Vim $(")])
¢~ (®@™) B 1", Vi $(iig) + Bliic) h, By B™, Vi $(@"))
“H(@(@) Da @(iic) + diic) Do #(@™))

=a" ¢~ (Dy (iic)) +iic o' (D (@)

=& Dy fic + fic Dy @®

A few steps here deserve comment. For the fourth equality, we need the fact
that h% ¢(a”) = ¢(@”®) (and a number of similar statements involving change
of index). Note that this is just an instance of the assertion in problem 1.10.3,
since ¢(&™) is tangent to S. And the sixth equality holds because ¢ (acting
at any point in S) is a tensor algebra isomorphism that commutes with the
operations of addition and outer multiplication.

Let us turn, finally, to (DOG). This is the only one of the conditions that
requires a bit of attention. Let « be a smooth scalar field on S. Then

Du Dy = ¢ (Da§(Dy ) = ¢~ (DaDy (@) = ¢~ (K", W,V (W, V).

Here we have used the fact that ¢(«) = «. Now let p be any point on S. We can
extend « to a smooth field & on an open set O in M containing p. Moreover,
we can do so in such a way that V, & is tangent to S on SN O. (This can be
verified with an argument involving charts. Intuitively we keep & constant
as we move out from S in directions normal to S.) So h",V, d= Va & on

SN O. Thus, V, (Jxr is a smooth field on O that agrees with h", V,, thr onSNO. It
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follows that we can understand "}, V,, (h",,,V,at) tobe h", V,,V,, &_ on SN O, and
therefore

z —=1(,mn +

Do Dyt = ¢ (W} BV, Vi )
at p. The tensor on the right side is manifestly symmetric in a and b (since

V satisfies condition (DO6)). Thus D,Dj, « is symmetric in these indices at
our arbitrary point p in S. O

Up to this point we have been attentive to the distinction between S-fields
and M-fields on S tangent to S, between ﬁab and hyg,, and between the oper-
ators D and D. But it is, more or less, standard practice to be a bit casual
about these distinctions or even to collapse them entirely by formally identify-
ing the vector space S, with the subspace of M, whose elements are tangent
to S. (The work we have done to this point—in particular, propositions 1.10.1,
1.10.2, and 1.10.5—makes clear that there is no harm in doing so.) In what
follows, that will be our practice as well. We shall refer to h,j, as the “metric
induced on S” (or the “first fundamental form on S”), refer to D as the “deriva-
tive operator induced on S,” and so forth. We shall also drop the labels “S-field”
and “M-field,” since it is only the latter with which we shall be working.

In effect, we shall be systematically translating “S-talk” into “M-talk.” Here
is one more example of how this works. What should we mean by a “geodesic
on S with respect to the induced metric (or induced derivative operator)”»? We
can certainly understand it to be a map of the form y: I — S that is smooth
with respect to Cs and whose tangent field £ satisfies & "D,E% = 0. Instead,
we shall drop explicit reference to Cs and D and take it to be a map of the
form y : I — S that is smooth with respect to Cyr and whose tangent field §¢
satisfies £"D,£% = 0.

We know that

(1.10.3) N v

on S. (This is just the assertion that Dghy,. = 0, and we proved it in the course
of showing that Dyhy,, = 0. That was the first step in our proof of proposition
1.10.5.) Similarly, one can show that

(1.10.4) h" K", k. Vin hyp =0
on S. However, the mixed projection field 7, defined by
(1.10.5) Tabe = W b kP& N iy

need not vanish. It turns out that 7, is of particular geometric interest. It is
called the extrinsic curvature field on S.
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Figure 1.10.2. The cylinder and the plane (imbedded in three-dimensional Euclidean space)
both have vanishing intrinsic curvature. But the cylinder, in contrast to the plane, has non-
vanishing extrinsic curvature. Notice that there are curves on the cylinder—e.g., y, that are
geodesics with respect to induced derivative operator D that are not geodesics with respect
to the background derivative operator V.

PROBLEM 1.10.4. Prove equation (1.10.4).

The induced metric h,j, and its associated derivative operator D are geometric
structures “intrinsic” to S. They are not sensitive to the way S isimbedded in M.
We say that (S, h,p) has vanishing intrinsic curvature just in case D is flat. The
extrinsic curvature of S, in contrast, is determined by the imbedding. Think of
both a plane and a cylinder imbedded in ordinary three-dimensional Euclidean
space (figure 1.10.2). They both have vanishing intrinsic curvature. But only
the plane has vanishing extrinsic curvature. Notice that all geodesics of the
plane are necessarily geodesics of the ambient three-dimensional space. But
the corresponding statement for the cylinder is not true. There are geodesics of
the cylinder (e.g., y in figure 1.10.2) that are not geodesics of the larger space.
This is a good way to think about extrinsic curvature. Indeed, as we shall prove
(proposition 1.10.7), g, is a measure of the degree to which geodesics in
(S, hgp) fail to be geodesics in (M, g,3). But first we need a lemma.

LEMMA 1.10.6. g = 0.

Proof. Consider any point p in S. If £% is a vector at p tangent to S, we have
£°k”. = 0 and hence £° Tiabe = 0. So it will suffice to show & 74, = 0 for
all £% at p normal to S. Since S has dimension k and M has dimension n,
we can find an open set O containing p and (n— k) smooth scalar fields
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&(i =1,...,n—k) on O such that (i) V, & is normal to S on SN O, for all
i, and (ii) the vectors V& are linearly independent on SN O. (This can be
verified with an argument involving charts. Indeed, the fields & can be local
coordinates induced by a chart on M. What is required is that their associated
coordinate curves all be orthogonal to S where they intersect it.) To complete
the proof, it suffices to verify that (V° &) Tiabje = 0 at p for all i. But this follows
since we have

(V&) Tapge = (V&) BT W K N By = T, BT (VP @) Vi B
= W W Vi By VP &) — By Vi VP ]

— W B YV & = —h' b N V& = 0.

(For the fourth equality, we have used the fact that since hy, VP& =0 on
SN O, it must be the case that k" ¥, (hyy VP &) =0 on SN O. This follows,
once again, from lemma 1.10.4.) O

Now we can give the promised geometric interpretation of 7.

PROPOSITION 1.10.7. Let S be a metric submanifold of the manifold M (with
respect to the metric g, on M). Let V be the derivative operator on M determined
by guy, let hyy, be the induced metric on S, and let 7w,y be the extrinsic curvature
field on S. Finally, let y be a geodesic in (S, h,y,) with tangent field £%. Then

(1.10.6) E"V,EC = nubcéaéb.

Proof. By hypothesis, £" D, &° = 0. And §"h", = &', since £% is tangent to
S. So

0 — Sn h}’n hcmvrgm — %.r(gcm _ kcm)vr %-m — %-r vré-c _ kcm%.r V)’$m~
Therefore,
§TGE = K £V E™ = K, £ V(A 87)
= kcmér(hn;)vrép-i_spvrhn;;) = kcmsr‘i:p vrhmp

= kcm(ga hra)(%.b th)Vr hmp — é_.a%.b hra th Kem \vi hpm — %.a%.bn,abc_

Here we use the fact that k°,, k"™, = 0 for the fourth equality. O
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Given any point p in S, 74, vanishes there iff ., £%? = 0 for all vectors
&% at p that are tangent to S. (This follows, since 7, is symmetric in its first
two indices (lemma 1.10.6) and also tangent to S in them. Recall proposition
1.4.3.) But given any vector £ at p tangent to S, there is a geodesic in (S, hyp)
that passes through p, whose tangent vector there is £%. So it follows from
our proposition that 7, = 0 iff all geodesics in (S, hyy) are geodesics in (M, ggp).
Moreover, the requirement that equation (1.10.6) hold for all geodesics in
(S, hgp) uniquely determines 7.

Next we consider the Gauss-Codazzi equations.

PROPOSITION 1.10.8. Suppose (M, g,p) and (S, hyy,) are as in proposition 1.10.7,
and D is the derivative operator on S determined by h,y,. Further suppose R%,.; is
the Riemann curvature field on M associated with V, and R, , is the Riemann
curvature field on S associated with D. Then

(1.10.7) Rped = =271 Tapm + h%, by WP, Wy R™ wpr,

1
(1.10.8) by WK N Ty = Eh”; W WE K", Runpr.

Proof. The argument consists of a long computation. First, let A% be any
smooth vector field on S tangent to S. Then R ; must satisfy

1
(1.10.9) =5 Ribea AP = Dje Dgy A® = W Wy B4 (W™, 15, Vi A)
= Wy R [(% R B, Vi A"

+h" () Vi A+ B R, N i A

Now, by equations (1.10.3) and (1.10.5),

00 B R VBT = WK g% Wl =hP Wy (k" + ")V W= "
So, by lemma 1.10.6, the first term on the right side of equation (1.10.9)
vanishes. The second and third terms can be simplified by using equa-
tion (1.10.10), the symmetry of hy,, and the fact that h"; h™, = h™;. We
have
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1 b_ P v
—E’R“M r=h e hmd] h“s(Vp W) Vin A"+ I [c hmd]h“n Vo Vin At
= 71 B Vo Ao+ B R RS N Vg A"
an pm 1hP B Kh* R" b
= Tc d]Vm)‘”_E ch™y W R bpm)\-

Now ¢4y is normal to S in its third index. So 7,*"h,;, = 0 and, therefore,

ﬂcun mdvm Ap = ﬂcun mdvm(hnb )\b)
= 7200V by = T PR B AT N By,

—_ an ro__ an r
=, Tgn A =T T4

So we have, all together,

1 1
p
( - ERaVCd — ﬂa[cn ﬂd]m + Ehan h c hmd Rnrpm))\.r =0.
Now let n? be an arbitrary smooth field on S and take W, n? for A". Then, since
the first two terms are tangent to S in the index rI, we have

(R + 279 T — B )y e h™, R",pm)nb =0.

Since this holds for all smooth fields 7” on S, the field in parentheses must
vanish. This gives us equation (1.10.7). The second computation is similar,
and we leave it as an exercise. O

PROBLEM 1.10.5. Derive the second Gauss-Codazzi equation (1.10.8).

The first Gauss-Codazzi equation expresses the intrinsic Riemann curva-
ture tensor field R’ , in terms of the extrinsic curvature field 7, and the full
background Riemann curvature field R, ;. We shall return to it later when we
consider the geometric significance of Einstein’s equation.

So far we have assumed only that S is a metric submanifold of M. Let us now
consider the special case where S is a metric hypersurface, i.e., has dimension
k = (n—1). A slight simplification results. The vector space of vectors normal
to S is now one-dimensional at every point of S. So it consists of multiples
of some (normalized) vector £ where £§%§, = £1. (§%§, cannot be 0 precisely
because S is a metric submanifold.) Whether the value of £§%; is +1 or —1
depends on S and the signature of g,;,. At least if S is connnected, the value
will be the same at every point of S—i.e., everywhere +1 or everywhere —1.
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Let us assume that S and gy, are such that the value is +1 at all points
of S. (The other case is handled similarly.) So there are exactly two vectors &%
normal to S at every point satisfying £* &, = 1. Locally, at least, we can always
make a choice so as to generate a smooth field. We say that S is two sided if it
is possible to do so globally.

Let £ be one such (local or global) smooth normal field on S satisfying
£%&, = 1. Then

(1.1011) hab = (8ab — &a &p),
(1.10.12) kap = &a &p-

(Note that h,;, and (g, — &a &) have the same action on £% and on all vectors
tangent to S.) Now consider the field 7, defined by

(1.10.13) Tah = —Tapc E°.

When hypersurfaces are under discussion, it (rather than ) is often
called the extrinsic curvature field (relative to £%). It is also called the second
fundamental form on S (relative to £%). Notice that

(1.10.14) Tiab) = 0,
(1.10.15) Tabe = — Tap bc,
(1.10.16) Tap = Wy W'y Vi En.

The first assertion follows immediately from lemma 1.10.6. For the second, it
suffices to observe that 7, and —m,; & agree in their action on £° and on all
vectors n° tangent to S. For the third, we have

Tgp = — Tapc§° = _hn{;h’%kpcgcvmhnp =—h", V;)%-pvmhnp

_hn:z ’/Z[Vm(%‘p hnp) _hnp Vin ] = hn;hpb Vm‘i'_p.

Equation (1.10.16) leads to an alternative interpretation of extrinsic curva-
+
ture in the case of hypersurfaces. Let £% be an extension of £% to a smooth
+
field of unit length on some open set O in M, and let h,;, be defined by

+ + + + + o+
hab= Zab— Ea&p- (SO hgp is an extension of h,y, and by, €% = 0.) Then we have

(1.1017) Tah =
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+
on SN O. To prove this, observe first that on SN O, £ hyy, is tangent to S (in
&

+
both indices). This follows since £ g &% = 0 and, hence,

+, + + o4, +,
3 £§hab: "Eg(”lubé )— hab f;é =0.
Therefore on S we have
By = W HS, £ hos= hT, RS £ g
£S+hab =, b£s+hrs: a bv{jér(grs_grés)
r N r N +n +n +1’L
:hahbffg-grs:huhb[g Vi Grs+8nsV §" +8gm % §"]
r N T T r N Py
=hahb(vrss+vsér)=2h(ahb)vr§s
= Zﬂ(ub) = 27Tab.

(The final two equalities follow, respectively, from equations (1.10.16) and
(1.10.14).)

Thus we can think of 7, (up to the factor %) as the Lie derivative of hy,
in the direction £ normal to S. This interpretation will be important later
in connection with our discussion of the “initial value problem” in general
relativity.

Finally let us reconsider the Gauss-Codazzi equations in the present
case. Substituting —m,&;. for 7y, in the equations of proposition 1.10.8
yields

(1.10.18) Riyeq = — 27 7wapp + 0%, WYy P, Wy R™ wpr,
o Wy W S Ty = = S W& R
The second can be expressed as
(1.10.19) Dja 7y = —%h”; h'} W € Ryppr-
Contracting on equation (1.10.18) yields
Ripe = —7% gy + 7% 700 + 'y BT B R™ .

Substituting (g, — &m &") for h",, on the right side, we arrive at

m =
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(1.10.20) Rpe = T Ty — Tap %+ h'} bl Ryp — Ry E™ &7,

where m = 7%,. (Note that Ry, §™ &' is tangent to S, since (by proposition
1.9.4) contracting with £% on b or c yields 0. Hence h", WP . Rypper EMET =
Ryper €™ E7.) Contracting once more yields

R =7%— ”ab”ab ALY Rnp — Ry EME"
(1.10.21) =% ™+ R—2R, E"E".

Of course, in the special case where we are dealing with a hypersurface
imbedded in a flat manifold (R*, , = 0)—e.g., in the case of atwo-dimensional
surface imbedded in three-dimensional Euclidean space—our expressions for
R%.» Rbes and R simplify still further:

(1.10.22) Rabed = Tad The — Tac Thd
(1.10.23) Ry = 7 Tpe — Ty T2,
(1.10.24) R=n’—myn.

1.11. Volume Elements

In what follows, let M be an n—dimensional manifold (n > 1). As we know
from section 1.7, an s-form on M (s > 1) is a covariant field e that is anti-
symmetric (i.e., anti-symmetric in each pair of indices). The case where s = n
is of special interest.

Let a be an n-form on M. Further, let éb(i =1,...,n) be a basis for
the tangent space at a point in M with dual basis ,(i = 1,.. ., n). Then L
can be expressed there in the form

1
(1.11.1) ay b, =knlng, ... 0,
where
1 n
k= abl...bn Ebl .o gb”.
(To see this, observe that the two sides of equation (1.11.1) have the same

1 n
action on any collection of n vectors from the set (gb, ... & }.) It follows that if
ayp, b, and By, p are any two smooth, non-vanishing n-forms on M, then

Bbi..by =f Xby..b,

for some smooth non-vanishing scalar field f.
Smooth, non-vanishing n-forms always exist locally on M. (Suppose (U, ¢)
is a chart with coordinate vector fields (y1)% ..., (7x)% and suppose 7,(i =
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Qqp £ pb >0 L

Qap Ea(_ph) <0

Figure 1.11.1. A 2-form oy, on the Mébius strip determines a “positive direction of rotation”
at every point where it is non-zero. So there cannot be a smooth, non-vanishing 2-form on the
Mébius strip.

1,...,n)are dual fields. Then 717”,1 ... 11y, qualifies as a smooth, non-vanishing
n-form on U.) But they do not necessarily exist globally. Suppose, for example,
that M is the two-dimensional Mobius strip (see figure 1.11.1), and ay, is
any smooth two-form on M. We see that «,), must vanish somewhere as
follows.

Let p be any point on M at which «g, # 0, and let £* be any non-zero
vector at p. Consider the number o), & apb ag pb rotates though the vectors in
M,. If pb = +£P, the number is zero. If p? # +£°, the number is non-zero.
Therefore, as p? rotates between &% and —&9, it is always positive or always
negative. Thus oy, determines a “positive direction of rotation” away from £*
on Mj. ag, must vanish somewhere because one cannot continuously choose
positive rotation directions over the entire Mobius strip.

M is said to be orientable if it admits a (globally defined) smooth, non-
vanishing n-form.

So far we have made no mention of metric structure. Suppose now that
our manifold M is endowed with a metric g,;, of signature (n*,n™). We take
a volume element on M (with respect to g,;) to be a smooth n-form €pyby that
satisfies the normalization condition
(1.11.2) ebrbn €, = (—1)" nl.

n

Suppose €, , is a volume element on M, and éb(i =1,...,n)is an
orthonormal basis for the tangent space at a point in M. Then at that point we
have, by equation (1.11.1),

1 n
(1.11.3) €y by = knlé&p, ... &p,
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wherek=¢, ébl ... Eb Hence, by the normalization condition (1.11.2),
— 1 n 1 n
(—1)" nl=(knl &y, ...&p,) (knt &0 . &)
1 1 1 n n -
= K2l (8, E7) - (Ep, €7) = Kol (1)
So k? = 1 and, therefore, equation (1.11.3) yields

1 n
(1.11.4) €hy . b, $b1 gb" = #+1.

Clearly,ife, , isavolume elementon M, thensois —¢, , .Itfollows from
the normalization condition (1.11.4) that there cannot be any others. Thus,
there are only two possibilities. Either (M, g,;) admits no volume elements (at
all) or it admits exactly two, and these agree up to sign.

Condition (1.11.4) also suggests where the term “volume element” comes
from. Given arbitrary vectors y%...,7% at a point, we can think of

1h
Eblmhn)/ .

mined by the vectors. Notice that, up to sign, €, , is characterized by three

.. P as the volume of the (possibly degenerate) parallelepiped deter-

properties.

(VE1) It is linear in each index.

(VE2) It is anti-symmetric.

(VE3) It assigns a volume V with |V| =1 to each orthonormal paral-
lelepiped.

These are conditions we would demand of any would-be volume measure (with
respect to g,p). If the length of one edge of a parallelepiped is multiplied by a
factor k, then its volume should increase by that factor. And if a parallelepiped
is sliced into two parts, with the slice parallel to one face, then its volume
should be equal to the sum of the volumes of the parts. This leads to (VE1).
Furthermore, if any two edges of the parallelepiped are coalligned (i.e., if it
is a degenerate parallelepiped), then its volume should be zero. This leads to
(VE2). (If for all vectors &%, €y by ghrgb2 = 0, then it must be the case that
€y,..p, 1S anti-symmetric in indices (b1, by). And similarly for all other pairs
of indices.) Finally, if the edges of a parallelepiped are orthogonal, then its
volume should be equal to the product of the lengths of the edges. This leads
to (VE3). The only unusual thing about €y, b, 352 volume measure is that it
respects orientation. If it assigns V to the ordered sequence )1/“, ...,7% then
it assigns (— V) to ]2/“, )1/“, )3/“, ..., 7% and so forth.

It will be helpful to collect here a few facts for subsequent calculations.
Suppose €44, is a volume element on M with respect to the metric g,;, with
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signature (n*, n™). Then

(1.115) eMlng o =(=1)"n! 8[“1911 ...8“’;',1,
(1.116) e = (= 1) (n—1)el s

.Op _ - [ nl
(1.11.7) €M by by = (= 1) 2(n=2)18% . 8%
aag et = (=) =l s

Consider, for example, the case where n =3 and n~ = 0—i.e., where
gap is positive definite. (The general case is handled similarly.) Then equation
(1.11.5) comes out as the assertion e“bcemnq =65, 5b BC,}. To see thatit holds,
consider any anti-symmetric tensor ™" at a point. Then o™ = k™" for
some k. So

abc mnq __ abc
€ g™ =ke™ €,

e — 6k€abc — 6aabc
=651, 55 6% o™,

mngq

Thus for all anti-symmetric &™"1 at the point, we have

(Eabce —68[a

mngq m

8b,6%)a™ = 0.
In particular, given arbitrary vectors A", p", u4 there,

(Ealoc.E _65[11

mnq m

abn ac%))‘[m p" Nq] = 0.

But since the expression in parentheses is itself anti-symmetric in the indices
(m, n, q), this condition can be expressed as

(" e 6614, 85, 8™ p" u? = 0.

mng
Since A™, p", and u1 are arbitrary, it follows that
b b
€ e 649,85 89 =0.

mng ~

This gives us equation (1.11.5). Next, equation (1.11.6) follows from (1.11.5)
since

€ €y = 681% 85, 5°)
=2(s% 6, 5%, — 251 57)

=2(3-2)8 5%, =260 5.
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Finally, equation (1.11.7) follows from (1.11.6) since

b (b b
€™ ey = 287, 8% = (8% —1)8% = 257,

Another fact we shall need is

(1.11.9) Vi € =0

al...0n

(where V is the derivative operator on M determined by g,;,). To see this,
suppose A% is an arbitrary smooth field on M. Then, since A™ Vj, €y, p, 182

wbn
smooth n-form on M, we have

AN €y, b, = P b,
for some scalar field ¢. But then

[ a1...0 _ 01...0p 4 M
@ ( - 1) n! = Qe " Gal...an =€ " A Vm eal...un

1

= A" Vu((—1)" nl) =0.

1
= Ekm Vm(ealman ealn.an) 2

So ¢ = 0 and, hence, A"V, €,..p, = 0- Since A™ was arbitrary, we have
equation (1.11.9).

Finally, we show how to recover ordinary vector analysis in terms of volume
elements. Suppose our manifold M is R?, g, is the Euclidean metric defined
by equation (1.9.13), V is the derivative operator determined by g,;,, and €,
is a volume element on M. Then, given contravariant vectors § and n at some
point, we define their dot and cross products as follows:

E-n=E&"1,,

abc

Exn=e"§nc.

(We are deliberately not using indices on the left.) It follows immediately from
the anti-symmetry of €% that& x n = —(n x &), and that & x n is orthogonal
to both & and 7. Furthermore, if we define the angular measure £(&, ) by
setting

§-n
IEN Imll”

cos£(§,n) =

where ||| = (§-& )%, then the magnitude of & x 5 is given by

[N

77 = an amn 7]
IE X nll = (€ &y N €qpn £™ 1)

Nl

= (261, 5% €™ n" g, nc)
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= (€ &) 00" ne) — € )]
= €l Imll(1 —60524(5777))% = [I& 1l lInlisin £(&, n).

Consider an example. One learns in ordinary vector analysis that, given any
three vectors a, B,y ata point,

y X (@xp)=a(y-p)—B(y-a)
In our notation, this comes out as the assertion
€ Yy (eqmn @™ B") = (1 B") — B (v ),
and it follows easily from equation (1.11.6):

b

abc m gn ca
€ e BT =€

=261 5Py, 0™ B = a®(y, BY) — B’ 1).

Given a smooth scalar field f and a smooth contravariant vector field & on

€cmn Vb a™ ﬂn

M, we define the following:
grad(f) = V°f
div(g) = V,£°
curl(§) = e G, &.

(In the more familiar notation usually found in textbooks, these would be writ-
tenas Vf, V- §,and V x &.) With these definitions, we can recover all the usual
formulas of vector analysis. Here are two simple examples. (Others are listed
in the problems that follow.)

(1) curl(grad f) = 0.
(2) div(curl &) = 0.

The first comes out as the assertion that € V, V. f = 0, which is immediate
since V, V. f is symmetric in (b, ¢). (For this result, flatness is not required.)
The second comes out as V(€% V, £;) = 0. This follows from equation (1.11.9)
and the fact (now using flatness) that V,V}, & is symmetric in (a, b).

PROBLEM 1.11.1. One learns in the study of ordinary vector analysis that, for all
vectors €, n, 6, and A at a point, the following identities hold.

(1) Exm)-(0x2a)=(5-0)(n-4)—(&-2)(n-0)
(2) (8 x(nx0))+(0 x (& xn)+(nx(Ox§)=0.

Reformulate these assertions in our notation and prove them. 0
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PROBLEM 1.11.2. Do the same for the following assertion:
div(§ x ) = n - curl(§) — & - curl(n).

(Here & and n are understood to be smooth vector fields.)

PROBLEM 1.11.3. We have seen (proposition 1.9.9) that every Killing field £% in
n-dimensional Euclidean space (n > 1) can be expressed uniquely in the form

&, = x" Fap +ky,

where F,y, and ky, are constant, F,y, is anti-symmetric, and x# is the position field
relative to some point p. Consider the special case where n = 3. Let €, be a volume
element. Show that (in this special case) there is a unique constant field W* such
that Fup, = €, WE. (If W* = 0, §% is the “infinitesimal generator” of a family of
translations in the direction k®. Alternatively, if k* = 0, it generates a family of
rotations about the point p with axis W*®.) (Hint: Consider W* = %e“chbc. )
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CLASSICAL RELATIVITY THEORY

2.1. Relativistic Spacetimes

With the basic ideas of differential geometry now at our disposal, we turn to
relativity theory.

Itis helpful to think of the theory as determining a class of geometric models
for the spacetime structure of our universe (and isolated subregions thereof,
such as, for example, our solar system). Each represents a possible world
(or world-region) compatible with the constraints of the theory. We describe
these models in stages. First, we characterize a broad class of “relativistic space-
times” and discuss their interpretation. Later, we introduce further restrictions
involving global spacetime structure and Einstein’s equation.

We take a relativistic spacetime to be a pair (M, g,3,), where M is a smooth,
connnected, four-dimensional manifold and g, is a smooth metric on M of
Lorentz signature (1, 3). We interpret M as the manifold of point “events” in
the world.! The interpretation of g, is given by a network of interconnected
physical principles. We list three in this section that are relatively simple in
character because they make reference only to point particles and light rays.
(These objects alone suffice to determine the metric, at least up to a constant.)
We list a fourth in section 2.3 that concerns the behavior of (ideal) clocks. Still
other principles involving generic matter fields will come up later.

In what follows, let (M, g,;,) be a fixed relativistic spacetime and let V be the
unique derivative operator on M compatible with g,;,. Since g,;, has signature
(1,3), at every point p in M, the tangent space M, has a basis é“, ces %“ such
that, for all i and j in {1, 2, 3,4},

1. We use “event” as a neutral term here and intend no special significance. Some might prefer
to speak, for example, of “equivalence classes of coincident point events” or “point event locations.”
We shall take this interpretation for granted in what follows and shall, for example, refer to such
things as “particle worldlines in a relativistic spacetime.”

119
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i1 ifi=1
=1 ifi=2,3,4
i i
and £% &, = 0 if i # j. It follows that given any vectors u®* = Y I, /fL &% and
W= £ atp,

“ 11 22 33 44
(2.1.1) Wy =pmUv—pUv—puv—p@v
and

“ 11 22 33 44
(21.2) W g = (UL — [L L — L L — L L

(Recall equation (1.9.3).)
Given a vector n* at a point in M, we say n* is

timelike if  n%p, > 0,
null (or lightlike) if n%n, =0,
causal if 1%, >0,
spacelike if n%p, <O.

In this way, g,;, determines a “null-cone structure” in the tangent space at every
point of M. Null vectors form the boundary of the cone. Timelike vectors form
its interior. Spacelike vectors fall outside the cone. Causal vectors are those
that are either timelike or null.

The classification extends naturally to curves. We take a smooth curve y:
I — M to be timelike (respectively null, causal, spacelike) if its tangent vector
field y is of this character at every point. The property of being timelike, null,
and so forth is preserved under reparametrization. So there is a clear sense in
which the classification also extends to images of smooth curves.? The property
of being a geodesic is not, in general, preserved under reparametrization. So
it does not transfer to curve images. But, of course, the related property of
being a geodesic up to reparametrization does carry over.

Now we can state the first three interpretive principles. For all smooth
curves y: I — M,

(C1) y is timelike iff y[I] could be the worldline of a point particle with

positive mass:3

2. Here we are distinguishing between the map y: I — M and its image y[I]. We shall take
“worldlines” to be instances of the latter—i.e., construe them as point sets rather than parametrized
point sets.

3. We shall later discuss the concept of mass in relativity theory. For the moment, we take it to
be just a primitive attribute of particles.
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(C2) y can be reparametrized so as to be a null geodesic iff y[I] could be
the trajectory of a light ray;*

(P1) y can be reparametrized so as to be a timelike geodesic iff y[I] could
be the worldline of a free> point particle with positive mass.

In each case, a statement about geometric structure (on the left) is correlated
with a statement about the behavior of particles or light rays (on the right).

Several comments and qualifications are called for. First, we are here work-
ing within the framework of relativity as traditionally understood and ignoring
speculations about the possibility of particles that travel faster than light. (The
worldlines of these so-called “tachyons” would come out as images of spacelike
curves.) Second, we have restricted attention to smooth curves. So, depending
on how one models collisions of point particles, one might want to restrict
attention here, in parallel, to particles that do not experience collisions.

Third, the assertions require qualification because the status of “point par-
ticles” in relativity theory is a delicate matter. At issue is whether one treats a
particle’s own mass-energy as a source for the surrounding metric field g,,—in
addition to other sources that may happen to be present. (Here we anticipate
our discussion of Einstein’s equation.) If one does, then the curvature associ-
ated with g,;, may blow up as one approaches the particle’s worldline. And in
this case one cannot represent the worldline as the image of a curve in M, at
least not without giving up the requirement that g,;, be a smooth field on M.
For this reason, a more careful formulation of the principles would restrict
attention to “test particles”—i.e., ones whose own mass-energy is negligible
and may be ignored for the purposes at hand.

Fourth, the modal character of the assertions (i.e., the reference to possibil-
ity) is essential. It is simply not true—take the case of (C1)—that all images of
smooth, timelike curves are, in fact, the worldlines of massive particles. The
claim is that, as least so far as the laws of relativity theory are concerned, they
could be. Of course, judgments concerning what could be the case depend
on what conditions are held fixed in the background. The claim that a partic-
ular curve image could be the worldline of a massive point particle must be

4. For certain purposes, even within classical relativity theory, it is useful to think of light as
constituted by streams of “photons” and to take the right-side condition here to be “y[I] could be
the worldline of a photon.” The latter formulation makes (C2) look more like (C1) and (P1) and
draws attention to the fact that the distinction between particles with positive mass and those with
zero mass (such as photons) has direct significance in terms of relativistic spacetime structure.

5. “Free particles” here must be understood as ones that do not experience any forces except
gravity. It is one of the fundamental principles of relativity theory that gravity arises as a manifes-
tation of spacetime curvature, not as an external force that deflects particles from their natural,
straight (geodesic) trajectories. We shall discuss this matter further in section 2.5.
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understood to mean that it could so long as there are, for example, no barriers
in the way. Similarly, in (C2) there is an implicit qualification. We are consid-
ering what trajectories are available to light rays when no intervening material
media are present—i.e., when we are dealing with light rays in vacuo.

Though these four concerns are important and raise interesting questions
about the role of idealization and modality in the formulation of physical
theory, they have little to do with relativity theory as such. Similar difficulties
arise, for example, when one attempts to formulate corresponding principles
within the framework of Newtonian gravitation theory.

It follows from the cited interpretive principles that the metric g,;, is deter-
mined (up to a constant) by the behavior of point particles and light rays.®
We make this claim precise with a sequence of propositions about conformal
structure and projective structure. (Recall our discussion in section 1.9.)

Letg/, be a second smooth metric of Lorentz signature on M. Clearly, ifg/,
is conformally equivalent to g,,—i.e., if there is a smooth function Q2 : M — R
such that g/, = Q%g,,—then the two agree in their classification of vectors
as timelike, null, and so forth. We first verify that the converse is true as
well. (Indeed, we prove something slightly stronger. To establish conformal
equivalence, it suffices to require that the two metrics agree on any one of the
four categories of vectors. If they agree on one, they agree on all.)

PROPOSITION 2.1.1. The following conditions are equivalent.

(1) g, and gup agree on which vectors, at arbitrary points of M, are timelike (or
agree on which are null, or which are causal, or which are spacelike).
(2) g, and g are conformally equivalent.

Proof. The equivalence of the four versions of (1) follows from the fact that
the four properties in question (being timelike, null, causal, and spacelike) are
interdefinable. So, for example, we can characterize null vectors in terms of
timelike vectors:

Avector n* at pis null iff either n* = 0 or, for all timelike vectors «# at p, and
all sufficiently small numbers k, of the two vectors n® + ka® and n% — ka?,
one is timelike and one is not.

6. This was first recognized by Hermann Weyl [62]. As he put it [63, p. 61], “it can be shown that
the metrical structure of the world is already fully determined by its inertial and causal structure,
that therefore measurements need not depend on clocks and rigid bodies but that light signals and
mass moving under the influence of inertia alone will suffice.” For more on Weyl’s “causal-inertial”
method of determining the spacetime metric, see Coleman and Korté [9, section 4.9].
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Conversely, we can characterize timelike vectors in terms of null vectors:

Avector n® at p is timelike iff for all null vectors «® # 0 at p there is a number
k # 0 and a null vector % # 0 at p such that n* = ka® + B%.

It follows immediately that we can also characterize causal vectors (timelike or
null) and spacelike vectors (neither timelike nor null) in terms of either time-
like vectors or null vectors alone. Other cases are handled similarly. (See
problem 2.1.2.)

Now assume that the two metrics agree in their classification of vectors at
all points of M. We show that they must be conformally equivalent. Let p be
any point in M, and let £ be any vector at p that is spacelike with respect to
both metrics. Set

! gagh
(2.1.3) k= ] Sb.
8ab §%&
Since the numerator and denominator of the fraction are both negative, k > 0.
We claim first that

(2.1.4) Sup ﬂaﬁb =k gap ﬂaﬁb

for all n* at p. If n* is null with respect to both metrics, the assertion is trivial.
So there are two cases to consider.

Case 1: n* is timelike with respect to both metrics. Consider the following
quadratic equation (in the variable x):

0= gap (E°+x 0" (EP + x 1) = gap £%6° + 20 gy £%1° + %% g .
The discriminant
4 (g £0°)2 — 4 (gap £°6") (gap n*n")

is positive (since (g5 £%€?) < 0, and (g, n%n”) > 0). So the equation has
real roots r; and r, with

g%

(2.1.5) rn-rn= .
ab 1°0P

Now the equation
0=g,, (6 +xn")E +x1")

must have exactly the same roots as the preceding one (since the metrics
agree on null vectors). So we also have

g, &€" -1

(2.1.6) rn-rn=- PR 0
8NN S

41
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These two expressions for r; - 12, together with equation (2.1.3), yield
equation 2.1.4).

Case 2: n* is spacelike with respect to both metrics. Let y* be any vector at
p that is timelike with respect to both. Repeating the argument used for
case 1, with n* now playing the role of £%, we have

b
Gy gapn®n”
g, v v’ gmyyt

(2.1.7)

But g/, yy? = kg, y°y?, because y* falls under case 1. So n* must
satisfy equation (2.1.4) in this case too.

Thus, we have established our claim. Since (g, — k g,p) is symmetric, it now
follows by proposition 1.4.3 that g/, = k g, at p.

To complete the proof, we define a scalar field 2 : M — R by setting Q(p) =
Vk(p) at each point p (where k(p) is determined as above). Then g, = Q% g,
and © is smooth since g, and g/, are. O

It turns out that dimension plays a role in proposition 2.1.1. Our spacetimes
are four-dimensional. Suppose we temporarily drop that restriction and, for
any n > 2, consider “n-dimensional spacetimes” (M, g,,) where M has dimen-
sion n and g, has signature (1, n — 1). What happens to the proposition? The
proof we have given carries over intact for all n > 3. And even when n = 2, it
carries over in part. Three versions of condition (1) are still equivalent to each
other—those involving agreement on timelike, causal, or spacelike vectors—
and to condition (2). But in that special case, two metrics can agree on null
vectors without being conformally equivalent. (At any point p in M, a “90-
degree rotation” of M, takes null vectors to null vectors, but it takes timelike
vectors to spacelike vectors.)

PROBLEM 2.1.1. Consider our characterization of timelike vectors in terms of null
vectors in the proof of proposition 2.1.1. Why does it fail if n = 2?

PROBLEM 2.1.2. (i) Show that it is possible to characterize timelike vectors (and so
also null vectors and spacelike vectors) in terms of causal vectors. (ii) Show that it is
possible to characterize timelike vectors (and so also null vectors and causal vectors)
in terms of spacelike vectors. (Both characterizations should work for alln > 2.)

Conformally equivalent metrics do not agree, in general, on which curves

qualify as geodesics or even just as geodesics up to reparametrization. But,
it turns out, they do necessarily agree on which null curves are geodesics up
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to reparametrization. Indeed, we have the following proposition. Notice that
clauses (1) and (2) correspond, respectively, to interpretive principles (C1) and
(C2) above.

PROPOSITION 2.1.2. The following conditions are equivalent.

(1) g, and gap agree on which smooth curves on M are timelike.

(2) g, and gy agree on which smooth curves on M can be reparameterized so as
to be null geodesics.

(3) g, and gap are conformally equivalent.

Proof. The implication (1) = (3) follows immediately from the preceding
proposition. So does the implication (2) = (1). (Two metrics cannot agree on
which curves are null geodesics up to reparametrization without first agreeing
on which curves are null.) To complete the proof, we show that (3) implies (2).
Assume thatg, = Q2 g,p. Let y be any smooth curve that is null (with respect
toboth g, and g/, ), and let A be its tangent field. Further, let V; be the unique
derivative operator on M compatible with g/, . Then, by propositions 1.7.3 and
1.9.5,
ATVLAS =0 (VA% — C% ™)

where

1
Com =~ 5z [0% ¥ @7 + 8% % Q" — gum g” % 27].

Substituting for C%,, in the first equation, and using the fact that A% is null,
we arrive at 1
2
AV = ANV kT s (1, Q) A%

It follows that A" V;, A% is everywhere proportional to A% iff A" V,, A% is every-
where proportional to A% Therefore, by proposition 1.7.9, y can be
reparametrized so as to be a geodesic with respect to g, iff it can be so
reparametrized with respectto g/, . O

Question: What would go wrong if we attempted to adapt the proof to show
that conformally equivalent metrics agree as to which smooth timelike curves
are geodesics up to reparametrization?

We can understand the proposition to assert that the spacetime metric g, is
determined up to a conformal factor, independently, by the set of possible worldlines
of massive point particles and by the set of possible trajectories of light rays.

Next we turn to projective structure. Recall that g’, is said to be projectively
equivalent to gy, if, for all smooth curves y on M, y can be reparametrized
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so as to be geodesic with respect to g/, iff it can be so reparametrized with
respect to g,;. We have proved (proposition 1.9.6) that if the two metrics are
both conformally and projectively equivalent, then the conformal factor con-
necting them is constant. Now, with interpretive principle P1 in mind, we
prove a slightly strengthened version of the proposition that makes reference
only to timelike geodesics (rather than arbitrary geodesics). To do so, we first
strengthen proposition 1.4.3.

PROPOSITION 2.1.3. Let a®%  be a tensor at some point in M. Suppose
1...0g
that

(1) %8y . is symmetric in indices by, . . ., bs, and
(2) a0y b, gb . gbs = 0 for all timelike vectors €% at the point.

Then o®1-% ) 4 =0.

Proof. Consider first the case where we are dealing with a tensor of form
ayp, . p,—i.e., one with no contravariant indices. Let £ be a timelike vector at
the point in question, and let n* be an arbitrary vector there. Then there is an
€ > 0 such that, for all real numbers x, if |x| < €, (6% + x n%) is timelike. Now
consider the polynomial function f : R — R defined by

Fx) = ap b, (ET+xn”) oL (g xnb)

S
—ap, p £ EB 4 <1> Xap, p £ gbpbe g

s -1 b1 b b b b
+<S_1)x5 apy b E N X ey p 0

By our hypothesis, f (x) = 0 for all x in the interval (— ¢, €). Hence all deriva-

bs = 0. Since n? was an

tives of f vanish in the interval. So ay, j, nPy
arbitrary vector at our point, it follows, by proposition 1.4.3, that o, =0
there. For the general case, let j4g, . . . v4, be arbitrary vectors at the point. Then
Q¥ Oy by ... Ve, = 0 by the argument just given. So (since g, . . . Vg, are

arbitrary vectors), a®1% ;= 0. 0

Of course, a parallel proposition holds if «®1%r), } is symmetricinindices
a1,...,0.. Indeed, we can arrive at that formulation simply by lowering the
a-indices and raising the b-indices, applying the proposition as proved, and
then restoring the original index positions.
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PROBLEM 2.1.3. Does proposition 2.1.3 still hold if condition (1) is left intact but
(2) is replaced by
(2') a®try gbr ... &b = 0 for all spacelike vectors £° at the point?

And what if it is replaced by
(2") a1ty b gb b = 0 for all null vectors £* at the point?

Justify your answers.
The proposition we are after is the following.

— 02
PROPOSITION 2.1.4. Assumeg, = Q°gyy. Further, assume g/, and gy, agree as
to which smooth, timelike curves can be reparametrized so as to be geodesics. Then
2 is constant.

Proof. Assume V' = (V, C°, ) where, once again, V' is the derivative operator
associated with g/, . Tt suffices for us to show that C9 = &% ¢c + 8% ¢ for
some smooth field ¢,. For then the constancy of Q follows exactly as in our
proof of proposition 1.9.6.

To show that C“bC has this form, we need only make a slight revision in
our proof of proposition 1.7.10. There we started from the assumption that V'

and V agree as to which (arbitrary) smooth curves can be reparametrized so
d _

as to be geodesics. Using that assumption, we showed that the field 9%, =

(€% 8% —C? 8%) satisfies the condition
ad bsecer
(2.1.8) P e §E =0

for all vectors £% at all points. Then we invoked proposition 1.4.3 to conclude
that (p“”(lbcr) = 0 everywhere. Arguing in exactly the same way from our weaker
assumption (that the metrics agree as to which smooth, timelike curves can
reparametrized so as to be geodesics), we can show that equation (2.1.8) holds
for all timelike vectors at all points. But we know (by proposition 2.1.3) that

this condition also forces the conclusion that go“‘fbcr = 0 everywhere. The rest

)
of the proof goes through exactly as in that of proposition 1.7.10. Without
reference to particular types of vectors, we can show that C - = & ¢c + 8% @5

1
where ¢, = Cdcd. O

n+1

Later in this book we shall consider a few particular examples of spacetimes.
But one should be mentioned immediately, namely Minkowski spacetime. We
take it to be the pair (M, g;;) where (i) M is the manifold R*, (ii) (M, g) is
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flat—i.e., has vanishing Riemann curvature everywhere—and (iii) (M, g,p) is
geodesically complete—i.e., all maximally extended geodesics have domain R.

Minkowski spacetime is very special because its structure as an affine man-
ifold (M, V) is precisely the same as that of four-dimensional Euclidean space.
(Here, of course, V is understood to be the unique derivative operator on
M compatible with g,;.) In particular, given any point o in M, there is a
smooth “direction field” x* on M that vanishes at 0 and satisfies the condition
Vo x? = 8., (Recall proposition 1.7.12.)

2.2. Temporal Orientation and “Causal Connectibility”

The characterization we have given of relativistic spacetimes is extremely loose.
Many further conditions might be imposed. We consider one in this section,
namely “temporal orientability.”

First we need to review certain basic facts about Lorentzian metrics. Once
again, let (M, g ;) be a fixed relativistic spacetime. We start with the orthog-
onality relation that g, determines in the tangent space at every point of M.
(Two vectors u* and v* at a point qualify as orthogonal, of course, if u%v, = 0.)

PROPOSITION 2.2.1. Let u® and v* be vectors at some point p in M. Then the
following both hold.

(1) If u® is timelike and v*® is orthogonal to u®, then either v* =0 or v* is
spacelike.

(2) If u* and v* are both null, then they are orthogonal iff they are proportional
(i.e., one is a scalar multiple of the other).

Proof. (1) Let é“, e, :&“ be an orthonormal basis for M, with é“ éu =1, and
Si“ éa = —1fori =2, 3, 4. Then we can express u* and v* in the form u* =
>y [L Ei“ and =31, b éi“. Now assume 1 is timelike, v* is orthogonal to
n?, and v* # 0. We show that v* is spacelike. It follows from our assumptions
that

1 2 3 4
@2) (W) > (10 + () + W),
11 22 33 44
(2.2.2) Hy=pv+puv+uv,
(2.2.3) /}L #0,
2 3 4
(2.2.4) W)+ )2+ v)? > o.

“530-47773_Ch02_2P.tex” — 1/23/2012 — 17:18 — page 128



CLASSICAL RELATIVITY THEORY / 129

(The first two assertions follow from equations (2.1.2) and (2.1.1). The third
follows from the first. For the final inequality, note thatif (12))2 + (13J)2 +( 3)2 =0,
thend = v = v = 0, and so, by equations (2.2.2) and (2.2.3), b = 0aswell. This
contradicts our assumption that v* # 0.) In turn, it now follows by the Schwarz

inequality (as applied to the vectors (;ZL, ,L3L ,&) and (\2), \3) {‘5)) that

()% (9% = (A + v+ 2 9% < L) + (0% + (W2 L) + ()2 + ()]

< (W21 + 02+ (1),

and hence, by equation (2.2.3) again, that
(02 < (0)7 + 02+ ()%
Thus v* is spacelike.

(2) Assume p% and v® are both null. If they are proportional, then they
are trivially orthogonal. For if, say, u® = kv?, then u%v; = k(v%vs) = 0 (since
v? is null). Assume, conversely, that the vectors are orthogonal. Let £% be a
timelike vector at p. By clause (1)—since v* is not spacelike—either v* = 0
or &%, # 0. (Here £% is playing role of u®.) In the first case, u* and v* are
trivially proportional. So we may assume that §%v, # 0. Then there is anumber
k such that k (§%v,) = £%u,. Hence, (1% —kv%) &, = 0. Now (u® — kv?) is not
spacelike. (The right side of

(1® =k V) (g — kva) = p® g — 2k (1®va) + K (v7vg)

is 0 since, by assumption, u® and v* are null and u%v, = 0.) So, by clause
(1) again, it must be the case that (u* — kv%) = 0; i.e., u* and v* are proport-
ional. O

PROBLEM 2.2.1. Let p be a point in M. Let p be a point in M. Show that there is no
two-dimensional subspace of My, all of whose elements are causal (timelike or null).

PROBLEM 2.2.2. Let gip, be a second metric on M (not necessarily of Lorentz sig-
nature). Show that the following conditions are equivalent.

(1) Forallpin M, g, and g4y, agree on which vectors at p are orthogonal.
(2) gl is conformally equivalent to either g,p or —ggy,.

Next we consider the “lobes” of the null cone determined by g,;, at points

of M. Let us say that two timelike vectors u* and v* at a point are co-oriented
(or have the same orientation) if u%v, > 0.
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PROPOSITION 2.2.2. For all points p in M, co-orientation is an equivalence
relation on the set of timelike vectors in M.

Proof. Reflexivity and symmetry are immediate. For transitivity, let u?, v
and w® be timelike vectors at a point, with the pairs {u%, v*} and {v?, %} both
co-oriented. We must show that {u%, w®)} is co-oriented as well. The argument
is very much like that for the second clause of proposition 2.2.1.

Since u%v, > 0and w*v, > 0, thereisarealnumber k > 0suchthat u®v, =
k (@%v,). Hence, (u* —kw*)v, = 0. Since v* is timelike, we know from the
first clause of proposition 2.2.1 that either (1% — kw®) is the zero vector 0
or it is spacelike. In the first case, u® = kw?®, and so the pair {u?, 0%} is
certainly co-oriented (u*wq = k (w%wg) > 0). So we may assume that (u® —
k @®) is spacelike. But then

1o ig — 2k (1Pwq) + K (0%wg) = (1% — k) (g — kwg) < 0.

Since u®uq, w*w,, and kare all positive, it follows that %wj is positive as well.
So, again, we are led to the conclusion that the pair {4?, w®} is co-oriented. O

The equivalence classes determined at each point by the co-orientation
relation will be called temporal lobes. There must be at least two lobes at each
point since, for any timelike vector u* there, u* and —u® are not co-oriented.
There cannot be more than two since, for all timelike ©* and v* at a point, v*
is co-oriented either with u® or with —u®. (Remember, two timelike vectors at
a point cannot be orthogonal.) Hence there are exactly two lobes at each point.
It is easy to check that each lobe is convex; i.e., if u* and v* are co-oriented at a
point, and a, b are both positive real numbers, then (a u® + b v?) is a timelike
vector at the point that is co-oriented with u* and v®.

The relation of co-orientation can be extended easily to the larger set of non-
zero causal (i.e., timelike or null) vectors. Given any two such vectors u* and
v% at a point, we can take them to be co-oriented if either u®v, > 0orv® =k u®,
with k > 0. (The second possibility must be allowed since we want a non-zero
null vector to count as being co-oriented with itself.) Once again, co-orientation
turns out to be an equivalence relation with two equivalence classes that we
call causal lobes. (Only minor changes in the proof of proposition 2.2.2 are
required to establish that the extended co-orientation relation is transitive.)
These lobes, too, are convex.

For future reference, we record two more facts about Lorentz metrics. (Let
us agree towrite || u®| for (;ﬂ,ua)% when % is causal, and write it for ( — /ﬂua)%

when % is spacelike.)
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PROPOSITION 2.23. Let u® and v® be causal vectors at some point p in M. Then
the following both hold.

(1) (“Wrongway Schwarz inequality”) |u%vg| > [|u®| |1V, with equality iff u*
and v* are proportional.
(2) (“Wrongway triangle inequality”) If u* and v* are non-zero and co-oriented,

I vl = sl -+ v,

with equality iff u* and v® are proportional.

Proof. (1) If both «* and v* are null, the assertion follows immediately from
the second assertion in proposition 2.2.1. So we may assume that one of the
vectors, say u?, is timelike. Now we can certainly express v* in the form
v* =k p® 4 0%, with k a real number and o a vector at p orthogonal to u®. (It
suffices to take k = (u%v,)/ (1% 1q) and o = (v* — k u%).) Hence,

wvg =k (1" 1eq),

v, = k? (1 1q) + o0y,

Since 0% is orthogonal to u®, it must either be spacelike or the zero vector
(by proposition 2.2.1). In either case, (0%,) < 0. So, since (u*ug) > 0 and
(v*vga) > 0, it follows that

(1va)” = K (1% 1a)® = [(v*a) — (0%0a)] (14*12a)
> (v*va) (1 pta) = l® 1 %12

Equality holds here iff (6%0,) = 0. But (as noted already), o is either the zero
vector or spacelike (in which case (0%0,) < 0). So equality holds iff 6% = 0;
ie, v =ku®

We leave the second clause as an exercise. O

PROBLEM 2.2.3. Prove the second clause of proposition 2.2.3.

Now we switch our attention to considerations of global null cone structure.
We say that (M, g,p) is temporally orientable if there exists a continuous timelike
vector field % on M. Suppose the condition is satisfied. Then we take two
such fields % and t'% to be co-oriented if they are so at every point—i.e., if
%75 > 0 holds at every point of M. Co-orientation, now understood as a
relation on continuous timelike vector fields, is an equivalence relation with
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two equivalence classes. (It inherits this property from the original relation
defined on timelike vectors at individual points.) A temporal orientation of
(M, gzp) is a choice of one of those two equivalence classes to count as the
“future” one. Thus, a non-zero causal vector £% at a point of M is said to
be future-directed or past-directed with respect to the temporal orientation 7
depending on whether t%¢; > 0 or %, < 0 at the point, where 7% is any
continuous timelike vector field in 7. (Remember, t%&, cannot be 0, since no
timelike vector can be orthogonal to a non-zero causal vector.) Derivatively,
a smooth, causal curve y: I — M is said to be future-directed (respectively
past-directed) with respect to 7 if its tangent vector at every point is so.

Our characterization of “relativistic spacetimes” in the preceding section
does not guarantee temporal orientability. But we shall take the condition for
granted in what follows. We assume that our background spacetime (M, g,p)
is temporally orientable and that a particular temporal orientation has been
specified.

Also, given points p and g in M, we shall write p < ¢ (resp. p < q) if there is
a smooth, future-directed, timelike (respectively, causal) curve y : [a,b] > M
where y (4) = pand y (b) = q. Note thatp < p, for all points p in all spacetimes.
(This is the case because the zero vector in the tangent space at any point
qualifies as a null vector.) But it is not the case, in general, that p « p. The
latter condition holds iff there is a smoooth, closed, future-directed timelike
curve that begins and ends at p. The two relations « and < are naturally
construed as relations of “causal connectibility (or accessibility).”

Appendix: Recovering Geometric Structure from the Causal
Connectibility Relation
We started with a spacetime model (M, g,;) exhibiting several levels of geo-
metric structure, and used the latter to define the relations < and < on M.’
The question now arises whether it is possible to work backward—i.e., start
with the pair (M, <) or (M, <), with M now construed as a bare point set,
and recover the geometric structure with which one began.? In this appendix,
we briefly consider one way to make the question precise and give the answer
(without proof). For convenience, we work with the relation <.

Let (M, gg) and (M',g’,) be (temporally oriented) relativistic spacetimes.
We say that a bijection ¢: M — M’ between their underlying point sets is a
< -causal isomorphism if, for all p and g in M,

7. The material in this appendix will play no role in what follows.
8. The question figures centrally in the “causal sets” approach to quantum gravity developed
by Rafael Sorkin and co-workers. See, e.g., Sorkin [55, 56].
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(2.25) P <L q = 9(p) < 9(q).

Then we can ask the following: Does a <« -causal isomorphism have to be a homeo-
morphism? A diffeomorphism? A conformal isometry? (We know in advance that
a causal isomorphism need not be a ( full) isometry because conformally equiv-
alent metrics g, and 2g,;, on a manifold M determine the same relation <.
The best one can ask for is that it be a conformal isometry—i.e. that it be a
diffeomorphism that preserves the metric up to a conformal factor.)

Without further restrictions on (M, gsp) and (M’, g’ ), the answer is certainly
“no” to all three questions. Unless the “causal structure” of a spacetime (i.e.,
the structure determined by «) is reasonably well behaved, it provides no
useful information at all. For example, let us say that a spacetime is causally
degenerate if p < q for all points p and g. Any bijection between two causally
degenerate spacetimes qualifies, trivially, as a «-causal isomorphism. But we
can certainly find causally degenerate spacetimes whose underlying manifolds
have different topologies. For example, we shall verify in section 3.1 that Godel
spacetime is causally degenerate. Its underlying manifold structure is R*.
But a suitably “rolled-up” version of Minkowski spacetime is also causally
degenerate, and the latter has the manifold structure S x R3. (Figure 2.2.1
shows a two-dimensional version.)

There is a hierarchy of “causality conditions” that is relevant here. (See,
e.g., Hawking and Ellis [30, section 6.4].) They impose, with varying degrees
of stringency, the requirement that there exist no closed, or “almost closed,”
timelike curves. Here are three.

Chronology: There do not exist smooth closed timelike curves. (Equivalently,
for all p, it is not the case that p < p.)

Future (respectively, past) distinguishablity: For all points p, and all suf-
ficiently small open sets O containing p, no smooth future-directed
(respectively, past-directed) timelike curve that starts at p, and leaves
O, ever returns to O.

4 / [N
&

Figure 2.2.1. Two-dimensional Minkowski spacetime rolled up into a cylindrical spacetime. It
is causally degenerate: p < q for all points p and g.
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Strong causality: For all points p, and all sufficiently small open sets O
containing p, no smooth future-directed timelike curve that starts in O,
and leaves O, ever returns to O.

It is clear that strong causality implies both future distinguishability and past
distinguishability, and that each of the distinguishability conditions (alone)
implies chronology. Standard examples (see Hawking and Ellis [30]) establish
that the converse implications do not hold, and that neither distinguishability
condition implies the other.

The names “future distinguishability” and “past distinguishability” are eas-
ily explained. For any p, let I (p) be the set {q: p < g} and let I™(p) be the
set {q: g < p}. It turns out (see Kronheimer and Penrose [33]) that future
distinguishability is equivalent to the requirement that, for all p and g,

fp)=Itq =p=4q

And the counterpart requirement with I replaced by I~ is equivalent to past
distinguishability.

We mention all this because it turns out that one gets a positive answer to
all three questions above if one restricts attention to spacetimes that are both
future and past distinguishing.

PROPOSITION 2.2.4. Let(M, gp) and (M, g’,) be (temporally oriented) relativis-
tic spacetimes that are both future- and past-distinguishing, and let o: M — M’
be a <« -causal isomorphism. Then ¢ is a diffeomorphism and preserves ggp, up to a
conformal factor; i.e. ¢*(g'sp) is conformally equivalent to g,

One can prove the proposition in two stages. First one shows that, under
the stated assumptions, ¢ must be a homeomorphism (see Malament [38]).
Then one invokes a result of Hawking, King, and McCarthy [29, theorem 5]
that asserts, in effect, that any continuous <-causal isomorphism must be
smooth and must preserve the metric up to a conformal factor.

The following example shows that the proposition fails if the initial restric-
tion on causal structure is weakened to past distinguishability or to future
distinguishability alone. We give the example in a two-dimensional version

9. This is a slight improvement on a well-known result. If a spacetime (M, g,p) is not just past
and future distinguishing, but strongly causal, then one can explicitly characterize its (manifold)
topology in terms of the relation <. In this case, a subset O C M is open iff, for all points p in
O, there exist points g and r in O such that ¢ < p < r and I (q) NI~ (r) € O (Hawking and Ellis
[30, p. 196]). So a «-causal isomorphism between two strongly causal spacetimes must certainly
be a homeomorphism.
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Figure 2.2.2. An example of a spacetime that is future distinguishing but not past distinguish-
ing. Let ¢ be a bijection of the spacetime onto itself that leaves the lower open half below
C fixed but reverses the position of the two upper slabs. It is a <-isomorphism, but it is
discontinuous along C.

to simplify matters. Start with the manifold R? together with the Lorentzian
metric

8ab = (d(at)(dhyx) — (sinh? £)(dax) (dy %),

where t, x are global projection coordinates on R?. Next form a vertical cylinder
by identifying the point with coordinates (¢, x) with the one having coordinates
(t, x 4+ 2). Finally, excise two closed half lines—the sets with respective coor-
dinates {(t,x): x =0 and t > 0} and {(t,x): x =1 and t > 0}. Figure 2.2.2
shows, roughly, what the null cones look like at every point. (The future direc-
tion ateach pointis taken to be the “upward one.”) The exact form of the metric
is not important here. All that is important is the indicated qualitative behav-
ior of the null cones. Along the (punctured) circle C where t = 0, the vector
fields (9/9%)* and (8/9x)* both qualify as null. But as one moves upward or
downward from there, the cones close. There are no closed timelike (or null)
curves in this spacetime. Indeed, it is future distinguishing because of the
excisions. But it fails to be past distinguishing because I~ (p) = I~ (q) for all
points p and g on C. For all points p there, ™ (p) is the entire region below C.

Now let ¢ be the bijection of the spacetime onto itself that leaves the “lower
open half” fixed but reverses the position of the two upper slabs. Though ¢ is
discontinuous along C, it is a «-causal isomorphism. This is the case because
every point below C has all points in both upper slabs in its «-future.
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2.3. Proper Time

So far we have discussed relativistic spacetime structure without reference to
either “time” or “space.” We come to them in this section and the next.

Let y: [s1,52] = M be a smooth, future-directed timelike curve in M with
tangent field £*. We associate with it an elapsed proper time (relative to g)
given by

5 1
Iyl = f (gan °£°)? ds.
51
This elapsed proper time is invariant under reparametrization of y and is
just what we would otherwise describe as the length of (the image of) y. The
following is another basic principle of relativity theory.

(P2) Clocks record the passage of elapsed proper time along their world-
lines.

Again, a number of qualifications and comments are called for. Our for-
mulations of (C1), (C2), and (P1) were rough. The present formulation is that
much more so. We have taken for granted that we know what “clocks” are. We
have assumed that they have worldlines (rather than worldtubes). And we have
overlooked the fact that ordinary clocks (e.g., the alarm clock on the nightstand)
do not do well at all when subjected to extreme acceleration, tidal forces, and so
forth. (Try smashing the alarm clock against the wall.) Again, these concerns
are important and raise interesting questions about the role of idealization in
the formulation of physical theory. (One might construe an “ideal clock” as a
point-size test object that perfectly records the passage of proper time along
its worldline, and then take (P2) to assert that real clocks are, under appropri-
ate conditions and to varying degrees of accuracy, approximately ideal.) But
they do not have much to do with relativity theory as such. Similar concerns
arise when one attempts to formulate corresponding principles about clock
behavior within the framework of Newtonian theory.

Now suppose that one has determined the conformal structure of space-
time, say, by using light rays. Then one can use clocks, rather than free
particles, to determine the conformal factor. One has the following simple
result, which should be compared with proposition 2.1.4.1°

10. Here we not only determine the metric up to a constant, but determine the constant as
well. The difference is that here, in effect, we have built in a choice of units for spacetime distance.
We could obtain a more exact counterpart to proposition 2.1.4 if we worked, not with intervals of
elapsed proper time, but rather with ratios of such intervals. (Note, by the way, that the condition in
the second sentence of the proposition does not make sense unless the two metrics are conformally
equivalent. We cannot require that they assign the same length to all timelike curves unless they
first agree on which curves are timelike.)
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PROPOSITION 2.3.1. Let g/, be a second smooth metric on M, with g/, = Q% g,
Further suppose that the two metrics assign the same lengths to timelike curves—
ie., ||y||g;b = |lyllg,, for all smooth, timelike curves y: I — M. Then Q=1
everywhere. (Here ||y ||g,, is the length of y relative to g,,.)

Proof. Let §“ be an arbitrary timelike vector at an arbitrary point p in M. We
can certainly find a smooth, timelike curve y : [s1, s2] — M through p whose
tangent at p is 5“. By our hypothesis, ||y ”th = |l llg,- So,if £% is the tangent
field to y,
s 1 s 1
/s (g,,5°8")7 ds= / (8ar°8")7 ds
1

51
for all s in [s1,52]. It follows that g, g%b = g, £%€P  at every point on the

[ o
image of y. In particular, it follows that (g/, — gap) §* b = 0 at p. But £* was
an arbitrary timelike vector at p. So, by lemma 2.1.3, g/, = g, at our arbitary
point p. O

(P2) gives the whole story of relativistic clock behavior (modulo the concerns
noted above). In particular, itimplies the path dependence of clock readings. If
two clocks start at an event p and travel along different trajectories to an event
q, then, in general, they will record different elapsed times for the trip. (For
example, one will record an elapsed time of 3,806 seconds, the other 649 sec-
onds.) This is true no matter how similar the clocks are. (We may stipulate that
they came off the same assembly line.) This is the case because, as (P2) asserts,
the elapsed time recorded by each of the clocks is just the length of the timelike
curve it traverses from p to g and, in general, those lengths will be different.

Suppose we consider all future-directed timelike curves from p to g. It is
natural to ask if there are any that minimize or maximize the recorded elapsed
time between the events. The answer to the first question is “no.” Indeed, one
has the following proposition.

PROPOSITION 2.3.2. Let p and q be events in M such that p < q. Then, for all
€ > 0, there exists a smooth, future directed timelike curve y from p to q with
lyll < €. (But there is no such curve with length 0, since all timelike curves have
non-zero length.)

Though some work is required to give the proposition an honest proof (see
O’Neill [46, pp. 294-295)), it should seem intuitively plausible. If there is a
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(

long timelike curve -

/ p
Figure 2.3.1. Alongtimelike curve from p to g and a very short one that approximates a broken
null curve.

S\

short timelike curve

smooth, timelike curve connecting p and g, there is also a jointed, zig-zag null
curve connecting them. It has length 0. But we can approximate the jointed
null curve arbitrarily closely with smooth timelike curves that swing back and
forth. So (by the continuity of the length function), we should expect that, for
all € > 0, there is an approximating timelike curve that has length less than €.
(See figure 2.3.1.)

The answer to the second question (“Can one maximize recorded elapsed
time between p and ¢?”) is “yes” if one restricts attention to local regions of
spacetime. In the case of positive definite metrics, i.e., ones with signature of
form (n, 0)—we know geodesics are locally shortest curves. The corresponding
result for Lorentzian metrics is that timelike geodesics are locally longest curves.

PROPOSITION 233. Lety: I — M be a smooth, future-directed, timelike curve.
Then y can be reparametrized so as to be a geodesic iff for all s € I there exists an
open set O containing y (s) such that, for all s1, sy € Iwith s1 < s < sy, if the image
of ¥ = Vi, 1S contained in O, then y' (and its reparametrizations) are longer
than all other timelike curves in O from y (s1) to y (s2). (Here y, , , is the restriction
of y to the interval [s1, s2].)

The proof of the proposition is very much the same as in the positive definite
case. (See Hawking and Ellis [30, p. 105].) Thus, of all clocks passing locally
from p to g, the one that will record the greatest elapsed time is the one that
“falls freely” from p to q. To get a clock to read a smaller elapsed time than
the maximal value, one will have to accelerate the clock. Now, acceleration
requires fuel, and fuel is not free. So proposition 2.3.3 has the consequence
that (locally) “saving time costs money.” And proposition 2.3.2 may be taken
to imply that “with enough money one can save as much time as one wants.”
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The restriction here to local regions of spacetime is essential. The connec-
tion described between clock behavior and acceleration does not, in general,
hold on a global scale. In some relativistic spacetimes, one can find future-
directed timelike geodesics connecting two events that have different lengths,
and so clocks following the curves will record different elapsed times between
the events even though both are in a state of free fall. Furthermore—this fol-
lows from the preceding claim by continuity considerations alone—it can be
the case that of two clocks passing between the events, the one that under-
goes acceleration during the trip records a greater elapsed time than the one
that remains in a state of free fall. (A rolled-up version of two-dimensional
Minkowski spacetime provides a simple example. See figure 2.3.2.)

The connection we have been considering between clock behavior and accel-
eration was once thought to be paradoxical. Recall the so-called “clock paradox.”
Suppose two clocks, A and B, pass from one event to another in a suitably small
region of spacetime. Further suppose A does so in a state of free fall but B
undergoes acceleration at some point along the way. Then, we know, A will
record a greater elapsed time for the trip than B. This was thought paradoxical
because it was believed that relativity theory denies the possibility of distin-
guishing “absolutely” between free-fall motion and accelerated motion. (If we
are equally well entitled to think that it is clock B that is in a state of free fall
and A that undergoes acceleration, then, by parity of reasoning, it should be
B that records the greater elapsed time.) The resolution of the paradox, if one
can call it that, is that relativity theory makes no such denial. The situations of
A and B here are not symmetric. The distinction between accelerated motion

Y
N~ ]

Al

N~

Figure 2.3.2. Two-dimensional Minkowski spacetime rolledup into a cylindrical spacetime.
Three timelike curves are displayed: y; and y3 are geodesics; y; is not; y; is longer than y;;
and y; is longer than ys.
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and free fall makes every bit as much sense in relativity theory as it does in
Newtonian physics.

In what follows, unless indication is given to the contrary, a “timelike
curve” should be understood to be a smooth, future-directed, timelike curve
parametrized by elapsed proper time—i.e., by arc length. In that case, the tan-
gent field % of the curve has unit length (6%&, = 1). And if a particle happens
to have the image of the curve as its worldline, then, at any point, £% is called
the particle’s four-velocity there.

2.4. Space/Time Decomposition at a Point and Particle Dynamics

Let y be a smooth, future-directed, timelike curve with unit tangent field &
in our background spacetime (M, g,3,). We suppose that some massive point
particle O has (the image of) this curve as its worldline. Further, let p be a
point on the image of y and let A% be a vector at p. Then there is a natural
decomposition of A into components proportional to, and orthogonal to, £%:

241) Moo= PE)ET (M- (0587,
—— —_—_—
proportional to £4 orthogonal to &%

These are standardly interpreted, respectively, as the “temporal” and “spatial”
components of A% relative to £€% (or relative to O). In particular, the three-
dimensional vector space of vectors at p orthogonal to £% is interpreted as the
“infinitesimal” simultaneity slice of O at p.!! If we introduce the tangent and
orthogonal projection operators

(2.42) kab = Ea &p,

(2.43) hab = 8ab — £a &b,

then the decomposition can be expressed in the form
(2.4.4) A =k% L hY, AL,

We can think of k,;, and hy), as the relative temporal and spatial metrics deter-
mined by £%. They are symmetric and satisfy

(2.4.5) k% Kbo=k,

(2.4.6) hY, hb = he.

11. Here we simply take for granted the standard identification of “relative simultaneity” with
orthogonality. For discussion of how the identification is justified, see Malament [42, section 3.1]
and further references cited there.
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Many standard textbook assertions concerning the kinematics and dynam-
ics of point particles can be recovered using these decomposition formulas.
For example, suppose that the worldline of a second particle O’ also passes
through p and that its four-velocity at pis £'%. (Since £* and §'# are both future-
directed, they are co-oriented; i.e., % &', > 0.) We compute the speed of O’ as
determined by O. To do so, we take the spatial magnitude of §’* relative to O
and divide by its temporal magnitude relative to O:12

1h® &2

(2.4.7) v = speed of O relativeto O = —2——.
1%, 671

(Recall that for any vector u%, ||u®| is (,u“,ua)% if u% is causal, and it is
(—/,LupLu)% otherwise.) From equations (2.4.2), (2.4.3), (2.4.5), and (2.4.6),
we have

RS &1 = (k% &P koo &79)7 = (ke 870 879)7 = (&0 &)

and
B2 £ = (— S & P hae 7)) = (— hye 70872 = (€0 £,)2 — 1)1
So
/b 2 _ %
(2.4.8) V=M 1.

(&P &)

Thus, as measured by O, no massive particle can ever attain the maximal speed

1. (A similar calculation shows that, as determined by O, light always travels

with speed 1.) For future reference, we note that equation (2.4.8) implies that
1

V1—12

It is a basic fact of relativistic life that there is associated with every point

(2.4.9) (& b &) =

particle, atevery event on its worldline, a four-momentum (or energy-momentum)
vector P? that is tangent to its worldline there. The length || P#|| of this vector
is what we would otherwise call the mass (or inertial mass or rest mass) of
the particle. So, in particular, if P? is timelike, we can write it in the form
P% = m&?® where m = || P%|| > 0 and &% is the four-velocity of the particle. No
such decomposition is possible when P“ is null and m = || P*|| = 0.

Suppose a particle O with positive mass has four-velocity £# at a point, and
another particle O’ has four-momentum P* there. The latter can either be a
particle with positive mass or mass 0. We can recover the usual expressions

12. We are, in effect, choosing units in which ¢ = 1.
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for the energy and three-momentum of the second particle relative to O if we
decompose P* in terms of £%. By equations (2.4.4) and (2.4.2), we have

2410 PC o= (PPg)E° + 4P
~——— — e’
energy three—momentum

The energy relative to O is the coefficient in the first term: E = P&,. If O’ has
positive mass and P* = m ¢'%, this yields, by equation (2.4.9),

/b m
(2.4.11) E=m(£7§) = ﬁ
(If we had not chosen units in which ¢ = 1, the numerator in the final expres-
sion would have been mc? and the denominator /1 — (v2/c2).) The three-
momentum relative to O is the second term h“be in the decomposition of
P%—ij.e., the component of P* orthogonal to £%. It follows from equations
(2.4.8) and (2.4.9) that it has magnitude
mv

Interpretive principle (P1) asserts that the worldlines of free particles with

(24.12) p=Ihme? | = m (&P &) 1)1 =

positive mass are the images of timelike geodesics. It can be thought of as a
relativistic version of Newton’s first law of motion. Now we consider acceler-
ation and a relativistic version of the second law. Once again, let y: [ - M
be a smooth, future-directed, timelike curve with unit tangent field £. Just as
we understand &“ to be the four-velocity field of a massive point particle (that
has the image of y as its worldline), so we understand £"V, £*—the direc-
tional derivative of &% in the direction £%—to be its four-acceleration field (or
just acceleration) field). The four-acceleration vector at any point is orthogonal
to &%, (This s clear, since £% (§"V,, &) = 5 "V, (§°£4) = 16"V, (1) = 0.) The
magnitude ||§"V,£%|| of the four-acceleration vector at a point is just what
we would otherwise describe as the curvature of y there. It is a measure of
the rate at which y “changes direction.” (And y is a geodesic precisely if its
curvature vanishes everywhere.)

The notion of spacetime acceleration requires attention. Consider an exam-
ple. Suppose you decide to end it all and jump off the Empire State Building.
What would your acceleration history be like during your final moments? One
is accustomed in such cases to think in terms of acceleration relative to the
earth. So one would say that you undergo acceleration between the time of your
jump and your calamitous arrival. But on the present account, that descrip-
tion has things backwards. Between jump and arrival, you are not accelerating.
You are in a state of free fall and moving (approximately) along a spacetime
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geodesic. But before the jump, and after the arrival, you are accelerating. The
floor of the observation deck, and then later the sidewalk, push you away from
a geodesic path. The all-important idea here is that we are incorporating the
“gravitational field” into the geometric structure of spacetime, and particles
traverse geodesics if and only if they are acted on by no forces “except gravity.”

The acceleration of our massive point particle—i.e., its deviation from a
geodesic trajectory—is determined by the forces acting on it (other than “grav-
ity”). If it has mass m, and if the vector field F* on I represents the vector
sum of the various (non-gravitational) forces acting on it, then the particle’s
four-acceleration &§" V,, €% satisfies

(2.4.13) F* =mé&'V, &%

This is our version of Newton’s second law of motion.

Consider an example. (Here we anticipate our discussion in section 2.6.)
Electromagnetic fields are represented by smooth, anti-symmetric fields Fyy,.
Ifa particle with mass m > 0, charge q, and four-velocity field % is present, the
force exerted by the field on the particle at a point is given by q F, £ Ifwe use
this expression for the left side of equation (2.4.13), we arrive at the Lorentz
law of motion for charged particles in the presence of an electromagnetic field:

(2.4.14) qF“b.fb =méEP v, £°.

(Notice that the equation makes geometric sense. The acceleration field on the
right is orthogonal to £%. But so is the force field on the left, since &,(F* & by =
g0 gbp, = g0 EbF(ab), and Fgp) = 0 by the anti-symmetry of F,.)

2.5. The Energy-Momentum Field T,

In classical relativity theory, one generally takes for granted that all there is,
and all that happens, can be described in terms of various “matter fields,” each
of which is represented by one or more smooth tensor (or spinor) fields on
the spacetime manifold M.!3 The latter are assumed to satisfy particular “field
equations” involving the spacetime metric gy,.

For present purposes, the most important basic assumption about the
matter fields is the following.

13. This being the case, the question arises as to how (or whether) one can adequately recover
talk about “point particles” in terms of the matter fields. We shall briefly discuss the question later
in this section.
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Associated with each matter field F is a symmetric smooth tensor field T,
characterized by the property that, for all points p in M, and all future-
directed, unit timelike vectors £% at p, T%, £P is the four-momentum density
of F at p as determined relative to £%.

T, is called the energy-momentum field associated with F. The four-
momentum density vector T%, & b at a point can be further decomposed into
its temporal and spatial components relative to £4,

b b b
T%§" = (Tw§ME)E" +  Twh™&
—_— ——
energy density three—momentum density

just as the four-momentum P? of a particle was decomposed in equation
(2.4.10). The coefficient of €% in the first component, T, £%€?, is the energy
density of F at the point as determined relative to £%. The second component,
Tup (g™ — %€M £P, is the three-momentum density of F there as determined
relative to £%.

A number of assumptions about matter fields can be captured as con-
straints on the energy-momentum tensor fields with which they are associated.
Examples are the following. (Suppose Ty, is associated with matter field F.)

Weak Energy Condition (WEC): Given any timelike vector £* at any point
in M, T,, %% > 0.

Dominant Energy Condition (DEC): Given any timelike vector £% at any
point in M, T,; £%6% > 0 and T ¢ b is timelike or null.

Strengthened Dominant Energy Condition (SDEC): Given any timelike
vector £% at any point in M, T, £%6% > 0 and, if T, # 0 there, then
T & b is timelike.

Conservation Condition (CC): V, T% = 0 at all points in M.

The WEC asserts that the energy density of , as determined by any observer
at any point, is non-negative. The DEC adds the requirement that the four-
momentum density of F, as determined by any observer at any point, is a
future-directed causal (i.e., timelike or null) vector. We can understand this
second clause to assert that the energy of F does not propagate with superlu-
minal velocity. The strengthened version of the DEC just changes “causal” to
“timelike” in the second clause. It captures something of the flavor of (C1) in
section 2.1, but avoids reference to “point particles.” Each of the listed energy
conditions is strictly stronger than the ones that precede it (see problem 2.5.1).

PROBLEM 2.5.1. Give examples of each of the following.
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(1) A smooth symmetric field Ty, that does not satisfy the WEC
(2) A smooth symmietric field T, that satisfies the WEC but not the DEC
(3) A smooth symmietric field Ty, that satisfies the DEC but not the SDEC

PROBLEM 2.5.2. Show that the DEC holds iff given any two co-oriented timelike
vectors £* and n® at a point in M, T,y £%nP > 0.

The CC, finally, asserts that the energy-momentum carried by F is locally
conserved. If two or more matter fields are present in the same region of space-
time, it need not be the case that each one individually satisfies the condition.
Interaction may occur. But it is a fundamental assumption that the compos-
ite energy-momentum field formed by taking the sum of the individual ones
satisfies it. Energy-momentum can be transferred from one matter field to
another, but it cannot be created or destroyed.

The stated conditions have a number of consequences that support the
interpretations just given. We mention two. The first requires a few prelimi-
nary definitions.

A subset S of M is said to be achronal if there do not exist points p and g in
S such that p « gq. Let y: I - M be a smooth curve. We say that a point p in
M is a future-endpoint of y if, for all open sets O containing p, there exists an sp
in I such that, foralls € I, if s > sp, then y (s) € O; i.e., y eventually enters and
remains in O. (Past-endpoints are defined similarly.) Now let S be an achronal
subset of M. The domain of dependence D(S) of S is the set of all points p in M
with this property: given any smooth causal curve without (past- or future- )
endpoint, if its image contains p, then it intersects S. (See figure 2.5.1.) So, in
particular, S € D(S).

In section 2.10, we shall make precise a sense in which “what happens on S
determines what happens throughout D(S).” Here we consider just one aspect
of that determination.

} D(S)

Figure 2.5.1. The domain of dependence D(S) of an achronal set S.

“530-47773_Ch02_2P.tex” — 1/23/2012 — 17:18 — page 145



146 | CLASSICAL RELATIVITY THEORY

PROPOSITION 2.5.1. Let S be an achronal subset of M. Further, let Ty, be
a smooth, symmetric field on M that satisfies both the dominant energy and
conservation conditions. Finally, assume Ty, = 0on S. Then T, = 0 onall of D(S).

The intended interpretation of the proposition is clear. If energy-momen-
tum cannot propagate (locally) outside the null-cone, and if it is conserved, and
if it vanishes on S, then it must vanish throughout D(S). After all, how could it
“get to” any point in D(S)? Note that our formulation of the proposition does
not presuppose any particular physical interpretation of the symmetric field
T,p- All that is required is that it satisfy the two stated conditions. (For a proof,
see Hawking and Ellis [30, p. 94].)

Now recall (P1). It asserts that free massive point particles traverse (images
of) timelike geodesics. The next proposition (Geroch and Jang [24]) shows that
it is possible, in a sense, to capture the principle as a theorem in relativity
theory. The trick is to find a way to talk about “massive point particles” in
the language of extended matter fields. In effect, we shall model them as
nested sequences of small, but extended, bodies that converge to a point. (See
figure 2.5.2.) It turns out that if the energy-momentum content of each body
in the sequence satisfies appropriate conditions, then the convergence point
will necessarily traverse (the image of) a timelike geodesic.

PROPOSITION 2.5.2. Let y: I — M be smooth curve. Suppose that, given any
open subset O of M containing y[I], there exists a smooth symmetric field T,y on
M such that the following conditions hold.

(1) T,p satisfies the SDEC.
(2) T,y satisfies the CC.
(3) Tap = 0 outside of O.
4)

4) T, # 0 at some point in O.

Then y is timelike and can be reparametrized so as to be a geodesic.

The proposition might be paraphrased this way. Suppose that for some
smooth curve y, arbitrarily small bodies with energy-momentum satisfying
conditions (1) and (2) can contain the image of y in their worldtubes. Then y
must be a timelike geodesic (up to reparametrization). Bodies here are under-
stood to be “free” if their internal energy-momentum is conserved (by itself).
If a body is acted on by a field, it is only the composite energy-momentum of
the body and field together that is conserved.

Note that our formulation of the proposition takes for granted that we can
keep the background spacetime metric g,;, fixed while altering the fields T,
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Figure 2.5.2. A non-geodesic timelike curve enclosed in a tube (as considered in propositions
2.5.2and 2.5.3).

that live on M. This is justifiable only to the extent that we are dealing with test
bodies whose effect on the background spacetime structure is negligible.'*
Note also that we do not have to assume at the outset that the curve y is
timelike. That follows from the other assumptions.

We have here a precise proposition in the language of matter fields that,
at least to some degree, captures (P1). Similarly, it is possible to capture (C2),
concerning the behavior of light, with a proposition about the behavior of
solutions to Maxwell’s equations in a limiting regime (“the optical limit”)
where wavelengths are small. It asserts, in effect, that when one passes to this
limit, packets of electromagnetic waves are constrained to move along (images
of ) null geodesics. (See Wald [60, p. 71].)

Itis worth noting that the Geroch-Jang result fails if condition (1) is dropped.
Consider again our nested sequence of bodies converging to a point. It turns
outthat the CC alone imposes no restrictions whatsoever on the wordline of the
convergence point. It can be a null or spacelike curve. It can also be a timelike
curve that exhibits any desired pattern of large or changing acceleration or both.
The next proposition, based on a suggestion of Robert Geroch (in personal
communication), gives a counterexample.'®

14. Stronger theorems have been proved (see Ehlers and Geroch [16]) where one still models a
point particle as a nested sequence of extended bodies converging to a point but does not require
that the perturbative effect of each body in the sequence disappear entirely. One requires only that,
in a certain precise sense, it disappear in the limit.

15. It is formulated in terms of an initial curve that is timelike—the case of greatest interest—
but that is not essential. The example can also be adapted to show that proposition 2.5.1 fails if the
energy condition there is dropped.
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PROPOSITION 2.53. Let (M, g,;,) be Minkowski spacetime, and lety : I — M be
any smooth timelike curve. Then, given any open subset O of M containing y[I],
there exists a smooth symmietric field Ty, on M that satisfies conditions (2), (3),
and (4) in the preceding proposition. (If we want, we can also strengthen condition
(4) and require that T,y be non-vanishing throughout some open subset O1 € O
containing y[I].)

Proof. Let O be an open subset of M containing y[I], and let f: M — R be
any smooth scalar field on M. (Later we shall impose further restrictions
on f.) Consider the fields S*% = f(g%gh¢ — g%gb4) and T = v, v, S%4,
where V is the (flat) derivative operator on M compatible with g,,. We
have

@s1) T% = (g%" —g%g") V), Vaf = VO Vf — g (V, V'),
So T% is clearly symmetric. It is also divergence free since
Vo T% = V, V¢ Vf —V° V, VPf = VOV, V% — Vv, VPf = 0.

(The second equality follows from the fact that V is flat, and so V, and V¢
commute in their action on arbitrary tensor fields.)

To complete the proof, we now impose further restrictions on f to insure
that conditions (3) and (4) are satisfied. Let O; be any open subset of M such
that y[I] € O7 and cl(O1) € O. (Here cl(A) is the closure of A.) Our strategy
will be to choose a particular f on O; and a particular f on M—cl(O), and then
fill in the buffer zone O—cl(O1) any way whatsoever (so long as the resultant
field is smooth). On M—cl(O), we simply take f = 0. This choice guarantees
that, no matter how we smoothly extend f to all of M, T% will vanish outside
of O.

For the other specification, let o be any pointin M and let x ® be the “position
field” on M determined relative to 0. So V,, x? = 8,? everywhere, and x% = 0
at 0. On O1, we take f = —(x" xn). With that choice, T% is non-vanishing at
all points in O;. Indeed, we have

Vof = =2xuVax" = =2 xn8a" = =2 xa,
and, therefore,
T% = VE VA — g% (V, VPf) = —2 Vox* +2g% (V, x?)
=—2g%4+2g%5" = —2g% +8g% = 6g%

throughout Oy. O
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One point about the proof deserves comment. As restricted to O; and to
M—cl(O), the field T, that we construct does satisfy the SDEC. (In the first
case, Ty, = 6g,p, and in the second case, T,; = 0.) But we know—from the
Geroch-Jang theorem itself—that it cannot satisfy that condition everywhere.
So it must fail to do so in the buffer zone O—cl(O1). That shows us something.
We can certainly choose f in the zone so that it smoothly joins with our
choices for f on O; and M—cl(O). But, no matter how clever we are, we cannot
do so in such a way that T* (as expressed in equation (2.5.1)) satisfies the
SDEC.

Now we consider two examples of matter fields: perfect fluids in this section,
and electromagnetic fields in the next.

“Perfect fluids” are represented by three objects: a smooth four-velocity
field n%, a smooth energy density field p, and a smooth isotropic pressure field
p (the latter two as determined by a “co-moving” observer at rest in the fluid).
In the special case where the pressure p vanishes, one speaks of a “dust field”.
Particular instances of perfect fluids are characterized by “equations of state”
that specify p as a function of p. (Specifically excluded here are such compli-
cating factors as anisotropic pressure, shear stress, and viscosity.) Though p
is generally assumed to be non-negative, some perfect fluids (e.g., to a good
approximation, water) can exert negative pressure. The energy-momentum
tensor field associated with a perfect fluid is

(2.5.2) Tap = P Na Ny — P (Zab — Na M)

So the energy-momentum density vector of the fluid atany point as determined
by a co-moving observer (i.e., as determined relative to n%) is T nt = pnt
In the case of a perfect fluid, the WEC, DEC, and CC come out as follows.!®

WEC < p=>0 and p=>—p
DEC < |pl<p

(0+p) 1 Van® — (P =10 Vap = 0

CC a a
n*Vap+(p+p)(Van® =0

First we verify the equivalences for the WEC and CC. (The one for the
DEC is left as an exercise.) Then we make a few remarks about the physical
interpretation of the two conditions jointly equivalent to CC.

(WEC) Clearly, the WEC holds at a point g in M iff T,, £%£? > 0 for all unit
timelike vectors £% at g. (If the inequality holds for all unit timelike vectors, it

16. The DEC and the SDEC are not equivalent in general, as we have seen. But they are
equivalent when applied, specifically, to perfect fluids. See problem 2.5.3.
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holds for all timelike vectors.) It is convenient to work with the condition in
this form.

If T,y is given by equation (2.5.2), and &% is a unit timelike vector at g,
then T, £%€” = (p + p)(n°€4)> — p. So the WEC holds at g in M iff, for all such
vectors £% at q,

(2.5.3) (0 +p)(n%&)* —p = 0.

Assume firstthat (0 + p) > 0Oand p > 0, andlet £% be a unit timelike vector at g.
Then, by the wrong-way Schwarz inequality (proposition 2.2.3), (7°&;)% >
Im?II1% 151> = 1. Hence, (p + p)(n°€a)* —p = (0 +p) —p = p = 0. Sowe have
equation (2.5.3). Conversely, assume equation (2.5.3) holds for all unit time-
like vectors £% at g. Then, in particular, it holds if £* = %, and in this case
we have 0 < (o +p)(1°14)> —p = (p +p) —p = p. Note next that there is no
upper bound to the value of (7%&,)? as £* ranges over unit timelike vectors at
g. (For example, let 0% be any unit spacelike vector at g orthogonal to n*, and
let £% be of the form &% = (cosh 6) n* — (sinh 0) 0%, where 0 is a real number.
Then £% is a unit timelike vector, and (7%&,)? = cosh? 6. The latter goes to
infinity, as 6 does.) So equation (2.5.3) cannot possibly hold for all unit time-
like vectors at q unless (p + p) > 0. This gives us the stated equivalence for
the WEC.

(CC) If T, is given by equation (2.5.2), then a straightforward computation
shows that the conservation condition (V, T% = 0) holds iff

@s  p(0*Van')+on’ Van' +1°(1°Va p) — (Vap)(g® —n'n")
+p(n*Van’)+pn’ Van® =0.

Assume that equation (2.5.4) does hold. Then contraction with 7, yields

(2.5.5) n*Vap+(0+p)(Van®) =0.

(Here we use the fact that the unit timelike vector field 5” is orthogonal to
its associated acceleration field n*V, n” and to its associated projection field
hab = (gab — Nanp).) And if we multiply equation (2.5.5) by n? and then subtract
the result from (2.5.4), we arrive at

(2.5.6) (0 +p)n* Van’ — (g — 1" n%) Vap = 0.

Thus equation (2.5.4) holds only if equations (2.5.5) and (2.5.6) do. And the
converse is immediate. So we have our stated equivalence for the conservation
condition.
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PROBLEM 2.5.3. (i) Prove the stated equivalence for the DEC. (ii) Prove that, as
restricted to perfect fluids, the SDEC is equivalent to the DEC.

Now consider the physical interpretation of the two equations jointly equiv-
alent to the CC. Equation (2.5.6) is the equation of motion for a perfect fluid.
We can think of it as a relativistic version of Euler’s equation. Equation (2.5.5)
is an equation of continuity (or conservation) in the sense familiar from clas-
sical fluid mechanics. It is easiest to think about the special case of a dust
field (p = 0). In this case, the equation of motion reduces to the geodesic
equation: n” V}, n* = 0. That makes sense. In the absence of pressure, parti-
cles in the fluid are free particles. And the conservation equation reduces to
n? Vi, p + p (Vy n?) = 0. The first term gives the instantaneous rate of change
of the fluid’s energy density, as determined by a co-moving observer. The term
V), n? gives the instantaneous rate of change of its volume, per unit volume,
as determined by that observer. (We shall justify this claim in section 2.8.) In

av

a more familiar notation, the equation might be written d—p + %d— =0 or,
AoV S S

equivalently, V) = 0. (Here we use s for elapsed proper time.) It asserts

that (in the absence of pressure, as determined by a co-moving observer) the
energy contained in an (infinitesimal) fluid blob remains constant, even as its
volume changes.

In the general case, the situation is more complex because the pressure
in the fluid contributes to its energy (as determined relative to particular
observers), and hence to what might be called its “effective mass density.”
(If you compress a fluid blob, it gets heavier.) In this case, the WEC comes
out as the requirement that (p + p) > 0 in addition to p > 0. The equation of
motion can be expressed as

(25.7) (o +p)n° Vyn* = h*® vy p,

where h“? is the projection field (g*? — »® n?). This is an instance of the “second
law of motion” (see equation (2.4.13)) as applied to an (infinitesimal) blob of
fluid. On the left we have “effective mass density x acceleration.” On the right,
we have the force acting on the blob, as determined by a co-moving observer.
We can think of it as minus the gradient of the pressure (as determined by a co-
moving observer). (The minus sign comes in because of our sign conventions.)
Again, this makes sense. If the pressure on the left side of the blob is greater
than that on the right, it will accelerate to the right.

And in the general case we are now considering—where the pressure p
need not vanish—the term (p V}, n?) in the conservation equation is required
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because the energy of the blob is not constant when its volume changes as
a result of the pressure. The equation governs the contribution made to its
energy by pressure.

2.6. Electromagnetic Fields

In this section we briefly discuss electromagnetic fields. Though our principal
interest here is in the energy-momentum field T, associated with them, we
mention a few fundamental ideas of classical electromagnetic theory along the
way.

Electromagnetic fields are represented by smooth, anti-symmetric fields F,,
(onthe background spacetime (M, g,p)). If a particle with mass m > 0, chargeg,
and four-velocity field £ is present, the force exerted by the field on the particle
at a point is given by q F* gP. (This condition uniquely characterizes Fg.) As
noted at the end of section 2.4, if we use this expression for the force term in
the relativistic version of “Newton’s second law” equation (2.4.13), we arrive
at the Lorentz law of motion:

(2.6.1) qF% e =meb v, g%

It describes the motion of a charged particle in an electromagnetic field (atleast
when the contribution of the particle’s own charge to the field is negligible and
may be ignored). Note again that the equation makes geometric sense. The
acceleration vector on the right is orthogonal to £%. But so is the force vector
on the left since F,j, is anti-symmetric.

The fundamental field equations of electromagnetic theory (“Maxwell’s
equations”) are given by

(2.6.2) Via Fpe =0,
(2.63) V, F% = JP.

Here J¢ is the charge-current density field. It is characterized by the following
condition: given any background observer at a point with four-velocity £%, J%&,
is the charge density there (arising from whatever charged matter is present) as
determined by that observer. For example, in the case of a charged dust field,
J% = un® where n* is the four-velocity of the dust and p is its charge density
as measured by a co-moving observer. Thus, if equation (2.6.1) expresses the
action of the electromagnetic field on a charged (test) particle, equation (2.6.3)
expresses the reciprocal action of charged matter on the field. The former acts
as a source for the latter.
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An important constraint on the charge-curent density field J* follows
immediately from equation (2.6.3). Since F% is anti-symmetric, V,J% =
VaVy F™ = V[, Vy) F™. But

2 V[avn] Fne — _pma anan _ prm Raman = —FM R+ F" R,
=—F"Ryn+F"™Ryn =0.

(The first two equalities follow, respectively, from clauses (1) and (2) of propo-
sition 1.8.2. The third involves nothing more than a systematic change of
abstract indices. The final equality follows from the symmetry of the Ricci
tensor field.) So

(2.6.4) V,J* = 0.

We can understand this as an assertion of the local conservation of charge.
Notice that in the case of charged dust field with J* = u %, equation (2.6.4)
comes out as

26.5) n’ Vi 1+ (Vp1n?) = 0.

This has exactly the same form as equation (2.5.5) in the special case where
p =0, and it can be analyzed in exactly the same manner. It asserts that, as
determined by a co-moving observer, the total charge in an (infinitesimal) blob
of charged dust remains constant, even as its volume changes.

PROBLEM 2.6.1. Show that Maxwell’s equations in the source-free case (J* =
0) are conformally invariant; i.e., if an anti-symmetric field Fyy, satisfies them
with respect to a metric g,p, then it does so as well with respect to any metric of
the form g\ = Q2 gy, (Note: Here we need the fact that the dimension n of the
background spacetime is 4. Hint: The conformal invariance of the first Maxwell
equation (Vg F; = 0) follows immediately from problem 1.7.2 and does not depend
on the value of n. To establish that of the second (V4 F® = 0), use proposition 1.9.5
to show that
Vo (g™ g Foun) = % (VaF) + (”9;54) F*v,Q,

where g/ = Q=2 g% is the inverse of g, and V' is the derivative operator
compatible with g/, .)

The energy-momentum tensor field associated with Fy, is given by

1
(2.6.6) Tap = Fam Fmb + Py ab (FmnF™").
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We can gain some insight by introducing a reference observer O at a point p,
with four-velocity £%, and considering the decomposition of F,, there into its
“electric” and “magnetic” components.

Let by, be the spatial projection tensor at the point determined by £ (defined
by equation (2.4.3)). Further, let €,,4 be a volume element on some open set
containing p. Then we define

(267) n=J"&,

(2.6.8) I =h% Jb,

(2.6.9) E® = F% &b,

(2.6.10) B = % e gy Fry,
(2.6.11) €abc = €aben &

E® and B* are, respectively, the electric and magnetic field vectors at the point
as determined relative to O. (Clearly, if we had chosen the other volume ele-
ment, —€,.4, we would have ended up with —B%. A choice of volume element
is tantamount to a choice of “right-hand rule.”) u and j* are, respectively, the
charge density and current density vectors as determined relative to O. Note
that E%, B% and j* are all orthogonal to £%. We can think of €, as a three-
dimensional volume element defined on the orthogonal subspace of £% (It is
anti-symmetric, it is orthogonal to £ in all indices and, as one can show using

equation (1.11.8), it satisfies the normalization condition €€ = —31.)
Reversing direction, we can recover F,;, and J* from E%, B%, u, and j* as

follows:

(2.6.12) J'=pnEh 454,

(2.6.13) Fop = 2 Ea &)+ €apea E° B

The first assertion is an immediate consequence of the definitions of j* and
w. To verify the second, we substitute for B? on the right side. By equation
(1.11.8), the anti-symmetry of F,, and the definition of E%, we have

1 1
2 Eja 5y + €abea §° (5 gy qu) = 2 Fa &y +5 (3§70 5%, 50 & Fyy

=2Em§b]+3§36§[a1’7b5]

= ZE[a‘i:b] + §C($anc + ScFub - ébFuc) =Fab-
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Let us now return to our expression (2.6.6) for the energy-momentum field
T,y Our observer O with four-velocity §* will attribute to the electromagnetic
field a four-momentum density,

1
(2.6.14) T% &b = FO™ F,, 6P + : E% (F™ Fppp).
We can express the right side in terms of the relative electric and magnetic

vectors E* and B* determined by O. (The computations are much like that
used to prove equation (2.6.13).) We have

FO™ Fp €0 = F*™ B, = (2E*£™ 4 €¥™" £, B,) By
(2.6.15) = —¢*E"E, —€¢""E, B,
and also
F™ Py, = (2 B €™ 4 ™™ £, By) (2 B &) + €mmrs € BY)

=2E"Ey+ €mns €™ E, By £ B’

(2.6.16) =2E"E, — 406" 6%, £, B,&" B = 2 (E"E, — B"B,).
Hence,

1
(2.6.17) T, g” =3 (— E"E, — B"B,) §* — "™ Ey, B,.

The coefficient of £% on the right side is the energy density of the field as
determined by O. Using our notation for vector norms and temporarily drop-
ping indices (and remembering that both E* and B* are spacelike [or the zero
vector]), we can express it as % (I EI? + || B]|?). This will be familiar as the stan-
dard textbook expression for the energy density of an electromagnetic field.
The component of T%, £P orthogonal to £%, namely —e*™" E,, B,, is the three-
momentum density of the electromagnetic field as determined by O. In more
familiar vector notation (recall our discussion in section 1.11), it comes out as
—(E x B). (E x Bis called the “Poynting vector.”)

Note that we can also work backward and derive equation (2.6.6), our expres-
sion for Ty, from the assumption that equation (2.6.17) holds for all observers
with four-velocity £€%. (Reversing the calculation, one shows that equation
(2.6.14) or, equivalently, (T% — (F*" Fy, + %g“b F™ F,)) €2 = 0, holds for
all unit timelike vectors &%. Equation (2.6.6) then follows by proposition
2.1.3.) So T, is fully determined by the requirement that it code values for
% (I1E||*> + || B||?) and —(E x B for all observers.

PROBLEM 2.6.2. Texthooks standardly assert that (| E||> — ||B||?) and E- B are

relativistically invariant (i.e., have common values for all observers). To verify this,
it suffices to note that (in our notation)
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1
(2.6.18) (— E*Es+ B*Bg) = — 3 FF,,

1
(2.6.19) E°B, = 3 Y
We have proved the first assertion (equation (2.6.16)). Prove the second.

Now we consider our two energy conditions and the conservation condition.
Given any future-directed, unit timelike vector £% at a point, with correspond-
ing electric and magnetic field vectors E* and B%, we have

1
(2.6.20) T grgb = 3 (— E"E,— B"B,),
by ac _1 ng _ ph 2 n 2
(26.21) (Tap€") (T &) = 4 (E"En — B"Bp)” + (E"By)*,
(2.6.22) V,T% = J,F.

The first follows immediately from equation (2.6.17) (and the fact that €, is
orthogonal to £ in all indices). We leave the second as an exercise. For the
third, note that

VoT% = V,(F*" F, b + %g"‘b Fyn ™)
=F"V,F P+ F v, Fom 4 % Fyn VPE™
= % Fam(VAF™ — V™ F%) 4+ F b v Fo" + % Frna VP F™
= - % Fom (VOF™ + V" F 4 VP F™) + F b g™ = J, F™.
(We get the third equality by systematically changing indices and using the anti-
symmetry of F,p: Fam Vepmh — F, VMF% = _F, VMmF We get the fourth

and fifth from Maxwell’s equations ( first V,F*" = J™, then VI*F?™ = () and,
again, the anti-symmetry of F,.)

PROBLEM 2.6.3. Prove equation (2.6.21). (It follows immediately from this result
that Ty, Sb is null iff E*E; = B®B, and E® B, = 0. By problem 2.6.2, these con-
ditions hold as determined relative to one unit timelike vector €% at a point iff they

hold for all such vectors there. When they do hold (at all points), we say that F, is S |
a “null” field.) 0
— H1

“530-47773_Ch02_2P.tex’ — 1/23/2012 — 17:18 — page 156



CLASSICAL RELATIVITY THEORY | 157

Maxwell’s equations play no role in the proof of equations (2.6.20) and
(2.6.21). So we see that for any anti-symmetric field F,, the corresponding
energy-momentum field Ty, = Fom F")) + % 8ab (Finn F™) satisfies both the
WEC and the DEC (since E* and B” are always spacelike or equal to the zero
vector 0). And it satisfies the SDEC except in the special case where F,, is a
non-vanishing null electromagnetic field (in the sense of problem 2.6.3).

The situation is different with the CC, for which Maxwell’s equations are
essential. Suppose that the pair (F,,, J%) satisfies them (and, therefore, that
equation (2.6.22) holds). There are two cases to consider. If J* = 0—i.e., if no
sources are present—then the conservation condition V,T% = 0 is automat-
ically satisfied. But when charged matter is present, there is the possibility of
energy-momentum being transferred from the electromagnetic field to that
matter. So it should not be the energy-momentum of the electromagnetic
field alone that is conserved. Instead, it should be the total energy-momentum
present (arising from both field and charged matter) that is.

By way of example, consider the case where a charged dust field serves
as a source for the electromagnetic field. Suppose the dust is characterized
by four-velocity field %, mass density p, and charge density u, the latter two
as determined by a co-moving observer. Then we have J* = %, and the
energy-momentum field for the dust (alone) is given by p n%n”. So the total
energy-momentum field in this case is given by

aez Ty = Fam "+ 7 g (Eon ™)+ p na.
Hence, by equation (2.6.22),
VoT% = J, F% 4 V(0 n™yP)
(26.24) = 1 na F + p (0°Van®) + p 1n° Va0 + 0" (1°Va p).

This is the counterpart to equation (2.5.4) that we considered in our discussion
of perfect fluids. Arguing much as we did there, we can verify thatin the present
case we have the following equivalence. (Set the right-hand side to 0, contract
with 7;, and then subtract the resultant equation from the original.)

uwFb, n? = p(n° Van?).

CC
n*Vap+p(Van®) = 0.

The second equation on the right side is just equation (2.5.5) in the case where
p = 0. It asserts that, as determined by a co-moving observer, the energy in
an (infinitesimal) blob of dust remains constant, even as the volume of the
blob changes. (Note that it also has exactly the same form as equation (2.6.5),
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which makes a corresponding assertion about charge conservation.) The first
equation on the right side is an equation of motion for the dust field. It has
exactly the same form as equation (2.6.1). It asserts, in a sense, that individual
particles in the dust field obey the Lorentz law of motion. Thus, the energy-
momentum of the electromagnetic field Fy, fails to be conserved only to the
extent it exerts a force on those particles and causes them to accelerate.

As an afterthought, now, we recover the standard textbook formulation of
Maxwell’s (four) equations from our formulation. To do so, we need a bit
of structure in the background. Let us temporarily assume that (M, g,;) is not
justany (temporally oriented) spacetime, but one that admits a future-directed,
unit timelike vector field £% that is constant (vagb = 0). Let u, j% E%, B% and
€4hc be as defined above. Further, let D be the derivative operator induced on
hypersurfaces orthogonal to £%. (Recall our discussion in section 1.10.) Then
we have the following equivalences.

Dy B =0 (V-B = 0
VieFpg =0 < dB
[a Lbc] EabcDbEc — _gbvbBa (VXE — _E)
DyEY = (V-E = n
Vo Fh = Jb = ) , , IE .
€ DyB, = E°V,E*+j* (VxB = 54—])

(In each case, we have indicated how the right-side equation is formulated in
standard (three-dimensional) vector notation.) We prove the first equivalence
and leave the second as an exercise. Note first that by equations (2.6.13) and
(1.11.8), we have

€ Fy = €™ (2 Eig £g) + €oars £ B°)
=2ePE gy — 4500 8P TR
=264 £, 28°BY +2&0B°,
Hence, since £% is constant,
2625) €DV F = Vy(e™UFy) = 2P,V E, — 26V, B + 2£PV, B

And for that same reason, V hy. = Va(gy — &péc) = 0. So, since he,Eb = E°
and h“bBb = B%,

(2.6.26) D,BY = h™ kb V,,B" = V,,(h"™ K, B") = V,, B" = V, B®
2627) € D,E, = dbed Egh" WiV E, = abed £48",Vin(h'" Ey)

— GadeEd Vb EC .
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(For the second equality in equation (2.6.27), note that €% £, &, = 0 and,
hence, that €% g h = edabe g, g",-) if we now replace V,, BY and €4,V E,
in equation (2.6.25) using equations (2.6.26) and (2.6.27), we arrive at

(2.6.28) el v, F oy = —2£%(Dy,B") +2 (€™ D, E, + £"V, B%).

Now Vi, Fye) = 0 iff € 7, F gy = 0. (Why?) And the latter condition holds
iff the sum on the right side of equation (2.6.28) is 0. But that sum consists
of two terms, one tangent to £* and one orthogonal to £%. So the sum is 0
iff both terms are 0. Thus we are left with the conclusion that Vi, Fj = 0 iff
D, B® = 0 and €®°D,E, + £V, B* = 0.

PROBLEM 2.6.4. Prove the second equivalence (for V, F* = J?).

2.7. Einstein's Equation

Once again, let (M, g,;) be our background relativistic spacetime with a speci-
fied temporal orientation.

It is one of the fundamental ideas of relativity theory that spacetime struc-
ture is not a fixed backdrop against which the processes of physics unfold,
but instead participates in that unfolding. It posits a dynamical interaction
between the spacetime metric in any region and the matter fields there. The
interaction is governed by Einstein’s field equation

1
(2.7.1) Ry — 2 Rgy, = 8m Ty,
or, equivalently,
1
(2.7.2) Rop = 87 (Tap — ) T gap)-

Here Ry, (= R") is the Ricci tensor field, R (= R%) is the Riemann scalar
curvature field, and T is the contracted field T%." We start with four remarks
about equation (2.7.1) and then consider two reformulations that provide a
certain insight into the geometric significance of the equation.

(1) It is sometimes taken to be a version of “Mach’s principle” that “the
spacetime metric is uniquely determined by the distribution of matter.” And
it is sometimes proposed that the principle can be captured in the require-
ment that “if one first specifies the energy-momentum distribution T, on the
spacetime manifold M, then there is exactly one (or at most one) Lorentzian

17. We use “geometrical units” in which the gravitational constant G and the speed of light ¢
are 1.
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metric g,, on M that, together with T, satisfies equation (2.7.1).” But there
is a serious problem with the proposal. In general, one cannot specify the
energy-momentum distribution in the absence of a spacetime metric. Indeed,
in typical cases the metric enters explicitly in the expression for T,,. (Recall
the expression (2.5.2) for a perfect fluid.) Thus, in looking for solutions to
equation (2.7.1), one must, in general, solve simultaneously for the metric
and matter field distribution.

(2) Given any smooth metric g, on M, there certainly exists a smooth
symmetric field T,, on M that, together with g,,, is a solution to equation
(2.7.1). It suffices to define T, by the left side of the equation. But the field T,
so introduced will not, in general, be the energy-momentum field associated
with any known matter field. And it will not, in general, satisfy the weak
energy condition discussed in section 2.5. If the latter condition is imposed
as a constraint on Ty, Einstein’s equation is an entirely non-trivial restriction
on spacetime structure.

Discussions of spacetime structure in classical relativity theory proceed on
three levels according to the stringency of the constraints imposed on Tjj.
At the first level, one considers only “exact solutions”—i.e., solutions where
T,y is, in fact, the aggregate energy-momentum field associated with one or
more known matter fields. So, for example, one might undertake to find all
perfect fluid solutions exhibiting particular symmetries. At the second level,
one considers the larger class of what might be called “generic solutions”—
i.e., solutions where T, satisfies one or more generic constraints (of which
the weak and dominant energy conditions are examples). It is at this level,
for example, that the singularity theorems of Penrose and Hawking (Hawking
and Ellis [30]) are proved. Finally, at the third level, one drops all restrictions on
T, and Einstein’s equation plays no role. Many results about global structure
are proved at this level—e.g., the assertion that closed timelike curves exist in
any relativistic spacetime (M, g,3) where M is compact.

(3) We have presented Einstein’s equation in its original form. He famously
added a “cosmological constant” term ( — Ag,y) in 1917 to allow for the possibil-
ity of a static cosmological model with a perfect fluid source, withp = Oand p >
0.18 (We shall see why the addition is necessary under those conditions at the
end of section 2.11.) But Einstein was never happy with the revised equation

18. He did so for other reasons as well (see Earman [14]), but we pass over them here.
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1
(2.7.3) Ry, — 3 Rguy— A goy, =81 Ty,

or, equivalently,

1
(2.7.4) Ry =87 <Tab -3 Tgab) — A gaps

and was quick to revert to the original version after Hubble’s redshift observa-
tions gave convincing evidence that the universe is, in fact, expanding. After
that, he thought, there was no need to have a static cosmological model. (That
the theory suggested the possibility of cosmic expansion before Hubble’s obser-
vations must count as one of its great successes.) Since then the constant
has often been reintroduced to help resolve discrepancies between theoretical
prediction and observation, and then abandoned when the (apparent) discrep-
ancies were resolved. (See Earman [14] for a masterful review of the history.)
The story continues. Recent observations indicating an accelerating rate of cos-
mic expansion seem to imply that our universe is characterized by a positive
value for A or something that mimics its effect.

In what follows, we shall continue to write Einstein’s equation in the form
(2.7.1) and think of the cosmological term as absorbed into the expression for
the energy-momentum field T,;,. The magnitude and physical interpretation
of this contribution to T, are topics of great importance in current physics.!
But they will play no role in our discussion.

PROBLEM 2.7.1. Equations (2.7.3) and (2.7.4) are equivalent only if the dimension
n of the background manifold is 4. Show that in the general case (at least ifn > 3),
inversion of equation (2.7.3) leads to
2.7.5 R 8 T, ! T 2 A

7. =8m - - .
(2.7.5) ab ab (n—2) 8ab (n—2) 8ab

(4) It is instructive to consider the relation of Einstein’s equation to

Poisson’s equation,

(2.7.6) V3¢ =47 p,
the field equation of Newtonian gravitation theory. Here ¢ is the Newtonian

gravitational potential, and p is the Newtonian mass density function. In the
geometrized formulation of the theory that we shall consider in chapter 4,

19. See Earman [14], once again, and references cited there.
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one trades in the potential ¢ in favor of a curved derivative operator and one
recovers p from a mass-momentum field T%. In the end, Poisson’s equation
comes out as

o 1 .
(2.7.7) Roypy =87 (Typ — 3 tap T).

Here Ry, is the Ricci tensor field associated with the new curved derivative
operator, ty, is the temporal metric, Top = T™ ta tp, and T = T t,,. (See
equation (4.2.10) and the discussion that precedes it.) The resemblance to
equation (2.7.2) is, of course, striking. It is particularly close in the special
case where p = 0. For in this case, T% = 0 and equation (2.7.7) reduces to
Ry, = 0. The latter is exactly the same as Einstein’s equation (2.7.2) in the
empty space case.

The geometrized formulation of Newtonian gravitation was discovered after
general relativity in the 1920s. But now, after the fact, we can put ourselves
in the position of a hypothetical investigator who is considering possible can-
didates for a relativistic field equation and who knows about the geometrized
formulation of Newtonian theory. What could be more natural than to adapt
equation (2.7.7) and simply replace t,;, with g,;,? This seems to me one of the
nicest routes to Einstein’s equation (2.7.2). Again, the route is particularly
direct in the empty space case. For then one starts with the Newtonian empty
space equation (R,, = 0) and simply leaves it intact.

Let us now put aside the question of how one might try to motivate
Einstein’s equation, and consider two reformulations.

Let £% be a unit timelike vector at a point p in M, and let S be a spacelike
hypersurface containing p that is orthogonal to £ there. (We understand a
hypersurface in M to be spacelike if, at every point, vectors tangent to the surface
are spacelike. This condition guarantees that the hypersurface is metric. (Recall
our discussion in section 1.10.)) Further, let h,;, and 7, be the first and second
fundamental forms on S, and let D be the derivative operator on S determined
by hgp. Associated with D is a Riemann curvature field R , on S. We know
(recall equation (1.10.21)) that the contracted scalar field R = R“bmhbc satisfies

(2.7.8) R=n?—ryn® +R—2Ry E"E

at p. In the special case where S has vanishing extrinsic curvature (7,, = 0) at
p, this can be expressed as

1 ach 1
(2.7.9) (Rab — 5 gapR)§7E" = ) R.
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Figure2.7.1. A “geodesic generated hypersurface” through a pointis constructed by projecting
geodesics in all directions orthogonal to a given timelike vector there.

If Einstein’s equation holds, it therefore follows that
(2.7.10) R = =167 (T, S“Sb).zo

One can also work backward. Suppose equation (2.7.10) holds for all unit
timelike vectors at p and all orthogonal spacelike hypersurfaces through p
with vanishing extrinsic curvature there. Then, by equation (2.7.9), it must be
the case that

1
@7.11) (Rap — 5 Regap) %P = 87 Ty, £%°

for all unit timelike vectors £% at p. This, in turn, implies Einstein’s equation
(by lemma 2.1.3). So we have the following equivalence.

() Einstein’s equation R, — % Rg,, = 87 Ty, holds at piff for all unit time-
like vectors £ at p, and all orthogonal spacelike hypersurfaces S through
p with vanishing extrinsic curvature there, the scalar curvature of S at p
is given by R = —167 (T, £°€7).

We can give the result a somewhat more concrete formulation by casting
itin terms of a particular class of spacelike hypersurfaces. Consider the set of
all geodesics through p that are orthogonal to £% there. The (images of these)
curves, at least when restricted to a sufficiently small open set containing p,
sweep out a smooth spacelike hypersurface that is orthogonal to £ at p.?! (See
figure 2.7.1.) We shall call it a geodesic generated hypersurface. (We cannot speak
of the geodesic generated hypersurface through p orthogonal to £# because we

20. There is an issue here of sign convention that is potentially confusing. We seem to be led
to the conclusion that the Riemann scalar curvature of S is less than or equal to 0—at least, if T,
satisfies the weak energy condition. But it might be more natural to say that it is greater than or
equal to 0. We are working here with R as determined relative to the negative definite metric hy,
and a sign flip is introduced if we work, instead, with the positive definite metric —hyy,. The switch
from hy, to —hyy leaves D, R%,, and Ry intact but reverses the sign of R = h¥¢ Ry,

21. More precisely, let S, be the spacelike hyperplane in M, orthogonal to £%. Then for any
sufficiently small open set O in M), containing p, the image of (S, N O) under the exponential map
exp : O — M is a smooth spacelike hypersurface in M containing p that is orthogonal to §* there.
(See, for example, Hawking and Ellis [30, p. 33].)
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have left open how far the generating geodesics are extended. But given any
two, their restrictions to a suitably small open set containing p coincide.)

Geodesic generated hypersurfaces are of interest in their own right, the
present context aside, because they are natural candidates for a notion of “local
simultaneity slice” (as determined relative to a timelike vector at a point). We
can think of them as instances of private space. (The contrast here is with
public space, which is determined not relative to a single timelike vector or
timelike curve, but relative to a congruence of timelike curves. For more on this
difference between private space and public space, see Rindler [53, 54] and
Page [49].)

Now suppose S is a geodesic generated hypersurface generated from p. We
claim that it has vanishing extrinsic curvature there. We can verify this with
a simple calculation very much like that used to prove proposition 1.10.7. Let
&% be a smooth, future-directed, unit timelike field, defined on some open
subset of S containing p, that is orthogonal to S. Let h,j, be the corresponding
projection field on S. Further, let 0 be the tangent field to a geodesic (relative
to V) through p that is orthogonal there to £%. Then along the image of the
geodesic we have 6°V,0? = 0 and 0%, = 0 (or, equivalently, h%,0®? = o).
The latter holds because the image of the geodesic is contained in S and so
is everywhere orthogonal to its normal field. Hence, by equation (1.10.16),
we have

ngp ool = (W™ b, Vi &n) 0% =Mo"V, £

=0"Vm(o"E) —Eno Vo =0

along the image of the geodesic. In particular, the condition holds at p. But
given any vector at p orthogonal to £%, we can choose our initial geodesic so
that it has that vector for its tangent at p. Hence, 74, 0% = 0 at p for all
such orthogonal vectors. Since 74, is symmetric, as well as orthogonal to the
normal field £%, it follows that 77, = 0 at p.

Consider again the equivalence (). If we rerun the argument used before,
but systematically cast it in terms of geodesic generated hypersurfaces, we
arrive at the following alternate formulation.

PROPOSITION 2.7.1. Let T,y be a smooth symmetric field on M, and let p be a
point in M. Then Einstein’s equation Ry, — % Rg., = 87 T,y holds at p iff for all
unit timelike vectors £% at p, and all geodesic hypersurfaces S generated from p that
are orthogonal to €%, the scalar curvature of S at pis given by R = —167 (T, £°€7).
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Our second reformulation of Einstein’s equation is phrased in terms of
geodesic deviation. Let £% be a smooth, future-directed, unit timelike vector
field whose associated integral curves are geodesics—i.e., a geodesic reference
frame. Further, let A be a vector field on one of the integral curves y satisfying
L1 = 0. (So PV}, 1, = APV, &,.) Finally, assume A% is orthogonal to &% at
some point on y. Then it must be orthogonal to the latter at all points on y.
This follows because the inner product (§*A,) is constant on y:

EOV)(E0a) = Aa £V, +£°6PVyh, = 96DV, = E90PVE,

— 23V, (E%,) = 2 2bV,(1) = 0.
2 2

We can think of A% as a connecting field that joins the image of y to the
image of another, “infinitesimally close,” integral curve of £%. Then the field
E"V, (™ Vi A%) represents the acceleration of the latter relative to y. We know
from proposition 1.8.5 that it satisfies the “equation of geodesic deviation™:

(27.12) E"Vy (E™ V%) = R%, &P 2 &4,

Now we define the “average radial acceleration” of £ at a point p on y. Let
)i“ (i = 1,2, 3) be any three connecting fields (as just described) such that, at p,
the vectors &%, i“, )ZL“, i“ form an orthonormal set. For each i, the (outward-

1
directed) radial component of the relative acceleration vector £"V,, (6" Vy, A%)

1
—i.e., its component in the direction A—has magnitude

i i
— 2a "V (Vi 2%).

(We need the minus sign because A* is spacelike.) We now take the average
radial acceleration (ARA) of £ at p to be

3
1 i i
(2.7.13) ARA = -3 Z ra E"Vi (E™ Vi 1).
i=1
Of course, we need to check that the sum on the right side is independent of

our initial choice of connecting fields. The orthonormality condition implies

that at p we have gg = £:6. — 21'3:1 )lw )lw. Hence, by equation (2.7.12), we also
have
1o i 1 3.0
ARA= —< D e R85 = —3 R 6087 (Z ha c)
i i=1

1=1

1
— _ g R(led %-b %-d (S(ch _gaC)
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at p. But R, g€% =0, and R’ .8 = R%,; = —R%,;, = —Rps- So we may
conclude that

1
(2.7.14) ARA = -3 Ry4 ?;‘b’;’d

holds at p. Thus, as claimed, ARA is well defined.
Now if Einstein’s equation holds at p, it follows that

8

1
2.7.15) ARA = ——~ <Tab —-3 Tgab) £%"

holds there as well. And conversely, if equation (2.7.15) holds at p for all
geodesic reference frames, then it must be the case, by equation (2.7.14), that
Ry £Pe% =87 (Tap — % T gin)é bgd holds for all unit timelike vectors £ there.
And this, in turn, implies that Einstein’s equation holds at p. So we have the
following equivalence.

PROPOSITION 2.7.2. Let T,y be a smooth symmetric field on M, and let p be a
point in M. Then Einstein’s equation R, — % Rg., = 87 T,y holds at p iff for all
geodesic reference frames £ (defined on some open set containing p), the average

8 1
radial acceleration of €% at p is given by ARA = 2T (Tab -3 Tgab> gosb.

3

We considered three energy conditions (weak, dominant, and strengthened
dominant) in section 2.5. Let us now consider a fourth. Let T, be the energy-
momentum field associated with a matter field F.

Strong Energy Condition (SEC): Given any timelike vector £% at any point
in M,

1
(Tab ) Tgub> g_—agb > 0.

Equation (2.7.15) provides an interpretation. Suppose that Einstein’s equation
holds. Then F satisfies the strong energy condition iff, for all geodesic refer-
ence frames, the average (outward-directed) radial acceleration of the frame is
negative or 0. This captures the claim, in a sense, that the “gravitational field”
generated by F is “attractive”.

PROBLEM 2.7.2. Give examples of each of the following.

(1) A smooth symmetric field T, that satisfies the SDEC (and so also the WEC
and DEC) but not the SEC
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(2) A smooth symmetric field Ty, that satisfies the SEC but not the WEC (and so
not the DEC or SDEC, ¢ither)

PROBLEM 2.7.3. Consider a perfect fluid with four-velocity n®, energy density p,
and pressure p. Show that it satisfies the strong energy condition iff (0 + p) > 0 and
(0+3p) = 0.

2.8. Fluid Flow

In this section, we consider fluid flow and develop the standard formalism for
representing the rotation and expansion of a fluid at a point. (Later, in sections
3.2 and 3.3, we shall consider several different notions of global rotation.)
Once again, let (M, g,p) be our background relativistic spacetime. We are
assuming it is temporally orientable and endowed with a particular temporal
orientation. Let £% be a smooth, future-directed unit timelike vector field on
M (or some open subset of M). We understand it to represent the four-velocity
field of a fluid. Further, let g, be the spatial projection field determined by &°.
The rotation and expansion fields associated with £ are defined as follows:

(2.8.1) wap = " hb]” Vi &n,
(2.8.2) Oup = h(am hb)” Vi En.
They are smooth fields, orthogonal to £% in both indices, and satisfy

(2.83) Vo &y = wap+0ap + Ea(E" Vi &).

(This follows since

@gp + Oap = hy" hbn Vinén = (gam - Sagm) (gb” —& Sn) Vin &n,

and £" V,, &, = 0.) Our first task is to give the two fields a geometric inter-
pretation and, in so doing, justify our terminology. We start with the rotation
field w,,.

Let y be an integral curve of £%, and let p be a point on the image of y.
Further, let n* be a vector field on the image of y that is “carried along by
the flow of £%” (i.e., £¢n* = 0) and orthogonal to £ at p. (It need not be
orthogonal to % elsewhere.) We think of the image of y as the worldline of a
fluid element O, and think of n* at p as a “connecting vector” that spans the
distance between O and a neighboring fluid element N that is “infinitesimally
close.” The instantaneous velocity of N relative to O at p is given by £% V, nP.
But £% V,n? = % V, & (since £ n® = 0). So, by equation (2.8.3) and the
orthogonality of £ with n at p, we have
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a

wyen® (rotational velocity vector)

n® (connecting vector)

Figure 2.8.1. The angular velocity (or twist) vector . It points in the direction of the instan-
taneous axis of rotation of the fluid. Its magnitude ||w?|| is the instantaneous angular speed
of the fluid about that axis. Here % connects the fluid element O to the “infinitesimally close”
fluid element N. The rotational velocity of N relative to O is given by wb"nb. The latter is
orthogonal to n?.

(2.8.4) E°Van” = (0,0 +6,") 0"

at the point. Here we have simply decomposed the relative velocity vector
into two components. The first, (w,? n?), is orthogonal to 7 since wg, is anti-
symmetric. (See figure 2.8.1.) It is naturally understood as the instantaneous
rotational velocity of N with respect to O at p.

In support of this interpretation, consider the instantaneous rate of change
of the squared length (— 1 n;) of n at p. It follows from equation (2.8.4) that

(2.8.5) £V (— 1" np) = 260, 0" P

Thus the rate of change depends solely on 6,,. Suppose 6,;, = 0. Then the
instantaneous velocity of N with respect to O at p has a vanishing radial compo-
nent. If w,y, # 0, N can still have non-zero velocity there with respect to O. But
it can only be a rotational velocity. The two conditions (6,, = 0 and w,, # 0)
jointly characterize “rigid rotation.”

The rotation tensor wy, at a point p determines both an (instantaneous) axis
of rotation there, and an (instantaneous) speed of rotation. As we shall see,
both pieces of information are built into the angular velocity (or twist) vector

1
(2.8.6) o' = 7€ abed g1 weg
at p. (Here €% is a volume element defined on some open set containing p.

Clearly, if we switched from the volume element €, to its negation, the result
would be to replace w* with —w®.)
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If follows from equation (2.8.6) (and the anti-symmetry of €,.4) that w® is
orthogonal to £%. It further follows that

1
(2.8.7) o’ = 7 el g, v g,
(2.8.8) Wah = €apod E°@°.

Hence, wy, = 0iff o* = 0. Both equations (2.8.7) and (2.8.8) are verified with
simple calculations. We do the first and leave the second as an exercise. For
the first, we have

2w® = 6abcd £ wyg = Eabcd & h[cr hd]s V, & = 6ubcd £, hcr hds V, &
=Pl g g V= P Ve g,

(The second equality follows from the anti-symmetry of €***?, and the third
from the fact that e?*?¢, is orthogonal to £% in all indices.) Notice that equation
(2.8.6) has exactly the same form as our definition (2.6.10) of the magnetic field
vector B* determined relative to a Maxwell field F;, and four-velocity vector €%
(B* = % €ed g, F_y). It is for this reason that the magnetic field is sometimes
described as the “rotational component of the electromagnetic field.”

PROBLEM 2.8.1. Prove equation (2.8.8).

PROBLEM 2.8.2. We have seen that the conditions (i) wy, = 0 and (ii) o* = 0 are

equivalent at any point. Show that they are also equivalent (at any point) with (iii)
S [avb é:c] =0.

We claim now that w?® points in the direction of the instantaneous axis of rotation
(of the fluid flow associated with £%). (See figure 2.8.1 again.) More precisely,
with the connecting field % as above, we show that, at p,

(2.8.9) a)b“nb = 0 < n” is proportional to w.

(Or, in the language of “infinitesimally close” fluid elements, the rotational
velocity of N with respect to O vanishes iff the connecting vector from O to
N is aligned with w®.) The implication from right to left follows immediately
from equation (2.8.8) (and the anti-symmetry of €4.). Conversely, suppose
wh“nb = 0. Then, by equation (2.8.8),
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0= (§nwp €M) wyg 77b =& wp €M € &° o ﬂb
=318 5" 8P P £ 0y 0p = 310" E" P £y
=" o wp — " 0 wp).

(For the final equality, here we use the fact that £% is orthogonal to n at p and
orthogonal to w* everywhere.) Now if w’w), = 0, then »* = 0. (The twist vector
w* is orthogonal to £ and, by proposition 2.2.1, the only null vector orthogonal
to a timelike vector is the zero vector.) And in this case, n* is trivially aligned
with ®®. So we may assume that wPw, # 0. It then follows that n* = kw?,
where k = (wfn,)/ (0" wy).

Next, we claim that the magnitude of ©* is the instantaneous angular speed (of
the fluid flow associated with £%). The angular speed for the connecting vector
n% is given by the ratio of the linear speed of rotation (i.e., the magnitude of
n’ wp
" wy
2.8.1 again.) (If ©" w, = 0, then w,;, = 0, and the speed of angular rotation is

wb“nb ) to the magnitude of the radius vector p* = n* — w®. (See figure
0.) It follows with a bit of calculation much like that done previously in this
section that
—w, ® b w c
(2.8.10) (angular speed)? = M == (—0"w);
—P" Pn

i.e., the angular speed is ||w?||, as claimed.

PROBLEM 2.8.3. Complete the calculation in equation (2.8.10). (Hint: Do not
forget that we are doing the calculation at the initial point p where the connecting
vector n® is orthogonal to £%.)

The two italicized conditions concerning, respectively, the orientation and
magnitude of w® determine it up to sign.

With the preceding remarks as motivation, we now say that our future-
directed, unit timelike vector field £% is irrotational or twist-free at a point if
wgap = 0 there (or, equivalently, if ®* = 0 or if &,V & = 0 there). It will be
instructive to consider a condition that captures the requirement that £% is
twist-free everywhere. Let us say that a timelike vector field £% (not necessarily
of unitlength) is hypersurface orthogonal if there exist smooth, real valued maps
f and g (with the same domains of definition as &%) such that, at all points,
&, = f Vag. Note that if the condition is satisfied, then the hypersurfaces of
constant g value are everywhere orthogonal to £%. (For if o is a vector tangent
to one of these hypersurfaces, 0"V, g = 0. So 6"§, = o™ (f Vag) =0.) Letus
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further say that &% is locally hypersurface orthogonal if the restriction of &% to
every sufficiently small open set is hypersurface orthogonal.

PROPOSITION 2.8.1. Let £% be a smooth, future-directed unit timelike vector
field defined on M (or some open subset of M ). Then the following conditions are
equivalent.

(1) wup = 0 everywhere.
(2) &% islocally hypersurface orthogonal.

Proof. The implication from (2) to (1) is immediate. For if &, = f V, g, then

Wyp = h[(lm hb]n vm $n = Z’L[am I’Lb]n Vm (f Vn g)
=fhg" hb]n Vin Vng+hy" b]n (Vinf) (Vi g)

=fh" hhn Vim Varg +h,"™ hbn (Vimf) (Vi 8)-

But Vi, Vg = 0, since V is torsion-free; and the second term in the final line
vanishes as well since h, " Vy, g =f1 h," &n = 0. So wy, = 0. The converse is
non-trivial. It is a special case of Frobenius’ theorem (Wald [60, p. 436]). O

There is a nice picture that goes with the proposition. Think about an ordi-
nary rope. In its natural twisted state, the rope cannot be sliced in such a
way that the slice is orthogonal to all individual fibers. But if the rope is first
untwisted, then such a slicing is possible. Thus orthogonal sliceability is equiv-
alent to fiber-untwistedness. The proposition extends this intuitive equivalence
to the four-dimensional “spacetime ropes” (i.e., congruences of worldlines)
encountered in relativity theory. It asserts that a congruence is twist-free iff it
is, at least locally, hypersurface orthogonal.

Let us now switch our attention to the expansion tensor 6, associated with
&%, First, we decompose it into two pieces. We set

2.8.11) 6=0"=V,&"
1
(2.812) Oah = Ogp — 3 hap 6,

so that equation (2.8.3) can be expressed in the expanded form

1
(2.8.13) Vo &y = wgp +0gp + 3 hab 0 +&a (" Vi &p).
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Notice that the two expressions for 6 in equation (2.8.11) are equal since
&E" Vi &, = 0 and, therefore,

0, = g“b Oab = g“b h(am hb)n Vinén =h"" Vi &n = (g™ —E"E") Vin &u = Vi E".

Notice too that
(2.8.14) =0,

since 0,9 = 0, — § (g, —£,£%60 =60 —0 = 0.

0 is called the scalar expansion field associated with &%, and oy, the shear
tensor field associated with it. We can motivate this terminology much as we
did that for wgy,. We claim first that 0 is a measure of the rate at which the
volume of an (infinitesimal) blob of fluid increases under the flow associated
with &%. (It is the counterpart to the “divergence” of a vector field in ordinary
three-dimensional Euclidean vector analysis.) To justify this interpretation, we
do a simple calculation.

Let y be an integral curve of €%, and let p be any point on its image. Further,
let %, 7%, 7 be three vector fields on the image of y that (i) are carried along
by the ﬂow associated with £ (i.e., £¢ 1% = 0, for i = 1,2, 3), and (ii) together
with &%, form an orthonormal basis at p. Then h,), = _(71']a717b + 727a727b + 737a737b) at
p. We consider the rate of change of the volume function V = €45 %7 0P 7e nd
in the direction £%. It turns out that, at p,

(2.8.15) E"V,V=0V.

It is in this sense that 0 gives the instantaneous rate of volume increase, per unit
volume, under the flow associated with £%. (This is the claim we made at the end
of section 2.5.)

To Verlfy equation (2.8.15), we compute £"V, V. Since £¢ 7% = 0, we have
E"V, 0t = n”Vn &% and, hence,

E"V,V = "V, (€apea £°0° 1° 1Y)

(2.8.16) = €4bcd I:(S V, & )1b 2¢ 3d+ +(77nvn§ )fa 1h ZC:I~

Now the vector €, 17 7° 9% is orthogonal to nb, #¢, and 9. So, at p, it must

be co-aligned with &,. Indeed, we have € 1P 7° 1% = (€npea £"0° 1° %) £4 =

1p 2

V&, there. So, €;pa(E"Va EY) 0" 01 nd = &, (E"V,E%)V =0 at p. Similarly,
for example, we have

1

1 2¢c3 1
€abcd(N"Vn €) €% 11° 0% = —iy (" &YV
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at p. So, after handling all terms on the right side of equation (2.8.16) this way,
we are left, at p, with

E"VaV = =V [ (1" &) i (" ) e (7" €)

= — V(@ T " e ") (Ve ET) = VBV, 6

V(grn_érgn)vngr = ansn =Vé.

This gives us equation (2.8.15).

Now consider oy,. It is symmetric (and orthogonal to £%). So we can choose
our three vector fields 7%, 7%, #* so that, in addition to being carried along
by the flow of &%, and (with &%) forming an orthonormal basis at p, they

1 2 3
satisfy o, = —(k Natp + kfahp + k 137“737;,) atp. (Itis a basic fact of linear algebra
that we can find an orthonormal basis at p that diagonalizes the symmetric
4 x 4 matrix of oy,-components.) Then o, nb = Ilcﬁ“ for each i; i.e., % is an
eigenvector of o with eigenvalue k. And the coefficients k sum to 0, since
1 2 3 1 2 3
0=0,% = —(knan® +kfait® + kfan®) = (k+k+F).

Suppose for the moment that w,;, = 0 and 6 = 0 at p. Then, by equations
(2.8.4) and (2.8.12), "V, n* =0, 1" = Ilcﬁ“, for all 7, at p. So, if (as above)
we think of 7% as a “connecting vector” pointing from an observer O to an
(infinitesimally) close neighbor N, then the instaneous velocity of N relative to

1
O is directed radially away from O at p and has magnitude k there. Thus, each
of the vectors 7%, 7%, 7% is an axis of instantaneous expansion (or contraction)

with associated magnitude k. Since the magnitudes sum to 0, expansion along
one axis can occur only if there is contraction along another. Individual expan-
sions and contractions so compensate each other that there is no net increase
in volume. (Again, we are now considering the case where 0 is 0.)

In general, the expansion factors k are all different. But, for purposes of

illustration, suppose that the factors on two axes are equal—say Ilc = Izc Further
imagine that our infinitesimal blob has the shape of a sphere at p. Then there
are two possibilities. If the common factor is positive, then the action of the flow
flattens it into a pancake with axis 1) (“pancake shear”). Ifit is negative, then it
is elongated into a hot dog with axis 7% (“hot dog shear”). The second possibility
is illustrated in figure 2.8.2, where three possible actions are illustrated.

The full expansion tensor field 6,;, can be given another interesting geomet-
ric interpretation in the case where it is associated with a unit timelike flow £
that is everywhere twist-free. In this case, by proposition 2.8.1, £% is, at least
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Figure 2.8.2. Rotation, expansion, shear.

locally, hypersurface orthogonal. Let S be a spacelike hypersurface to which
&% is orthogonal. The extrinsic curvature of S is given by 7, = h," h," Vi &y
(Recall equation (1.10.16).) But h," hy" Vi &, = wgp, + 6,5, by equations (2.8.1)
and (2.8.2). So in the present case (w,, = 0), we have mw,, = 0,,. Thus, the
expansion tensor field associated with a twist-free unit timelike field £% is just the
extrinsic curvature of the spacelike hypersurfaces to which &% is orthogonal.

This gives us another way to think about the extrinsic curvature of space-
like hypersurfaces. When 7, = 0, normal vectors to the surface do not recede
from one another. “Connecting vectors” between “infinitesimally” close sur-
face normals do not expand. (See figure 2.8.3.) But when 7, # 0, connecting
vectors do expand.

eub ?é 0

[
!

Figure 2.8.3. Expansion and extrinsic curvature.

Finally, we derive an expression for the rate of change of the scalar
expansion function 6 (“Raychaudhuri’s equation”):

1
2817)  E°V,0 = —Ry €% + vy 0™ — 3 02 — 04y 0% + V,(E"V, £%). o
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We shall need it later in section 2.11. (Here &% is still a smooth future-
directed unit timelike vector field on our background spacetime (M, g,p).) The
derivation proceeds in two steps. First, it follows from equation (1.8.1) that

E%V,0 = £°V,V, 60 = —£9Rb | €€ 1 £9V,V, £P
= — R E6% + V}(E°V,a £%) — (V4 £%)(Va £Y).

Next, we evaluate the term (V}, £%)(V, ") using the expansion in equation
(2.8.13): Vo &, = wgp + 0gp + 3 hap 0 + &a (6" Vi £). A straightforward compu-
tation establishes that

1
(V&) (V") = —wmp 0 + 67 + o5 ™.

(All terms involving &, or &, are 0 because h,y, wgy,, 045, and "V, &, are all
orthogonal to £% in all indices. The terms involving w,;, together with either
h% or 6% are 0 because the former is anti-symmetric whereas the latter is
symmetric. The terms involving h®” and o, are 0 because o,* = 0.) This gives
us equation (2.8.17).

2.9. Killing Fields and Conserved Quantities

In relativity theory, there is a natural association between Killing fields and
conserved quantities. We consider it briefly in this section.

Let k% be a smooth field on our background spacetime (M, g,3). Recall
(section 1.9) that «“ is said to be a Killing field if its associated local flow maps
[s are all isometries or, equivalently, if £, g, = 0. The latter condition can
also be expressed as Vg k) = 0.

Any number of standard symmetry conditions—local versions of them, at

+22

least**—can be cast as claims about the existence of Killing fields. Here are a

few examples.

(M, gyp) is stationary if it has a Killing field that is everywhere timelike.

(M, gyp) is static if it has a Killing field that is everywhere timelike and locally
hypersurface orthogonal.

(M, g,p) is homogeneous if its Killing fields, at every point of M, span the
tangent space.

(We shall have another example in section 3.2, where we consider “station-
ary, axi-symmetric spacetimes.”) The distinction between stationary and static

22. “Local” because Killing fields need not be complete, and their associated local flow maps
need not be defined globally. (Recall our discussion at the end of section 1.3.)
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spacetimes should be clear from our discussion in the preceding section.
(Recall proposition 2.8.1.) Roughly speaking, in a stationary spacetime there
is, at least locally, a “timelike flow” that preserves all spacetime distances. But
the flow can exhibit rotation. Think of a whirlpool. It is the latter possibility
that is ruled out when one passes to a static spacetime. For example, Godel
spacetime, as we shall see, is stationary but not static.

PROBLEM 2.9.1. Let k® be a timelike Killing field that is locally hypersurface orthog-
onal (kjqVy k¢ = 0). Further, let k be the length of ic®. (Sox? = k"ky.) Show that

kv, Kp = —K[aVp K.

By way of example, let us find all Killing fields on Minkowski spacetime.
This will be easy, as much of the work has already been prepared in sections
1.9 and 2.6.

Let k* be a Killing field on Minkowski spacetime (M, g,3). Arguing exactly
as in proposition 1.9.9, we can show that, given any point p in M, there is a
unique constant, anti-symmetric field F,, on M and a unique constant field
k% on M such that

(2.9.1) kp = x*Fap +ky,

where x? is the position field relative to p. (Recall that F,,, = V4 k3, and k;, =
kp — x % Fap.) Thus there is a one-to-one correspondence between Killing fields
on Minkowski spacetime and pairs (F,,, k;) at any one point, where F,, is an
anti-symmetric tensor there and k* is a vector there. It follows that the vector
space of Killing fields on Minkowski spacetime has 6 + 4 = 10 dimensions.

We can further analyze F,, as in section 2.6. Let €,,,4 be a volume element
on M; let £% be a constant, future-directed, unit timelike field on M; and let
E% and B® be defined as in equations (2.6.9) and (2.6.10):

B — Fub %’b,
a 1 abcd
B* = 5 e E Fy.

Then E* and B* are constant fields everywhere orthogonal to £. And it follows
from equation (2.6.13) that we can express «“ in the form

(2.9.2) kb = X*(2 Eja &) + €abea £° B) + k.

This gives us a classification of all Killing fields (relative to an arbitrary choice
of “origin” p and constant, unit timelike field £%). Killing fields of the form
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«k? = kb generate (timelike, spacelike, or null) translations. Those of the form
Kh = X% €qped £ B? generate spatial rotations, based at p, with rotational axis B%.
Those of the form «j, = 2x“ Ej, &) generate boosts, based at p, in the plane
determined by £ and E*.

PROBLEM 2.9.2. Consider a non-trivial boost Killing field «p = 2x*Ez &, on
Minkowski spacetime (as determined relative to some point p and some constant
unit timelike field £%). “Non-trivial” here means that E* # 0. Let n® be a constant
field on Minkowski spacetime. Show that £, n® = 0 iff n* is orthogonal to both to
&% and E°. (It follows that the boost isometries generated by k® leave intact all two-

‘.

dimensional submanifolds orthogonal to £* and E®, but “rotate” all two-dimensional

submanifolds to which &% and E* are tangent. )

PROBLEM 2.9.3. This time, consider a non-trivial rotational Killing field «}, =
X €aped £ B* on Minkowski spacetime (with B* # 0). Again, let n® be a constant
field on Minkowski spacetime. Show that £, n® =0 iff n* is a linear combi-
nation of £* and B®. (It follows that the isometries generated by k% “rotate”
all two-dimensional submanifolds orthogonal to §% and B* but leave intact all
two-dimensional submanifolds to which £% and B* are tangent.)

Now we briefly consider two types of conserved quantity. One is an attribute
of point particles with positive mass, the other of extended bodies. Let ¥* be
a Killing field in an arbitrary spacetime (M, g,3) (not necessarily Minkowski
spacetime), and let y : I — M be a smooth, future-directed, timelike curve,
with unit tangent field £*. We take its image to represent the worldline of
a point particle with mass m > 0. Consider the quantity J = (P%k,), where
P* = még*? is the four-momentum of the particle. It certainly need not be
constant on y[I]. But it will be if y is a geodesic. For in that case, §"V, £% =
and hence, by equation (1.9.12),

(2.93) E"Vp =m (kg E"Vy EY +E"EY Vi kg) = mE"E Vi kg = 0.

Thus, J is constant along the worldlines of free particles of positive mass.
We refer to J as the conserved quantity associated with «®. If «“ is timelike,
we call J the energy of the particle (associated with «%).2% If it is spacelike,

23. Of course, one needs to ask what this notion of energy has to do with the one considered
in section 2.4. There, ascriptions of energy to point particles were made relative to individual unit
timelike vectors, and the value of the energy at any point was taken to be the inner product of that
vector with the particle’s four-momentum vector. We take the present notion of energy to be primary
and the earlier one as derived. Atleastin the context of Minkowski spacetime, one can always extend
a unit timelike vector at a point to a constant unit timelike field (which is, of course, a Killing field)

“530-47773_Ch02_2P.tex’ — 1/23/2012 — 17:18 — page 177

N |
0



178 /| CLASSICAL RELATIVITY THEORY

Figure 2.9.1. k% is a rotational Killing field. (It is everywhere orthogonal to a circle radius, and
is proportional to it in length.) £% is a tangent vector field of constant length on the line L. The
inner product between them is constant. (Equivalently, the length of the projection of k? onto
the line is constant.)

and if its associated flow maps resemble translations,?* we call .J the linear
momentum of the particle (associated with «%). Finally, if «# is spacelike, and
if its associated flow maps resemble rotations, then we call J the angular
momentum of the particle (associated with «%).

It is useful to keep in mind a certain picture that helps one “see” why the
angular momentum of free particles (to take that example) is conserved. It
involves an analogue of angular momentum in Euclidean plane geometry.
Figure 2.9.1 shows a rotational Killing field % in the Euclidean plane, the
image of a geodesic (i.e., a line) L, and the tangent field £% to the geodesic.
Consider the quantity J = &%,—i.e., the inner product of §* with x“—along

and then understand relativization to the vector as relativization to the associated constant field. And
perhaps the earlier usage is properly motivated only in spacetimes where individual unit timelike
vectors are extendible to constant fields or, at least, to naturally distinguished Killing fields. (Similar
remarks apply to components of “linear momentum” in particular directions.)

24. When one is dealing with Minkowski spacetime, one can assert without ambiguity that a
Killing field generates a “translation,” or a “spatial rotation,” or a “boost.” Things are not always so
simple. Still, sometimes a Killing field in a curved spacetime resembles a Killing field in Minkowski
spacetime in certain respects, and then the terminology may carry over naturally. For example,
in the case of asymptotically flat spacetimes, one can classify Killing fields by their asymptotic
behavior.
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L. Exactly the same proof as before (of equation (2.9.3)) shows that .J is constant
along L.%° But here we can better visualize the assertion.

Let us temporarily drop indices and write « - & as one would in ordinary
Euclidean vector calculus (rather than &%,). Let p be the point on L that is
closest to the center point where « vanishes. At that point, « is parallel to &. As
one moves away from p along L, in either direction, the length |« || of k¥ grows,
but the angle Z(k, §) between the vectors increases as well. It should seem at
least plausible from the picture that the length of the projection of k onto the
line is constant and, hence, that the inner product « - § = cos(Z(«, §)) ||« I§]|
is constant.

That is how to think about the conservation of angular momentum for free
particles in relativity theory. It does not matter that in the latter context we are
dealing with a Lorentzian metric and allowing for curvature. The claim is still
that a certain inner product of vector fields remains constant along a geodesic,
and we can still think of that constancy as arising from a compensatory balance
of two factors.

Let us now turn to the second type of conserved quantity, the one that is
an attribute of extended bodies. Let k¥ be an arbitrary Killing field, and let T,
be the energy-momentum field associated with some matter field. Assume it
satisfies the conservation condition (V, T = 0). Then (T «}) is divergence
free:

(2.9.4) Va(Tkp) = ki Va T + T Vi, = T Viakyy = 0.

(The second equality follows from the conservation condition and the sym-
metry of T%; the third follows from the fact that «* is a Killing field.) It is
natural, then, to apply Stokes’s theorem to the vector field (T*x). Consider a
bounded system with aggregate energy-momentum field T, in an otherwise
empty universe. Then there exists a (possibly huge) timelike world tube such
that T, vanishes outside the tube (and vanishes on its boundary).

Let S; and S, be (non-intersecting) spacelike hypersurfaces that cut the
tube as in figure 2.9.2, and let N be the segment of the tube falling between

them (with boundaries included). By Stokes’s theorem,°

25. The mass m played no special role.

26. See Wald [60, Appendix B.2] for a discussion of integration on manifolds and Stokes’s
theorem. We did not take the time to develop these topics in our review of differential geometry
because we have so little need of them. This is the only place in this book where reference is made
to integration on manifolds (except for the simple case of integration over curves).
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Figure 2.9.2. The integrated energy (relative to a background timelike Killing field) over the
intersection of the world tube with a spacelike hypersurface is independent of the choice of
hypersurface.

/ (T%ky) dS, — / (T%ky) dS,
S2

M

= / (T%ky) dS, — f (T%ky) dS,
S2NaN S1NoN

= / (T“b/q,)dSu:/ Va(Tk) dV = 0.
IN N

Thus, the integral [ (T%k;)dS, is independent of the choice of spacelike
hypersurface S intersecting the world tube, and is, in this sense, a conserved
quantity (construed as an attribute of the system confined to the tube). An
“early” intersection yields the same value as a “late” one. Again, the character
of the background Killing field x* determines our description of the conserved
quantity in question. If k% is timelike, we take [ (T% ;) dS, to be the aggregate
energy of the system (associated with k%). And so forth.

Let us now continue the discussion that led to equation (2.9.3) and derive
an inequality governing “total integrated acceleration.” Once again, let  be a
Killing field on an arbitrary spacetime (M, g,3), andlety : I — M be a smooth,
future-directed, timelike curve, with unit tangent field £%. We take its image
to represent the worldline of a point particle with mass m > 0. Again, we
consider the quantity J = (P%k,), where P* = m £% is the four-momentum of
the particle. Even without assuming that y is a geodesic, we have

(2.9.5) "V, J = m(Ku%.nvn%-a_’_%-nsavnKa) = m’CasnvnSa~

Now let @ be the scalar magnitude of the acceleration field; i.e., a? = —(§"V,
£%)(E™Vp &;). Then we have (see problem 2.9.4)

(2.9.6) |E"Vy J| < a /] — m? (k).
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(Of course, if y is a geodesic—i.e., if @ = 0 everywhere—then [§"V,, J| must
vanish everywhere as well. So we recover our earlier result that J is constant
in the case of geodesic motion.) If % is causal (timelike or null) and future-
directed everywhere, then J = P%, > 0, and it follows that

(2.9.7) E"V, J| < aJ.

So, in this case, the total integrated acceleration of y—the integral of o with
respect to elapsed time—satisfies

(2.9.8) TA(y) = / o ds > / w ds >
% % J

Thus, if y passes through points p; and p,, the total integrated acceleration

/ £"V, (In]) ds
y

between those points is, at least, |(In J),, — (InJ),,|. (For applications of
equation (2.9.8), see Chakrabarti, Geroch, and Liang [7].)

PROBLEM 2.9.4. Derive the inequality (2.9.6).

2.10. The Initial Value Formulation

In this very brief section, we say a few words about the “initial value for-
mulation” of general relativity and make precise the sense in which it is a
deterministic theory. (See Hawking and Ellis [30] and Wald [60] for a proper
treatment of the subject.)

Let S be a smooth, achronal, spacelike hypersurface in our background
spacetime (M, g;;). Recall (section 2.5) that D(S), the domain of dependence
of S, is the set of all points p in M with this property: given any smooth causal
curve without endpoint, if its image passes through p, then it intersects S. Our
goal is to explain the sense in which (at least in the empty space case) “what
happens on S uniquely determines what happens on D(S).”

Of special interest is the case where S is a Cauchy surface in (M, ggp)—i.e.,
a smooth achronal spacelike hypersurface such that D(S) = M.

The first thing we must do is specify what is to count as “initial data” for
the metric g ;, on S. Let £% be the (unique) smooth, future-directed, unit time-
like field that is everywhere orthogonal to S. (We will refer to it, simply, as
the normal field to S.) Our first piece of initial data on S is the induced (nega-
tive definite) spatial metric h,;, = gy, — £4§p. Our second piece is the extrinsic
curvature field 7, on S. We can think of the latter as the time derivative of
hgp, in the direction &%, at least up to the factor % since 2wy, = £ehyy. (Recall
equation (1.10.17).)
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Thus our metric initial data on S consists of the pair (hyy, 74p), the first
and second fundamental forms on S. They correspond, respectively, to posi-
tion and momentum in the initial value formulation of Newtonian particle
mechanics. We know from our discussion in section 1.10 that these fields
satisfy a number of constraint equations, including

1
R - (”ua)z + g 7%= -2 (Rap — ERgab) Sagb:
Dy ﬂac — Dy ncc = hma hnp%_rRmnpr:

where D is the derivative operator induced on S, R“bc ; isits associated Rie-
mann curvature field, and R is the contracted scalar curvature field. (The first
equation is just (1.10.21) and we get the second from (1.10.19) by contraction.)
Using the symmetries of Ry, We can re-express the right side of the second
equation:

h™, hnpsrRmnpr =h", (g"p - Snép) 3 anrp =h"4&" Ry
1
= hmasr (Rmr - ERgmr)'

And therefore, using Einstein’s equation, we can express our two constraint
equations as

(2.10.1) R — (%)% + 7ap 7% = — 167 T, &% &Y,
(2.10.2) D,y —Dym =87 Ty W4 ET.

For simplicity, we shall restrict attention to the empty-space case—where
T,p vanishes and it is only the evolution of the metric field g, itself that we need
to consider. In this special case, of course, the constraint equations assume

the form
(2.103) R — (1a%)% + 74 7% =0,
(2.10.4) D¢ 715 — Dy 7t = 0.

We started with a spacetime (M, g,;,) and moved to an induced initial data
set (hgy, 74p) on a smooth, achronal, spacelike hypersurface S in M satisfying
particular constraint equations. Now we reverse direction.

We need a few definitions. Let us say officially that an (empty space) initial
data set is a triple (%, ftab, 7Tgap) Where ¥ is a smooth, connected, three-
dimensional manifold, fzab is a smooth negative-definite metric on ¥, 7,
is a smooth symmetric field on ¥, and the latter two satisfy the constraint
equations (2.10.3) and (2.10.4).
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A Cauchy development of such an initial data set (X, Rabs TTap) is a triple
(M, gap), S, @) where (i) (M, g3) is a spacetime that satisfies the field equation
Ry, =0, (ii) S is a Cauchy surface in M, (iii) ¢ is a diffeomorphism of ¥ onto
S, and (iv) hap = ¢*(hgp) and 7T, = ¢*(7ryy), Where hyy, and m,y, are the first
and second fundamental forms induced on S.

A Cauchy development (M, gg), S, @) of (£, hap, ap) is maximal if, in
addition, given any other Cauchy development ((M’,g’,), S, ¢') of (%, Rab»
7Tap), there is an isometry ¢ of M’ into M that respects X in the sense that
Yoy =g

Our basic result (due to Choquet-Bruhat and Geroch [8)) is the following.

PROPOSITION 2.10.1. Every empty space initial data set has a maximal Cauchy
development. It is unique in the following sense. If (M, gap), S, ¢) and (M',g,),
S, ¢') are both maximal Cauchy developments of (X, hgp, ), there is a
diffeomorphism i : M' — M such that Y o ¢' = @ and g/, = ¥*(gap).

Proposition 2.10.1 makes precise the sense in which general relativity is a
deterministic theory. But that sense is local in character because it need not
be the case in an arbitrary spacetime (M, g,;) that there is any one achronal
spacelike hypersurface S such that D(S) = M; i.e., it need not be case that
there is a Cauchy surface. (For example, the spacetime that arises by taking the
universal covering space of anti-deSitter spacetime admits no Cauchy surface.
See Hawking and Ellis [30], section 5.2.)

2.11. Friedmann Spacetimes

In this section, we briefly consider the class of Friedmann (or Friedmann-
Lemaitre-Robertson-Walker) spacetimes. These are the “standard models” of
relativistic cosmology. (For a more complete discussion, see Wald [60] or
almost any text in general relativity.) We include this section, even though
we are not otherwise undertaking to survey known exact solutions to Ein-
stein’s equation, because we have a particular interest in comparing relativistic
cosmology with Newtonian cosmology. We consider the latter in section 4.4.

We take a Friedmann spacetime to be one that satisfies a particular
symmetry condition—*“spatial homogeneity and isotropy”—together with sup-
plemental constraints in the form of energy conditions, equations of state, or
both. We start with the symmetry condition.

Roughly speaking, a spacetime is spatially homogeneous and isotropic if
there is a congruence of timelike curves filling the spacetime such that “space,”
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as determined relative to the congruence, “is the same in all directions.” Here
is one way to make the condition precise. (We opt for a local version of the
condition. And to avoid certain distracting complications, we cast the defini-
tion directly in terms of the existence of isometries, rather than in terms of
Killing fields as we did with several symmetry conditions at the beginning of
section 2.9.)

Let (M, g;;) be a spacetime, and let £* be a smooth, future-directed, unit
timelike field on M that is twist-free; i.e., &4V & = 0. (So, atleast locally, it is
possible to foliate M with a one-parameter family of spacelike hypersurfaces
that are orthogonal to £%. Recall our discussion in section 2.8. We can think
of each of these hypersurfaces as constituting “space” at a given time relative
to £%.) We say that (M, g,3) is spatially homogeneous and isotropic relative to £%
if, for all points p in M, and all unit spacelike vectors 5% and 7 at p that
are orthogonal to £%, there is an open set O containing p and an isometry ¢:
O — O thatkeeps p fixed, preserves the field £%, and maps 5910 5 (i-e., such
that ¢(p) = p, ¥«(§%) = §* and go*(c;“) = é“).” We further say that (M, gg;) is
spatially homogeneous and isotropic if it is so relative to some choice of €. The
strength of the condition will become clear as we proceed.

We assume in what follows that £ is as in the preceding paragraph and
(M, ggp) is spatially homogeneous and isotropic relative to §%. We first abstract
a few general principles.

(1) Given any field A% on M, if it is definable in terms of, or otherwise
determined by, g;;, and £%, then it must be proportional to £4. (So A% =
A& where A = A,&". And if A% is also orthogonal to £%, then A* = 0.)

This follows, for if at some point p, A* had a non-zero component orthogonal to
&%, itwould determine a “preferred” orthogonal direction there and violate the
isotropy condition. (Hereis the argument in more detail. Since that component
is determined by g,; and &%, it must be invariant under all maps that preserve
gap and £ and thatleave p fixed. But, by our assumption of spatial homogeneity

27. Note, we require here that ¢ map the field &% onto itself everywhere, not just at p. If we
required only that it keep fixed the vector £%|,, the condition would not be strong enough for our
purposes. For example, Minkowski spacetime would then qualify as spatially homogeneous and
isotropic relative to any smooth, future-directed, unit timelike vector field £* that is twist-free. It
would not have to be the case, as we want it to be, that hypersurfaces orthogonal to £* are manifolds
of constant curvature. For the corresponding global version of the condition, we would require at

the outset that £ be (globally) hypersurface orthogonal and require that, for all p, é“, and 6 as
specified, there is a (global) isometry ¢: M — M that keeps p fixed, preserves the field £%, and

1 2 . .
maps ¢ to 0. We shall later consider what turns on the difference between these two (local vs.
global) versions of the spatial homogeneity and isotropy condition.
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and isotropy, the only vector at p, orthogonal to €%, that is invariant under
all such maps is the zero vector.) It follows from (1), for example, that the
acceleration field £"V, £ must vanish; i.e., £* must be a geodesic field.

(2) Given any scalar field A on M, if it is definable in terms of, or otherwise
determined by, g,; and &%, then it must be constant on all spacelike
hypersurfaces orthogonal to £%. (So Vo 4 = (§"V, A) &)

This is an immediate consequence of (1) as applied to h® V} &, where hy, is
the spatial projection field (g, — &4 &) So, for example, we have

211 Va0 = (£"V,0)&,,
where 6 = V,, ™. (Recall section 2.8.)

(3) Given any symmetric field A,, on M, if it is definable in terms of, or
otherwise determined by, g,, and &%, then it must be of the form A, =
a &,8, + B hyy, for some scalar fields « and 8. (And if Ay, is also orthogonal
to &%, then it must be of the form A, = B hyy.)

To see this, consider any point p. By (1) as applied to 1%, &¥, there is a
number « such that A%, £¥ = o £% at p- Now consider the tensor (A“b —a&? Eb)
at p. It is symmetric and orthogonal to £% in both indices. So we can express
it in the form

11,13 22,25 33,3
(211.2) A g gt gl — —(o ool +56% "+ a“ab),

where the vectors & %,...,5 % together with £%, form an orthonormal

(eigen)basis for g, at p. But now, by the isotropy condition, the coefficients

12 3 . , . .
o, 0, 0 must be equal. (For all i and j, there is an isometry that leaves p and

(A% — o £% £P) fixed but takes &% to cjr“.) If their common value is 8, then the
right-side tensor in equation (2.11.2) can be expressed as 8 h®.

It follows from (3) that the shear tensor field o, associated with £* must be
of the form o), = B hyy,. But oy, is “trace-free,” so 0 = 0,* = 3 B. Thus, £% has
vanishing shear in addition to being geodesic. And we assumed at the outset
that it is twist-free. So, by equation (2.8.13),

@211.3) Vaép = % hap 6.

It also follows from (3) that we can construe (M, g,;) as an exact solution
to Einstein’s equation for a perfect fluid source with four-velocity £%. For if
Rap = aakp + B hap, then

1
(211.4) Rap — ERgub =87 (0 &akp — P hap),
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-3
=35 andp = (‘11'6"7'3)' (This perfect fluid need not satisfy any
b4
of the standard energy conditions. We shall soon add one of those conditions

where p =

as a supplemental constraint, but will work without it for now.) In what follows,
we take Ty, to be the indicated energy-momentum field; i.e., we take T, =
p Ea&p — p hgp- So (after inversion of equation (2.11.4)),

1
(211.5) Rap = 87 (Tap — 5 T gap) = 47 (0 +3p) §a § — 47 (p — p)hap-

Next we consider the geometry of spacelike hypersurfaces orthogonal
to &% Let S be one such hypersurface, and let hy, and m,, be the first
and second fundamental forms induced on S. (Recall section 1.10.) Note
that, by equations (1.10.16) and (2.11.3), the latter assumes a simple form:
oy = hg" 0" Vi &y = 3 hap 0. Now let R%;, 4 be the curvature field associated
with the induced derivative operator D. Our goal is to derive an expression for
R4 in terms of 6, p, and p. We do so by first deriving one for R, and then
invoking a general fact about the relation between the two fields that holds
in the special case of three-dimensional manifolds. It follows from equation
(1.10.20), our expression above for 74, and from equation (2.11.5) that

Ripe = 70" Tpe — Tap TG +hr;, hpc Ryp — Ryper ™ E"
1 1

= gezhbc_gez hbc_47T(p_p)hbc_Rmbcr§er~

So we need only derive an expression for the fourth term on the right side.
(Here and in what follows we shall use the abbreviation § = £" V,,0.) Note
that by equations (2.11.3) and (2.11.1),

1 1 .
VeV &, = gvc(hrbe) = g[hrbgce-f—QVc(grb_Srgb)]

1 .
= g[hrb$c9—9§rvc§b—9$bvcér]

1 .1 1
:5[hrbsce—gezsrhcb—gezsbha].

Hence
m 2 g 1 2
Rmbcr'i: = ZV[C Vr] Eb = 5 g[c hr]b 9+§9

and, therefore,
1 -1
Rmbcr5m5r=_7hbc 9"_792 .
3 3
Substituting this into our expression for Ry, yields

(2.11.6) Ripe = K hye,
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where K = (02 +60) — 47 (0 — p). Now we invoke our general fact. In the
special case of a three-dimensional manifold with metric, we (always) have?®
(2.117)

1
Rabed = (hbc Rad + hag Re — hac Rpa — hoa Rac) + ) (hac hod — had hbc) R.
So it follows from equation (2.11.6) (and its contracted form R = 3K) that
R K
@18  Raba = (5 = 2K) (hac hoa = had hic) = = (Pad Poc — hac bpa)-

Thus, recalling our discussion at the end of section 1.9, we see that (S, hgp)
has constant curvature K /2. (We shall soon have a more instructive expression
for K.)

Now we turn to considerations of dynamics. We claim that

1
(2.11.9) 0= —4n(p+3p)—§62,
(2.11.10) p=—(p+p)o.

(We shall continue to use the dot notation. Here p = £"V,, p.) We get the first
from Raychaudhuri’s equation (2.8.17), using equation (2.11.5) and the fact
that &% is geodesic, irrotational, and shear-free. The second is the continuity
condition (2.5.5). Recall that the latter follows from the conservation condition
V, T% =0 as applied to our energy-momentum field T% = p &,&, — p hyy,
(And the conservation condition itself is a consequence of Einstein’s equation.)
It is convenient and customary to introduce a new field a that we can think
of as a “scaling factor.” We want it to be constant on spacelike hypersurfaces
orthogonal to £%; i.e., ™"V, a = 0. So we need only specify its growth along
any one integral curve of £%. We define it, up to a multiplicative constant, by
the condition
o=2.
a

[OSRI

(2.11.17)
(Certainly this equation has solutions. Indeed, if the curve is parametrized by
a time function t where &; = V, t, then all functions of the form a(t) = ef ®),
t
0
with f(t) = / 3 dt, qualify.) The condition inherits a natural interpretation
to

from the one we have given for 6. It concerns the rate of volume increase for

28. We shall later prove a close analogue of this result (proposition 4.1.4) in connection with our
discussion of classical spacetimes. It should be clear how to adapt the proof to the present context.
(We present the argument there rather than here because of added complications that arise when
one is dealing with classical spacetimes.)
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a fluid with four-velocity £%. We saw in section 2.8 that if an (“infinitesimal”)
blob of the fluid has volume V, then V = V 4. (Recall equation (2.8.15).) If we
think of the blob as a cube whose edges have length a, then V = a* and we
are led immediately to equation (2.11.11). It is in this sense that a is a scaling
factor. If we now express our equations for 6 and p above in terms of a, we

have

(211.12) 3 g —4m(p+3p),
a
. a

(211.13) p=-3 P (0 +p)

where, of course, 4 = £"V,(§™V,, a). These two jointly imply (by integration)
that there is a number k such that

2.11.14 a\* _8x __k
@11-14) a 3 P T

(This is “Friedmann’s equation.”) Since a was only determined initially up to
a multiplicative constant, we can now normalize it so thatk = —1 or k = 0 or
k=1

We can use the listed equations to express several fields of interest directly
in terms of the scaling factor a and k:

A
(2.11.15) 8rp=3|-) +33,
a a
2.11.16 8 2 a @)tk
an np=—-2-—\-] ——,
( ) P a a a2
k
2.11.17) Rabed = — P (had hic — hac hpg).-

Here equation (2.11.15) is just a reformulation of (2.11.14). Equation (2.11.16)
follows from (2.11.12) and (2.11.15). For equation (2.11.17), recall that,

K 1 :
by (2:11.8), Rabea = - (taa foc — hac hpa), Where K = 5(92 +0)—47 (p—p).

But
Lor gy =842 (8 2
3( )_u a

by equations (2.11.9), (2.11.11), and (2.11.12). And it follows from equations
(2.11.15) and (2.11.16) that

i a\* _k

k
So K =-2

—, as claimed.
a2
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Equation (2.11.17) tells us that (S, h,) has constant curvature —k/a?.
Remember, though, that h,;, is negative definite, and curvature is usually
reported in terms of the positive definite metric —h,;. This introduces a sign
change. (The switch from h,, to —hyy, leaves D, R%q4, and (hgghye — hachpg)
intact, but reverses the sign of Rpcq = han R"ped.) So we shall record our
conclusion this way:

(S, —hgp) is a manifold of constant curvature, and the magnitude of its curvature
is (—1/a?), 0, or (1/a%) depending on whether k is —1, 0, or 1.

We have reached this point assuming only a local version of the spatial
isotropy condition. But now suppose for a moment that the global version
holds as well, and let S be any maximally extended spacelike hypersurface
that is everywhere orthogonal to £%. Then we can say more about the global
structure of (S, —h,p). In this case, it follows from the way the global condition
is formulated that (S, —h,p) is, itself, a homogeneous, isotropic three-manifold
in this sense: for all points p in S, and all unit vectors % and 6% in the tangent
spaceto S atp, thereis anisometry y : S — S thatkeeps p fixed and that maps
591069 Thisisa very strong constraint and rules out all but a small number
of possibilties (Wolf [64]). If k =0, (S, —h,;) cannot be just any flat three-
manifold. It must be isometric to three-dimensional Euclidean space; i.e., it
must also be diffeomorphic to R* and geodesically complete.? If k = —1,
(S, —hgy) must be isometric to three-dimensional hyperbolic space H3. (We
shall return to consider one realization of three-dimensional hyperbolic space
atthe end of the section.) Finally, if k = 1, (S, —hy;) must be isometric either to
three-dimensional spherical space S or to three-dimensional elliptic space P3.
The latter arises if one identifies “antipodal points” in the former.

Letus now revert to the local version of the spatial homogeneity and isotropy
condition—leaving open the global structure of maximally extended space-
like hypersurface orthogonal to §%—and continue with our consideration of
dynamics. The difference in strength between the two versions of the condition
plays no role here.

So far, assuming only the spatial homogeneity and isotropy condition, we
have established that the scaling function a must satisfy equations (2.11.15)
and (2.11.16). Now for the first time, just so as to have one example, we assume

29. This should seem, at least, intuitively plausible. Consider a lower dimensional case. The
Euclidean plane is not the only two-dimensional Riemannian manifold of constant 0 curvature.
The cylinder and the torus also qualify. But neither of them is isotropic in the relevant sense. For,
given a point in either, the only global isometry of the manifold that keeps the point fixed is the
identity map.
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that our perfect fluid satisfies a particular equation of state, namely p = 0,
and consider how the latter constrains the growth of the scaling function.
(We are certainly not claiming that this assumption is realistic—i.e., holds
(approximately) in our universe.)

If we insert this value for p in equation (2.11.16) and multiply by a? &, we
arrive at 2daa+a> +ka = 0. It follows that there is a number C such that
@at+ka= 8771 pa® = C. (The first equality follows from equation (2.11.15).)

So our task is now reduced to solving the differential equation

2

C
(2.11.18) a——+4+k=0.
a

The solutions are the following. (It is convenient to express two of them in
parametric form.)

C
a(x) = 5 (coshx —1)
k = -1 c x € (0, o0)
t(x) = 5 (sinh x — x)
k = 0 a(t):(%)it% t e (0, 00)
C
alx) = 7 (1 —cosx)
k= +1 c x € (0, 2m)
tx) = 7 (% — sin x).

These are maximally extended solutions for the case where 0 is positive at
at least one point. We get additional (time-reversed) solutions if we assume
that 6 is negative at at least one point.

Rough (qualitative) graphs of these solutions are given in figure 2.11.1. If
k= —1 or k = 0, expansion starts at the big bang and continues forever. In

both cases, the rate of expansion d—j decreases monotonically. But there is
this difference: the rate of expansion shrinks to 0 asymptotically when k =
0, but has a limit value that is strictly positive when k = —1. (One curve is
asymptotically flat; the other is not.) In contrast, if k = 1, expansion continues
until a maximum value is reached for a (at time t = C—71) and then a period

of accelerating contraction begins that leads to a big crunch.

PROBLEM 2.11.1. Confirmthat the three stated solutions do, in fact, satisfy equation
(2.11.18).
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Figure 2.11.1. Rough graphs of the scaling factor a in the three cases.

PROBLEM 2.11.2. Consider a second equation of state, namely that in which p =
3p. (For T, = p &a &y — p hyp, this is equivalent to T = 0.) Show that in this case
there is a number C' such that

(So in this case, the equation to solve is not (2.11.18), but rather

/

C
) _
= +k=0.)

It will be instructive to consider an ultra-simple, degenerate Friedmann
spacetime and see how some of our claims turn out in this special case. Let
(M, g;») be Minkowski spacetime. Let o be any point in M, and let O be the
(open) set of all points pin M such that o « p—i.e., such that there is a smooth
future-directed timelike curve that runs from o to p. (See figure 2.11.2.) Fur-
ther, let x be the position field based at o—so x * vanishes at 0 and V, x? = 0—
and let £% be the field

_1
£ = (o) 1"
as restricted to O. The latter is, clearly, a smooth, future-directed, unit timelike
field on O. Moreover, it is (globally) hypersurface orthogonal; i.e., there exist

smooth scalar fields f and g on Osuchthaté, = f V, g. Indeed, if x = (Xax“)%,
then x% = x €%, and

\v/ _1 a—%v by __ a—% (Sb— -1 _
(211.19) "X =3 (xax™) n(px") = (XaxX") "2 Xp0n =X Xxn = &n.

We claim that the restricted spacetime (O, ggp0) is spatially homogeneous and
isotropic with respect to £% and so qualifies as a Friedmann spacetime (with
p =p =0). Indeed, this reduces to a standard claim about the symmetries
of Minkowski spacetime. Given any point p in O, and any two (distinct) unit
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Figure 2.11.2. Minkowski spacetime (in profile) as restricted to the set of all points to the
timelike future of a point o. It qualifies as a (degenerate) Friedmann spacetime with p = p = 0.
A x = constant hyperboloid is indicated. It (together with the metric induced on it) is a
realization of three-dimensional hyperbolic space.

. 1 2 . .
spacelike vectors 0% and o“ at p that are orthogonal to £%, there is a spatial

. 1 2
rotation that keeps p fixed, preserves the field £, and takes o to 6#.3°

We know from our earlier discussion that equation (2.11.3) must hold. In
this special case, it is easy to check the result with a direct computation. By
equation (2.11.19), we have

@120 0=V, E =V, (x ' x)=x" " (Vax—x " xVax

-1 1

=4xT—xt=3 47

and, hence,
— -1 — 41 -2 _ -1 -2
Voép =Va(x  xp) =X (Vaxp) = x " xoVax=x" 8ab—X " Xpba

_ _ _ 1
=X 1gab_X 1Eb§a:X 1hab:§9haby

as expected. Notice also, that if we take a = x, then a =&%V,x =1 by
equation (2.11.19) and

-0 =-.
3 a

This choice of a satisfies Friedmann’s equation (2.11.14) with o =0 and
k=-1

Now consider the hyperboloids in O defined by the condition x = constant.
(See figure 2.11.2 again.) Each is a spacelike hypersurface that is everywhere

o
30. Let £ be a constant unit timelike field on O that agrees with £% at p, and let o be a constant
. . . 1 2 Lo
unit spacelike field that is orthogonal to all three vectors &%, 0%, and 6 at p. Then the rotation in

o
question is generated by the Killing field kj, = €40 x* §° ot (for either choice of volume element
€abed)- Recall equation (2.9.2).
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orthogonal to £€%. (For if 0% is a vector at a point of one such hypersurface S
that is tangent to S, then ¢"V,, x = 0 and, therefore, by equation (2.11.19),
o"En=0"Vyx =0.)

Let S be one such hyperboloid. Let D be the induced derivative operator
on S, and let R4 be its associated curvature field. We know from equation
(2.11.17) that

1
2

Rabed = X (had hbc — hye hbd)r

since here a = x and k = —1. Again, we can check this directly. To do so,
we first compute the second fundamental form m,;, on S. (Recall equation
(1.10.16).) Since hy" xn = hyp"(x &1) = 0, we have

g = " Iy Vin & = Ba™ 1" Vi (X ) = X7 B 1" Vi X
= %" ha™ by gon = x " hap-
It follows, by equation (1.10.22), that
1
2

X (had hbc — hge hbd)r

Rabed = Tad The — Tac Thd =

as expected.

Thus, if S is characterized by the value x, then (S, —hy) is a three-
dimensional manifold with constant curvature —1/x 2. Moreover, as we know
from our discussion above, it cannot be just any such manifold, but must be,
in fact, isometric to three-dimensional hyperbolic space H>. If we had started
with a three-dimensional version of Minkowski spacetime, our hyperboloid
(with induced metric) would be isometric to two-dimensional hyperbolic space,
otherwise known as the “Lobatchevskian plane.” (For more about this
“hyperboloid model” for Lobatchevskian plane geometry see, e.g., Reynolds
52].)

Finally, recall the remarks we made in section 2.7 about the cosmological
constant A. If we include the constant in Einstein’s equation—i.e., if we take
the latter to be equation (2.7.4)—then Raychaudhuri’s equation (2.8.17) yields

. 1
(2.11.21) 0:—4n(p+3p)—§92+A
rather than equation (2.11.9). This, in turn, leads to Friedmann’s equation in
the form
2.11.22 a\’ _8x = k—i-A
@nz) a 3 p= a? 3

rather than equations (2.11.14).
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Equation (2.11.21) serves to explain Einstein’s introduction of the cosmo-
logical constant. He thought he needed to find a non-expanding model (6 = 0)
to represent the universe properly. And, in our terms, he was considering
only Friedmann spacetimes and only perfect fluid sources that are pressureless
(p = 0) and non-trivial (p > 0). It is an immediate consequence of equation
(2.11.21) that these conditions can be satisfied if, but only if, A = 4mp > 0.
And in this case, it follows from equations (2.11.22) and (2.11.11) that
k/a’> = 47p. So (since k is normalized to be 1, 0, or —1), we see that the
stated conditions can be satisfied iff

A =4mp >0,
l=4mo,
a2

k=1.

(These conditions characterize Einstein static spacetime.)

It is also an immediate consequence of equation (2.11.21)—at least, if our
universe can be represented as a Friedmann spacetime—that evidence for an
accelerating rate of cosmic expansion (§ > 0) counts as evidence either for a
positive value for A or for a violation of the strong energy condition. (Recall
from problem 2.7.3 that a perfect fluid satisfies the strong energy condition iff
p+p>0andp+3p=>0)
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3.1. Godel Spacetime

Kurt Godel is, of course, best known for his work in mathematical logic and
the foundations of mathematics. But in the late 1940s he made an important
contribution to relativity theory by finding a new solution to Einstein’s equation
(Godel [25]). It represents a possible universe with remarkable properties. For
one thing, the entire material content of the Godel universe (on a cosmological
scale) is in a state of uniform, rigid rotation. For another, light rays and free
test particles in it exhibit a kind of boomerang effect. Most striking of all, the
Godel universe allows for the possibility of “time travel” in a certain interesting
sense.!

Though not a live candidate for describing our universe (the real one),
Godel’s solution is of interest because of what it tells us about the possibilities
allowed by relativity theory. In this section, we present the solution and estab-
lish several of its basic properties in a running list. We shall later use it as an
example when we consider orbital rotation in section 3.2.

It will be helpful to keep in mind two different coordinate expressions for
the Godel metric and also a coordinate-free characterization. We start with the
former. Let us officially take Gddel spacetime to be the pair (M, g;;), where M
is the manifold R* and where

2x
B = | ) ~ ) + % )

— (daz)(dp2) + 2 ex(d(at)(db)}’)] :

1. In addition to finding this one new exact solution to Einstein’s equation, Godel [26] also
established the existence of solutions representing universes that are rotating and expanding,
though he did not exhibit any of the latter explicitly. For a review of Gédel’s contributions to
relativity theory and cosmology (and subsequent work on rotating solutions), see Ellis [18].

195
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Here p is an arbitrary positive number (a scale factor), and ¢, x, y, z are global
coordinates on M.?
In what follows, we use the abbreviations

a\* 2 \* a\* a\*
(3.1.2) == x=(— V=|— == .
ot 0x ay 0z

To confirm that g, is a metric of signature (1, 3), it suffices to check that the
fields

t x% 2 z%
(3.13) - = £(t“ —e %Y, =

n n n n
form an orthonormal basis (of the appropriate type) at each point. The first,
in particular, is a smooth, unit timelike vector field on M. That there exists
such a field shows us that Godel spacetime is temporally orientable. It is also
orientable since the anti-symmetrized product of the four fields in equation
(3.1.3) qualifies as a volume element.

(1) Godel spacetime is temporally orientable and orientable.

We shall work with the temporal orientation determined by t* in what follows.
We note for future reference that the inverse field of gy, is

1
(3.1.4) g =— [—tbtC —alxt 267 Py — 2 f 4 t(byc)] )
7

and that lowering indices in equation (3.1.2) with g, yields the following:

(3.1.5) ty = nA(Vat +€°V,y),
(3.1.6) Xg = —p’ Vi x,
2x
_ 2 67 X
(3.1.7) Yo = <2 Vay+e Vat>,
(3.1.8) Zg = —/LZ Vi z.

(Here V is the derivative operator on M compatible with g,;,, and we have
switched from writing, for example, “d,t” to “Vg4t”.)

2. More precisely, t,x,y, z are real-valued functions on M, and the composite map ®: p —
(t(p), %(p), Y(P), 2(p)) is a bijection between M and R* that belongs to the collection C of 4-charts
that defines the manifold R*. The coordinates t, x, y, z correspond to u', u?, u?, u* in the notation

a a
of section 1.2. So, for example, we understand the vector (E) at any point p to be the tangent
there to the curve r > &~ (t(p) + 1, x(p), y(p), 2(p))-
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We claim, first, that the four fields

a

(3.1.9) Y, ="y, Y, 2
are all Killing fields. They are, in fact, the generators, respectively, of one-

. t ¢ Y z
parameter (global) isometry groups {I'r}rer, {I'r}rer, {I'r}rer, {Tr}lrer on M
defined by

! -1

Tr(p) =@ (tp) +7. %(p). ¥(p) 2(P)),
lg“r(p) =0 ! (t(p), x(p)+1, ¢ "y(p), 2(p)),
lzr(p) =07 (t(p), x(p), y(p)+1. z(p)),

Tr(p) =@ (t(p), *(p), ¥(p), 2(p)+7),

where ®: M — R* is the chart defined by ®(p) = (t(p), x(p), y(p), 2(p))-
Here, of course, the group operation is composition.> An equivalent formu-

¢
lation may be more transparent. For example, we can understand I'r to be
defined by the requirement that, for all numbers to, xo, yo, 2o,

3. There are a few things that have to be checked. First, each of these maps (for any choice of r)
¢
is, in fact, an isometry. This follows from basic facts we have recorded in section 1.5. Consider I'y,
¢ 4 4
for example. By equations (1.5.6) and (1.5.7), we have (I'y)* (¢2*) = 2**") and (I')* (day) = da((Tr)*
(¥) = da(e™"y) = €7 (day). Hence,

(F* (€2 ([dan) () = () () () (da) (00 (1) = € (day) ().

¢ ¢
Arguing in this way, we can show that all the terms in g, are preserved by (I';)* and, so, (I'r)* (gs5) =
gap- Second, each of the groups does, in fact, have the indicated vector field as its generator. This
¢
follows from our discussion in sections 1.2 and 1.3. Consider {I';},<R, for example. Let p be a point
with coordinates ®(p) = (fo, %0, Yo, 20), and let y : R — M Dbe the curve through p defined by
4 _ _
y(r) =T (p) = ®~(to, %0 +1, € Yo, 20).

We need to show that ¥ @ = ¢% at all points on the image of y. Let f be any smooth field on some
open set containing p. Then, by the chain rule, at all points y (),

P = & For= L (F o0, st r, ey, 20)= LLOED g AU ST oy
~ o= L E - (G g ) =0,
So we are done. Here x', x%,x3, x* are the coordinate projection functions on R* that we con-
sidered in section 1.2. So, for example, (x* o ®)(p) = y(p). And the equality g—f = %?71)
is an instance of equation (1.2.7). (As mentioned in the preceding note, the coo{'dinates t,x X, 9,2 —1
correspond to ul, u?,u3, and u* in the notation of section 1.2.) 0
|
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S _ _
(®o Tyod Y (t, %0, Yo, 20) = (to, X0 +7, € "yo, 20)-

The field x* is not a Killing field, but it is the generator of the one-parameter

group of diffeomorphisms {Iir},dg on M given by

lir(p) = o7 !(t(p), x(p) +T. ¥(D), 2(P)).

The five fields under consideration satisfy the following Lie bracket relations:

(3.1.10) [t ¢1=1[t" Y"1 = [t%, 2"1 = [¢“, 21 = [y", 2”1 =0,
(3.1.17) [x% 19 = [x%, %] = [x%, Y"1 =[x, 21 =0,
(3.1.12) [c% y*1=y"

There are various ways to see why these hold. For those in the first two rows,
it is easiest to invoke a basic result (that we did not formulate in chapter 1).

PROPOSITION 3.1.1. Let a® and B be smooth fields on a manifold that generate
B
one-parameter groups of diffeomorphisms {F‘,}TE]R and {T'+}rer on that manifold.

B
Then [a®, B =0 iff lq‘r and T'y commute for all r and r'.

(See, for example, Spivak [57, volume 1, p. 217].) It is clear in each case that

. . . t ¢
the relevant commutation relations obtain; e.g., I'y and I's commute for all r
and s.* For equation (3.1.12), note that

[;.a, ya] — _[Ya, ;a] — _£Y“(xa _YYE)
=[x YT+ (L) v +r Y T =)
since £ysy =y"Vyy =1, and [x%, y*] = [y*,y*1 = 0.

. . LA S z . .
By composing the isometries I'y, T'y, 'y, and 'y (with appropriate choices
for r in each case), we can go from any one point in M to any other. Moreover,

4. For all p, r, and s, we have
[y 1 ¢ e S S
Ty (Cs(p) = @ (t(rs(p)Hn *(s (p), Y(T's (p)), Z(Fs(p)))

=@ (t(p)+r, x(p)+5 e y(p), 2(p)) .

And a similar computation shows that
ot _ -
s(Cr (p) = @71 (H(p) +7, %(p) +5, € (D), 2(p)) -

t ¢ ¢t
So I'r (['s(p) =T's(Tr (p))-
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each of the individual isometries, and so any composition of them, preserves
the fields t* and z%. (This follows from propositions 1.6.6 and 1.6.4, and the
fact that each of the generators t%, %, y%, z* has a vanishing Lie bracket with
t* and z*.) So we have the following homogeneity claim.

(2) Godel spacetime is (globally) homogeneous in this strong sense: given any
two points p and q in M, there is an isometry ¥ : M — M suchthat ¥ (p) = q,
Y (t%) = 1%, and ¢, (2%) = 2%

(The maps referred to here preserve temporal orientation automatically
because they preserve t%, and we are using that field to define temporal orien-
tation.) We shall repeatedly invoke this strong form of homogeneity in what
follows. For example, we shall prove an assertion about a particular integral
curve of t* (that makes reference only to g, t, and z,), and then claim that it
necessarily holds for all integral curves of that field.

The four Killing fields %, ¢%, y, 2% are clearly independent of each other.
In fact, one can find a fifth that is independent of these four; e.g.,

1
k= —2e ¥t +yx+ (e_zx -5 yz) N
1
= —2¢¥ ta+Y§.a+ (efzx + E Y2> Ya.
(To confirm that it is a Killing field, it suffices to expand V, k; and use our
expressions above for t,, x,, and y, to show that its symmetric part vanishes.”)

Now we do a bit of calculation and derive an expression for the Ricci tensor
field Ryy. Note first that

5. We have

1
Vakpy= =2 Vaty+2¢ (Vax)ty +yVa o+ (Vay) & + <e—2x+ EYZ> VaVh
267 (Vax) yp +7 (Vay) o
—_ —X —2x 1 2
= —2e " Vaty+yValp+ (e +2Y Vayp
+(Vax)(2€ ™ty =2 y) + (Va p) (& + 1 1)-

But (2e*t, —2¢ 2 y,) = u?Vyy and (¢, +yys) = —1? Vpx. And the first three terms have
vanishing symmetric part since ¢*, ¢?, y* are Killing fields. So V(s k) = 0.

“530-47773_Ch03_2P.tex” — 1/23/2012 — 17:18 — page 199



200 / sPECIAL TOPICS

(3.1.13) Vaty = 1% € (Viax)(Vary),

5 32x
(3-114) Voxy = [T(Va}’)(vb)’) + ex(V(uY)(Vb)t)] ,
B Vayb = 12 [ (Viax) (Vy) + € (Via%) (Viy1)]
(3.1.16) Vazy =0.

These can be checked easily by using equations (3.1.5)—(3.1.8) and the fact that
t%, ¢%, y?, 2% are Killing fields. Since t* is a Killing field, for example, we have
Vaty =0 and, therefore,

Vaty = Viaty = 1* (Via Vit +€* ViaViy + € (Viax) (Vi)
= u? € (Viax)(Viy)-

This gives us equation (3.1.13). The other cases are handled similarly.® It
follows immediately that t#, x* and z* are all geodesic fields:

(3.1.17) v, th = 0 x*V,x" =0 2V, 2! = 0.

We shall be particularly interested in the (maximally extended) integral curves
of t%. Their images are sets of the form {® (¢, xo, yo, 20): t € R}, for particular
choices of %, yo, zo. We shall call these curves (or their images) t-lines.

Now we turn to Ry;,. We claim, first, that symmetry considerations alone
establish that it must have the form

(3-1.18) Rap = ataly + B (8ab — bty — 242p)

where « and B are particular numbers (to be determined), and * and 2% are
normalized versions of t* and z%. (So t* = 11 i* and z* = ;1 2%.) The argument
we use to establish this is much like that used in section 2.11 when we consid-
ered the Ricci tensor field in Friedmann spacetimes. In both cases, it turns on
an isotropy condition. Shortly, when we switch to an alternate coordinate rep-
resentation of the Gédel metric, it will be clear that given any t-line (through
any point), there is a global isometry (a rotation) that leaves fixed every point
on the line and also preserves the field z%. In effect, we now make use of that
rotational symmetry, but cast the argument in terms of Killing fields rather
than of the rotations themselves.

6. For equation (3.1.14), note that since Vg xp; = —1? V(4 Vjx = 0, and since (x* —yy®) and
y* are Killing fields,

er
Vaxp = Viaxy =y Viavy) + (Viay) vy = (Vi) 1) = 1> [7 (Vay)(Vpy) +€*(Viay) (Vi) t)] .
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Since we can find an isometry that maps any one point in M to any other
and preserves both t* and 2%, it will suffice to show that equation (3.1.18) holds
at one point, say p = ®71(0,0,0,0). To do so, it will suffice to show, in turn,
that the two sides of equation (3.1.18) yield the same result when contracted
with each of the vectors t%, x%, (t* — y%), 2% (It is convenient to work with this
basis because the vectors are mutually orthogonal at p. It does not matter that
they are not normalized.) So our task reduces to showing that the following
all hold at p (for some values of & and B):

(i) Rap t* = a ty, (ii) Rap x* = B xp,
(1if) Rap (t* — ") = B (8 — yp), and (iv) Rgp 2° = 0.
Given any Killing field A% in any spacetime, we have
(3.1.19) Ry A =Ry A = —R* )" kg = V,, VA

(The second equality follows from the symmetries of the Riemann curvature
tensor field, and the third follows from proposition 1.9.8.) So, in particular,
applying this result to the Killing field z* in Gédel spacetime, and recalling
equation (3.1.16), we have Ry, 2% = V,, V;, 2" = 0. This gives us (iv).

Next, consider the field

1
(3.1.20) K= =2(0" - 1t"+yx"+ <e’2" -3 — 1) Yo

Itis alinear combination of Killing fields («'¢ = ¥ 4+ 2t* — y*) and so is, itself,
a Killing field. What is important about it is that it vanishes at p.” Notice that

we have

(3.1.21) [t% «"1=[2% «"*1 =0,
(3.1.22) [x% k%) = 2e 1% —2¢ 2 )%,
(3.1.23) [y, "1 =% —yy*

everywhere,8 and so
(3.1.24) Lox® =K%, x4 = =2(t* —y"),

(3.1.25) Loy ="y = —x*

7.1t is, in fact, up to a constant, just the rotational Killing field (3/3¢)* that we shall consider
below. The latter, as we shall see, generates a one-parameter group of rotations that keep fixed all
points on the t-line through p (and preserve z%).

8. These all follow easily from the Lie bracket relations that we have already established.
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at p. Since «'% vanishes at p, we have £,/f = «’*V,f = 0 at p for all smooth
scalar fields f. So, in particular, since «’ Lie derives Ry, (as all Killing fields
do) and Lie derives t* (by equation (3.1.21)), we have

(3.1.26) 0 = £,(Rapt%Y") = Rap t* (£Y") = —Rgp t°%7,
3127) 0= £o(Rapt*xP) = Ry t% (£,0x) = —2 Ry, (27 — )

at p. These two, together with (iv), show that Ry, t* must be proportional to t,
at p, which is what we need for (i). Similarly, we have

0= L (Rap¥*¥’) = Rap £e(y* ") = 2Rapy* (£e¥") = =2 Rgp y* x°

at p. This, together with equation (3.1.26) and (iv), shows that (ii) must hold
for some B. Finally, (iii) follows from (ii). For if Ry, x* = 8 x3, then

—2 Ry (tu _Yu) = Rgp £K’xa = £K’(Rub xa) = £K’(ﬂ xh) =p £K’xb
= =28t —p)

(For the final equality, we use the fact that £,/ g, =0 and, so, £,/ x, =
Ly (8ab %) = gab Lix* = =284 (t* —y*) = =2 (8 — 1))

Now it remains only to compute & and 8 in equation (3.1.18). It follows
from equation (3.1.17)—and from equation (3.1.19) as applied to the Killing
fields t* and x*—that

a =Ryt = u 2Ryt = 2P v, v, 1"
= 12V PV 17) = (Va 1) (Vi ")) = =2 (Vi 1) (V3 £7)
and (by the same argument)
B =—u % (VaxP)(V),x").

Now, raising indices in equations (3.1.13) and (3.1.14), using equation (3.1.4),
yields

e*
Vat? = 5 2 (Vay) (=Y ) (Vn),

er
Vna? = 2 (Vay) + (e ) (V)
It follows that
(3.1.28) (Vat?) (V") = =1 (Vax?)(Vy5") =0

and, therefore, « = p~2 and B = 0. Thus we have

(3.1.29) Ray = pn 21t
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SoR=p%and
-2 -2

1 oA A M % ~ oA ~ A
Rab_ERgub =pu Ztutb_Tgab =— (tath — (ab — ta tp)) -

Therefore,

(3) Gddel spacetime is a solution to Einstein’s equation (without cosmological
constant)

1 A A A A
Ry, — ERg“b =8r (,0 ta tb_p(gab_tutb))

for a perfect fluid with four-velocity 1%, mass-density p = 1/(16 7 u?), and
pressurep = 1/(16 7w u?). (Equivalently, it is a solution to Einstein’s equation
with cosmological constant A = —1/(2 u?)

1 PN
Rap = SRgab =4 gap = 870" bu by
for a dust field with mass-density p’ = 1/(8 7 u?).)

Recall that a perfect fluid satisfies the dominant energy condition iff |p|
< p. Soif we construe Godel spacetime as a perfect fluid solution to Einstein’s
equation without cosmological constant, the perfect fluid in question is only
“borderline” for satisfying the condition.

Let us further consider the normalized field #* = t%/u, which we now under-
stand to represent the four-velocity of the background source fluid. We know
that its associated expansion field 8, vanishes (because it is a Killing field), as
does its acceleration (by equation (3.1.17)). Let us now compute its associated
rotation field w®.

Let €% be a volume element on M. (We know that volume elements exist
since, e.g., t1* x? y° 2! is an anti-symmetric field on M that is everywhere non-
vanishing. We need only normalize it to obtain a volume element.) The field
Vatp is anti-symmetric, and it is orthogonal to both t* and z* (by equation
(3.1.13)). So we can express it in the form

d
Vaty = f €apea t° 2

for some field f. To determine f, we need only contract each side with itself
and make use of equation (3.1.28):

1= (Vaty) (V) = f2 €peq t° 2% €2 1, 2,

= —4f2slm sm, ¢ 2%t zn

22 (M " 2 bz = 2 1t 2
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Taking f to be positive—we can always switch from the volume element
€abed tO —€4pcq if necessary—we have
1
Vaty = —— €aped £ Zd.
No

Hence, using this volume element to compute the rotation vector field,

1 o o 1
3130) o = 5 G v 72 el y vty

1 —4
— W ¢%bed ty €cgmn " 2" = m S[am Sb]n t, £ 2"
1, 1
= ) 2% = z*.
V2t ) V2 pu?

Let us record this result too.

(4) The four-velocity t* in Godel spacetime is expansion free (6 =0), shear
free (o4, = 0), and geodesic (1"V,1* = 0), but its rotation field »® is non-
vanishing and constant (Vo o? = 0). Indeed, o® is just (1/+/2 u?) 2°. The
Gddel universe is thus in a state of uniform, rigid rotation.

It turns out that there are only two homogeneous perfect fluid solutions in
which (i) the mass density is non-zero, (ii) the fluid four-velocity is expansion
free, shear free, and geodesic, and (iii) the underlying manifold is simply
connnected,” namely the Einstein static universe (Hawking and Ellis [30]) and
Godel spacetime. (Godel asserted this result, without proof, in [25]. Proofs can
be found in Ozsvath [48] and Farnsworth and Kerr [19].) So Gédel spacetime
itself is picked out if one adds the requirement that (iv) the rotation field of
the fluid is non-vanishing.

We next want to establish the existence of closed timelike curves in Gédel
spacetime and characterize its timelike and null geodesics. To do so, it will
be convenient to switch to a different coordinate representation of the metric.
This one, cast in terms of a cylindrical coordinate system %,r,¢,Z, makes
manifest the rotational symmetry of Gédel spacetime about a particular axis,
but hides its homogeneity:

130 gay = 4102 [(dad) (@) — (dar) (dor) — (da2)(2)

+ (sh* r — shr?)(da) (dy) + 2 V2 sh7r (dmf)(dw)] :

(Here we write “ch” and “sh” for “cosh” and “sinh” respectively.)

9. The third condition is needed to rule out further examples that can be generated by identifying
points.
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We have to be a bit careful here as to what we mean by a “coordinate system.”
We are not quite talking about a 4-chart in the sense of section 1.1. Here is a
more precise formulation. Let A be the “axis set” consisting of all points in M
of the form ®~1(t,0,0,2), and let M~ be the excised set M — A. We claim that
there exist smooth maps

(3.132) M-SR, rM >R, ¢:M > S, 22M—>R
such that the composite map
(3.133) A:M™ > RxRFxSIxR

determined by the rule q — (£(q), r(q), #(q), 2(q)) is a diffeomorphism and
equation (3.1.31) holds on M. (Here R is the set of reals that are strictly posi-
tive, and S! is identified, in the usual way, with R mod 27.) Under these condi-
tions, we can define coordinate vector fields (3/9%)%, (3/9r)%, (3/3¢)%, (3/02)*
much as we did in section 1.1.1° We shall use the following abbreviations for

=) -G oe-G) 2o
== r-=\— ¢= - zZ =\ —= .
ot ar ¢ 0z

The radial coordinate r can be extended to a map r: M — Rt U {0} that is,

them:

at least, continuous on the axis A.
The relation between the new coordinates and the old is given by the
following conditions:

(3.134) e* = ch 2r + (cos @) (sh 2r),
(3.135) Y€ = V2 (sing)(sh 2r),
(3.1.36) z=122,
t—2% t—2%
3137) tan (2 + > =e¢ *tan ¢ where ‘ <Z
2 22 2 232 2

With some work, one can show directly that these conditions do, in fact,
properly define smooth maps over the domains indicated in (3.1.32)!! and use
them to derive the expression for g,;, given in equation (3.1.31). (The details
are worked out with great care in Stein [58].) We skip this work and make
just two remarks about the conditions. Later, in an appendix, following Gédel
[25], we shall establish the equivalence of the two coordinate representations

10. So, for example, let g be any pointin M~. Then s > A~ ((q), r(q), ¢(q) + 5, 2(q)) is a smooth
curve through q. We understand (3/9¢)* at g to be the tangent vector to the curve there.

11. Strictly speaking, the conditions define only f on the restricted domain M. But it can be
smoothly extended to all of M.
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a somewhat different way. It will involve a direct appeal to a coordinate-free
description of the metric.

First, it is clear from the first two conditions in the list why we need to
restrict attention to M™. If x = y = 0, they will be satisfied iff r = 0. But if
r = 0, those conditions impose no constraints on ¢ (and neither do the other
conditions). So ¢ is not well defined on M — M ™. (On the other hand, if either
x # 0 ory # 0, then equations (3.1.34) and (3.1.35) determine unique values
for both ¢ and r.)

Second, though the exact relation between t and t is complex, their asso-
ciated coordinate fields * and t* are proportional to each other; i.e, we have
1% = a t for some «. This follows from the first three conditions. For when
r,$, % are fixed, x,y, z are fixed as well. So every -line (characterized by con-
stant values of r, ¢, 2) is also a t-line (characterized by constant values for
x,7,2). And it follows from equation (3.1.37) that the proportionality factor
must be 2.1? So we have

(3.1.38) % =21t
We also have
(3.1.39) 24 =22"

from equation (3.1.36).

Let us now accept as given the second coordinate representation of the
Godel metric (in terms of cylindrical coordinates). We shall work with it much
as we did the first representation. Note that the inverse of the metric now
comes out (in M ™) as

bc __ 1 |: (Sh4r_5h2r) zhzc_ S

(3.1.40) gr = 2| 7(sh4r+sh2r) r’r—-2z"z2
v #P ¢° + L it go | .
(sh*r + sh2r) (sh*r + sh?r)
Consider ¢*%. Since
(3.1.41) ba ¢° = 4 pu? (sh*r — sh?r),

it qualifies as spacelike, null, or timelike at a point q in M~ depending on
whether r(q) is less than, equal to, or greater than the critical value r, = In
(1++/2) where sh assumes the value 1. The angular coordinate ¢ is defined

12. 1t follows from equation (3.1.37), specifically, that the difference (t —2%) is constant on
every t-line; i.e., once r and ¢ are fixed, (t — 27) is fixed as well. So £"V,,(t — 27) = 0. It follows that
a=at"Vut ="Vt ="V, (21) = 2.
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only on M~, but we can smoothly extend ¢* itself to all of M by taking it to be
the zero vector on M — M~ —i.e., on the axis A. We shall understand it that
way in what follows. Where ¢ is timelike (and where it is null but non-zero)
it qualifies as future-directed, because temporal orientation is determined by
t% (or, equivalently, ), and ¢, = 4 /2 u? sh’r. (So ¢, > 0, unless r = 0.)

Both % and z* are, of course, Killing fields. We know that from before.
So is ¢%. It is the generator of a one-parameter family of (global) isometries

¢
{I's}ses1 defined by
2 (p) = ATNHp), r(p), ¢(p)+5 Z(p)) ifpe M,
; ifpe A
The three Killing fields under consideration have vanishing Lie brackets with
one another:

(3-1.42) [, ¢1 = [i*, 2°1 = [¢° 2°] = 0.
(Once again, these relations follow most easily from proposition 3.1.1.) Now

¢ -
let p be any point on the axis A. The maps I's all leave p fixed, and leave t*
and 2% fixed as well (by proposition 1.6.6). So if U is the two-dimensional

subspace of M, that is orthogonal to both t* and 2, the maps 1?‘3 induce a
one-parameter family of rotations of U. And what is true here of p is true
quite generally, because of homogeneity as formulated in (2). So we have the
following isotropy claim.

(5) Godel spacetime is (globally) isotropic in the following sense: given any point p,

and any two unit spacelike vectors % and &% at p that are orthogonal to both
% and 2%, there is an isometry Y : M — M such that yr(p) = p, ¥« (i) = 1%,
V(3% = 3%, and Y (0 %) = 0 %

And now it is also clear, as announced, that Godel spacetime admits closed
timelike (and closed null) curves. Indeed, consider the set of (maximally ex-
tended) integral curves of ¢*. They are closed curves, characterized by constant
values for f, 7, and Z. We shall call them (or their images) Gédel circles. As we
have just seen, they qualify as timelike if r > r; and null if r = r,. These
particular curves are centered on the axis A. But by homogeneity, it follows
that given any point in Godel spacetime, there are closed timelike and closed
null curves passing through the point. Indeed, we can make a much stronger
assertion. The “causal structure” of Godel spacetime is completely degenerate
in the following sense.

(6) Given any two points p and q in Godel spacetime, there is a smooth, future-
directed timelike curve that runs from p and q. (Hence, since we can always
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combine timelike curves that run in the two directions and smooth out the
Jjoints, there is a smooth, closed timelike curve that contains p and g.)

matter
worldline

closed timelike
line

’

P

Figure 3.1.1. Godel spacetime with one dimension (the Z dimension) suppressed.

Thus a time traveler in Godel spacetime can start at any point p, return to
that point, and stop off at any other desired point g along the way. To see why
(6) holds, consider figure 3.1.1. It gives, at least, a rough, qualitative picture
of Godel spacetime with one dimension suppressed. We may as well take the
central line to be the axis A and take p to be a point on A. (By homogeneity
once again, there is no loss in generality in doing so.) Notice first that given
any other point p’ on A, no matter how “far down,” there is a smooth, future-
directed timelike curve that runs from p to p’. We can think of it as arising
in three stages. (i) By moving “radially outward and upward” from p (i.e.,
along a future-directed timelike curve whose tangent vector field is of the
form 4+« r%, with « positive!?), we can reach a point p; with coordinate
value r > r,. At that radius, we know, ¢# is timelike and future-directed. So
we can find an € > 0 such that (—e * 4 ¢%) is also timelike and future-directed
there. (ii) Now consider the maximally extended, future-directed timelike curve
y through p; whose tangent is everywhere equal to (—e £* + ¢*) ( for that value
of €). It is a spiral-shaped curve of fixed radius, with “downward pitch.” By
following y far enough, we can teach a point p, that is well “below” p’. (We
can overshoot as much as we might want.) Now, finally, (iii) we can reach p’ by
working our way upward and inward from p; via a curve whose tangent vector
is the form % + o r%, but now with o negative. It remains only to smooth out
the “joints” at intermediate points p; and p;, to arrive at a smooth timelike
curve that, as required, runs from p to p'.

13. Note that F* +« r® is timelike so long as o < 1.
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Now consider any point g. It might not be possible to reach g from p in the
same simple way we went from p to p1—i.e., along a future-directed timelike
curve that moves radially outward and upward—p might be too “high” for that.
But we can get around this problem by first moving to an intermediate point p’
on A sufficiently “far down”—we have established that that is possible—and
then going from there to g. (This completes the argument for (6).)

Other interesting features of Goédel spacetime are closely related to the
existence of closed timelike curves. So, for example, a slice (in any relativis-
tic spacetime) is a spacelike hypersurface that, as a subset of the background
manifold, is closed. We can think of it as a candidate for a “global simultaneity
slice.” It turns out that there are no slices in Godel spacetime. More gener-
ally, given any relativistic spacetime, if it is temporally orientable and simply
connected and has smooth closed timelike curves through every point, then it
does not admit any slices (Hawking and Ellis [30, p. 170]).

Next we have the following basic fact.

(7) There are no closed timelike or null geodesics in Gédel spacetime.

We can easily confirm this, even before we characterize the class of timelike
and null geodesics. It suffices (by homogeneity) to show that there are no closed
timelike or closed null geodesics that pass through some particular point p on
the axis A. Consider the set C = {q: r(q) < r.}. We shall call it the critical
cylinder surrounding A. We can establish our claim by showing two things: (i)
all timelike geodesics that pass through p are fully contained within C, and all
null geodesics that pass through p are fully contained within the closure of C;
and (ii) there are no (non-trivial) closed causal curves within the closure of C.

For (i), let y be any timelike or null geodesic that passes through p, and let
A% be its tangent field. We may as well assume that y is future-directed (since
otherwise we can run the argument on a new curve that results from reversing
the orientation of y). Since ¢ is a Killing field, the quantity A%¢, is constant
on y. (Recall problem 1.9.6.) It is equal to 0 at p, since ¢* is the zero vector
there. So itmust be 0 everywhere. Now on the boundary of C (wherer = r;), ¢*
is a non-zero, future-directed null vector. So its inner product there with any
future-directed timelike vector is strictly positive. It follows thatif y is timelike,
it can never reach the boundary of C. (If it did, we would have A%@®, > 0 there.)
It must stay within the (open) set C. Similarly, at all points outside the closure
of C, ¢*is a future-directed timelike vector. So its inner product with all future-
directed causal vectors (even null ones) is strictly positive. And therefore, if y
is null, it must remain within the closure C. (As we shall see in a moment,
null geodesics through p do periodically intersect the boundary of C.)
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For (ii), note that, by equation (3.1.40),

1 (sh*r —sh?r)

ab 7 7
Vo) (V) = ——— )
g (Val) (Vo) 4 u? (sh*r + shr)

So V,t is timelike within C and null (and non-zero) on the boundary of the set.
Itis future-directed both in C and on its boundary (since ¥V, t = 1). Now let y
be any non-trivial future-directed causal curve that passes through p, and let A%
beitstangent field. Then (since A% and V,, t are co-oriented), we have A"V, > 0
atall points in C and A"V, > 0 at all points on the boundary of the set. So y
cannot possibly stay within the closure of C and still close back on itself.
Now, finally, let us characterize the set of all timelike and null geodesics in
Godel spacetime. The 2% direction is not very interesting here, and we may as
well restrict attention to curves that fall within a 2* = constant submanifold—
i.e., curves whose tangent fields are orthogonal to 2 (or equivalently to z%).1*
We shall first consider certain examples that admit a particularly simple
description. Then we shall argue that they are, up to isometry (and repara-
metrization), the only ones. A small bit of computation is involved. For that we
need the following simple results that are the counterparts to ones presented
earlier for the first set of coordinates. At points in M~, where r > 0, we have

(3.1.43) dp = 4 u? [(sh* r —sh? 1)V}, o + V2 sh% r V) 7],

(3.1.4 Vady =41 [(4sh*r —2sh1)(ch1)(Via1)(Vi) ¢)
+2V2(shr)(chr) (Via 1) (Vi ) 1

(3.1.45) ¢*Vadp =—4p” (2sh’ r —shr)(chr) Vyr,

(3.1.46) Vol = Vo = —4 2% (shr)(chr) Vyr.

(For the second equation, we use the fact that ¢* is a Killing field and, so,
V(a ¢p) = 0. For the fourth, we use equation (3.1.42).)

Consider fields of the form %+ k¢® where k is some real number.
Their integral curves are “helices” on which r and Zz are constant (since
9V, r =1*V, 2 = 0, and similarly for ¢%). Our goal is to show that some of
these helices—characterized by particular choices for k and r—are causal geo-
desics. Let kand r be fixed, and let y be an integral curve of £ + k ¢ associated
with these values. Then, we have

14. Given any smooth curve s > ®~L(t(s), x(s), y(5), z(s)) in Gédel spacetime, it qualifies as a
geodesic iff (i) z(s) is of the form z(s) = zo + ks, for some numbers zp and k, and (ii) the projected
curve s — DL(t(s), x(s), y(s), zo) qualifies as a geodesic. This follows because V, z? = 0.
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3147 (P4 kdY) (a4 kda) = 4 u? [k (sh* r —sh? 1)+ 22 (sh* 1) k+1]
and (by equation (3.1.45) and (3.1.46) and the fact that * is a geodesic field),
(3.1.48) (B +ko*)\Vu (B +kp) = 2k[—4 V2 u? (shr)(chr) Vyr]

+ k2[4 2 2shPr —shr)(chr) Vyr]

= —4u2k(shr)(chr)[2v/2

+k @2sh?r—1)]Vyr.
Thus y is a geodesic iff k = 0 (in which case it is just an integral curve of %),
r = 0 (in which case, again, it is an integral curve of 1% now on the axis), or
(3.1.49) k(@2sh?r—1)+2+2=0.

It is a null geodesic iff this condition holds and the right side of equation
(3.1.47) is 0. That leaves us with two equations in two unknowns. They yield

(W2-1)
2

y is a null geodesic <= sh’r = and k=2(1++2)

or, equivalently (since sh 2r = 2 (sh r)(ch 1)),
y is anull geodesic <= r = % and k=2(1++2).

Similarly, after excluding the trivial cases where k = 0 or r = 0, , we have
22

(1—2sh2r)’

Thus, given any point g with r coordinate satisfying 0 < r < r./2, there is

exactly one value of k for which the helix through q with tangent field t* + k ¢*

is a timelike geodesic.

r
y is a timelike geodesic <= r < EC and k=

The number k here has a natural physical interpretation in terms of relative
speed. Think of the tangent vector £ +k¢* as a (non-normalized, possibly
null) velocity vector. We can extracta “speed relative to %” if we first decompose
it into components tangent—and orthogonal to—#*, and then divide the norm
of the second by the norm of the first. With just a bit of calculation, we get

k(shr)(chr)
14+k/2sh2r
It follows that k = 2+/2/(1 — 2sh? r) holds iff v = ~/2 (sh 2r)/(ch 2r). So we

can reformulate our equivalence this way:

v = speed relative to t* =

t, sh2r
y is a timelike geodesic < r < — and v=+2 .
2 ch2r
(Notice that +/2 (sh 2r)/(ch 2r) goes to 1 as r approaches r;/2.) 1
Here is our characterization claim. 0
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(8) The special geodesics we have just considered—the ones that are (maximally
extended) integral curves of % +ko® for some k—are, up to isometry
and reparametrization, the only maximally extended, future-directed, null
and timelike geodesics in Godel spacetime (confined to a zZ = constant
submanifold).

Let us verify it, first, for null geodesics. Let y; be any maximally extended,
future-directed, null geodesic confined to a submanifold N whose points all
have some particular z value. Let g be any point in N whose r coordinate
satisfies sh? r = (v/2 — 1)/2. Pick any point on y;. By virtue of the homogeneity
of Godel spacetime—as recorded in (2)—we can find a (temporal orientation
preserving) global isometry that maps that point to g and maps N to itself. Let
y2 be the image of y; under that isometry. We know that at g the vector (#* +
k¢%) is null if k = 2(1 4 +/2). So, by virtue of the isotropy of Godel spacetime
(in the sense of (5)), we can find a global isometry that keeps q fixed, maps N
to itself, and rotates y, onto a new null geodesic y;3 whose tangent vector at g
is, at least, proportional to (% 4 2(1 4+ +/2) $%), with positive proportionality
factor. If, finally, we reparametrize y3 so that its tangent vector at g is equal
to (1 +2(1 ++/2) ¢%), then the resultant curve must be a special null geodesic
helix through g since (up to a uniform parameter shift) there can be only one
(maximally extended) geodesic through g that has that tangent vector there.

The corresponding argument for timelike geodesics is almost the same.
Let y; this time be any maximally extended, future-directed, timelike geodesic
confined to a submanifold N whose points all have some particular Z value.
Let v be the speed of that curve relative to . (The value as determined at any
point must be constant along the curve since it is a geodesic.). Further, let
q be any point in N whose r coordinate satisfies v/2 (sh 2r)/(ch 2r) = v. (We
can certainly find such a point since +/2 (sh 2r)/(ch 2r) runs through all values
between 0 and 1 as r ranges between 0 and r./2.) Now we can proceed in three
stages, as before. We map y; to a curve that runs through g. Then we rotate that
curve so that its tangent vector (at q) is aligned with (£* + k ¢%) for the appro-
priate value of k, namely k = 2 +/2/(1 — 2 sh? r). Finally, we reparametrize the
rotated curve so that it has that vector itself as its tangent vector at g. That final
curve must be one of our special helical geodesics by the uniqueness theorem
for geodesics. (This completes the argument for (8).)

The special timelike and null geodesics we started with—the special helices
centered on the axis A—exhibit various features. Some are exhibited by all
timelike and null geodesics (confined to a z=constant submanifold); some are
not. It is important to keep track of the difference. What is at issue is whether
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the features can or cannot be captured in terms of g3, %, and 2 (or whether
they make essential reference to the coordinates %, 7, ¢ themselves). So, for
example, if a curve is parametrized by s, one might take its vertical “pitch”
(relative to #) at any point to be given by the value of dt/ds there. Understood this
way, the vertical pitch of the special helices centered on A is constant, but that of
other timelike and null geodesics is not. For this reason, itis not correct to think
of the latter, simply, as “translated” versions of the former. On the other hand,
the following istrue of all timelike and null geodesics (confined to a Z=constant
submanifold). If we project them (via %) onto a two-dimensional submanifold
characterized by constant values for f as well as %, the result is a circle.'

Here is another way to make the point. Consider any timelike or null
geodesic y (confined to a Z = constant submanifold). It certainly need not be
centered on the axis A and need not have constant vertical pitch relative to Z.
But we can always find a (new) axis A’ and a new set of cylindrical coordinates
t',7',¢" adapted to A’ such that y qualifies as a special helical geodesic relative
to those coordinates. In particular, it will have constant vertical pitch relative
tot.

Let us now consider all the timelike and null geodesics that pass through
some point p (and are confined to a Z=constant submanifold). It may as well
be on the original axis A. We can better visualize the possibilities if we direct
our attention to the circles that arise after projection (via t%). Figure 3.1.2 shows
a two-dimensional submanifold through p on which f and Z are both constant.
The dotted circle has radius .. Once again, that is the “critical radius” at
which the rotational Killing field ¢# is null. Call this dotted circle the “critical
circle.” The circles that pass through p and have radius r = r,/2 are projections
of null geodesics.'® Each shares exactly one point with the critical circle. In
contrast, the circles of smaller radius that pass through p are the projections
of timelike geodesics. The diagram captures one of the claims we made in the
course of arguing for claim (7)—namely, that no timelike or null geodesic that
passes through a point can “escape” to a radial distance from it greater than r,.

We said at the beginning of this section that Godel spacetime exhibits a
“boomerang effect.” It should now be clear what was intended. Suppose an
individual is at rest with respect to the cosmic source fluid in Gédel spacetime
(and so his worldline coincides with some #-line). If that individual shoots a

15. Notice that we can capture this projection condition in terms of g, %, and 2. It holds of
a given curve y iff there is an integral curve of ## such that all points on y are the same “distance”
from it, where distance is measured along geodesic segments that are orthogonal to both t* and 2°.

16. The assertion that a certain timelike or null geodesic has a certain “radius” can be expressed
without reference to the value of a radial coordinate based on some axis. See note 15.
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null geodesic
(projected) timelike geodesic

(projected)

Figure 3.1.2. Projections of timelike and null geodesics in Gédel spacetime. r. is the “critical
radius” at which the rotational Killing field ¢ centered at p is null.

gun at some point, in any direction orthogonal to z%, then, no matter what
the muzzle speed of the gun, the bullet will eventually come back and hit him
(unless it hits something else first or disintegrates). Here is a purely geometric
formulation.

(9) (Boomerang Effect) Let L be any t-line in Godel spacetime, and let y be any
maximally extended timelike or null (but non-degenerate) geodesic on which
the value of 2% is constant. Then if y intersects L once, it does so infinitely many
times; and the temporal interval between intersection points (as measured
along L) is constant.

Appendix: A Coordinate-Free Characterization of Godel Spacetime
Here, following Godel [25] and [27], we characterize the geometric structure
of Godel spacetime in coordinate-free terms, and use this characterization to
establish the equivalence of our two coordinate representations of the metric.”
First, Godel spacetime (M, g,;,) can be decomposed as a metric product.
One component is the manifold R together with the (negative-definite) metric
—p? dz4dzy. The other component is the manifold R? together with a certain
metric hyy, of signature (1, 2). The latter can be expressed as

hab = hab + 70 Ty,
where

(1) hgpisa geodesically complete metric on R? of signature (1, 2) and constant
positive-curvature 1/(4u?), and

17. The material in this appendix is taken, with only minor changes in notation, from Malament
39].

“530-47773_Ch03_2P.tex” — 1/23/2012 — 17:18 — page 214

N |
0



SPECIAL TOoPICS [ 215
(2) ©® = h® 7, is a unit timelike Killing field with respect to hgy,.

(In (2), hab is the inverse of hy; i.e., we are not using some other metric to
raise indices.)

We can recover this characterization by starting with either of our two
coordinate representations of the Gédel metric. Consider the first, equation
(3.1.1). Here the coordinates t,x,y, z range over all of R. We arrive at the
structure (R3, hyy) by dropping the dz, dzj, term and restricting the reduced
metric to any submanifold of constant z value. The reduced metric assumes
the form ﬁab + 1,17, if we set

1) gy = i [ (e B% 9+ € (Viat) (V1) — (Va (Vs x)} ,
K
V2
So, to justify the proposed characterization, it will suffice to confirm that these
two fields satisfy (1) and (2).

The inverse of I:Lub is

(3.1.51) T, (Vat+€° Vay).

(3.1.52) hbe = % [4 e tlbyd) —xbxf g2 pbye ] ,
and so ® comes out to be (v/2/u) t*. (We are continuing to use the abbrevia-
tions in equation (3.1.2).) The latter is a unit timelike field with respect to Rab»
as required. It is also a Killing field with respect to that metric. (The argument
is almost exactly the same as the one used above to establish that t* is a Killing
field with respect to the original metric g,;,.) So we have (2). For (1), note
first that hy;, has signature (1,2), since the vectors (v/2/u) %, (v/2/1) (t* —
e *y%), and (1/u) x* form an orthonormal triple (of the appropriate type) at
every point. Next, consider the map

W (t,x,y) > (U1, U2, U3, Us)

from R3 into R* where

i t x 1 t
3.1.53) U] =2 cos( —= ) ch(Z) = —— y &2 sin (—) ] ,
G153 o L (2ﬁ> (2) 272 Y 272

i t x 1 t
3154 uy=2u|sin| —=) ch(Z)+—=1y % cos (—) } ,
B = s L <2f2> <2) 23/2 Y 232

t X 1 t
3.1.55) Uz = 2 —sin| ——= ) sh(Z) + —— y /% cos (—) ] ,
G135t =l L <2ﬁ) (2> 272 Y 272
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t X 1 t
3.1.56) Uy =2 cos| —= ) sh(Z)+—=ye/%sin (—) :| .
G156 M[ <2ﬁ> (2) 23/2 Y 24/2

A straightforward computation establishes that
(3.1.57) (u1)? + (u2)? — (u3)2 — (u4)? = 4
and, using equation (1.5.7), that

(3:1.58) W ((Va 1) (Vi 1) + (Va 12) (Vi 42) — (Va 43) (Vi u3) — (Va 1) (Vi 144))

= u? (%(Va (Vo) + € (Viat) (Vi) — (Va %) (Vi x)> :

The map W, as it stands, is not injective. It makes the same assignment to
(t,x,y) and (t44+/27,x,y). But it is injective if we restrict ¢ to the interval
[0,4+/2 7). Indeed, if ~ is the equivalence relation on R?® defined by

(t,x,y) ~ (,x,y) iff ¥ =xand y =y and ¢ =t (mod 42 1),

then W determines a diffeomorphism between the quotient manifold R3/~
and the manifold

H = {(w1, u2, u3, us) € R*: (u1)? + (u2)? — (u3)? — (ua)® = 4 2} 18

By equation (3.1.58), it qualifies as an isometry with respect to the metric
induced on the latter by the background flat metric on R* of signature (2, 2).
Butitisa standard result that H together with this induced metricis a complete
manifold of constant curvature 1/(4 42). (See, for example, O’Neill [46, p. 113].)
So—since (R?, ’:"ub) is an isometric covering manifold of the latter—(R?, I:"ub)
is, itself, a complete manifold of constant curvature 1/(4 2. This gives us (1).

We can proceed in much the same way starting with equation (3.1.31), the
second coordinate representation of the Godel metric. This time we drop the
dz, dz;, term and arrive at the desired decomposition of the reduced metric
(hap = ]:Lah + 74 7p) if we set

pase ho =442 [ S VaDVaT) ~ (Va) (Vi) = 5h 7 (%0 8)(T )

+V25h?r (Viak) (Vi) } ,

18. Note that we can invert the restricted map and explicitly solve for t,x,y in terms of
u1, Uz, u3, us. For example,

t = 2+/2 arc cos s . —
V(11 + ua)? + (w2 — u3)? 0
|
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(3160)  To =2 u (Voi+2sh?r v, ¢).

Here 1% = h%1, comes out as (1/+/2 ) . So we see, once again, by equation
(3.1.38), that 7% = (+/2/u) t*. And this time we can show that (R3, k) is an
isometric covering manifold of H (with respect to the induced metric on H)
by considering the map'?

W' (E1,9) > (U1, Uz, U3, Ug)
where

(3.1.61) = 2 cos

(3.1.62) Uy = 24 sin

N

(3.1.63) u3 = 2u sin <¢ ) shr,

(3.1.64) ug =2 cos| ¢p — —)

One can check that equation (3.1.57) holds, once again, as does the counterpart
to (3.1.58):

(3.1.65) W ((Va u1)(Vp 1) + (Va 42)(Vp t2) — (Va 43)(Vp 43) — (Va ua) (Vp Ua))

= 4u (%(v,, DV 1) = (Var)(Vor) = sk’ r (Va @) (Vs ¢)

++/2 sh?r (v(ai)(vb)¢)).

Here W’ is not injective, but it is so if we restrict i to the interval [0, 2 /2 7).
It should be clear now that our two coordinate expressions for the Godel
metric are fully equivalent. They are but alternate expressions for a metric on
R* that we have been able to characterize in a coordinate independent way.
We can gain further insight into the two maps W and W’ if we recast them.
Consider the (associative, distributive) algebra of “hyperbolic quaternions.”
We can construe them as elements of the form

19. As characterized here, the map is defined only where r # 0. But it can be smoothly extended
to points at which r = 0.
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@ = w1 +woi+w3j+wsk
where wy, ..., w4 are real numbers. Addition is defined by the rule
(W1 + wai 4+ wsj + wek) + (W] + w)i + wjj + wik)
= ((w1 +wh) + (w2 + w))i + (w3 + w3)j + (s + w)K).

Multiplication is defined by the requirement that (the real number) 1 serve as
an identity element and by the relations

ii=-1,
ij=kk =1,
ij=-ji=Kk
jk=—k-j=—i,
k-i=—ik=j.

If we define the conjugate and norm of ¢ by setting

@ = wy — i — w3j — sk,
norm(p) = ¢ ¢ = (w1)* + (w2)? — (w3)” — (wa)?,
then it follows that ¢ - ¢/ = ¥ - ¢ and, hence,
(3.1.66) norm(y - ¥) = norm(g) norm(y)

for all ¢ and . To simplify notation, we shall identify the hyperbolic quater-
nion wy + wyi+ wsj+ wsk with the corresponding element (wy, wy, w3, wy)
of R*. Then H is identified with the set of hyperbolic quaternions of norm
4 12, and it acquires a natural (Lie) group structure: given any two elements
uand v in H, we take their product to be (1/4 ) u-u’. The norm product
condition (3.1.66) guarantees that the product is well defined. The element u
has u for an inverse.
Notice now that for all real number ¢, x, y, the quadruples

(cost, sint, 0, 0) (chx, 0,0, shx) (1,9, v 0)

all have norm 1. So their product has norm 1. Straightforward computation
confirms that the associated map

(¢, %, y) = 2 u (cost, sint, 0, 0) - (chx, 0,0, shx) - (1, y,y, 0)

is essentially just the first of the two maps from (R?, ﬁab) onto H displayed in E—
equations (3.1.53)—(3.1.56). This is where it “comes from.” Strictly speaking, 0
41
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to match the coefficients in that map, we need to make a small change and
take the product to be

o) 5) 9 05 003 50

Similarly, we can recover the second of the maps from (R3, ﬁab) onto H, the
one displayed in equations (3.1.61)—(3.1.64), in the form

t

V2

[

V2

tr.¢) = 2pu (cos( ), sin(—=), 0, O) - (chr, 0, shrsing, shr cosd).

3.2. Two Criteria of Orbital (Non-)Rotation

In general relativity, there is a natural and unambiguous notion of rotation at
a point as it applies, for example, to a fluid. This is the notion we considered
in section 2.8. If the four-velocity field of the fluid is &%, then we say that the
fluid is non-rotating at a given point if its associated rotation field w,y, vanishes
there or, equivalently, if £,V & = 0 there. (Recall problem 2.8.1.)

But when we consider notions of rotation that make essential reference
to what happens over extended regions of spacetime, the situation changes
immediately. So, for example, consider a (one-dimensional) ring centered
about an axis of rotational-symmetry (figure 3.2.1). Just what does it mean to
say that the ring is “not rotating” around the axis? (It will be convenient to stick
with the negative formulation.) This turns out to be a subtle and interesting
question in relativity theory. Various criteria for non-rotation readily come to
mind. In garden-variety circumstances, they are equivalent. But the theory
allows for conditions under which they come apart. It can happen that the
ring is non-rotating in one perfectly natural sense but is rotating in another.

Figure 3.2.1. What does it mean to say that a ring is “not rotating” around a central axis of
rotational symmetry?
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In this section we consider two?® such natural criteria for ring non-
rotation: (i) the zero angular momentum (ZAM) criterion, and (ii) the compass
of inertia on the ring (CIR) criterion. In each case, we give both a direct, geo-
metric formulation and also a somewhat more intuitive, quasi-operational
formulation. We verify that the ZAM and CIR criteria agree if a certain sim-
plifying condition obtains, and we show that they do not agree in Godel space-
time.

In the next section, we step back from these two particular criteria and for-
mulate a no-go result?! that applies to a large class of “generalized criteria” of
ring non-rotation. We abstract three conditions that one might want a crite-
rion of ring non-rotation to satisfy, and show that, at least in the case of some
relativistic spacetime models, no generalized criterion of ring non-rotation sat-
isfies all three. The upshot is that no notion of orbital non-rotation in relativity
theory fully answers to our classical intuitions.

We need a certain amount of background structure to set things up. In
what follows, let (M, g;;) be a spacetime with two complete Killing fields,
and ¢4, satisfying the following conditions: (i) # is timelike; (ii) the orbits of
¢*“ are closed; (iii) ¢ is spacelike except at “axis points” (if there are any) where
¢ = 0; (iv) not all points are axis points (i.e., ¢* does not vanish everwhere)
(v) [%, ¢*1 = 0; and (vi) Fa ¢ Ve B4y = 0 and s ¢, Ve ¢g) = 0.

Godel spacetime meets this description, at least if we restrict attention to
the open set where r < r..>2 Another example is Minkowski spacetime. Yet
a third—at least if we restrict attention, once again, to a certain open set—is
Kerr spacetime, which we shall consider very briefly in the next section.

The stated conditions are, more or less, the usual ones defining a “sta-
tionary, axi-symmetric spacetime” (Wald [60]). For convenience, we have
strengthened things a bit (compared to some formulations) by requiring that
% and ¢* be complete. The added strength is harmless. The point here is that
even with this much structure in place, the two criteria of ring non-rotation
need not agree. In what follows, when we refer to a stationary, axi-symmetric

20. It would be easy to assemble a longer list of criteria. For example, we could consider non-
rotation as determined at “spatial infinity” (at least for the case of asymptotically flat spacetimes),
non-rotation as determined relative to the compass of inertia on the axis (CIA) criterion (Malament
[41]), and yet other criteria (see Page [50]). We are not attempting here a systematic account of
orbital rotation in relativity theory. Our goal is to give an indication of the subject’s interest and to
prepare the way for a particular no-go theorem.

21. The result presented here is a variant of the one in Malament [41].

22. That condition (vi) holds in Gédel spacetime follows from equations (3.2.11) and (3.2.12)
below. (We are deliberately using the same notation that we used in the preceding section for Godel
spacetime so that we can easily go back and forth between claims about the general case and claims
about that one example.)
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spacetime with Killing fields t* and ¢%, it should be understood that the stated
conditions obtain.

The conditions themselves should be clear except, possibly, (vi). It asserts
that, atleast locally, there exist two-dimensional submanifolds that are orthog-
onal to both #* and ¢%. (This is a consequence of Frobenius’s theorem. See
the first part of the proof of theorem 7.1.1 in Wald [60, p. 163].) In Godel
spacetime, for example, these are submanifolds characterized by fixed values
for t and ¢, and free values for r and Z.

With this structure in place, we can represent our ring as an imbedded two-
dimensional submanifold R that is invariant under the isometries generated
by #* and ¢* (and on which ¢# # 0). We call the latter an orbit cylinder. To rep-
resent the rotational state of the ring, we need to keep track of the motion of
individual points on it. Each such point has a worldline that can be represented
as a timelike curve on R. So we are led to consider not just R, but R together
with a congruence of smooth timelike curves on R (figure 3.2.2).

We want to think of the ring as being in a state of rigid rotation, i.e.,
rotation with the distance between points on the ring remaining constant. So
we are further led to restrict attention to just those congruences of timelike
curves on R thatare invariant under all isometries generated by £*. Equivalently
(moving from the curves themselves to their tangent fields), we are led to con-
sider future-directed timelike vector fields on R of the form (£ + k ¢%), where
k is a number. We shall call the pair (R, k) a striated orbit cylinder. And, quite
generally, we can take a “criterion of ring non-rotation” to be, simply, a specifi-
cation, for every striated cylinder (R, k), whether itis to countas “non-rotating.”

Officially, now, our two criteria can be formulated as follows. Let (R, k) be
a striated cylinder. (Recall that we say a timelike vector field %, normalized or
not, is non-rotating at a point if n, V1) = 0 there.)

Figure 3.2.2. A “striated orbit cylinder” that represents a particular rotational (or non-
rotational) state of the ring.
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(1) (R, k) is non-rotating according to the zero angular momentum (ZAM)
criterion if (% + k ¢%) is orthogonal to ¢* on R; i.e., (% + k ¢*)dps = 0.

(2) (R,k)is non-rotating according to the compass of inertia on the ring (CIR)
criterion if (#* + k ¢%) is non-rotating on R; i.e., the following condition
holds on R:

(3.2.1) E[avb EC] + kE[aVb (]55] +k ¢>[qu EC] + k2 4)[“% (]55] =0.

The orthogonality condition in (1) just captures the requirement that every
point on the ring have zero angular momentum with respect the rotational
Killing field ¢“. (Recall our discussion in section 2.9.) So the terminology
makes sense.

Let us now recast the two criteria in quasi-operational terms. Let us start
with the second. Here is one way to set up an experimental test. Suppose
we mount a gyroscope at some fixed point on the ring in such a way that it
can rotate freely. And suppose that at some initial moment the axis of the
gyroscope is oriented so as to be tangent to the ring (figure 3.2.3). Then we
can consider whether it remains tangent over time. It turns out that it will do
so (i.e., remain tangent to the ring) iff the ring is non-rotating according to the
CIR criterion.

We shall verify this equivalence in a moment. But first, notice that the
stated experimental test does seem to provide a natural criterion of non-rotation.
Think about it. If the ring were rotating—here we are simply appealing to
ordinary intuitions—we would expect that the angle between the gyroscope
axis and (an oriented) tangent line would shift from 0° to 90° to 180° to 270°
and back to 0° as the ring passed through one complete rotation. The intuition
here is that the tangent line changes direction as the ring rotates, but the axis
of the gyroscope does not.

Figure 3.2.3. An experimental test to determine whether the ring is non-rotating according to
the CIR criterion.
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Now consider how we can capture, most directly, the stated “gyroscope
remains tangent” condition. Let y be a future-directed timelike curve that rep-
resents the worldline of the point on the ring where the gyroscope is mounted.
The gyroscope there does not “change (spatial) direction as determined relative
to y.” That is what makes it a gyroscope. So the “gyroscope remains tangent”
condition will be satisfied iff the tangent field ¢* itself (now conceived as a
field on y) does not “change (spatial) direction relative to y.” We need only
spell out the latter condition.

Let n® = (1 + k¢%), let n = (n"ny)"/?, and let 7* be the normalized field
defined by n* = n n®. Finally, let h,, be the spatial projection field (g, — 714 71a)
determined relative to 7%. Then the spatial direction of ¢* as determined rela-
tive to y is h?,¢". And ¢* is “not changing (spatial) direction relative to y” iff

(3.22) v (hhn¢”) =0.

This condition asserts that the spatial component of 7"V, (h?,¢") as
determined relative to y vanishes. When it holds, we say that h?,¢" is Fermi
transported along y.

We can simplify the condition slightly if we cast it in terms of n% = (£#* +
k ¢%) rather than the normalized field 7%. Here and in what follows, we make
repeated use of the fact that * is a Killing field and that #% Lie derives ¢* and
1 (since the Lie bracket of ¢% and % vanishes); i.e., we have

(3.2.3) Ly =4£,1"=0 and £,g,=0.
Expanding h,,, we see that equation (3.2.2) holds iff
(8% — %) " Vi [9” — (") "] = 0.

But/™V,, n = 0and 7™V, (¢"7),) = 0 by equation (3.2.3), and 7 1" V,, p? =0
since ¢* is a Killing field. Furthermore, 7, 1™V, #” = 0, since 7’ is of unit
length. So equation (3.2.2) holds iff

(.24) n* 1" Vin @ = (¢"10n) 1" Vi 1"
With all this as motivation, we have the following definition.

(2') (R, k) is non-rotating according to the gyroscope remains tangent (GRT)
criterion if n% = (£ + k¢%) satisfies equation (3.2.4) on R (with n =
(nnnn)l/Z).

Our earlier claim of equivalence now comes out as the following pro-
position.
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PROPOSITION 3.2.1. A striated orbit cylinder (R, k) qualifies as non-rotating
according to the CIR criterion iff it qualifies as non-rotating according to the GRT
criterion.

Proof. One direction is easy. Assume that n, Vy, 74 = 0 on R. Then contrac-
tion with n™¢" yields

@" 1) " Vi e+ 0a " " Vi 1 + (1" 1m) @V, = 0

on R. But the Lie bracket of ¢* with n® vanishes. And ¢% and n* are both
Killing fields. So the second term in the sum vanishes (7" ¢"Vynm =
n"™ n"Vy, ¢m = 0), and the third term is equal to

(ﬁmnm) O"Van, = _772 @"Viune = —nz N" Vi Pa.

So equation (3.2.4) holds on R.
Conversely, assume that equation (3.2.4) holds on R. Then (once again
using the fact that n™Vy, ¢pg = ¢™ Vi 14), we have

[772 " — (¢n77n) ﬁm] Vinna =0

on R. Now consider the field ™ =[n%¢™ —(¢"1n,)n™]. We have (i) ™1, =0;
(i) ¥™ #0; and (iii) Y™ Ve =0 on R. (Condition (ii) holds because
n? ¢™ is spacelike and (¢"n,) n™ is timelike or equal to 0.) It follows that
Y™ Vi 1a)=0 on R. Now assume that 1[, V,, n4) 7% 0 at some point p on R.
Let €440 be a volume element defined on some open set containing p. The
space of anti-symmetric tensors aumq at p that are orthogonal to ¢™ is
one-dimensional. So at p, €umad V% = ki NinVim 1q) for some kq. Or, equiv-
alently, \/fd =k ed”’”“nnvm na at p for some k. It follows (after expanding
n% = 1%+ k ¢%) that

de)d =k Ednmu(pd NV a = k2 Ednma¢d Envm za +k kednma¢d Envm ®a

at p. It now follows, by condition (vi) in our characterization of stationary axi-
symmetric spacetimes, that Yipy =0 at p. S0 0% (¢ Pm) — (¢"1n)* = 0. But
this is impossible, since ¢# is spacelike and n > 0. So we may conclude that
NinVm Na) = 0 at all points on R. O

Now we turn to the ZAM criterion of ring non-rotation. Various experimen-
tal tests are possible. One involves the Sagnac effect. Imagine that we mount a
light source at some point Q on the ring and arrange for its light pulses to travel
around the ring in opposite (clockwise and counterclockwise) directions. (See
Figure 3.2.4) This can be done, for example, using concave mirrors attached to
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Figure 3.2.4. An experimental test to determine whether the ring is non-rotating according
to the ZAM criterion.

the ring. Imagine further that we keep track of whether the pulses arrive back
at Q simultaneously, using, for example, an interferometer). It turns out that
this will be the case—i.e., they will arrive back simultaneously—iff the ring
has zero angular momentum (with the respect to the background rotational
symmetry). We shall soon verify this equivalence.

But notice, once again, that the stated experimental test does seem to pro-
vide a natural criterion of non-rotation. Suppose the ring is rotating in, say,
a counterclockwise direction. (Here, again, we are simply appealing to ordi-
nary intuitions about rotation.) Then the “C pulse,” the one that moves in a
clockwise direction, should get back to Q before completing a full circuit of
the ring, because it is moving toward an approaching target. In contrast, the
“CC pulse,” the one moving in a counterclockwise direction, is chasing a
receding target. To get back to Q it will have to traverse the entire length of
the ring, and then it will have to cover the distance that Q has moved in the
interim time. So one should expect, in this case, that the C pulse will arrive
back at Q before the CC pulse. (Here we presume that light travels at the
same speed in all directions.) Similarly, if the ring is rotating in a clockwise
direction, one would expect that the CC pulse would arrive back at Q before
the C pulse. Only if the ring is not rotating should they arrive simultaneously.
Thus, our experimental test for whether the ring has zero angular momentum
provides what would seem to be a natural criterion of non-rotation.

Let us now make precise our claim of equivalence. Let (R, k) be a striated
orbit cylinder, let y be any (maximally extended) integral curve of (#* + k ¢%)
on R, and let po be an arbitrary point on the image of y. Further, let A1 and
A2 be two future-directed (maximally extended) null curves on R that start at
po (figure 3.2.5). The latter represent light pulses that are emitted at po and
traverse the ring in opposite directions. Call them “pulse 1” and “pulse 2.”
Both A1 and A, must intersect y a second time (indeed infinitely many times);
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Figure 3.2.5. Sagnac effect.

i.e., the pulses must eventually return to their point of emission on the ring.
(We shall soon verify this.) Let p; be the next intersection point of y with A1,
and let p; be the next intersection point of y with 1. In general, there is no
reason why p; and p, should coincide. We are interested in the case where
they do. So we are led to consider the following criterian of non-rotation.

(1) (R, k) is non-rotating according to the Sagnac effect (SE) criterion if, in
the case just described, the first re-intersection points p; and p, coincide.

Note that the stated condition—agreement of first re-intersection points—
will hold for one choice of initial integral curve y and initial point pq iff it
holds for any other. The symmetries of (R, k) guarantee as much. So there is

no ambiguity in our formulation. Now we can verify our claim of equivalence.??

PROPOSITION 3.2.2. A striated orbit cylinder (R, k) qualifies as non-rotating
according to the ZAM criterion iff it qualifies as non-rotating according to the SE
criterion.

Proof. We have to verify that, in the case described,

(3.25) n=p < (+k¢Yp,=0.

The tangent field to y is (* + k ¢%). The tangent fields to A1, and A, can be
rescaled so that they have the form (% + 14 ¢%) and (£* + I, $%). Since the first

23. Our proof proceeds by way of a “low-brow” calculation. For a more insightful argument,
see Ashtekar and Magnon [3].
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is timelike and the second two are null, we have I; # k and
(141 6%) (ko + s 6a) = O

for i = 1, 2. This equation has roots

(3.2.6) ll — MY
(" ¢n)

_(za%) - \/B

3.27) h=— "
(9" bn)

where D = [(f“d)a)z - (E“Ea)(qbbqbb)]. (Clearly there is no loss in generality in
choosing to label them this way.) Note that D > (%¢,)? > 0, since #* is timelike
and ¢*isspacelikeon R. Sol; > 0Oandl, < 0. Moreover, I, < k < I;. (Consider
the quadratic function f(x) = (¥ + x ¢%)(t; + x ¢3). It is concave downward
because (¢4 ¢%) is negative. So, since f (k) > 0and f (1) = f(l2) = 0, it must be
the case that k falls between I; and ,.) So

(ll — k) >0 and (lz — k) < 0.

It follows from our initial assumptions about the background spacetime
(M, g,p) that there there exist smooth coordinate maps: R — Rand ¢: R —
R (mod 277) on the orbitcylinder R such that#V, t = ¢*V, ¢ = 1and*V, ¢ =
¢V, t = 0.2* Now consider the hybrid field ¢’: R — R (mod 27) defined by

¢ = (¢ — ki) (mod 27).

It is adapted to (R, k) in the sense that it is constant on all integral curves of
(* +ko%):

" +kd")V, (¢ — kD) = 1"V, (— kD) + (k¢™) Vi ¢ = 0.
In particular, ¢’ is constant on y. In contrast, ¢’ increases (respectively,
decreases) uniformly with respect to elapsed parameter distance along Aj

(respectively, A;) since (" +1; ™)V, ¢’ = (I; — k). (It follows, as claimed that
A1 and A, must reintersect y.)

24. We can introduce the coordinates as follows. Pick any initial point on R and take its
coordinates to be ¥ = 0 and ¢ = 0. Given any other point on R, we can “get to it” from the initial
point by moving a certain (signed) parameter distance along an integral curve of t and moving a
certain (signed) parameter distance along an integral curve of ¢%. It does not matter in what order
we perform the operations because the fields * and ¢* have a vanishing Lie bracket. We take the
respective parameter distances to be the  and ¢ coordinates of the new point.
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Let the points po, and p1, p, have respective , ¢’ coordinates (fy, ¢'), (f1, ¢'),
and (f2, ¢'). They share a common ¢’ coordinate since ¢’ is constant on y. But
¢’ increases along A1 in the stretch between pg and p;: it goes from 0 to 27.
Similarly, ¢’ decreases along 1, in the stretch between po and p;: it goes from
0to —2m.

The coordinate  increases along all three curves, y, A1, and A;. (Indeed,
we have (" +k¢")V, T = (" +1;¢")V, T = 1.) So we can think of the curves
as parametrized by f and consider the rate of change of ¢’ with respect to f on
them. This rate of change on A; is (by the chain rule)

dg' (" +1¢")Va(p — ki)
i ([ len)V,i

=l — k).

So, considering the total change of ¢’ along A1 and 1, we have
-~ . de -
2m = (b1 — o) ‘% lonzy = (f1 —to) (1 — k),
_ o d¢ o
-2 = (tz — t()) ﬁ lonky = (tz — t()) (lz — k)
It follows that

o _2m(ith-2k
T Py

Hence, by equations (3.2.6) and (3.2.7),

. - (F¢a)
m=p=h=hes h+h-2k=0 o]

This gives us equation (3.2.5). O

Now we consider the two criteria in the special case of Godel spacetime.
We start with a calculation.

PROPOSITION 3.23. Let €4 be g volume element on Gédel spacetime, and let
n% be the field 1 + k ¢° for some choice of k. Then

(3.2.8) bed Ny Ve ndy = £2 [kz V2sh*r+k(2sh?r—1)+ ﬁ] z4

where, as in the previous section, 2% = (3 /9 2)*.
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Note that in the special case where k = 0, this yields
Gade Z[bvc Ed] =42 \/i z,

If we re-express this in terms of #* = t*/u = */(2;1) and 2% = 2%/2, and
choose a volume element so that the right side sign is +1, we recover equation
(3.1.30); i.e.,

a

1 pedn A 1
—€ ty Vet = —— 2.

Proof. As before, let A be the set of axis points in Godel spacetime where
r =0, and let M~ be the complement set M — A. The vector fields

P =0/0%% r*=(@/3n% ¢*=(0/0¢)% z*=(3/02"

abcd

are linearly independent on M~. So we can express €**** in the form

eabcd =fi[a rb ¢c Zd]

on M~. We can determine f, up to sign, as follows. We certainly have
—(4) = " eqpeg = f2 1P ¢ 2 Famy pc Zay = f2 140 62 Fary b 2.

And by equation (3.1.31),
fo =412 [V25h? 1V, ¢+ V, 1],
n=4u’vyr,
de = 42 [(sh* r — sh* 1\Ve ¢ +V2sh? r V. 1],
2.=4u’V,%

So

— (@) =210 b g0 34 (4 12yt [(sh* r—sh? r)—2 sh* 1] (Val) (Vi 1) (Ve @) (Va 2)

1 1
= —f2 (4 ud)* (sh*r+sh?r) = —f2 (4 ud)* (sh?r) (ch®r) i
Thus, on M~, we have
41 .
3.2.9 abcd — t[a b ,c ~d].
€29 ¢ ot shrehn P F
Next, we derive an expression for 1
(3-2.10) b Ve nd) = Ha Vi o) + kHa Vi de) + kdaViEy + k2 daVi g 0
— +1
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on M. Note first that

Vi e = 4 [(4sh> r—=2shr)(ch 1) (V) 1) (Ve ) + 22 (sh ) (ch r) (Vi 1) (Ve D],

Vit = 42 [2V/2 (shr)(ch r)(Vip 1) (Ve  9) 1,

both hold on M. (The first is equation (3.1.44). The second is derived sim-
ilarly, using the fact that V; I = 0.) These expressions, together with the
preceding ones for #, and ¢, yield

E21) BVl = 16 1* 2v/2 (shr)(chr) (Via ) (Vp 7)(Ve) @),
3212)  FaVy o =16 u* [(4sh>r —2shr)(chr)
—4(sh> 1)(ch ))(V1a B)(V5 1) (Ve ),
3213) PVl = 16 u* 4 (sh’ r)(ch 1) (Via §)(V} ) (Ve 9),
(3:214) PaVy P =
16 u* [ V2 (sh? r)(ch r)(4sh® r —2shr)
— 22 (shr)(chr)(4sh’ r = 2sh 1) (Vi 1) (V5 7)(Ver ¢)-
If we insert these expressions in equation (3.2.10), we arrive at
B215) 1y Ve 4y = 321 shr)(chr) [K V2 sh* r 4k (2h? r = 1) +v/2]
(Via B)(Vp 1)(Ver §)-

Finally, combining this result with equation (3.2.9) yields
41

abcd :
:l: -
¢ 16 u* (shr)(ch 1)

(3.2.16) Ve na) = fla b pe 341 nb Ve N4

=+ 2(*V2sh* r+k2sh?r—1)++2)%"
on M~. Since both n* and the final vector field in equation (3.2.16) are smooth

(everywhere), the equation must hold on A as well. O

Our desired characterization result for Godel spacetime follows as a
corollary. (For clause (2), recall that sh? r, = 1.)

PROPOSITION 3.2.4. Let R be a striated orbit cylinder in Godel spacetime gener-
ated by t* and ¢°. It is characterized by particular values for r (where 0 < r < 1;)

and z. Let k be such that n% = 1% + k ¢* is timelike on R. Then the following both E—
hold. 0
41
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V2

(1) (R, k) is non-rotating according to the ZAM criterion <= k = A=shn)’
—sh?r

(2) (R, k) is non-rotating according to the CIR criterion <=
Tc 2 «/i
r< — and k= .
2 (1—2sh?r)+/1—sh?(2r)

Proof. Note that our assumption that £ + k ¢“ is timelike on R comes out as

the assumption that the relation
(3:2.17) kKA(sh*r —sh? r)+k2v2sh®r+1 > 0

holds there. (We are making use of equation (3.1.31) here and shall do so
repeatedly in what follows.)

(R, k) qualifies as non-rotating according to the ZAM criterion iff (% +
k$™ps = 0 on R. The latter condition comes out as

V2 sh?r +k(sh* r —sh?r) = 0.

Moreover, as is easy to check, if k = +/2/(1 — sh? r), then equation (3.2.17) is
automatically satisfied; i.e., (3.2.17) imposes no further constraint on k in this
case. So we have clause (1).

Next, (R, k) is non-rotating according to the CIR criterion iff n, Ve g =0o0n
R or, equivalently, if ¢2be N Ve n4) vanishes there (for either choice of etbed),

We know from the preceding proposition that this is the case iff
(3.2.18) K V2sh*r+k@2sh’r—1)++/2=0

on R. This equation has two roots:

(1—2sh?r)— /1 —sh2 (2r) (1—2sh%r)+/1—sh2 (2r)
k1 = and kp = .

2/ 2sh*r 2/ 2sh*r
Soitis a necessary condition for (R, k) to be non-rotating according to the CIR
criterion (for any choice of k) that sh? 2r < 1 or, equivalently, that r < r./2.
So assume this condition holds. We claim that the root k; can be ruled out
because it leads to a violation of equation (3.2.17). We also claim that k; is
compatible with that inequality if we further restrict r so that sh? 2r < 1. To
see this, note that in the presence of (3.2.18), equation (3.2.17) holds iff

k2 V2sh*r —k(2sh*r+1) <0,
and this holds, in turn, iff

2sh2r+1
S2sh2r

(3.2.19) 0<k<
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With a bit of straightforward algebra, one can easily check that k; violates
this inequality but that k; satisfies it if sh? 2r < 1. Finally, note that X = [(1 —
2sh? 1) ++/1—sh22r] # 0. So we have

=k s = 242
TUX T a2kt /1o )

This gives us (2). O

There are two regimes to consider here. If 0 < r < (r;/2), there is one
rotational state of the ring (i.e., one choice of k) that counts as non-rotating
according to the ZAM criterion, and one that counts as non-rotating according
to the CIR criterion, but the two are different. In contrast, if (r;/2) <r <1,
then there is still one rotational state of the ring that counts as non-rotating
according to the ZAM criterion, but now there is no state whatsoever that
counts as non-rotating according to the CIR criterion.

Notice that though the two criteria do not agree for any choice of r, there
is a sense in which they agree “in the limit” as r — 0. They have a common
limiting value for k:

V2 . 242

lim ————— =lim =2,
r—0 (1=sh?r) >0 (1-2sh2r)+/1—shZ(2r)

That this is so should not be surprising. We began this section by asserting
that there is a robust, unambiguous notion of non-rotation at a point in rela-
tivity theory. Here, in a sense, we recover that notion as we pass to the limit
of “infinitesimally small rings.” Notice that 4/2 is the unique value of k for
which n® = #* + k ¢° is non-rotating (i.e., satisfies n;zV}, n4) = 0) at points on
the axis where r = 0. (This follows immediately from proposition 3.2.3.) It is
that value of k that we recover in the limit as r — 0. This will be important in
what follows.

Let us now leave Godel spacetime behind and return to the general case
with which we started (where we are dealing with an arbitrary stationary,
axi-symmetric spacetime). We claimed earlier on the section that the two cri-
teria of ring non-rotation do agree if a certain simplifying condition obtains.
The condition we had in mind is the orthogonality of #* and ¢®. But, strictly
speaking, that is not sufficient to guarantee agreement. We must, in addition,
rule out one rather special, singular possibility. We characterize it in the next
proposition. (We shall comment on the listed conditions after presenting a
proof.)
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PROPOSITION 3.2.5. Suppose that (in addition to satisfying conditions (i) to (vi)),
% and ¢* are orthogonal; i.e., 1%¢, = 0. Then, for all orbit cylinders R, the following
conditions are equivalent.

b
m va<¢ ‘m’) =0 onR.

[

—tbt,

oo

(3) (R, k) is non-rotating on the CIR criterion for all k (such that 1% +k¢® is
timelike on R ).

(2) *+ @* is a null, geodesic field on R.

Proof. 1t follows from our orthogonality assumption that the following
conditions all hold on R:

(3.2.20) *V, ¢, =0,
(3.2.21) ¢Vt =0,
(3:2.22) ta Vi =0,
(3.2.23) PaVy ) = 0.

The first follows since we have
Eava ¢b = _Eavb ¢u = _Vb(¢aza) +¢avb Ea = _¢ava Eb = _Euvu ¢b-

(Here we use the fact that % and ¢* are Killing fields for the first and third
equalities, as well as the fact that they have a vanishing Lie bracket for the final
equality.) That gives us equation (3.2.21) as well. For equation (3.2.22), we use
condition (vi) in our original list. We have ¢y, £,V t4; = 0 or, equivalently,

Pa E[bvc Ed] - ¢d z[avb Ec] + ¢ E[d Vg zb] - ¢b Elc Vd ZuJ =0.

Since contracting ¢* on any index in #,V, % yields 0, it follows that
(#°¢a) tp Ve ta) = 0. Since ¢* is spacelike on R, it follows that equation (3.2.22)
holds on R as well. The argument for equation (3.2.23) is very much the same.
For that one we start with 4 ¢, Ve ¢og) = 0.

Let us first check that conditions (1) and (2) are equivalent. Consider the

field
- —ib%, -1
a_j0 a
n Vo ? 0
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It is a null field by our orthogonality assumption. It follows from equations
(3.2.20) and (3.2.21) that

- ()
Vanp = tVat, — Vatp.
1" Vany o e0) ¢ "Vagy,
- 1, " 1, .

(We know that t*V, = ¢°*V, = 0, even without the orthogo-

e odon
nality assumption, just because ¢* and #* are commuting Killing fields.) So
(2) holds iff
(3.2.24) (¢°¢c) F*Valy, — (°5,) ¢ Vagpy, = 0.

But 2V, 1, = —V,, (1%%,) and 2 ¢*V, ¢}, = —V}, (¢°®s), since ¢* and t* are
Killing fields. So this condition is equivalent to (1).

Now consider condition (3). (R, k) is non-rotating according to the CIR
criterion iff

Ha Vi Te) + kB Vi by + kFa Vi ¢ + K 9o Vi ) = 0
on R. This reduces to
(3.2.25) k (61aVot) + Vo dc)) = 0
in the case at hand by virtue of equations (3.2.22) and (3.2.23). So (3) holds iff
(3.2.26) D1aVite) +HaVy b = 0

on R. Now suppose equation (3.2.26) holds at a point. Then, contraction with
$° 1P yields
(6% ba) PV T + (°5) Ve b = 0,

which is equivalent to equation (3.2.24). So we have the implication (3) = (2).
For the converse, suppose that equation (3.2.24) holds at a point. Contracting
equations (3.2.22) and (3.2.23) with #* and ¢“ respectively, yields,

(3.2.27) (") Vi te = 15, 1%V b, — 1.1V, 1y,

(3.2.28) (@"Pn) Vi e = dp $*Va e — dc ¢V Py

If we substitute for ¢*V, ¢, in equation (3.2.28) using equation (3.2.24), it
comes out as

(3.2.29) (F"t0) Vi e = ¢ 12V b — P 12V, 1. 0
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It now follows from equations (3.2.27) and (3.2.29) that
(E"%0) d1a Vi te) = —(E"%0) Fa Vi bcp,

which gives us equation (3.2.26). So we have the implication (2) = (3). O

We mention in passing that the conditions listed in the proposition can
arise, for example, in Schwarzschild spacetime (Wald [60]). There we have
(transferring our notation)

o~ 2M
(k) =1— —

(@ op) = —17,

where r is a radial coordinate. A simple calculation shows that

" ¢, d 1 2M
Vol =5 | =0 —|-5+—5|=0=r=3M
£ % dar\ 2

So the conditions arise only for one special radius.

Notice that condition (1) cannot hold on all rings in an axi-symmetric space-
time if, for example, there are axis points in that spacetime. For if it did hold on
all rings, then the function (¢” ¢y)/ (¢ ;) would be constant on the background
manifold M. And since ¢* = 0 at axis points, that constant value would have
to be 0. But that is impossible, since ¢ is spacelike on non-axis points.

Consider the third condition in the list. It captures the claim that all (rigid
motion) states of the ring qualify as non-rotating on the CIR criterion. This
possibility may seem even more counterintuitive than the one we encountered
in the case of a restricted region of Godel spacetime—the region where (r;/2) <
r < r.—where no (rigid motion) states of the ring qualified as non-rotating on
that criterion. Abramowicz and coworkers [1, 2] has suggested a way of think-
ing about this situation that may be helpful.

Let us forget about our ring for a moment and consider what would hap-
pen if we carried a gyroscope in a straight line at a certain speed (possibly 0).
Suppose that at some initial moment the axis of the gyroscope is co-aligned
with the direction of motion (figure 3.2.6). Then we would expect it to remain

-
-

Figure 3.2.6. A gyroscope moving in a “straight line” will not change direction relative to that
line.
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co-aligned, no matter what the speed of transport. The speed seems irrelevant
because the trajectory of the gyroscope involves no change in direction. But
in the special case where condition (2) in the proposition obtains (we are now
switching back to the case of the ring), there is a sense in which a gyroscope
mounted on the ring is moving in a “straight line,” no matter what the rota-
tional state of the ring—at least if we use light rays as our standard for what
constitutes motion in a straight line. For condition (2) asserts that light rays,
by themselves, without the intervention of mirrors or lenses or other devices,
will follow the ring.

With all this as preparation, we can formulate our proposition about the
conditions under which the two criteria for ring non-rotation agree.

PROPOSITION 3.2.6. Suppose that (in addition to satisfying conditions (i) to (vi)
listed above) 1% and ¢* are orthogonal. Let R be an orbit cylinder on which

b
(3.2.30) Va (¢ ¢b) # 0.

it

Finally, let k be a number for which 1% + k ¢% is timelike on R. Then the following
conditions are equivalent.

(a
2
3) k=0.

) (R, k) is non-rotating according to the ZAM criterion.
) (R, k) is non-rotating according to the CIR criterion.

g

Proof. (R, k) is non-rotating according to the ZAM criterion iff 0 = (#* +
ko) 9% = k (¢a ¢%). And ¢* is spacelike on R. So the equivalence of (1) and
(3) is immediate. (The added assumption about R is not needed for this
equivalence.)

As we saw in the proof of the preceding proposition, (R, k) is non-rotating
according to the CIR criterion iff

(3.2.31) k (¢1aVo e +aVh ¢e) =0

on R. (Recall equation (3.2.25).) But we also saw in that proof that equation
(3.2.30) is equivalent to

D1V ke +Ha Vi by # 0.

So (R, k) qualifies as non-rotating on the (CIR) criterion iff k = 0. O
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3.3. A No-Go Theorem about Orbital (Non-)Rotation

We have considered two particular criteria for non-rotation of the ring. Now we
switch our attention to a large class of “generalized criteria” of non-rotation.
We take any one such criterion (as applied in any one stationary axi-stationary
spacetime) to be, simply, a specification, for every striated orbit cylinder (R, k)
in that spacetime, whether it is to count as “non-rotating” or not. We do not
insist in advance that the criterion have a natural geometric or quasi-
operational formulation. Our plan is to consider three conditions that one
might want such a criterion to satisfy—(i) relative rotation condition, (ii) limit
condition, and (iii) non-vacuity condition—and then show that, at least in
some stationary axi-stationary spacetimes, no generalized criterion of ring
non-rotation satisfies all three. The proof of this no-go theorem is entirely ele-
mentary when all the definitions are in place. But it may be of some interest
to put them in place and formulate a result of this type. The idea is to step
back from the details of particular proposed criteria of non-rotation and direct
attention instead to the conditions they do and do not satisfy.

Let us start with the relative rotation condition. Suppose we have two rings,
Ry and Ry, centered about the same axis of rotational symmetry. (Intuitively,
we imagine that the planes of the rings are parallel but not necessarily coin-
cident. See figure 3.3.1.) Suppose further that R is not rotating relative to
Rj. Then, one might think, either both rings should qualify as “non-rotating”
or neither should. This is the requirement captured in the “relative rotation
condition.” What it means to say that R is not rotating relative to Ry is not
entirely unambiguous. But all we need here is a sufficient condition for rel-
ative non-rotation of the rings. And it seems, at least, a plausible sufficient
condition for this that, over time, there is no change in the distance between
any point on one ring and any point on the other; i.e., the two rings together

Ry

Ro

Figure 3.3.1. Two rings centered about the same axis of rotational symmetry.
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form a rigid (ganged) system. So we are led to the following first formulation
of the condition.

Relative Rotation Condition (intuitive formulation): Given two rings Ry and
Ry, if (i) Ry is “non-rotating,” and if (i) R, is non-rotating relative to
R (in the sense that, given any point on R, and any point on Ry, the
distance between them is constant over time), then R; is “non-rotating.”

Now let us formulate a more precise version. Let (M, g,;) be a station-
ary, axi-symmetric spacetime with Killing fields t* and ¢#, and let (R4, k1) and
(Ra2, k2) be two striated orbit cylinders (as determined relative to £* and ¢%). (So,
in particular, given how we have defined striated orbit cylinders, (% + k; ¢%) is
timelike on R; for i = 1,2.) Let y; be a striation curve—i.e., an integral curve
of (* +k; ¢*)—in R;, for i = 1,2. There are various ways we might try to
determine the “distance” between y; and y,. For example, we might bounce a
light signal back and forth between them and keep track of how much time is
needed for the round trip, as measured by a clock following one of the striation
curves. But, presumably, no matter what procedure we use, the measured dis-
tance will be constant over time if y; and y; are integral curves of a common
Killing field. (For, presumably, any reasonable measurement procedure can be
characterized in terms of some set of relations and functions that are definable
in terms g5, and all such relations and functions will be preserved under the
isometries generated by the common Killing field.) So we seem to have a plau-
sible sufficient condition for the relative non-rotation of (R, k;) with respect to
(R1, k1)—namely, that there exists a (single) Killing field x* whose restriction
to R is proportional to (£* + k; ¢%) and whose restriction to R, is propor-
tional to (£* + k; ¢%). But the latter condition holds immediately, of course, if
ki = k.

The upshot of this long-winded discussion is the proposal that it is plausible
to regard (R2, k2) as non-rotating relative to (R1, k1) if k1 = k. (Again, all we
need here is a sufficient condition for relative non-rotation.) So we take the
relative rotation condition to be the following.

Relative Rotation Condition (precise formulation): For all k, and all striated
orbit cylinders (R1,k) and (R, k) sharing that k, if (R1, k) qualifies as
non-rotating, so does (R, k).

It follows immediately from proposition 3.2.6 that both the ZAM and CIR
criteria satisfy the relative rotation condition in any stationary, axi-symmetric
spacetime in which the Killing fields #* and ¢“ are orthogonal—at least if one
restricts attention to rings on which equation (3.2.30) holds. (For in that case,
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on either criterion, if (R1, k) is non-rotating, it follows that k = 0; and if k = 0,
it follows that (R, k) is non-rotating as well.) It also follows immediately from
proposition 3.2.4 that neither criterion satisfies the relative rotation condition
in Godel spacetime. (Forif, say,0 < r1 < ry < (r;/2), thenitisnot the case that
V2/(1 = sh*r1) = ¥/2/(1 — sh*r); and it is not the case that the corresponding
expressions that arise with the CIR criterion are equal.)

It is natural to ask whether there is any generalized criterion of rotation
that satisfies the relative rotation condition in Gédel spacetime. The answer
is, trivially, “yes”. Indeed, given any stationary, axi-symmetric spacetime, there
is a generalized criterion of rotation that satisfies the relative rotation condition
in that spacetime. Intuitively, all one has to do is pick one ring in one rotational
state arbitrarily, and then take other rings to be non-rotating iff they are non-
rotating relative to that one. (Or, in the formal language, one need only pick one
striated orbit cylinder (R, k) arbitrarily, and then take a striated orbit cylinder
(R, k') to be non-rotating iff k' = k.)

The point of the no-go theorem that follows is to show that, though there
do exist generalized criteria of non-rotation that satisfy the relative rotation
condition in any particular stationary, axi-symmetric spacetime, none are fully
satisfactory because (at least in some cases) they violate other conditions that
we would want to see satisfied.

Consider, next, the limit condition. Recall our remarks about the asymp-
totic agreement of the ZAM and CIR criteria for “infinitely small rings” in
Godel spacetime. We suggested that this agreement should not be surprising
because in relativity theory there is an unambiguous notion of non-rotation for
a timelike vector field at a point, and we should expect any reasonable notion
of orbital non-rotation for rings to deliver that notion in the limit. The limit
condition simply makes that expectation precise. It asserts that if we have a
sequence of orbit cylinders R1, R, R3, ... that converges to a point p on the
axis of rotational symmetry, and if we have a sequence of numbers k1, k, k3, . . .
such that (R;, k;) qualifies as non-rotating for every i, then the latter sequence
has a well-defined limit at p, and that limit is the correct one. What does “cor-
rect” mean here? Just as in the Godel case, the limit value should be that
(unique) k for which the field (% + k ¢%) is non-rotating at p.

That there is a unique k at each axis point satisfying the stated condition
(in all stationary, axi-symmetric spacetimes) is confirmed in the following
proposition. To avoid interruption, we hold its proof for an appendix.

PROPOSITION 3.3.1. Let (M, g,;,) be a stationary, axi-symmetric spacetime with
Killing fields t* and ¢% Let p be a point at which ¢* = 0. Then there is a unique
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number k such that n® = 1% + k ¢* is non-rotating (14 Vy ne] = 0) at p. Its value
is given by

(Vb ) (V" ¢°)
(3.3.) kerit(P) = — o rom
(Vin #n) (V" 9")

There is one point concerning our formulation of the limit condition
that requires comment. We need to make clear what it means to say that
“a sequence of orbit cylinders R1, Ra, R3, ... converges to a point on the
axis of rotational symmetry.” Indeed, that provisional language is somewhat
misleading. It must be remembered that the axis set where ¢* = 0 forms a
two-dimensional submanifold of our background stationary, axi-symmetric
spacetime. (This fact is not brought out by the figures displayed to this point
because they suppress one dimension.) So, for example, in Gédel spacetime,
the axis set consists of all points with r coordinate 0 but with arbitrary  and
z coordinates. What the sequence R1, Ry, R3, ... can converge to, strictly
speaking, is not a point p in the axis set but rather an integral curve y of
the Killing field 1% that is, itself, fully contained within the two-dimensional
axis set. (In the case of Godel spacetime, these are curves characterized by r
value 0, and some fixed value for z, but arbitrary values for £.) And we can
understand convergence here to mean, simply, that given any point p on y
and any open set O containing p, there is an N such that R; intersects O for all
i> N.

Finally, note that because these limit curves are integral curves of t* on
which ¢* = 0—and so are mapped onto themselves by all isometries generated
by t* and ¢*—the number k. (p) in our proposition must be the same for all
points p on them.

With all this by way of preparation, we now formulate the limit condition
officially as follows.?

Limit Condition: Let y be an integral curve of * on which ¢* = 0. Let R,
R2, R3, ... be a sequence of orbit cylinders that converges to y. And
let k1, ky, k3, ... be a sequence of numbers such that (R;, k;) qualifies
as non-rotating for every i. Then lim k; = k;(p), where p is any point

1—00
ony.

25. Our formulation here is slightly different from that in Malament [41] in that we avoid
reference to the “center point of the ring.” That notion played a role in [41] in the characterization
of the CIA criterion of ring non-rotation, but has not been used here.
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Though it will play no role in what follows, we claim (without proof) that
the ZAM and CIR criteria of non-rotation satisfy this limit condition in all
stationary, axi-symmetric spacetimes, not just in Godel spacetime.

The first questions to ask is whether there is any generalized criterion of
non-rotation for the ring that satisfies both the relative rotation condition and
the limit condition in Godel spacetime. The answer is certainly “yes” again.
In that spacetime, k;;(p) = ~/2 for all points p in the axis set. So it suffices to
take the following as our criterion: given any striated orbit cylinder (R, k),
it counts as non-rotating precisely if k = /2. It trivially satisfies both the
relative rotation and limit conditions.

Moreover, there is a cheap sense in which one can always find a generalized
criterion of non-rotation that satisfies the two conditions—i.e., in any station-
ary, axi-symmetric spacetime. Itis the degenerate criterion according to which
no striated orbit cylinder whatsoever counts as non-rotating. As a matter of
simple logic, it vacuously satisfies both conditions. The non-vacuity condition
rules out this uninteresting possibility.

Non-Vacuity Condition: There is at least one striated orbit cylinder (R, k)
that qualifies as non-rotating.

We have just seen that there is a criterion of non-rotation that satisfies all
three conditions in Gédel spacetime. But Godel spacetime is rather special
within the class of stationary, axi-symmetric spacetimes because it has the
Killing field 2% in addition to $* and ¢*. As a result, given any two axis points
in Godel spacetime, there is an isometry that takes the first to the second. So
it must be the case that the function k,; has the same value at all axis points.
But there are stationary, axi-symmetric spacetimes in which it does not have
the same value at all axis points (we shall give an example in a moment), and
in those there is no generalized criterion of non-rotation that satisfies all three
conditions.

PROPOSITION 3.3.2. Let (M, g,;) be a stationary, axi-symmetric spacetime. It
admits a generalized criterion of ring non-rotation that satisfies the relative rota-
tion, limit, and non-vacuity conditions iff ke (p) = keris(p) for all axis points p
andp'.

Proof. (If) Suppose there is a number k; such that ki (p) = kg for all axis
points p. Then, trivially, thereis a criterion of ring non-rotation that satisfies the
three conditions, namely the one according to which a striated orbit cylinder
(R, k) counts as non-rotating iff k = k.
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=

R';

Figure 3.3.2. Two sequences of rings {R;} and {R';} converging to points p and p/, respectively,
on the axis of rotational symmetry.

(Only if) Suppose there exist axis points p and p’ such that kg (p) # ke (P)-
Let y and y’ be the (maximally extended) integral curves of t* that contain p
and p/, respectively. Further, let Ry, Ry, R3,... and R'1, Rz, R'3,... be
sequences of orbit cylinders that converge to ¥ and y’, respectively (figure
3.3.2). (Existence is guaranteed. Let p1, p2, p3, ... be any sequence of points
converging to p and, for all i, let R; be the (unique) orbit cylinder the con-
tains p;. (R; is the set of all points of the form  (p), where ¥ is an isometry
generated by #* and ¢%.) Then R;, R3,... converges to y. And R'1, R'2,
R'3, ... can be generated in the same way.) Now assume there is a generalized
criterion of ring non-rotation C that satisfies all three conditions. By the non-
vacuity condition, there is a striated orbit cylinder (R, k) that is non-rotating
according to C. For all sufficiently large i, (R;, k) and (R’}, k) are striated orbit
cylinders; i.e., * 4+ k¢? is timelike on R; and R';. So (because we can always
dispose of particular finite initial segments), we may as well assume that
(Ri, k) and (R';, k) are striated orbit cylinders for all i. By the relative rota-
tion condition, then, (R;, k) and (R’;, k) are non-rotating according to C for
all i. Therefore, by the limit condition applied to (R1, k), (R2, k), (R3,k), ...
and (R'1,k),(R'2,k), (R'3,k),..., it must be the case that kg;(p) =k =
kit (p'), contradicting our initial assumption. So we may conclude that there
is no generalized criterion of ring non-rotation C that satisfies all three
conditions. O

For the no-go theorem, we need now only exhibit a stationary, axi-
symmetric spacetime in which it is not the case that k.;(p) = ke (p') for all
axis points p and p’. One example is Kerr spacetime (Wald [60] and O’Neill [47]).
We shall say only enough about it to establish this one fact. In Boyer-Lindquist
(spherical) coordinates i,7,¢,0, the metric is
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2
g = (1 2 ﬁj ) (daF) ) — 2 (dar) ) — 7 (da0) 0)

2Mra?sin®o

—|:r2—|—a2—|— 3
P

] (sin® 0) (dap) (dpb)

4Mrasino -
———— (dat)(dp)®),
0

where
p2 —— —|—a2 60520,
A= r2—2Mr+a2,

and M and a are positive constants (O’Neill [47]). The axis set A here consists
of all points at which sin @ = 0, for it is at those points at which the rotational
Killing field ¢* = (3/9 ¢)” vanishes. (So every point in A is uniquely character-
ized by its f and r coordinates.) It is not the case that * = (3/3 1) is timelike
and ¢? is spacelike at all points in M~ = (M — A). But those conditions do
obtain in restricted regions of interest—e.g., in the open set where r > 2 M. If
we think of Kerr spacetime as representing the spacetime structure surround-
ing a rotating black hole, our interest will be in small rings that are positioned
close to the axis of rotational symmetry (where sin?f is small) and far away
from the center (where r is large). There we can sidestep all complexities
having to do with horizons and singularities. The proposition we need is the
following.

PROPOSITION 3.3.3. Let p be an axis point in Kerr spacetime with coordinates
tandr > 2M. Then

- _ 2Mra
(3.3.2) Cnt(p) - (rz +a2)2‘

So ki does not assume the same value at all axis points.
p

Proof. We can certainly verify equation (3.3.2) directly by computing

(Vo 1e)(V" ¢9)
(Vin @) (V™ $")
at p and then invoking equation (3.3.1). But we can save ourselves a bit of

work with an alternate approach that focuses attention on the smooth function
f: M~ — R defined by

(i da) 2Mra
@"dn)  (r2+a)p?+2Mratsin20’

f=
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Consider the field n* = % + f ¢* on M~. We claim that it can be expressed in
the form
Vet
(Vab)(V" D)’

(3:3.3) n% =

To see this, let D = (£ 1,)(¢® ¢a) — (1" ¢n)?. Clearly, D < 0 on M~ (since ¢* is
spacelike there). We have

Vaiz L [(6" b i, — ("
oF= 5 [0" 6n) Ea— (" n) 8]

(This follows since both sides yield the same result when contracted with
i*,¢% r% and 6%.) Hence

IR |
(Vat)(V") = & (¢"¢n)

and, therefore,

ViE @M= eet
(VaD)(V") (@"¢n) ’

as claimed. The right side of equation (3.3.3) has the form g V%%. It follows
that 714 Vp ¢ = 0 everywhere on M.
Now f and n* can be smoothly extended to A. At p, the extended function
assumes the value
2Mra

f(p)=

(since, once again, the axis points here are ones where sin 6 = 0). So, at p, the
extended vector field satisfies

0 = 0V ) = Ha Vi te) +£ (D) Ha Vi de)

+£(p) B1aVo ke +£(P)* D1a Vi be-

But we know from proposition 3.3.1 that the final expression on the right can
be 0 only if f (p) = ks (p)- So we are done. O

Our main result now follows as an immediate corollary.

PROPOSITION 3.3.4. (No-Go Theorem) There is no criterion of ring non-rotation
on Kerr spacetime that satisfies the relative rotation, limit, and non vacuity con-
ditions.
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Itisintended to bear this interpretation: given any (non-vacuous) generalized
criterion of ring non-rotation in Kerr spacetime, to the extent that it gives “correct”
attributions of non-rotation in the limit for infinitely small rings—the domain where
one does have an unambiguous notion of non-rotation—it must violate the relative

rotation condition.

Appendix: The Proof of Proposition 3.3.1
Here we prove proposition 3.3.1. It will be convenient to collect a few facts
first that will be used in the proof.

PROPOSITION 3.3.5. Let (M, g,p) be a stationary, axi-symmetric spacetime with
Killing fields 1% and ¢®. Let p be an axis point. (So ¢* = 0 at p.) Let €444 be a
volume element defined on some open set O containing p, and let o® be the smooth
field on O defined by 0 = €*4§,V, ¢4. Then at p,

(1) 0% #0
(2) Vaop = % €abed ’icad.

2 ("%,
Furthermore, given any smooth field * (defined on some open set containing p),
if £, ¥® = 0 at p, then it must be of the form ¥* = k1 t* +k, 0% at p.

Proof. Note that 0% is orthogonal to ¥ and ¢“ throughout O. (The first claim
follows just because €,y is anti-symmetric, and the second by clause (vi) in
our characterization of stationary, axi-symmetric spacetimes.) Note, as well,
that

3 1 i
(3.3.4) HaVp Pc) = G Cabed O

throughout O. (We get this by contracting both sides of ¢¢ = €7}, V, ¢,
with €,p.4.) Now we argue for (1). Suppose that 0 = 0 at p. Then, by equation
(3.3.4),

- 1, . -~ -~
0=1"V) o) = 3 [(E%6) Vi e + 1 Vo @)y — B 1V ¢ |

atp. Now 1*V, ¢, = ¢*V, 1, everywhere on O (since the fields * and ¢* have a
vanishing Lie bracket), and ¢* = 0 at p. So the second and third terms on the
right vanish there. Thus V, ¢}, = 0 at p. But this is impossible. For given any
Killing field «* on the (connected) manifold M, if k* and V, k}, both vanish at
any one point, then they must vanish everywhere. (See Wald [60, p. 443].) And
that is not possible in the present case because ¢* is spacelike at all non-axis
points (and some non-axis points exist). So we have (1). And for (2) we need
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only contract both sides of equation (3.3.4) with £, expand the left side, and
use much the same argument we have just used to show that two terms in the
expansion vanish.

Finally, let ¥* be a smooth field (defined on some open set containing
p) such that £4 ¥* = 0 at p. Then ¥*V, ¢, = ¢*V4 ¥, = 0 at p (since, once
again, ¢* = 0 atp). Hence, by (2), €4peq ¥* 0% = 0. So the three vectors /%, 1%,
and o“ are linearly dependent at p. Since * and o are non-zero at p, ¥ can
be expressed as a linear combination of them at p. O

Now for the proof of proposition 3.3.1. The formulation, once again, is as
follows.

Let (M, g,p) be a stationary, axi-symmetric spacetime with Killing fields
% and ¢“. Further, let p be a point at which ¢* = 0. Then there is a unique
number k such that n* = #* + k ¢% is non-rotating (74 Vj 7¢] = 0) at p, and that
number is
(Vo 7o) (V" ¢°)
(Vin ¢n) (V™ ¢7)

Proof. For the first claim, what we need to show is that there a unique k
such that

(3.3.5) HaVpte +ktaVyge =0

atp. (This is equivalentto 7, V}, n;) = 0 at p since ¢* = 0 there.) We know from
clause (1) of the preceding proposition and equation (3.3.4) that f,V}, ¢¢) # 0
at p. So uniqueness is immediate. For existence, let €, be a volume element
defined on some open set containing p, let 0% = €*“ %, V, ¢, (as in the pre-
ceding proposition), and let w® = € §, V. ;. The new field w* is orthogonal
to t%. And it is Lie derived by ¢% i.e., £4®* = 0 (since ¢* is a Killing field
that commutes with %). So, by the preceding proposition, there is a number
k such that e[,V 1; = 0® = ky €®4 §,V, ¢y or, equivalently,

Ha Vi) = k2 HaVy dc)

at p. Thus equation (3.3.5) holds at p iff k = —k;.
Now we compute kj. Contracting the preceding line with ¥ V?¢¢, and
then dividing by (£%%,), yields

(Vo B6)(V28°) = ka (V) ) (VP9
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at p. So, to complete the proof, we need only verify that (V, ¢.)(V2¢°) # 0
at p. But this follows from the preceding proposition. By clause (2) we have

1 -
(Vb 6e)(VP9F) = = €pomm I " (VP) = — (ono™)

2 ("%, 2 ("%,)

at p. And o is spacelike at p, since it is orthogonal to t* and (by clause (1))
non-zero there. U
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NEWTONIAN GRAVITATION THEORY

The “geometrized” formulation of Newtonian gravitation theory—also known
as “Newton-Cartan theory”—was first introduced by Cartan [5, 6] and Fried-
richs [21] and later developed by Dautcourt [10], Dixon [11], Dombrowski
and Horneffer [13], Ehlers [15], Havas [28], Kuinzle [34, 35], Lottermoser [37],
Trautman [59], and others. It is significant for several reasons.

First, it shows that several features of relativity theory once thought to be
uniquely characteristic of it do not distinguish it from (a suitably reformu-
lated version of ) Newtonian gravitation theory. The latter, too, can be cast as
a “generally covariant” theory in which (i) gravity emerges as a manifestation
of spacetime curvature, and (ii) spacetime structure is dynamical—i.e., partic-
ipates in the unfolding of physics rather than being a fixed backdrop against
which it unfolds.

Second, it clarifies the gauge status of the Newtonian gravitational poten-
tial. In the geometrized formulation of Newtonian theory, one works with a

single curved derivative operator é. It can be decomposed (in a sense) into
two pieces—a flat derivative operator V and a gravitational potential ¢—to
recover the standard formulation of the theory. But in the absence of special
boundary conditions, the decomposition will not be unique. Physically, there
is no unique way to divide into “inertial” and “gravitational” components the
forces experienced by particles. Neither has any direct physical significance.
Only their “sum” does. It is an attractive feature of the geometrized formula-
tion that it trades in two gauge quantities for this sum. (See the discussion at
the end of section 4.2.)

Third, the clarification just described also leads to a solution, or dissolution,
of an old problem about Newtonian gravitation theory, namely the apparent
breakdown of the theory when applied (in cosmology) to a hypothetically
infinite, homogeneous mass distribution. (See section 4.4.)

248
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Fourth, it allows one to make precise, in coordinate-free, geometric lan-
guage, the standard claim that Newtonian gravitation theory (or, at least, a
certain generalized version of it) is the “classical limit” of general relativity.
(See Kiinzle [35], Ehlers [15], and Lottermoser [37].)

4.1. Classical Spacetimes

We begin our discussion by characterizing a new class of geometric models
for the spacetime structure of our universe (or subregions thereof) that is
broad enough to include the models considered in both the standard and
geometrized versions of Newtonian gravitation theory.

We take a classical spacetime to be a structure (M, ty, h, V) where (i) M is a
smooth, connected, four-dimensional manifold; (ii) ¢, is a smooth, symmetric
field on M of signature (1, 0, 0, 0); (iii) h® is a smooth, symmetric field on M of
signature (0, 1,1, 1); (iv) V is a derivative operator on M; and (v) the following
two conditions hold:

4.1.1) h . = 0.

4.1.2) Vaty =0 and V,h" =o.

We refer to them, respectively, as the “orthogonality” and “compatibility”
conditions.

M is interpreted as the manifold of point events (as before). Collectively, the
objects t,,, h%", and V on M represent the spacetime structure presupposed
by classical Galilean relativistic dynamics. It will soon emerge how they do so.

We need to explain what we mean by the “signatures” of t,;, and h“?, since
we are using the term here in a new, somewhat extended sense. The signature
condition for t,, is the requirement that, at every point in M, the tangent space

there have a basis é“, .. .,g‘“ such that, forall i and jin {1, 2, 3,4}, t,, é“éb =0
ifi #j,and

P 1 ifi=1
¢ ab:
ab§78 {o ifi=2,3, 4.

(We shall call this an “orthonormal basis” for t,, though this does involve a
slight extension of ordinary usage.) Hence, given any vectors u* = Z?Zl [ é“

and ¥ = YF v £% at the point,

11
(4.1.3) tay kP = v
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and

(41.4) tap b = ()% = 0.

Notice that t,, is not a metric as defined in section 1.9, since it does not satisfy

1 4
the required non-degeneracy condition. (For example, if the vectors &%, ..., §

2 2
are as above at some point, then t,, £* = 0 there, even though £* # 0.)
The signature condition for hob, similarly, is the requirement that, at every
point, the cotangent space there have a basis <17a, ., 3a such that, for all i and

jin{1,2,3,4}, h“b(i;aéb =0ifi #j,and

- 0 ifi=1
habt i —
e TN ifi=2 3,4

(We shall extend ordinary usage once again and call this an “orthonormal

Ta” M i i ! i
basis” for h®.) Hence, given any vectors a; = Y, a 05 and B, = 31, B os

at the point,

2 2 33 4
(4.1.5) hPauy =& B+aB+ap
and
(4.1.6) W, = (gl)2 + (&)2 + (g‘)2 = 0.

Notice, too, that h? is not the inverse of a metric (in the sense of section
1.9); i.e., there is no field hy, such that habhbc = §%%. (Why? If (17“, .. ,301 are
as in the preceding paragraph at some point, then h® &, = 0. Hence, if there
were a tensor hg, at the point such that hyy, h? = 8¢, it would follow that
0=hy WG, =580, = (1ra, contradicting the assumption that (1ra, e Oa
form a basis of the cotangent space there.)

In what follows, let (M, t,;, h®?, V) be a fixed classical spacetime.

Consider, first, t,;,. We can think of it as a “temporal metric,” even though
it is not a metric in the sense of section 1.9. Given any vector £% at a point, we
take its “temporal length” to be (t,; ¢ §h)%. (We know from equation (4.1.4)
that (t,, £% £%) must be non-negative.) We further classify &% as either timelike
or spacelike, depending on whether its temporal length is positive or zero.
It follows from the signature of t,, that the subspace of spacelike vectors at

1 4
any point is three-dimensional. (For if £%,...,&% is an orthonormal basis for

1
t,p there, £% is timelike, and the remaining three are spacelike.) Notice too
that at any point we can find a co-vector t,;, unique up to sign, such that

1 4
tap = tatp. (Again, let £%,...,&% be an orthonormal basis for t,, at the point.

1
Then t, = + t4, £" satisfies the stated condition. Conversely, if t,, = t,t}, then
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contraction with é“éb yields 1 = (taé“)z. So t, é“ = +1 and, hence, g, éb =
o (8 7) = £1,.)

So far we have considered only the decomposition t,;, = t,t, at individual
points of M. We say that (M, t,, h®, V) is temporally orientable if there exists
a continuous (globally defined) vector field t, that satisfies the decomposi-
tion condition at every point. (Our assumptions to this point do not guarantee
existence.) Any such field ¢, (which must, in fact, be smooth since t,, is) will
be called a temporal orientation. A timelike vector £ qualifies as future-directed
relative to t, if t, €% > 0; otherwise it is past-directed. If a classical spacetime
admits one temporal orientation t,, then it admits two altogether, namely ¢,
and —t,.

In what follows, we shall restrict attention to classical spacetimes that
are temporally orientable and in which a temporal orientation has been
selected. (We shall say, for example, “consider the classical spacetime
(M, t5,h%, V) ...”) The orthogonality condition and the first compatibility
condition can then be formulated directly in terms of t,:

(4.1.7) hab t, =0,
(4.1.8) Vaty, =0.

(These follow easily from the original formulations.)

Clearly, we understand a smooth curve to be timelike (respectively spacelike)
if its tangent vectors are of this character at every point. And a timelike curve is
understood to be future-directed (respectively past-directed) if its tangent vectors
are so at every point.

From the compatibility condition, it follows that t, is closed; i.e. Viz t;; = 0.
So (by proposition 1.8.3), at least locally, it must be exact—i.e., of the form
ta = Vgt for some smooth function t. We call any such function a time function.
Any two time functions ¢ and ¢’ defined on a (common) open set can differ
only by a constant; i.e., there must be a number k such that t'(p) = t(p) + k for
all p in the set. Given any time function t, and any smooth, future-directed
timelike curve y : [s1, s2] — M with tangent field &% (whose image falls within
the domain of t), the temporal length of y is given by

S2 S2 S2 d o
[ teemas= [ Cevaas= [T ds = iy - s

S1 S

i.e., it depends only on the endpoints of the curve. This shows that, at least
locally, we have a well-defined, path-independent notion of “temporal dis-
tance” between points.
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Let us say that a hypersurface S in M is spacelike if, at all points of S, all
vectors tangent to S are spacelike. Notice that the defining condition is equiv-
alent to the requirement that all time functions be constant on S. (A time
function t is constant on S iff, given any vector £ tangent to S at some point
of S, £%V,t = 0. But £,6% = £%V,t. So the latter condition holds iff all vectors
tangent to S are spacelike.) We can think of spacelike hypersurfaces as (at least
local) “simultaneity slices.”

If M is simply connected, then there must exist a globally defined time
function t: M — R. In this case, spacetime can be decomposed into a one-
parameter family of global (¢t = constant) simultaneity slices. One can speak of
“space” ata given “time.” A different choice of (globally defined) time function
would result in a different zero-point for the time scale, but would induce the
same simultaneity slices and the same temporal distances between points on
them.

We are now in a position to formulate interpretive principles correspond-
ing to (C1), (P1), and (P2). (Recall our discussion in sections 2.1 and 2.3.) For
all smooth curves y: I — M,

(CT1') y is timelike iff its image y [I] could be the worldline of a point particle.

(P1') ¥ can be reparametrized so as to be a timelike geodesic (with respect
to V) iff y[I] could be the worldline of a free point particle.!

(P2’) Clocks record the t,,-length of their worldlines.

Two points should be noted. First, in (C1’) and (P1'), we make reference
to “point particles” without qualification, whereas previously we needed to
restrict attention to particles with mass m > 0. Here there are no zero mass
particles to consider, and no null curves whose images might serve as their
worldlines. Second, there is an ambiguity as to what we mean by a “free”
particle in (P1'). In the standard formulation of Newtonian gravitation theory,
particles subject to a (non-vanishing) gravitational force do not count as free.
But on the geometrized formulation, as in relativity theory, they do.

In what follows, unless indication is given to the contrary, we shall under-
stand a “timelike curve” to be smooth, future-directed, and parametrized by
its t,,—length. In this case, its tangent field £# satisfies the normalization con-
dition t;,£* = 1. And in this case, if a particle happens to have the image of
the curve as its worldline, then we call £% the four-velocity field of the particle,

1. We have seen (proposition 2.5.2) that it is possible, in a sense, to recover principle (P1) as a
theorem in general relativity. Similarly, one can recover (P1’) as a theorem in geometrized New-
tonian gravitation theory. Indeed, one can prove a result that is a close counterpart to proposition
2.5.2 (Weatherall [61]).
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and call £"V,£% its four-acceleration field. If the particle has mass m, then its
four-acceleration field satisfies the equation of motion

(4.1.9) F% = mg"v, &%,

where F? is a spacelike vector field (on the image of its worldline) that rep-
resents the net force acting on the particle. This is our version of Newton’s
second law of motion. (Recall equation (2.4.13).) Note that the equation makes
geometric sense because the four-acceleration field is spacelike. (For, by the
first compatibility condition, t, £"V, €% = "V, (t,£%) = £"V, (1) = 0.)

Now consider h®. It serves as a spatial metric, but just how it does so is
a bit tricky. In Galilean relativistic mechanics, we have no notion of spatial
length for timelike vectors—e.g., four-velocity vectors—since having one is
tantamount to a notion of absolute rest. (We can take a particle to be “at rest”
if its four-velocity field has spatial length 0 everywhere.) But we do have a
notion of spatial length for spacelike vectors—e.g., four-acceleration vectors.
(We can, for example, use measuring rods to determine distances between
simultaneous events.) h® gives us one without the other.

We cannot take the spatial length of a vector u® to be (hy, /Lu/l,b)% because
the latter is not well defined. (As we have seen, there does not exist a field hy,
satisfying h®hy,, = §%..) Butif 1% is spacelike, we can use h“’ to assign a spatial
length to it indirectly. Here we need a small result about spacelike vectors.

PROPOSITION 4.1.1. Let (M, tz, h®, V) be a classical spacetime. Then the follow-
ing conditions hold at all points in M.

(1) For all o3, h®a, = 0 iff oy, is a multiple of t.
(2) Forall u®, u® is spacelike iff there is a oy, such that h® oy = p°.
(3) Forall o3, and oy, if h%c;, = h®c", then h* 0,0, = h*o 0.

Proof. The “if” halves of (1) and (2) follow immediately from the orthogo-
nality condition (4.1.7). For the “only if” half of (1), let 64,...,0, be an

orthonormal basis for h®? in the sense discussed above. (So h® &, = 0 if
i#]j, h% 6,6, =0, and h% 5,6}, = 1 for i = 2,3,4.) We can take o, to be
t,, since the latter satisfies the required conditions. Now consider any vector
1 2 3 4
op = kib +ké,+kéy+koy, and assume h oy = 0. Then, by the orthogo-
2 3 4 .
nality condition, k (h* &) 4 k (h% &) + k (h® 5) = 0. Contraction with &,
i 1

yieldsk=0fori=2,3,4.Soo, = k%b.

The “only if” half of (2) follows by dimensionality considerations. At
any point in M, we can construe h® as a linear map from the cotangent space
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V, there to the tangent space V?. Every vector in the image space h®[V,]
is spacelike (by the “if” half of (2)). Moreover, h®’[V,] is three-dimensional.
(If 54,6, and G, are as above, then the vectors h®&, hots ), and h*6
are linearly independent. For, as we have just seen, if a linear combination

i (h% &) + i (h% &) + i (h® &) of the three is 0, the three coefficients must
all be 0.) So, at every point, h*[V,] is a three-dimensional subspace of the
vector space of spacelike vectors. But the latter is itself three-dimensional. So
every spacelike vector must be in h“b[Vb].

For (3), suppose h®a;, = h®¢',. Then, by (1), (o', — 03) = kt, for some k.
So ho’, o'y = h (o, + ktg) (0 + k1)) = h%0, 0y, O

So here is the indirect procedure. If u® is spacelike, we take its spatial
length to be (h“baaab)%, where o, is a vector such that h* o, = ;% Clause (2)
guarantees existence, and clause (3) guarantees that the choice of o}, makes
no difference.

Proposition 4.1.1 has a number of simple consequences that will be used

,,,,,, = 0. (To see this, it suffices to consider any three

linearly independent spacelike vectors /% % i1® at the point. (Existence is
guaranteed by the signature of t,,.) They, together with £%, form a basis for

for each i = 2, 3,4, there is a co-vector &, such that 4* = h*&,. So our claim
follows from (i).)

This first consequence of proposition 4.1.1 can be generalized. Suppose
we have a tensor y_,,  at a point such that, for some timelike vector
£° there, (i) y._ap h*"hP" =0, and (i) y_g E°hP" = 0=y 4 hob, and
(iii) Y ap E%€P =0. Then y , =0. Other tensors Y.a1ay..a,... Can be
handled similarly.

PROPOSITION 4.1.2. Let (M, 4, hob, V) be a classical spacetime, and let £* be a
smooth, future-directed, unit timelike vector field on M. (So t,6* = 1.) Then there
is a (unique) smooth, symmetric field hy, on M satisfying the conditions

(4.1.10) f;abéb =0,

4111 ﬁab hbe = 8, —ta &°.

Proof. Itfollows by the remark in the preceding paragraph that there can be at
most one field hy;, satisfying the stated conditions. (Given any two candidates,
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we need only substract one from the other and apply the remark to the result-
ing difference field.) We can define a symmetric field ftab by its specifying its
action, atany point, on the unit timelike vector £€* and on an arbitrary spacelike
vector u*. So consider the field ]:Lab that annihilates the former and makes the
assignment

i’;ab .ub = 0gq — ta(";:co'c)

to the latter—where o, is any vector such that u* = h%®o;,. It is easy to check
that the choice of o, plays no role here. (For suppose that h*;, = h&;,. Then
G — ta(& Ccljc) = 64— ta(& Cczrc). The latter follows since we get the same result
on both sides if we contract with either £% or h®.) It now follows, as well, that
condition (4.1.11) holds. For by the very way we have defined hy,, both sides
of (4.1.11) yield the same result when contracted with any vector o. O

We call hg, the spatial metric (or spatial projection field) relative to £%. Our
notation is imperfect here because we make no explicit reference to £%. But it
will be clear from the context which unit timelike field is intended.

Because h® is not invertible, we cannot raise and lower indices with it. But
we can, at least, raise indices, and it is sometimes convenient to do so. So,
for example, if R“hc 18 the Riemann curvature tensor field associated with V,
we can understand R“bc ; to be the field hbn R% - Note that

4.1.12) ﬁ“b =89 —t, &%

(This is simply equation (4.1.11), since PAL“b = Py h™e.) It follows immediately
from equation (4.1.12) that, given any vector u* at a point, we can express it
in the form

u® = h%y i+ (b ub) %

Here the first term on the right side is spacelike, and the second is proportional
to £%. We call h¥, 1ub the spatial projection (or spatial component) of u* relative
to £4.

We also call (ﬁab ut ub)% the spatial length of u® relative to £%. It is easy to
check that this magnitude is just what we would otherwise describe as the
spatial length of the spatial component he , 1P, (According to our prescription,
the spatial length of I:L“b u? is given by (K" o, an)% , where oy, is any vector
satisfying ft“b ub = ho" 5, But I:L“b b = hom b, u'. So the spatial length of
I:L“b u? is given by

Nl

(W™ G 127) (s 1)
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But h™ ﬁm, ’:Lns = I:Lrs. So the spatial length offz"b ub comes out as (fzrs u" ) %,
as claimed.)

It is important that the compatibility conditions V, h? = 0 and V, t, = 0
(or, equivalently, Vgt = 0) do not determine a unique derivative operator.
(There is no contradiction here with proposition 1.9.2 since neither t,, nor h®
is an (invertible) metric.) In fact, we have the following characterization result.

PROPOSITION 413. Let (M, t,, h®*, V) be a classical spacetime. Let V' =
(V, C%,) be a second derivative operator on M (i.e., the action of V' relative to that
of V is given by CY, ). Then V' is compatible with t, and heb iff C % 18 of the form

(4.1.13) e = 2™ by, kopn
where kg, is a smooth anti-symmetric field on M.

Proof. Since (M, t,, h®, V) is a classical spacetime, V is compatible with both
t, and h®. Hence, by equation (1.7.1), we have

(4.1.14) Voty=Vaty+Cpte = Cy tr,
@11s5) VLR = v, hb - b wre—co wbr = —cb ne—ce hb.
Assume, first, that C“bC has the indicated form. Then t, C “bc =0 and

C% hed = %" t, k., h® by the orthogonality condition. It follows immediately
that V' is compatible with t,. It also follows that

V(; hbc = —t, (hbn Krm hre + pen Krn hbr) S— (ch _+_Kbc).

But k., is anti-symmetric. So V' is compatible with h* as well.
Conversely, assume V' is compatible with ¢, and h®. Then, by equations
(4.1.14) and (4.1.15),

(4.1.16) C,tr=0,

(41.17) ch ne4co htr=o.

Now consider the raised index tensor field C*¢ = C%_ h™b h", Itis spacelike;

i.e., contraction on any index with t, yields 0. Moreover, it satisfies the two

conditions
(4.1.18) cobe — cacb
(4.1.19) cobe — _ceba,
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(This first follows from the symmetry of C° itself, and the second from
equation (4.1.17).) By repeated use of these two, we have

Cabc — _Ccha — _Ccab — Cbaa — Cbca — _Cacb — _Cabc.
So the field vanishes everywhere:
(4.1.20) cobe — o,

Now let £ be a smooth, future-directed, unit timelike field (so 6% = 1), and
let hgy, be the corresponding spatial projection field. Then we have

0 = C Ry Frng = CoR™ W™ oy e
= C° (87, — ty E")(6%, — b £°).
Hence,
(41.21) Che =t C8° 1, C & — 1yt COET &,
Now consider
(41.22) Kon = —hep fng CHAE" +11g hrygg Chi &7 °.

It is anti-symmetric by equation (4.1.17) and, we claim, it satisfies equation
(4.1.13). To verify this, we compute the right side of (4.1.13 ). We have

20 by keen = =2 (h" ng) ty e CHAE™ + by 1o (R o) CO 67 5.

Now, by equations (4.1.16) and (4.1.17), (h%" h,g) Ch4 = —(8% — 1% CTP =
—C2, and (h®" hyg) C%s = C%. So

2R by kg = 2ty higy COP ET 4yt CoET E°.
Furthermore, I:Lq, car = I:ch Ca hP = (8%, —t. &%) C%. So
2h by ke =24, CALET — byt CAET ES.
Hence, by equation (4.1.21),

Zhant(ch)nzzt(b Cac)rfr—tbtc Cursgrgs: abc' O
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Now let R , be the curvature tensor associated with V. Of course, it
satisfies the algebraic conditions listed in proposition 1.8.2:

(4.1.23) R“b(cd) =0,
(4.1.24) Ra[bcd] =0.

The compatibility conditions (V,t, = 0 and V,h? = 0) further imply that

(4.1.25) taR%; =0,
(@b)  _
(4.1.26) R™ ;=0
(We have 0=2V[ Vg t,=t;R%q and 0=2V Vyh® =—Rs p" —
Rbmc Jhm = —R“bc i Rb"C ;) Itfollows immediately from the conditions listed

so far that if we raise all three indices with h%, the resulting field R gatisfies

(4.1.27) R7(d) — g,
(4.1.28) Relbed] — g,
(4.1.29) Rl — g

These, in turn, jointly imply

(4.130) Robed — Redab,
(The argument is the same as in the case where V is determined by a (non-
degenerate) metric. Recall our proof of the fourth clause of proposition 1.9.4.)
Now consider the Ricci tensor field Ry, = R°,, and the (spatial) scalar
curvature field R = h* R,;,. We claim that the former is symmetric. To verify
this, we consider an arbitrary smooth, future-directed, timelike field £% and
use the corresponding projection field ]:tab to lower indices. First, it follows
easily from equations (4.1.11), (4.1.25), and (4.1.26) that

4.1.31) R = P R“bcd =0,
(4.1.32) R = ﬁad Robed
(4.1.33) R= ﬁab R,

(For example, we have hy R“bcd = hgy hT R =0, —t&)R ;=R .
This, with equation (4.1.26), gives us equation (4.1.31).) Hence, by equations
(4.1.23) and (4.1.24),

(4.1.34) Rapy— Ry =R, — R, =R, +RY =R

abc cab*
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So, by equation (4.1.31), we have
(4.1.35) Rap = Rpa,

as claimed.
Less straightforward is the following proposition.

PROPOSITION 4.1.4. Let (M, t,,h®,V,) be a classical spacetime. Then the
curvature field R% ; associated with V satisfies

(4.1.36) Rabcd — (hbc Rad + had Rbc _ pe Rbd _ hbd Rac)

+ % (huc hbd _ had hbc) R.

Proof. The relation is familiar from the case where we are dealing with a
derivative operator determined by an (invertible) metric and the background
manifold has dimension 3. It follows from the symmetries (4.1.27)—(4.1.30)
and (4.1.35), as well as the crucial fact that all the indices in R**“* are spacelike;
i.e., contraction on any of these indices with t, yields 0.

We prove equation (4.1.36) at an arbitrary point p of M by introducing an
appropriate basis there and considering the resulting component relations.

Lett,, 04, 64, 6, be an orthonormal basis for h® at p in the sense discussed
above. (So h? &uéb =0ifi#j,and h% &,6), = 1fori = 1,2,3.) Then h® =
6% &P + 59 5Y 4 5% 6P, Further, let £% be a future-directed unit timelike vector
at p with corresponding projection tensor ﬁab- Now consider the co-vectors
&g, Gg, Gy at p defined by

b = hay W &0 = 64 — t4(60 £°).

It is easy to check that

Since all indices in R**** and R% are spacelike, both tensors are determined
by their action on the basis vectors &a, &a, &a. Consider the components

i j k1
R = R g oy ac oy
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where i,j,k,| € {1,2, 3}. Because of the symmetries of R%“¢ and R*, each has
only six independent (non-zero) components, namely

11 12 13 22 23 33
R R R R R R

and

1212 1313 2323 1213 1223 1323
R R R R R R.

3 .
Now, by equation (4.1.32), R = R h,, = R™¢, & Hence, for all
ijki

k3
jk€{1,2,3}, R=>_ R.This gives us
i=1

11 1212 1313 12 1323
R=—-R-R R=-R
22 1212 2323 13 1223
R=—-R-R R= R
33 1313 2323 23 1213
R=—R-R R=-R.

Also, by equation (4.1.33),

11 22 33
=R%}h,, = ZR ago, = R+ R+ R.

Using these relations, we can check that the two sides of equation (4.1.36)

. . . ikl .
agree in their action on any quadruple o, o), oc @y. As an example, consider

12 12 11 2 2 1 2 .

o ap o ag. We have h%a, o, = h%a, a, = 1and h%a, &), = 0. So it suffices
1212 2 1u 1

to confirm that R =(—R — R)+ ER' But this follows from the entries in

our table. O

Next we consider the notion of “spatial flatness.” Of course, we say that our
background classical spacetime is flat at a point if R% ; = 0 there. In parallel,
we say that it is spatially flat there if R%* = 0. To motivate this definition,
we need to say something about “induced derivative operators” on spacelike
hypersurfaces. (Recall that a hypersurface is spacelike—in a classical space-
time as well as in a relativistic spacetime— if all smooth curves with images
in the hypersurface are spacelike.)

Let S be a spacelike hypersurface, and let £% be an arbitrary smooth, unit,
future-directed timelike vector field on S. Let ftab be the associated projection
field on S. Given any tensor field on S, we say that it is spacelike relative to £% if
contraction on any of its indices with t, or £% yields 0. We can think of fields
spacelike relative to £% as living on the manifold S. (Recall the discussion in
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section 1.10.) Clearly, h® and h 2 both qualify as spacelike relative to £%. So
does hb =8P —t,£P. Notice that hb preserves all vectors that are spacelike
relative to &% i.e., hbo1 u® = ub and hba op = gy, for all u* and o, spacelike
relative to £%. We can thus think of Z:Lba as a “delta (or index substitution) field”
for fields on S that are spacelike relative to £%. And we shall, on occasion, write
8 rather than I:Lba—]'ust as in the case of a (non-degenerate) metric g,, we
often write 8%, rather than gb,.

What is most important here is that we can think of i’;ab as a (non-
degenerate) metric that lives on S. It is non-degenerate in the relevant sense
because it does not annihilate any non-zero vectors that are spacelike relative
to £% or, equivalently, because it has an “inverse” hob:ie., fzab hbe = Sca. (This
is just equation 4.1.11.) So there is a unique derivative operator D on S that is
compatible with ftab—i.e., such that Daﬁbc = 0. We can express the action of D
in terms of V (as explained in section 1.10). Given any field spacelike relative
to £4, the action of D on it is given by first applying V and then projecting all
covariant indices with I:Lba. So, for example,

(4.1.37) Dyafy, = hm ﬁ’b W Vi

The projection insures that the resultant field is spacelike relative to £%. There is
no need to project the contravariantindices. Since V,t;, = 0, they remain space-
like even after V is applied. (One can check directly that D satisfies all the defin-
ing conditions of a derivative operator on S, and furthermore Daﬁbc =0and
Dyhb = 0.) We refer to D as the derivative operator induced on S relative to £°.

The following proposition serves to motivate our definition of spatial
flatness.

PROPOSITION 4.1.5. (Spatial Flatness Proposition) Let (M, tz, h®?, V) be a clas-
sical spacetime. The following conditions are equivalent at every point in M.

(1) Space is flat, i.e., Robed — ¢
@) R% =o.
(3) Rab = t(a @) for some @,.
Furthermore, given any spacelike hypersurface S in M, these conditions hold

throughout S iff parallel transport of spacelike vectors within S is, at least locally,
path independent.

Proof. Let p be a point in M, and let £ be an arbitrary, future-directed, unit

timelike vector at p with corresponding spatial projection tensor ftab. The equiv-
alence of (1) and (2) follows from equations (4.1.32), (4.1.33), and (4.1.36).
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The implication (3) = (2) is immediate. For the converse, consider the
vector

0a = 2 Rop&P — to(Rynn E™E").

We have 6% = Ry £%€ and @ h™ = 2Ry, h% P, Therefore, at any point
where R% = 0, it must be the case that R, = t(a Pp), since both sides agree
in their action on &£%€%, h* b, and horhbs. (Recall our remarks following
proposition 4.1.1.)

Now let S be a spacelike hypersurface, and let £% be a smooth, unit, future-
directed timelike vector field on S. Further, let ]:Lab be the associated projection
field on S, and let D be the derivative operator induced on S relative to £ (as
explained in the preceding paragraphs). Finally, suppose that £ and v* are
spacelike fields on S. Then they automatically qualify as spacelike relative to £¢,
and by equation (4.1.37) we have u" D, v* = p" fz’n Vrv% = u’ Ve v?. It follows
that D and V induce the same conditions for parallel transport of spacelike vectors
on S. We know that parallel transport of such vectors on S is, at least locally,
path independent iff the Riemann curvature tensor field R ; on S associated
with D vanishes. So, for the second half of the proposition, it suffices for us
to show that, at all points on S,

bed
(4.1.38) R =0 = R, =0.

This just involves a bit of computation. The right-side condition here is equiv-
alent to the requirement that, for all spacelike fields ©% on S,

0= abcd Mb = —2 D¢ Dy ut = -2 hrc hsd Vir Vg u? = hrc hsd abrs ,u,b.
Hence, it is equivalent to the condition
roi b nroq b
0=h" W, R WP =h" Wy RY.

Contracting this equation with h®" h®" yields R%™ = (. Conversely, contract-
ing R%™" = 0 with hp ha, yields b h*, R = 0. 0

The interest of proposition 4.1.5 will become apparent in the next sec-
tion when we consider the geometrized formulation of Newtonian gravitation
theory. In that formulation, Poisson’s equation assumes the form Ry, =
4 71p taty, (Where p is the mass density function). We see from the proposition
that Poisson’s equation (in its geometrized formulation) implies the flatness of
space. This is striking. It is absolutely fundamental to the idea of geometrized
Newtonian theory that spacetime is curved (and gravitation is just a manifes-
tation of that curvature). Yet the basic field equation of the theory itself rules
out the possibility that space is curved.
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Intermediate between the curvature conditions R%,; = 0 and R%“ = 0 is
the condition R%; = 0. We shall show later (proposition 4.3.1) that it holds
throughout M iff parallel transport of spacelike vectors along arbitrary curves
is, at least locally, path independent. (Here we still restrict attention to
spacelike vectors (rather than arbitrary vectors), but consider their transport
along arbitrary curves in M (not just curves confined to a particular spacelike
hypersurface).)

Before continuing with the main line of presentation in this section, we
stop briefly to record a fact that will be needed in later sections. We place it here
because it concerns the induced derivative operator D that was considered in
the preceding proof.

PROPOSITION 4.1.6. Let (M, tg, hob, V) be a classical spacetime, and let ¢p* be
smooth spacelike field on M such that V!® ¢?) = 0. Then, at least locally, there
exists a smooth field ¢ such that ¢* = V2.

Proof. This is not quite an instance of proposition 1.8.3, but it is close. Let p
be any point in M, and let O be any open set containing p that is sufficiently
small and well behaved that it has this property: O can be covered by a family F
of spacelike hypersurfaces, each of which is connected and simply connected.
Let y: I — M be any timelike curve whose image contains p and intersects
every one of the hypersurfaces in F. Finally, let £* be a smooth, future-direc-
ted, unit timelike field on O, and let h,, be the associated spatial projection
field.

Now consider any hypersurface S in F, and the projected field ¢, = ]:Lab PP
on S. If D is the induced derivative operator on S defined by equation (4.1.37),
then on S we have Dy, 43;,] = ham ]:Lbn vim¢nl = 0. So, by proposition 1.8.3,
there is a smooth field ¢ on S such that ¢, = D, ¢s. It is determined only up
to a constant, but we can pin it down uniquely by requiring, in addition, that
it have value 0 at the point where S intersects y[I].

Now let ¢ be the “aggregated” scalar field on O that agrees with ¢s on each
Sin F. We claim without further argument that it is smooth. It satisfies the
required condition since, given any spacelike hypersurface S in F, we have
¢ = h™p, = h*" D, s = h* h",V, ¢ = V% on S. 0

Now we briefly consider the representation of fluid flow. Our formalism
here is related closely to that developed in section 2.8. Let §* be a smooth, unit,
future-directed timelike vector field on our background classical spacetime.
We think of £% as the four-velocity of a fluid. Let hap be the projection field
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associated with &%. The rotation field w,, and expansion field 6, associated
with £% are defined by

(4.1.39) Wap = ﬁm[a ﬁb]n Vi €T,
(4.1.40) Oup = ﬁm(a ﬁb)n Vi ™.

(We can motivate the terminology here much as we did in section 2.8.) It
follows that

(41.4) honVa §" = wap + Oaty + ta By E™ Vi €"

and, hence, that

(4.1.42) Va Eb = wab+9ab+tagmvmsb
and
(4.1.43) Vol — % 4 b,

As in the relativistic case, we can decompose the expansion field to arrive at
the scalar expansion field 6 and the shear field o:

(4.1.44) 0 =0,"=V, &%
1 -
(4.1.45) Oy = Oup — 3 0 hyp.

(That 6,% = V, &% follows from equation (4.1.42) and the anti-symmetry
of wgy.) Clearly, oy is “trace-free” since 0, =0, — 30 hJ =0 — 10(5, —

ts£%) = 0 — 36(4 — 1) = 0. We note for future reference the following equiva-
lences:

(4.1.46) wap =0 > Vg =,

(4.1.47) 0 =0 & V&b =0

(In each case, we get the implication from left to right by raising indices
with h™", and the one from right to left by lowering indices with Z:Lmn.) The
conditions in the firstline capture the claim that % is non-rotating (or twist-free).

Finally, we say just a bit about the four-momentum of point particles and
the four-momentum density of matter fields. It is instructive to consider the
situations in Newtonian and relativistic mechanics side by side. (For a more
complete and thorough comparison, see Dixon [12].) Suppose, first, that we
have a point particle with mass m and four-velocity field £%. Then, just as in
relativity theory, we associate with it a four-momentum field P* = m £ along
its worldline. (In the present context we have only particles with positive mass
(m > 0) to consider.)
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Suppose particle O has four-velocity £ at a point, and another particle O
has four-momentum P% = m &'% there. Just as in the relativistic case, we can
decompose P? relative to £%.

Newtonian Mechanics Relativistic Mechanics

P* = (P &* + k%P Pt = (§PY)ET + R P
—— —— S—— ~——
mass relative 3—momentum relative energy relative 3—momentum

But the decomposition works somewhat differently in the two cases. In New-
tonian mechanics, we have a component proportional to §* with magnitude
ty PP = t, (m &'?) = m, and a spacelike component

hey PP = (8% — 1, 6%) (m&'Y) = m (5" — &%),

which gives the three-momentum of the particle relative to £%. (The vector
(€% — £7) Dy itself gives the relative velocity of O’ with respect to O.) Thus,
in Newtonian mechanics, the four-momentum P* of a point particle codes its
mass and its three-momentum, as determined relative to other background
observers. So it is appropriately called the “mass-momentum vector.” In
relativistic mechanics, in contrast, as we have seen, the component of P pro-
portional to €% has magnitude (£, P?), which gives the energy of the particle as
determined relative to £%. And we call P? the “energy-momentum vector.”

In relativistic mechanics, the mass of the particle is given by the length of
its four-momentum (g, P* Pb)%. The corresponding statement in Newtonian
mechanics is that the mass of the particle is given by the temporal length of
its four-momentum (t,, P*P? )%.

Now we switch from point particles to continuous matter fields. Just as in
relativity theory, we associate with each matter field F a smooth, symmetric
field T*. But the interpretation of T% is different in Newtonian mechanics
(parallel to the way that the interpretation of P* is different), and here we call
it the mass-momentum field associated with F. In both cases, T% codes the
four-momentum density of F as determined, at any point, relative to future-
directed, unit timelike vectors £% there. But in the Newtonian case, the four-
momentum density is the same for all £%. Itis given by Tt (In the relativistic
case, it is not invariant and is given, instead, by T“béb. Recall section 2.5.)

Newtonian Mechanics Relativistic Mechanics
T, is the four-momentum T%¢, is the four-momentum
density of F density of F

as determined relative to £%
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The conservation equation carries over intact from relativistic mechanics:
ab __
(4.1.48) Vo, T = 0.

We can decompose the Newtonian four-momentum density T%#, just as
we decomposed P to determine an invariant mass-density and a relative
three-momentum density. The former is given by p = T%#,t,. We can take
it to be a (Newtonian) “mass condition” that T%t,t, > 0 whenever T* % 0.
When the condition is satisfied, we can further define the fields

1
nu - - Tabtb,
P

pab — Tah —p 77anb
and arrive at a canonical representation of T:
(4.1.49) T% = pn*n® + p™.

Here n® is a smooth, future-directed, unit timelike field, and p* is a smooth,
symmetric field that is spacelike in both indices (t;p® = 0). In the case of a
fluid, for example, we can interpret n* as the four-velocity of the fluid. In terms
of this representation, the conservations equation comes out as

(41.50) 0=VaT% = pn*Van® +n° [1°Va p+ p Va 1] + Vo p.
Contracting with t;, yields the following equivalence:

0
0.

p 0% Van+ V, p
n*Vap+p (Van®

VT =0 {

The second equation on the right expresses the conservation of mass. (The
analysis we gave in the context of relativity theory carries over intact.) The first
is an equation of motion. In the case of a perfect fluid, for example, p? = p h??,
where p is the (isotropic) pressure of the fluid. In this case, the first equation
comes out as Euler’s equation:

(4.1.51) on* Vot = —vP p.

For more on the development of Newtonian mechanics within our geomet-
ric framework, see, for example, Ellis [17] and Kiinzle [35].

4.2. Geometrized Newtonian TheoryFirst Version

Now we turn to Newtonian gravitation theory proper. In the standard (non-
geometrized) version, one assumes that the background derivative operator V
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is flat and posits a gravitational potential ¢. The gravitational force on a point
particle with mass m is given by — m h® V, ¢. (Notice that this is a space-
like vector by the orthogonality condition.) Using our convention for raising
indices, we can also express the vector as — m V% ¢. It follows that if the particle
is subject to no forces except gravity, and if it has four-velocity §¢, it satisfies
the equation of motion

@4.2.7) —Vip =£"V,E%

(Here we have just used —m V* ¢ for the left side of equation (4.1.9).) It is
also assumed that ¢ satisfies Poisson’s equation

(4.2.2) VoV = 47 p,

where p is the Newtonian mass-density function. (The expression on the left
side is an abbreviation for h* V,, V}, ¢.)

In the geometrized formulation of the theory, gravitation is no longer con-
ceived of as a fundamental “force” in the world but rather as a manifestation of
spacetime curvature, just as in relativity theory. Rather than thinking of point
particles as being deflected from their natural straight trajectories in flat space-
time, one thinks of them as traversing geodesics in curved spacetime. So we
have a geometry problem. Starting with a classical spacetime (M, tg, hob, V),

. . . g
with V flat and with field ¢ on M, can we find a new derivative operator vV on M,
also compatible with t, and h®, such that a timelike curve satisfies the equa-
tion of motion (4.2.1) with respect to the original derivative operator V iffitis a

g
geodesic with respect to V? The following proposition (essentially due to Traut-
g
man [59]) asserts that there is exactly one such V. It also records several condi-

. . . g . .. 8
tions satisfied by the Riemann curvature tensor field R%4 associated with V.
We shall consider the geometric significance of these conditions in section 4.3.

PROPOSITION 4.2.1. (Geometrization Lemma) Let (M, t5, h®, V) be a dlassical
spacetime with V flat (R%,.; = 0). Further, let ¢ and p be smooth real valued

g
functions on M satisfying Poisson’s equation Vo V4 ¢ = 41 p. Finally, let V=
(V, C,), with C = —tyt;V*¢. Then all the following hold.

g
(G1) (M, tg, h®, V) is a classical spacetime.

g
(G2) V is the unique derivative operator on M such that, for all timelike curves
on M with four-velocity field £%,

g
(4.2.3) E"V, =0 £"V, % = —V%.
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g . - .
(G3) The curvature field R%,.; associated with V satisfies

g

(4.2.4) Ry =4mptyt,
g g

(4.2.5) R a = R4,
g

(4.2.6) R“bcd = 0.

Proof. For (G1), we need to show that é is compatible with t, and h.
But this follows from proposition 4.1.3, for we can express C  in the form
Cabc = 2h% t(b Kcyn if we take kg = —tc Vi @.

For (G2), let é = (V, (") where (temporarily) C’ is an arbitrary smooth
symmetric field on M. Let p be an arbitrary point in M, and let £* be the
four-velocity field of an arbitrary timelike curve through p. Then, by equation
(1.7.1),

£ Vi £ = £V 60— OO e
It follows that é will satisfy (G2) iff C%,£76" = —V*“¢ or, equivalently,
“.2.7) [C%, + (Vi) 1,1 676" =0
for all future-directed unit timelike vectors £ at all points p. But the set of
future-directed unit timelike vectors at any p spans the tangent space M,
there. (Why? Let é a ... ,§ % be an orthonormal basis for t,, = f,;t, in the
sense discussed above. [So taé“ =1, and taé“ =0 for i =2,3,4.] Then
% % (é “+ é %), (é o+ é %), and (% &4+ % %) are all future-directed unit timelike
vectors, and the set is linearly independent.) And the field in brackets in
equation (4.2.7) is symmetric in its covariant indices. So, % will satisfy (G2)
iff C%, = —(V“*9) tt, everywhere.

Finally, for (G3) we use equation (1.8.2). We have

g
(4.2.8) R%ea =R, +2V C“d]b +2 C”b[CC“d]n

= R%, .y — 2t4aVey VO = — 21,4a Ve V7.

(Here C" C% .,
taVey V@@ by the compatibility condition. For the final equality, we use our
assumption that R, = 0.) Equation (4.2.6) now follows from the orthogonal-
ity condition. Equation (4.2.5) follows from that and the fact that VI°V¢ = 0
for any smooth function ¢. Finally, contraction on a and d yields

= 0 by the orthogonality condition, and V|, C* ap = "t
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g a
(4.2.9) Ripc = tpt:(VaV™9).

So equation (4.2.4) follows from our assumption that V, V¢ ¢ = 47 p. O

Equation (4.2.4) is the geometrized version of Poisson’s equation. In the

special case where p = 0 everywhere, of course, it reduces to ng;,C: 0, which
we recognize as Einstein’s equation in the corresponding special case in which
Type = 0. Even in the general case, equation (4.2.4) can be reformulated so as
to have almost exactly the same structure as Einstein’s equation. Recall our
discussion of the mass-momentum field T% toward the end of section 4.1.
We saw there that it encodes p via

p=T"tyy,.

(We shall temporarily revert to writing t,, rather than t,t,, to emphasize the
field’s relation to a two index Lorentzian metric g5, but nothing turns on our
doing so.) So we can certainly formulate Poisson’s equation directly in terms
of T%. Now consider the fields

Ty = " tmb tne = P e,
T=T™tp = p.

(Caution is required here. It must be remembered that we cannot recover
T from Ty, by “raising indices” with h®, since Ty, K™ h" = 0.) Using these
fields, we can express Poisson’s equation in the form

g A 1 A
(4.2.10) Rpc = 87 (Tpe — 5 foe T),

which is very close indeed to Einstein’s equation (2.7.2).
Moreover, if we start with a version of Poisson’s equation that incorporates
a “cosmological constant”

(4.2.17) VoVé+A=4mp,
then substitution for V,V%¢ in equation (4.2.9) yields
g

(4.2.12) Ryc = 47 ptyte — A tpte

(but everything else in the proof remains the same). And this equation, in turn,
can be expressed as

g A 1 A
(4.2.13) Ryc = 87 (T — 3 the T) — A tye,

which matches equation (2.7.4).
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So far, we have seen how to pass from a standard to a geometrized formula-
tion of Newtonian theory. It is also possible to work in the opposite direction.
In Trautman’s [59] version of geometrized Newtonian gravitation theory—
one of two we shall consider’—one starts with a curved derivative operator V
satisfying equations (4.2.4), (4.2.5), and (4.2.6), and with the principle that
point particles subject to no forces (except “gravity”) traverse geodesics with
respect to V. Equations (4.2.5) and (4.2.6) function as integrability conditions
that ensure the possibility of working backwards to recover the standard for-

mulation in terms of a gravitational potential ¢ and flat derivative operator V.
We shall prove this recovery, or de-geometrization, theorem in this section
(proposition 4.2.5), and we shall see that, in the absence of special boundary

conditions, the pair (V, ¢) that one recovers is not unique.

Later, in section 4.5, we shall consider a second, more general version of
geometrized Newtonian gravitation theory, developed by Kiinzle [34, 35] and
Ehlers [15], in which one of the two supplemental curvature conditions is

dropped.
) Rye = Amohl Kiinzle-Ehlers Version
Trautman Version R%°y = R%Y%
Rabc i =0

Atissue here is whether “Newtonian gravitation theory” is to qualify as a limit-
ing version of relativity theory. The geometrized version of Poisson’s equation
does, in a natural sense, qualify as a limiting form of Einstein’s equation. And
the first of Trautman’s two supplemental curvature conditions (R*,“y = R°3%)
holds automatically in relativistic spacetimes. (Recall the fourth clause of
proposition 1.9.4.) So it naturally carries over to any limiting version of rela-
tivity theory. But the second supplemental curvature condition does not hold
in relativistic spacetimes (unless they happen to be flat), and it is therefore not
an automatic candidate for inclusion in a limiting version of relativity theory.
It is crucially important that the conditions R%_; = 0 and R%,; = 0 are not
equivalent for classical spacetime structures, though they are for relativistic
ones.

Starting only from the weaker assumptions of Kiinzle and Ehlers, one can
still prove a recovery theorem of sorts. But the (de-geometrized) gravitation
theory one recovers is not Newtonian theory proper, but rather a generalized
version of it. In this version, the gravitational force acting on a particle of unit
mass is given by a vector field, butit need not be of the form V#¢. Moreover, the

2. See Bain [4] for a systematic discussion of these and yet other versions.
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de-geometrized field equations to which one is led involve a “rotation field” wy,.
We shall eventually prove this recovery theorem for the Kiinzle-Ehlers version
of Newtonian theory (proposition 4.5.2), and also consider special circum-
stances under which the difference between the two versions of geometrized
Newtonian theory collapses. It turns out that the second curvature condition
(R% 4 = 0) is satisfied automatically, for example, in classical spacetimes that
are, in a certain weak sense, asymptotically flat (see section 4.5), and also
in Newtonian cosmological models that satisfy a natural homogeneity and
isotropy condition (see section 4.4).

Before turning to the Trautman Recovery Theorem, we isolate a few needed
facts. Let£% be a smooth, future-directed, unit timelike field in a classical space-
time (M, t,, h%, V). We say that it is rigid (or non-expanding) if £ h% = 0 or,
equivalently, V(&%) = 0. (These conditions obtain, we know, iff the expan-
sion field 6, associated with % vanishes. Recall equation (4.1.47).) Certain
things we have established about Killing fields (which we have defined only in
connection with non-degenerate metrics) carry over to rigid fields in classical
spacetimes. So, for example, we have the following.

PROPOSITION 4.2.2. Let (M, t,, hob, V) be a classical spacetime, and let £* be a
smooth, future-directed, unit timelike field that is rigid. Then

(4.2.14) vrve gl — gha ngr
Proof. The proof is a just a variant of that used for proposition 1.9.8. Cycling
indices, we have

ana%.b _ Vavnsb — _Rbrna%.r

van%.a _ anb%_a — _Rarbngr

Vavb%.n _ vaaé_.n — _Rnrubgr.

Subtracting the third line from the sum of the first two (and using the fact that
VgD = ) yields

2 ana&.b — (_Rbrna _ Rarbn + Rnrab)gr‘

Finally, we reformulate the expression in parentheses on the right side using
the symmetries R% (.4 = 0, R 3 = 0, and R ; = 0:
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_Rb,na _RAbn 4 pnab _ (gha n | pbna ) pa bn | pn ab
— RbO.7 4 (R™,9 4 R*,9b) _ R b»
_ Rbe n _ gnab _ pa bn
— Rbe.n_ (R™D 4 RO

— Rbarn+Rabnr — ZRbarn.
So we have equation (4.2.14). O

Our proof of the Trautman Recovery Theorem turns on the availability
of a unit timelike field 7* that is rigid and twist-free (V%7? = 0). The latter
provides a backbone, of sorts, for our construction. The following proposition
shows that the condition R*; = 0 insures the existence of such fields (atleast
locally).

PROPOSITION 4.23. Let (M, t5, h®, V) be a classical spacetime that is spatially
flat (R%b<4 = ). Let y :1 — M be a smooth, future-directed timelike curve with
unit tangent field 7%, and let p be any point in y[I]. Then there is an open set O
containing p, a smooth spacelike field x* on O, and a smooth, future-directed, unit
timelike field n® on O such that x* = 0 on y[I], n% = 7% on y[I], and

(4.2.15) Vaxh = 8ub — tanh.

Furthermore, (i) if Ry = 0, then Von? = 0; and (i) if R%,y = 0 and if y is a
geodesic, then Vg n? = 0.

Proof. First, we claim there exists a smooth spacelike field x* on some open
set O containing p such that

(4.2.16) Voxb = pob

and x* = 0 on y[I]. Indeed, as restricted to any one spacelike hypersurface
S, x% is just the familiar “position vector field” (relative to the point where
y[I] intersects S). (Recall proposition 1.7.12. All we need here is that the
[three-dimensional, invertible] metric g,;, induced on S by h? is flat and so,
at least locally, the pair (S, g,5) is isometric to three-dimensional Euclidean
space.) Now let &% be any smooth, future-directed, unit timelike field on
O. Consider the field n* = (—&%V, xP+e& b). We claim that it satisfies all the
required conditions. First, it satisfies equation (4.2.15). This follows since the
two fields (—Vax? 4 8,°) and t,1n" yield the same result when contracted with
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either h™* or £%. Next, it is clearly a future-directed, unit timelike field; i.e.,
tynt = tb(—S“Vaxb +f;‘b) = 1. Third, it agrees with 7% on y[I]. For since x*
vanishes on y[I], it is certainly constant along the curve; i.e., 7%V, x?=o.
So, by equation (4.2.15), we have 0 = 79V, x? = 7%(8,% —tan?) = 72 — 1P
on y[I].

Now we turn to the curvature conditions. By equation (4.2.15) again,

navnvuxb — navn(aab —taﬂb) — —V"r]b.

Hence,
Vnnb — _na(vavn b _ RbmnaXm) — nuRbmname

since, by equation (4.2.16), VaV”Xb = Vah”b = 0. Since x% is spacelike, we
can express it in the form x* = hob3,. Thus we have

(4.2.17) Vb = Rbmn, Xmn®.

So, if RP™,, = 0, it clearly follows that V";? = 0. This gives us (i).

Now assume that y is a geodesic and R%y = 0. Then V,1” = 0 on y[I].
(Why? n°V,n? = 0 on y[I] since y is a geodesic, and h"*V,n? = 0 everywhere
by (i).) We may assume (by moving to a smaller open set O containing p if
necessary) that every maximally extended spacelike hypersurface in O inter-
sects y[1]. So it will suffice for (ii) to show that V,5” is constant on spacelike
hypersurfaces; i.e., VEV,n? = 0. But this follows immediately from R%,; = 0
and V%P = 0, since V°V,n? = v, ven? — Rb, ¢, O

Proposition 4.2.3 yields a useful characterization of the relative strength
of two curvature conditions. (Here and throughout it should be understood
that when we formulate a curvature equation without qualification, as on the
left sides of (1) and (2) that follow in proposition 4.2.4, we have in mind the
condition that the equation hold at all points.)

PROPOSITION 4.2.4. Let (M, t,, h®, V) be a dlassical spacetime that is spatially
flat (R%¢ = 0). Then the following both hold.

(1) R%_; = 0 iff there exists, at least locally, a smooth unit timelike field n® that
is rigid and twist-free (V* n® = 0).

(2) R%,cq = 0 iff there exists, at least locally, a smooth unit timelike field n® that
is rigid, twist-free, and acceleration-free (V, n® = 0).

Proof. The “only if” clauses follow from the preceding proposition. The other
drections are easy. (1) Assume that for any point p in M, there exists a smooth
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unit timelike field 7* defined on an open set containing p such that V#»? = 0.
We show that R* 4 vanishes at p. We have R ; n°n® = 0 at p since R, is
anti-symmetric in the indices ¢ and d. We also have R ; h h® = 0 at p (by
our assumption of spatial flatness). So to prove that R% ; vanishes at p, it
suffices to show that contraction there with 7° h® (or h" p9) yields 0. But
this follows since V¥ n* = 0 and hence, by proposition 4.2.2, R* ; n° h¥ =
ViVl e = 0.

(2) Next, assume that for any point p in M, there exists a smooth unit
timelike field #* defined on an open set containing p such that V, n” = 0.
We show that R%, vanishes at p. We know from part (1) of the proposi-
tion (and the fact that V, n? = 0 implies V4 5? = 0) that R* ;; = 0 at p. The
latter condition implies that R%,.y = t,R%,,4 n". (Contracting both sides with
either h?" or n® yields the same result.) But since V, 5 = 0, we also have
R can™ = =2 ViV n® = 0at p. So we are done. O

Now we turn to our first recovery theorem. Our formulation is purely local
in character since we have opted not to impose special global topological con-
straints on the underlying manifold M. Our proof is a bit different from that
in Trautman [59].

PROPOSITION 4.255. (Trautman Recovery Theorem) Let (M, tz, h®", V) be a
classical spacetime that satisfies

(4.2.18) Ry = 47 ptyt,,
(4.2.19) R%°y = R%%,
(4.2.20) R“bcd =0

for some smooth scalar field p on M. Then given any point p in M, there is an open

f
set O containing p, a smooth scalar field ¢ on O, and a derivative operator V on O
such that all the following hold on O.

f
(R1) ¥ is compatible with t, and h??.

f,
(R2) V is flat.
(R3) For all timelike curves with four-velocity field £%,

f f
(4.2.21) E'VLEY =0 = E"V,E = —V%.

Lo , L f
(R4) V satisfies Poisson’s equation Vo V% = 41 p.
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f f
The pair (V, ¢) is not unique. A second pair (V', ¢') (defined on the same open set
O) will satisfy the stated conditions iff

(U1) VoVP(¢' —p) =0, and
f f
(U2) V' = (V, C'%,), where C'%,. = t, 1.V (@' — ¢).
Proof. Letpbeapointin M. As we have just seen, it follows from R“bc ; = Othat
we can find an open set O containing p, as well as a smooth, future-directed,

unit timelike vector field 7* on O that is rigid and twist-free (V*n? = 0). Let
¢ be the acceleration field of n%; i.e., ¢* = n"V, n%. Then we have

(4.2.22) V, nb =1, qbb .

(This follows since contraction of the two sides with both n* and h*" yields
the same result.) Further, let é be the derivative operator on O defined by
é= (V, C%;), where C%,. =t t. ¢*. Clearly, t, C*,. =0, C%, hb" =0, and

C% b = 0. It follows that
f n
Vaty=Vaty+ t, C'op = Vo ty,
f
Va h? = vy hbe — pme by — hb" €,y = V, Bl

f
So, since V is compatible with t, and h¢, ¥ is compatible with them as well.
So we have (R1). Notice next that C?,, n" = t, ¢” and so, by equation (4.2.22),

f
(4.2.23) Van® =Van? —Clann" = tad? —ts 9P = 0.

Thus, n* is constant with respect to the new derivative operator V.
f
Now we consider the curvature field associated with V. We have

C™"ye C*4, = 0 since ¢™ t, = 0. So, by equation (1.8.2),

f
(4.2.24) R%ed = R%ea + 2 Ve C%pp + 2 C"yc Cp0

= R%cq +2tpt}g Ve 9°.

! f
It follows immediately that R%* = R% — ¢ (since R* 4 = 0). So V is spa-
tially flat. But now recall the second clause of proposition 4.2.4. We have just
verified that there is a smooth, unit timelike field n* on O that is constant
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f f f
with respect to V. So (since V is spatially flat), the proposition tells us that v
f
must be flat outright; i.e., R%,;; = 0. So we have (R2). And equation (4.2.24)
reduces to

(4.2.25) R = —2tytiq Ve %

Now we extract further information from equation (4.2.25). Raising and
contracting indices yields

(4.2.26) R%W 4= —tt3 V@4,

(4.2.27) Ry =ty t: Vg 0%

Since we are assuming R%,°; = R%;%, it follows from the first of these asser-
tions that V¢ ¢*! = 0. This implies that (after possibly further restricting
O to some smaller open set containing p) there is a smooth scalar field ¢
on O such that ¢% = V%p. (Here we invoke proposition 4.1.6.) And since
we are assuming Ry, = 47 ptyt,, it follows from the second assertion that
VoV =V, ¢% = 4 1p. But C%,;, =t t, ¢* = 0 and, therefore,

ff f f
(4.2.28) Vo V%=V, Vi —C%, V"¢ =V, V.

ff .
So V4 V% = 4mp. That is, we have (R4).
For (R3), note that for all timelike curves in O with four-velocity field £¢,
f
E"Vn 8 =E"(Vad® = Clun £7) = E"VnE" — (tntm VO9) €7 £
= é‘.nvn%—a - Va¢-

f
S0 EMV,E% = 0 iff £" Y, £% = —Vi%.
f f
Finally, we consider the non-uniqueness of the pair ( V, ¢). Let ( V', ¢)
f
be a second pair on O. Consider fields C'%,; and ¢ on O defined by V' =

f
(V,C"%;) and ¢ = ¢’ — ¢. We first show that if the new pair satisfies the
stated conditions of the proposition, then it must be the case that V4V?y = 0
and C'%,, =t t,V*).

f f f
Assume (V', ¢') satisfies (R1)-(R4). Then—since (V, ¢) and (V, ¢') both
satisfy (R3)—we have

nf a fa n a Vlf/ a f/a/
E"VaE 4+ V%P =0 "V, =0« "V, 4+ V% =0
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f f f
for all timelike curves with four-velocity field £%. But V'%¢’ =V?%' =V?p+

f f f
V. And " V', §% = EM(V, §% — C"%n€™). So it must be the case that, for
all future-directed, unit timelike vectors £¢ at all points in O,

S

C/anm%.m%.n — va,g/[.
f
And from this it follows that C'%,,;, =ty t, V* = b, £, VY, as required.
(Recall the argument for a corresponding assertion in our proof of the
I I
Geometrization Lemma.) Now the curvature fields of (V,¢) and (V/, ¢') are
related by

a I fof,
Rped = R%ped +2tpbg Ve Vo

(The argument here is exactly the same as given for equation (4.2.24).)
f f ff

Since V and V'’ are both flat, it follows that t; V4V *¥ = 0 or, equivalently,

f I . f

VeVH = 0. But VOVA =V V). (Indeed, V¢ and V° agree in their

f
action on all vector fields A%, since V°A* = VA% — C* A" and C*,, = 0.) So
VeV%) = 0, and we are done with the first direction.
Conversely, assume that C'%,. = t;t,V*y and V*VPy =0. The first

f
assumption alone implies that V' is compatible with t, and h®. And by revers-

S
ing the steps in the preceding paragraphs, we can show that (V/, ¢’) satisfies
(R2) and (R3). That leaves only (R4). For this, note first that since C'%;, = 0,

f/ f/a/ f f/a/ /G f/n/ f fa/
VaVi' = VoV —C%, V" =V, V7%
fofa L1,
I f. a
=4 p+ Vo VY =471 p+V, VY.

(The penultimate equality holds because (é, ¢) satisfies (R3); and the argu-
ment for the final equality is exactly the same as the one given for equation
(4.2.28).) But VoV = 0 and, so, V,VPy =t,£"V,VPy, where £" is any
smooth, future-directed unit timelike field on O. It follows that V,V%) = 0

£ f
and, therefore, V), V'%¢’ = 47 p, as required for (R4). O

Just as with the Geometrization Lemma, only a small change is necessary
here if we want to work with a cosmological constant. If we replace equation
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(4.2.18) with Ry, = 47 p tyt, — A tyt,, then substitution for Ry, in equation
(4.2.27) yields V4 ¢®* + A = 47 p. The further argument that ¢* is of the
form V¢ is unaffected. So we are led to equation (4.2.11).

The Trautman Recovery Theorem tells us that if V arises as the geometriza-

f
tion of the pair (V, ¢), then, for any field ¢ such that vayb ¥ = 0, it also arises
. f f f
as the geometrization of (V/, ¢') where ¢’ = ¢+ and V' = ( V, t, £, V).

f
(V.¢)

N
v

f/ / /'
(V.o
. . . I, .
We certainly have sufficient freedom here to insure that V' is, in fact, dis-

tinct from é We can think of Vv as the “spatial gradient” of . The stated
condition on ¥, namely V*V?y = 0, is just the requirement that this spatial
gradient be constant on spacelike hypersurfaces. The condition can certainly
be satisfied without that gradient vanishing at all points. (Its value can change
from one spacelike hypersurface to another.) And if V#¢ # 0 at some point p,

f f
then V' cannot be the same operator as V. Indeed, let £% be the four-velocity
field of a timelike curve passing through p. Then at p,

f f f f
£ VLED = £9(Va 67 — (tatuVPW)E") = 62V, 7 = VPy # £9V, £

We can use the current discussion to capture in precise language the stan-
dard claim that gravitational force in (standard) Newtonian theory is a gauge
quantity. Consider a point particle with mass m and four-velocity £% that is

. . . ot
not accelerating with respect to V. According to the de-geometrization (V, ¢),
. . f . . .
the particle has acceleration £" v, £€% and is subject to gravitational force

f
—m V% = —mV%p. (We get this from (R3).) Rather than being subject to no
forces atall—the account given by the geometrized formulation of the theory—
it is here taken to be subject to two “forces” (inertial and gravitational) that

f
cancel each other. Alternatively, according to the de-geometrization (V', ¢'),
f f
it has acceleration £" V,£% = §" V,, £ — V% and is subject to gravitational

5 . o
force —m V'* ¢’ = —mV*p — mV*y. So the gravitational force on the particle is
determined only up to a factor mV*yr, where Vs is constant on any one spacelike
hypersurface but can change over time.
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Of course, if boundary conditions are brought into consideration, we regain
the possibility of unique de-geometrization. In particular, if we are dealing
with a bounded mass distribution—i.e., if p has compact support on every
spacelike hypersurface—then it seems appropriate to require that the gravita-
tional field die off as one approaches spatial infinity. But if V% is constant
on spacelike hypersurfaces and if it goes to 0 at spatial infinity, then it must
vanish everywhere.

4.3. Interpreting the Curvature Conditions

In this section, we consider the geometric significance of three curvature
conditions that appear in Trautman’s formulation of geometrized Newtonian
gravitation theory:

(43.1) Ry = 47mp taty,
(432) R%‘4 = R°4%,
(4.33) R, =0.

We start with the third. We know already (from proposition 4.2.4) that it
holds in a classical spacetime iff the latter is spatially flat (R** = 0) and, at
least locally, admits a unit timelike vector field £% that is rigid and twist-free
(Veb = 0). We also have the following more direct interpretation.

PROPOSITION 4.3.1. Let (M, t,, hab, V) be a classical spacetime. Then R“bcd =0
throughout M iff parallel transport of spacelike vectors within M is, at least locally,
path independent.

Proof. (If) This direction is immediate. Let p be any point in M, and let O be
an open set containing p within which parallel transport of spacelike vectors is
path independent. We can certainly find three smooth, linearly independent,
spacelike fields 6%, 5%, 6% on O that are constant (V, 6* = 0). (Start with three
linearly independent, spacelike vectors at p and parallel transport them, along
any curve, to other points in O.) For each one, we have

ROy 6" = =2V Vg 6° =0

at p. Since 6% 6% 6% span the space of spacelike vectors at p, it follows
that R%,.; 0" = 0 for all spacelike vectors o there. So R%4 h'™ o, = 0 for all
co-vectors ay, at p; i.e., R ;=R ;h" =0at p-
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(Only if) There are various ways to see this. But it is, perhaps, easiest
to make use of what we have established and reduce this to a claim about
a (different) flat derivative operator. If R% 4 = 0, then, by proposition 4.2.4,
given any point p in M, there is an open set O containing p and a future-
directed unit timelike vector field n* on O such that V*7® = 0. Now recall
our proof of the Trautman Recovery Theorem (proposition 4.2.5). Let ¢* be

f
the acceleration field of %, and let V be the derivative operator on O defined
f
by V= (V, C%,), where C%,. = tt. ¢*. We established in our proof of the

f
Recovery Theorem that V is flat. (And for this part of the proof, we did not need
the additional assumptions that appear in our formulation of the theorem,
namely R%,°; = R°;%, and Ry, = 47 p tyt.. We needed only R, = 0.) So

f
parallel transport of all vectors within O relative to V is, at least locally, path

independent. To complete the proof, it suffices to note that é and V agree
in their action on spacelike vector fields (and so agree in their determinations
of parallel transport for such fields on arbitrary curves). This is clear. For let
o® be a smooth spacelike vector field (defined on some open subset of O).
Then

Vaol=V,0b—Clyo" = V07,
as required, since Ct,,0" = (tatn ¢b) o"=0. O

The proposition also provides a physical interpretation of the third cur-
vature condition (4.3.3) in terms of the precession, or non-precession, of
gyroscopes. Suppose we hold two spinning gyroscopes at a point, side by
side, with their axes co-aligned. And suppose we then transport them (with-
out constraint) to another point along different routes. We cannot expect a
priori that, on arrival, their axes will still be co-aligned. There is no reason why
“gyroscope propagation” must be path independent. Indeed, we see from the
proposition that it will be path independent (at least locally) iff equation (4.3.3)
holds.

Now we consider the geometrized version of Poission’s equation R, =
47 ptyty. The interpretation we offered for Einstein’s equation in terms of
geodesic deviation has a close counterpart here. Almost everything carries
over intact from section 2.7. Let £% be a “geodesic reference frame” defined on
some open set in M—i.e., a smooth, future-directed, unit timelike vector field
whose associated integral curves are geodesics. Further, let A* be a smooth,
spacelike vector field along (the image of ) one of the integral curves y satisfying
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£eA% = 0. (Once again, we can think of A* as a connecting field that joins the
image of y to the image of an “infinitesimally close” neighboring integral
curve.) The equation of geodesic deviation

(43.4) E"Vy (EMVA%) = R®, 020 &4

carries over without alteration, as does the expression we derived for the
“average radial acceleration” of £,

R
(4.3.5) ARA = 3Rbd§ &%

The latter, in turn, leads to the following proposition (which is proved in almost
exactly the same way as proposition 2.7.2).

PROPOSITION 4.3.2. Let (M, t,, hab, V) be a classical spacetime, let p be a smooth
scalar field on M, and let p be a point in M. Then Poisson’s equation Ry, =
4 71 p taty, holds at p iff for all geodesic reference frames % (defined on some open set

4
containing p) the average radial acceleration of §* at p is given by ARA = — 37 P

We can make the result look even more like proposition 2.7.2 if we use
our alternate formulation of Poisson’s equation. In that case, the conclu-
sion is this: Poisson’s equation Ry, = 87 (j-ub — % [ ".7") holds at p iff for all
geodesic reference frames £% (defined on some open set containing p) the
average radial acceleration of £% at p is given by ARA = — 87” 7 (Tap — % tap T)
575",

Finally, we turn to the geometric interpretation of the second condition
in our list, R%,°; = R°;%,. This will require a good deal more work than the
others. We show that it holds in a classical spacetime iff the latter admits, at least
locally, a smooth, unit timelike field £ that is geodesic (§"V,£% = 0) and twist-
free (VI%€P) = 0). This equivalence is proved in Dombrowski and Horneffer
[13] and Kiinzle [34]. Our argument, at least for the “only if ” half (proposition
4.3.7), is a bit different from theirs. We begin with the “if ” half of the assertion,
which is straightforward.

PROPOSITION 4.3.3. Let (M, ta,h“b, V) be a classical spacetime, and let p be

any point in M. Assume there is a smooth, future-directed, unit timelike field £%,

defined on some open set containing p, that is geodesic and twist-free. Then R*,¢ ; =
c a

R®jpatp.
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Proof. It suffices for us to show that, at p, contracting (R%°, — R° f*,) with
(i) €29, (i) hP %, and (iii) £Ph% (or hP" &%) yields 0. The claim in case (ii)
comes free, without any assumptions about &%, since R¥“ = R%% holds in
any classical spacetime. (Recall equation (4.1.30).)

For case (iii), we need only the fact that £% is twist-free. We must show that
R“b“f,:b = Rmbéb . To do so, we recast the right side using symmetries of the
curvature field, namely Ry =0, R“b(c g = 0, and R(abc) ;= 0. (The first two
hold for any derivative operator. The third follows from the compatibilty of V
with h®. Recall equation (4.1.26). We use the symmetries with some indices
in raised position. So, for example, since R% , + R%, +R% , =0, it follows
that R% 4 + R ¢ + R4 = 0,)

Rcsabgb — —Rsmbéb — Rsbca%.h + Rsubc%_b — Rsbméb _ Rasbc;g-b
— Rsbcasb+(Racsb+Rabcs)gb — Rsbcagb_’_Rabcsé:b _ Rcasb%-b

— Rsbcasb_{_ Rabcs;g_b + (Rcbas+ R ;?)Eb-
Hence,

1
csub%.b — E( sbca Eb + Rabcs%.b + Rcbas)sb
— _(Vlc V“J“g‘s + yle VSJ%‘“ + V[a VSJEC).
If we now expand the final sum and use the fact (for the first time) that
vagb = vhge we arrive at
Rcsab %.b — _(VC Vs%.u _VS vcsa) — Rubcsé.b'

Finally, we consider case (i). Here we need both the fact that &% is twist-free
and that it is geodesic. We must show that R? débé d = Re PR bgd__j e, that
R%f,& bgd is symmetric in a and ¢. But

Rﬂbcd sbgd — _éd (VC Vd Sﬂ _ Vd VC %-{1)
=~V (E V) + (VOEN)(VaEY) +E7 Vg VOB
The first term in the final sum vanishes since £% is geodesic. The third is sym-
metric in @ and ¢ since §% is twist-free. The second is symmetric in a and ¢ for
the same reason, since (V¢ £4)(Vy £%) = (V¢ £°)(V,4 £%) = h¥"(V, £°)(V4 £%) =
(Vu §)(V™EY) = (Va E)(VEET). O
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Next we consider a particular class of derivative operators that satisfy the
curvature condition (4.3.2) (in addition to being compatible with the back-
ground metrics t, and h%).

PROPOSITION 4.3.4. Let (M, t,, hob, V) be a classical spacetime, and let €% be any
smooth, unit, future-directed timelike vector field on M. Then there exists a unique
derivative operator V on M such that (i) V is compatible with t, and h®® and
(ii) £% is geodesic and twist-free with respect to v.

When conditions (i) and (i) obtain, we call V the special derivative operator
determined by £%. It follows immediately from the preceding proposition that
all special derivative operators (determined by some field) satisfy equation
(4.3.2). We shall soon verify (in proposition 4.3.7) that they are the only
derivative operators that do so.

Proof. Let I:Lub be the projection field associated with &%, let k, = ]:Ln[b Va&", let
C%c = 2t ko), and, finally, let V = (V, C%,). Then, by proposition 4.1.3 , v
is compatible with t, and h®. Moreover, we claim, &% is geodesic and twist-free
with respect to V. To see this, note first that since ﬁlab hbe = §,b — 1, &b we have

1 A N 1 N
Kab = hbr’(ar = E hbr(hnrva %.n - hnavr %.n) = E(Vu Sb - hnavh %.n)

and, therefore,

Kab — 1 (Va&.b _ Vb Sﬂ) — V[ﬂsb]
2 )

1
K€" = SV, E".
Now
Vasb = vaéb - Cbargr = va%‘b - (taKrb+trKub)‘§r~
Hence, since kg, is anti-symmetric, we have
%[usb] — V[ugb] _ Kab — 0]
£V, 80 = 89V, 8" — 2k, = 0,
as claimed. So we have establighed existence.

For uniqueness, suppose V= (%, E“bc) is a second derivative operator on
M that satisfies conditions (i) and (ii). We know from proposition 4.1.3 (since
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both ¥ and V are compatible with t, and h®?) that there is a smooth, anti-
symmetric field ), such that (Nf“bC = 2h®" ty, kcyn. We show that kg, = 0. Now
KenECE™ = 0, since kg, is anti-symmetric. So it will suffice for us to show that
Kken §°R™ = 0 and Koy hh"™ = 0. Since £% is geodesic with respect to both
V and %, we have, first,

0=§V 8" =& (V£ —C4 §") = —C, 66" = -2k £ h™".
Next,
%r %.s — K gcss A (gcgs _ "'sbc Eb) — %rss K

So, since VI g5 = 0 = VIr g9 (and since k¢, is anti-symmetric), we also have
W h™ken = 0. O

Now we extend proposition 4.1.3 and consider the most general form
for a connecting field C  that links two derivative operators on M that are
compatible with t, and h® and also satisfy equation (4.3.2).

PROPOSITION 4.3.5.Let (M, tg, hob, V) be a classical spacetime such that R*,°y =
R°y%. Let V' = (V, C9 ) be a second derivative operator on M where C° =
2 W 4y, keyn and kg is a smooth, anti-symmetric field on M. (We know this is the
general form for a derivative operator on M that is compatible with t, and h®.)
Then R'%, g = R'°4% iff kgp is closed; i.e., Vi kgp) = 0. (Here, of course, R'® .4 is
the Riemann curvature field associated with V'.)

Proof. We know (from problem 1.8.1) that

/a — a a n a
R¥yeq = Ripg +2 Vie Clpy +2 Cyp Cype

In the present case, where C = = 2, )%, we have C", C% = tgtyic"kn® +
tg tc k"™ and, hence,

2 C’Z[C C“d]n = 2ty g ke "ken”.
Similarly, Ve C%, = t4 Vo i,® +1, Ve kg® and, hence,
2V Cyp = 2t Ver k5" + 21 Vic kg™
If we now raise the index ¢ in all these terms, we arrive at
R% =R 4+ (taVirp® +1, Virg® —ty Vaic™) +ty tg ™ 1,
and, therefore, also

R/Cdab = R%+ (tp Vg +1t3 Vi — 13V, I(M) + tyty ™ iyt
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We are assuming that R*,°; = R°;%,. And, by the anti-symmetry of i,
KM kp® = k™ k. So we see that R'%,°; = R'°;%, iff the respective middle
terms (in parentheses) in the two lines are equal—i.e., iff

@436) by (— V" + V" — Vg =1t (V" + V" — Vi k®).
In turn, this equation holds iff
(43.7) —V%ks" + Vg — V™ =0.

(Why? If equation (4.3.7) holds, then both sides of equation (4.3.6) vanish.
Conversely, assume equation (4.3.6) holds, let Y% = (— V% k3" + VOiy* —
Vi k), and let £% be any unit timelike vector field. Contracting both sides
of equation (4.3.6) with £2h%" yields h% % ; = 0. Contracting both sides with
b yields £%49¢; = 0. So it must be the case that % ; = 0.) We can express
equation (4.3.7) in the form

(4.3.8) h* W% Vi kg = 0.
But this condition is equivalent to
(4.3.9) Virksg) = 0.

For if equation (4.3.8) holds, then, by the anti-symmetry of V|, k4, contraction
with £7£5€%, £7&5h" TR, and h@h*hi" all yield 0. Thus, as claimed,
R'%)° 4 = R'°4%, iff i,y is closed. g

Now we make precise a sense in which condition R*,°; = R® /*, rules out
the possibility of “spontaneous rotation.”

PROPOSITION 4.3.6. Let (M, t,, h®?, V) be a classical spacetime such that R f, =

R® f*,. Let £* be a smooth, future-directed, unit timelike field on M that is geodesic
(with respect to V). Then its associated rotation and expansion fields satisfy

(4.3.10) E"V, 0™ = 20" 0,0,

Hence, given any integral curve y: I — M of &%, if €% is twist-free (0™ = 0) at
one point on y[I], it is twist-free at all points on it. (Or, more colloquially, if it is
twist-free at one time, it is twist-free at all times.)

Proof. We know that V!¢ g81 = % _(This follows immediately from equation
(4.1.43).) Hence,

zsnvn wab — thamvnvm %.b _ thbm anmga

= E"h (V8 = Rp8) = &7 (V£ = R 8°).
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Since &% is geodesic,

E"h YV €8 = B [ V(6" V") = (V") (Vo) | = — (V6" (Vo)
and, similarly, —&"hP"V,,V, % = (VP£")(V,£%). Furthermore, since
RV §um) = 0,

TR, £ EMO R, 8 = (RO, — RO, ) 67
= (R - ROE) 7 = 0.
So,
26"V, 0 = —(VUE")(Vuth) + (VPE") (V£

= —[2VI%" £ V£ (V,a8P) + [2 VIPEM + ViEP(V,£7)
= —2(VIagmy (v, + 2 (VIPeM)(v,69)

= —20™(0,° + wn?) + 2 0" (0,% + wn?)

= _20™0,b +20"0,% = 40" 9,1,

Nowlety: I — M be anintegral curve of &%, and suppose w,;, = 0 atsome
point y (so). It follows from the basic uniqueness theorem for systems of first-
order ordinary differential equations that equation (4.3.10) will be satisfied at
all points on y[I] iff w,, = 0 vanishes everywhere on that set. (To see this in
detail, letdy, . . ., 6, be a basis for the co-tangent space at some pointon y [I] that
is orthonormal with respect to h® (in our extended sense of “orthonormal”).
We can extend the vectors (by parallel transport) to fields &, on y[I]—we use
the same notation—that satisfy & ”Vn&a = 0. Since V is compatible with hab,
the generated fields will be orthonormal everywhere. Now consider the scalar

(coefficient) fields & = wf &, 6. Equation (4.3.10) can then be expressed as a
system of first-order differential equations,

i
dw 11 12 44
E =f;J((,(), w,... 7(,l))7

to which the uniqueness theorem is applicable.) O

We have claimed that condition (4.3.2) holds iff, at least locally (in a
neighborhood of every point), there exists a unit timelike vector field that is
geodesicand twist-free. We have proved the “if ” half of the claim in proposition
4.3.3. Now, finally, we turn to the converse.
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PROPOSITION 43.7. Let (M, t,, h®®, V) be a classical spacetime such that R f, =
R® f*,. Then, given any point p in M, there is a smooth, future-directed, unit timelike
vector field, defined on some open set containing p, that is geodesic and twist-free
(with respect to V).

Proof. LetpDbe given. Our proof will proceed in two steps and make reference to
three smooth, future-directed, unit timelike fields: &%, £'%, and &§”%. (They will
be defined on open sets O, O, and O”, respectively, wherep € 0" € O’ C O))
&% will be an arbitrary field. §'* will be twist-free. §”% will be geodesic and
twist-free. (It is the existence of the third that we need to establish.)

(Step 1) Let £* be a smooth, future-directed, unit timelike field defined
on some open set O containing p. By proposition 4.3.4, there is a derivative
operator ¥V on O such that ¥V is compatible with t, and h®, and such that £% is
geodesic and twist-free with respectto V. Let C %, be the connecting field (on O)
such that V = (%, C%.)- Now, by proposition 4.3.3, ﬁabcd = ﬁ“d“b. So, since
both Vand V satisfy equation (4.3.2), it follows by proposition 4.3.5 that there is
a smooth, closed, anti-symmetric field «,, on O such that C . = 2 h*" t; k¢yn.
Since kg, is closed, we know by proposition 1.8.3 that it is, at least locally,
exact. So there is an open subset O’ of O containing p, and a smooth field «,
on O such that k), = %[a kp). Now consider the field £'* = £%+«% on O'. It
is a smooth, future-directed, unit timelike field. (It is of unit timelike length
since t;c® = t;h%ky, = 0.) We claim that it is twist-free with respect to V.
We have

v, é__/a =V, (ga +Ka) — %n (Su +Ka) _ Camn(gm +I(m).
But,
Camn(gm +Km) = (tm Kna+tn Kma)(sm +Km) = Kna + 1t Kma(sm +Km)'

Hence,
v élu — %nsa + %nl{a e

and, therefore (since £% is twist-free with respect to V, and Kap = %[u Kp1),
Avall S/a] — %[nsa] + %[nKa] —™—0.

(Step 2) So far, we established the existence of a field £’%, defined on some
open set O’ containing p, that is twist-free with respect to V. Now let S be a
spacelike hypersurface within O’ that contains p. Then we can find a smooth,
future-directed, unit timelike vector field §”%, defined on some open subset O”
of O’ containing p, that is geodesic with respect to V and agrees with £% on S.
(We first restrict £'% to S, and then use each vector in this restricted field £'%s
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to generate a geodesic. This gives us a congruence of curves. We take £”% to be
its tangent field.) Now, since £'# is twist-free on S, so is £”%. (The difference
field (§”% — &'%) vanishes on S. So, atany point of S, its directional derivative in
any spacelike direction vanishes as well; i.e., h*" V,,(£”? — £’?) = 0. Hence, on
S, via gl — ylagrbl — 0.) But now, since the geodesic field £”¢ is twist-free
on S, it follows from proposition 4.3.6 that is it everywhere twist-free. So we
are done. O

4.4. A Solution to an Old Problem about Newtonian Cosmology

The geometrized formulation of Newtonian theory provides a satisfying
solution to an old problem about Newtonian cosmology. We present it in
this section.’

At issue is whether Newtonian gravitation theory provides a sensible pre-
scription for what the gravitational field should be like in a hypothetically
infinite, homogeneous universe. Let us first think about this in terms of a
traditional, non-geometrized, three-dimensional formulation of the theory.
Let (R3,g,;) be three-dimensional Euclidean space. We take it to represent
physical space at a given time. Further, let p and ¢ be two smooth func-
tions on R? that, respectively, give the mass density and the gravitational
potential at different points of space.* We assume that they satisfy Poisson’s
equation V,V%p = 41 p. (Here V is the derivative operator on R* compatible
with Zab-)

Suppose that we are dealing with a homogeneous distribution of matter; i.e.,
suppose that p is constant. Then, presumably, the gravitational field associated
with this matter distribution should be homogeneous as well. (Why should
it be different here from the way it is there?) The gravitational force felt by a
particle of unit mass at any point is given by —V*%®¢. So, it would seem, the
natural way to capture the homogeneity condition on the gravitational field is to
require that the field V#¢ be constant—i.e., require that V;,V%¢p = 0. But now
we have a problem. If V;, V%) = 0, and if Poisson’s equation is satisfied, then
47 p = V,V% = 0. So we cannot satisfy the homogeneity condition except in
the degenerate case where the mass density p is everywhere 0. Here is another
version of the problem. It directs attention to a particular class of solutions to

3. For further discussion of the problem and its history, see Norton [43, 44, 45] and
Malament [40].

4. Caution: we have previously understood p and ¢ to be objects defined on a four-dimensional
spacetime manifold, and shall soon do so again. But now, temporarily, we take them to be defined
on a three-dimensional manifold (representing space a given time) instead.
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Poisson’s equation V,V%p = 4 7 p that do exist in the case where p is constant
(Va p = 0). Let o be any pointin R?, and let x* be the position field determined
relative to 0. So V,x? = 8,7, and x = 0 at o. Let us say that a smooth field ¢
on R is a canonical solution centered at o if

4
(4.4.1) Vi = 37 x*
i.e., if V% is a spherically symmetric, outward-directed, radial vector field,
centered at o, whose assignment to any point p has length %n pr, where r is
the Euclidean distance between o and p.

Note that if this condition holds, then (since V, p = 0),

a 4 a
v,V ¢=§np(VaX ) =4mp.

So canonical solutions centered at o (if they exist) are solutions. And they
certainly do exist; e.g.,

_2 n
¢—§7TP(X11X ).

Not all solutions to Poisson’s equation (in the present case where p is con-
stant) are canonical solutions centered at some point or other. (If ¢ is a solution,
then so is (¢ + ), where ¥ is any smooth field that satisfies V, V%) = 0.) But
canonical solutions are the only solutions that satisfy a certain natural con-
straint, and for this reason they are the only ones that are usually considered
in discussions of Newtonian cosmology. The constraint arises if we consider
not just the distribution of cosmic matter at a given time, but also its motion
under the influence of that potential. It turns out that if we require that the
motion be isotropic in a certain natural sense, then all solutions are ruled out
except those that are canonical for some center point o. (We shall, in effect,
prove this. See proposition 4.4.3.) In any case, our problem re-emerges when
we direct our attention to the class of canonical solutions. The gravitational
field associated with any one of them is a radial field that vanishes at a unique
center point. Why, one wants to ask, should there be any such distinguished
point in a homogeneous universe? And why should it be one point rather than
another; i.e., why should any one canonical solution be a better choice for the
gravitational field in a homogeneous universe than another?

That is the problem. A solution, or dissolution, can be found in the recog-
nition that the gravitational field (in standard formulations of Newtonian
theory) is a kind of “gauge field"—i.e., a field that is, in general, systematically
underdetermined by all experimental evidence. Despite appearances, canon-
ical solutions centered at different points really are empirically equivalent.
No experimental test could ever distinguish one from another (or distinguish
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the center point of any one of them). Canonical solutions centered at differ-
ent points should be viewed as but alternative mathematical representations
of the same underlying state of gravitational affairs—a state that is perfectly
homogenous in the appropriate sense.

One can certainly argue for these claims directly, without reference to
geometrized formulations of Newtonian theory.> (See, for example, Heck-
mann and Schiicking [31] and Norton [44].) But some insight is achieved if
we do think about this old problem in Newtonian cosmology using the ideas
developed in section 4.2. We can develop an account of Friedmann-like cosmo-
logical models within geometrized Newtonian gravitation theory, and then recover
the class of canonical solutions (centered at different points) as but alternative “de-
geometrizations” of the initial curved derivative operator—exactly as described
at the end of that section. The choice between different canonical solutions
emerges as a choice between different ways to decompose into “gravita-
tional” and “inertial” components the net force experienced by a point particle.
Nothing more.

Before proceeding, we give an alternative characterization of the class of
canonical solutions—at least in the case of interest where p > 0—that will be
convenient later.

PROPOSITION 4.4.1. Let (R?, g,;) be three-dimensional Euclidean space, and let
p be a constant field on R*> with p > 0. Then for all smooth fields ¢ on R3, the
following conditions are equivalent.

(1) ¢ is a canonical solution (to Poisson’s equation V* V, ¢ = 41 p) centered
at some point in R3.

4
2) V¢vh g = gnpg“b.

Proof. One direction is immediate. If ¢ is a canonical solution centered at
point o (and if x“ is the position field relative to o),
4 4 4
vevhe = ve (gnpxb) =37p (V' x") = pg™.
Conversely, suppose ¢ satisfies condition (2). Let ¢’ be a canonical solution
centered at some point o/, let x'* be the position field relative to o/, and let P
be the difference field

5. The important point is that if ¢ and ¢’ are canonical solutions, based at 0 and o', respectively,
the difference field (V¢ — V®¢’) is constant, and constant gravitational fields are undetectable.
Only field differences can be detected. The difference field is constant since

4 4 4
Va(VP¢—VP¢) =V, <§ﬂpxb —37p x”’) =37 P —8") =0.
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4
kb= vy — vby = vhy — 37 ox'P.
Then «? is constant (V* «? = 0) and

vbe = %np ()(/b+(%)xb) .
Now let o be the (unique) point where the vector field on the right side vani-
shes. (We can think of o as the point one gets if one displaces o’ by the vector
—(3/4 7 p)kP. This makes sense since we can identify vectors at different
points in three-dimensional Euclidean space.) Then (x'? 4 (3/4 7 p) «'?) is just
what we would otherwise describe as the position field x? relative to o. (Note
that when we apply V, to the field, we get §,”.) So ¢ qualifies as a canonical
solution centered at o. O

Note that the proposition fails if p = 0. In that case, the implication (1) =
(2) still holds, but not the converse. For then all canonical solutions have
vanishing gradient (V% = (4/3) 7w p x* = 0), whereas condition (2) requires
only that V% be constant.

Condition (2) in the proposition naturally lifts to the context of classical

spacetimes where it becomes
azb 4 ab
(4.4.2) \% V(j):gnph .

(That is why it will be convenient later.) The latter holds iff the restriction
of ¢ to any spacelike hypersurface S (together with the restrictions of V and
heb to S) satisfies (2).

Let us now shift back to the framework of geometrized Newtonian gravita-
tion theory. Our first task is to introduce a class of cosmological models that
correspond to the Friedmann spacetimes we considered in section 2.11. We
could proceed just as we did there—i.e., start with a condition of spatial homo-
geneity and isotropy (relative to some smooth, future-directed, unit timelike
field £€%) and derive the consequences of that assumption. We could show
again that £% is necessarily geodesic, twist-free, and shear-free; that any vector
field definable in terms of the basic elements of structure t,, h*, V, and &% is
necessarily proportional to £%; and so forth. Instead, we proceed directly to an
explicit characterization.

Let us first take a (classical) cosmological model to be a a structure of the
form (M, t,, hob, V, &%, p), where (M, t,, hob, V) is a classical spacetime; §% is
a smooth, future-directed unit timelike field on M; and p is a smooth field
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on M. We take &% be the four-velocity of a cosmic fluid that fills all of space-
time, and take p to be the mass-density of the fluid. Next, let us say that
(M, tg, heb v g9, p) is Friedmann-like if the following conditions are satisfied.

(1) &%1is geodesic, twist-free, and shear-free; i.e.,
1
(44.3) Vel = g(zsa”—tagb)o.

(Here 0 = V, £%1is the scalar expansion field associated with £%. Note that
equation (4.4.3) follows from equations (4.1.42), (4.1.45), and (4.1.12). In
more detail, since wy, = 0, = 0 and £"V,, €% = 0, we have

1 - 1
Vu";:b = eab = gan hnb = <§ 0 han) hnb = g(aab - tﬂgb)e')

(2) V*p = 0;i.e., p is constant on all spacelike hypersurfaces.
(3) Poisson’s equation R, = 4 7 p t,, holds.

Note that we have not included Trautman’s two supplemental integrabil-
ity conditions (R*°;, = R° f*, and R% ; = 0) in the list. We have not done so
because, as we now show, they follow from the other assumptions. So in
this special case—the case of Friedmann-like cosmological models — the differ-
ence between our two formulations of geometrized Newtonian theory collapses. (In

section 4.5, we shall consider another case where it collapses.)

PROPOSITION 4.4.2. Let (M, t5, h®, V,£%, p) be a Friedmann-like cosmological
model. Then the following conditions hold.

(1) R*, =R}, and R% 4 =0.
(2) £"Vp0 =—47p — 6%

Proof. (1) The first condition, R*,°; = R%*y, follows immediately from propo-
sition 4.3.3. (We need only that £% be geodesic and twist-free for this much.)
For the second condition, R%; = 0, it will suffice to establish the existence,
at least locally, of a smooth, future-directed, unit timelike field n* on M that
is rigid and twist-free (V*5? = 0). For then we can invoke proposition 4.2.4.
Let p be any point in M. All Friedmann-like cosmological models are spa-
tially flat (by proposition 4.1.5). So there must be an open set O containing p
and a smooth spacelike field x* on O such that V*x? = h%. (Recall the very
beginning of our proof of proposition 4.2.3.) Now consider the field

. 1
n“=§“—§9x“ 0
o+
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on O. It is certainly a smooth, future-directed, unit timelike field. We claim
thatitis rigid and twist-free, as required. To see this, note first that, by equation
(4.4.3),
1 1 1 1 1
Vﬂ bzvﬂ b_ieva b_ivae b: 79hab_79hab _7va9 b.
n § =30V —3(ViO)x 3 3 3 (V70)x

Furthermore, V#0 = 0. This follows, since by equation (4.4.3) and Poisson’s
equation,

vae — huﬂ vnvm%-m — _han Rmmmg’r +han vmvnsm
1

= Y Ry &4V (VA E™) = —h (47 pbry) E + Vi (%hum 9) = 3V

So Vb = 0, as claimed.
(2) Here we start as we did in our derivation of Raychaudhuri’s equation
(2.8.17):

£°V,0 = £°V,V, 80 = —£9Rb | €€ 1 £9V,V, £0
= — R £°6% + Vp(E9V, E0) — (V, £%)(Va &D).

1
But now, by equation (4.4.3), £V, £* = 0 and (V, £%)(V, %) = 3 62. And by
Poisson’s equation (the third condition in our characterization of Friedmann-
like cosmological models), Ry, £°6* = 4 7 p. So we are done. O

Note that condition (2) in the proposition—the equation that governs the
rate of change of § in Friedmann-like cosmological models— agrees with equa-
tion (2.11.9) in the case where p = 0. This makes sense. Though in general
relativity the “gravitational field” generated by a blob of perfect fluid depends
on its internal pressure as well as on its mass density, only the latter plays a
role in Newtonian gravitation theory.

Now we make precise our claim about the recovery of canonical solutions.
Condition (4.4.4) in the following proposition is the condition we motivated
using proposition 4.4.1. At least if p # 0, we can understand it to capture
the claim that the restriction of ¢ to any spacelike hypersurface is a canonical
solution to Poisson’s equation. (If p = 0, it asserts instead that V¢ is constant
on spacelike hypersurfaces.)

PROPOSITION 4.43. Let (M, 1, hob v, &%, p) be a Friedmann-like cosmological
model, and let ¢ be a smooth field on some open set in M. If ¢ arises as part of a

f
de-geometrization (V, ¢) of V (on that open set), then
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a b 4 ab
(4.4.4) \% V¢:§nph .
Conversely, if ¢ satisfies equation (4.4.4), then, at least locally, there is a derivative

f S , o .
operator V such that (V, ¢) is a de-geometrization of V. (Once again, to say that

(V, @) is a de-geometrization of V is to say that it satisfies conditions (R1)—(R4) in
the Trautman Recovery Theorem.)

Proof. We begin the proof of showing that, given any point p in M, there is an

. o4
open set O containing p and some de-geometrization (V*, ¢*) of V on O such
that

4
(4.4.5) vevh g = 37P heb,

This will require a bit of work. But once we have established this much, our
principal claims will follow easily.

We begin just as we did in our proof of the Trautman Recovery Theorem.
(Note that all the assumptions needed for the theorem hold. In particular, the
supplemental integrability conditions R%,°; = R°;*, and R% 4 = 0 hold. We
know this from proposition 4.4.2.) Let p be any point in M. Then we can find
an open set O containing p, and a smooth, future-directed, unit timelike field

n® on O that is rigid and twist-free. Now consider the derivative operator V*

f
on O defined by V* = (V, C%,), where C%,. = t,t, ¢% and ¢p* = £"V, 7. As
we know from our proof of the Trautman Recovery Theorem, we can (after

possibly restricting O to some smaller open set containing p) find a smooth

scalar field ¢* on O such that ¢* = V#¢* and such that (é*, ¢*) qualifies as
a de-geometrization of V on O. We claim that ¢* satisfies equation (4.4.5).

To see this, consider the field £%. (It gives the four-velocity of matter in our
Friedmann-like cosmological model.) It is a geodesic field with respect to V.
So, by condition (R3) in the Trautman Recovery Theorem,

f f
%.n van %.a - _ V*a¢*'

Hence,
f*uf*b* f*a nf* b f*anf* b
(4.4.6) VA VT =V ETVLRE)=—(VTHEY)(VLE)
nf*af* b
—E" VIV E
f*anf* b nf* f*ab
= —(VHENVRE)-E" VL, VTP E.
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f
(We use the fact that V* is flat for the final equality.) Next, we derive an

f
expression for V*, €. We have, by equation (4.4.3),
f
V5" = Vi k= Coum €™ = Vi & — (1wt 9")E™ = Vi §” — 1 8"
1
= g(anb —t, EP)0 —t, ¢,

It follows that
f*a b 1 b

=-h%0.

Ve 3
. B S . .
Substituting these expression for V¥, §” and V*# £” in equation (4.4.6) yields
foadf 1 1 f

(44.7) vAls V*b 4)* — _§ hab 02 _ g habg_.n V*ng-
Now by the second clause of proposition 4.4.2,

f 1
EMV,0 =E"V,0 = —§92—47t,0.

f
So, after substituting this expression for £" V*, 0 in equation (4.4.7), we have

é*a é*bd)* _ %n o h,
But
é*a é*b(p* _ ém VP ¢ = b (Y, V0 ¢ — CPp V" 6%
= h¥™ [V V" — (b 1 ¢7) V" ¢¥] = V* VPg*,
So

Vavb(z)*:gn,phab’

as claimed. This completes the first part of the proof.
Now let ¢ be a smooth field on some open subset U of M. Let p be any
point in U. We know from what we have just proved that we can find an open

f
subset O of U containing p and a de-geometrization (V*, ¢*) of V on O such
that ¢* satisfies equation (4.4.5). Suppose first that ¢ arises as part of a de-

o] -
geometrization ( V, ¢) of V on U. Then we have two de-geometrizations of V
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f f
on O, namely (V*, ¢*) and (V, ¢). By the final part of the Trautman Recovery
Theorem governing the non-uniqueness of de-geometrizations, it follows that

4
0=V“Vb(¢—¢*)=V“Vb¢—§ﬂph“b.

f f
(Here the roles of (V/, ¢') and (V, ¢) in that theorem are played, respectively,

f f
by (V,¢) and (V*, ¢*).) So ¢ satisfies equation (4.4.4) throughout the open set
O containing p. But p was chosen arbitrarily. So ¢ satisfies equation (4.4.4)
everywhere in U.

Conversely, suppose ¢ satisfies equation (4.4.4). Then, by equation (4.4.5)
again, we have

4 4

on O. Hence, by the final part of the Trautman theorem again, if we set

f f f
V = (V¥ . V4@ — ¢*)), then (V, ¢) qualifies as a de-geometrization of V
on O. 0O

Let us think about what we would experience if we resided in a Friedmann-
like Newtonian universe of the sort we have been considering. Suppose we
were at rest in the cosmic fluid—i.e., moving along an integral curve of the
background four-velocity field £%. Then we would experience no net force and
would observe all other mass points in the fluid moving uniformly away from,
or toward, us. If we were inclined to describe the situation in terms of tradi-
tional, non-geometrized Newtonian theory, we would say (adopting, implicitly,
aparticular de-geometrization) that the the gravitational field is centered where
we are and vanishes there. (That is why we experience no net force.) But we
would offer a different account for why our colleagues co-moving with other
cosmic mass points experience no net force. From our point of view (i.e.,
according to our de-geometrization), they do experience a non-zero gravita-
tional force. But it is perfectly balanced by a corresponding “inertial” force.
And it is for this reason that they experience no net force. (Of course, those
colleagues have their own story to tell with the roles reversed. They take
themselves to be the ones residing where the gravitational field vanishes.)

4.5. Geometrized Newtonian TheorySecond Version

In this section, we prove a recovery or de-geometrization theorem for the
Kiinzle-Ehlers version of geometrized Newtonian gravitation theory. It is the
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counterpart to the recovery theorem we proved for the Trautman version
(proposition 4.2.5) and actually subsumes that earlier result as a special case.

We also consider a second set of special circumstances in which the differ-
ence between our two versions of the theory collapses. We saw in section 4.4
that Trautman’s second integrability condition R% ;; = 0 holds automatically
in Friedmann-like cosmological models. Here we show that it holds automat-
ically if we restrict attention to classical spacetimes that are, in a certain weak
sense, asymptotically flat.

We start with a lemma. Our proof of the Trautman Recovery Theorem
turned on the availability of a rigid, twist-free field n*. Existence was guaranteed
by the second integrability condition (proposition 4.2.4). Now we have to work
with less. We cannot count on the existence of rigid, twist-free fields. But, as
we now show, we can still count on the existence of fields that are, at least,
rigid. And this will suffice. To prove the new recovery theorem, we need only
rerun the argument for the old one using a field n* that is merely rigid. The
computations are a bit more complicated, but no new ideas are involved.
(We could have proved this version of the theorem first and then recovered
the Trautman version simply by considering what happens when 5 is also
twist-free. But there is some advantage to taking on complications one at a
time.)

PROPOSITION 45.1. Let (M, tz, h®®, V) be a classical spacetime that is spatially
flat (R4 = (). Then, given any point p in M, there exist an open set O containing p
and a smooth, future-directed, unit timelike field n® on O that is rigid (V®n?) = 0).

Proof. Letpbeanypointin M, andlety: I — M be a smooth, future-directed,
timelike curve—with four-velocity field 7®—that passes through p. We claim
first that we can find three smooth, linearly independent, spacelike fields

%, 6%, 6% on some open set O containing p with these properties (for all i):

(i) h =55 +5°5b +595b.
(i) V4o = 0.
(iil) 7"V, 0% = 0 on y[I].

We can generate the fields as follows. First we find three linearly indepen-
dent, spacelike vectors at p that satisfy condition (i)—just as we did in the proof
of proposition 4.1.4. Then we extend the vectors to an open set containing p
in two stages. First, we extend them by parallel transport along y. (So condi-
tion (iii) is satisfied.) Then we extend them “outward” from y[I] by parallel
transport along spacelike curves. The latter operation works this way. Let S be
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a spacelike hypersurface that intersects the image of y at the point q. Then,
because of spatial flatness, parallel transport of spacelike vectors within S is,
at least locally, path independent. (Recall proposition 4.1.5.) So we can unam-
biguously extend the triple 6%, &% 6 at q by parallel transport to points on
S sufficiently close to g. The fields generated by this construction are “con-
stant in spacelike directions”; i.e., A”Vn&“ = 0 for all spacelike vectors A%.
The latter condition is equivalent to (ii). Finally, we claim, condition (i) holds
everywhere. Consider the difference field (h* — (6% 6P 4+ &% 5% + 69 6Y)). It
vanishes at p. Hence, by (iii), it vanishes along y[I]. And therefore, by (ii), it
vanishes on spacelike hypersurfaces that intersect y[I]. So it vanishes every-
where. Thus, as claimed, we can find three smooth, spacelike fields 6%, 6%, 5%
on some open set O containing p that satisfy the three listed conditions. And
the fields must certainly be linearly independent throughout O—because we
started with three linearly independent vectors at p, and linear independence
is preserved under parallel transport.

It follows from (ii), of course, that V1 & 5%) = 0 for all i. So, restricting O to

a smaller open set containing pif necessary, we can find smooth scalar fields

x on O such that 6% = V*x = ha V, x. (Here we invoke proposition 4.1.6.)
We can pin them down uniquely by requiring that they assume the value 0 at
points on y[I]. This guarantees that

(4.5.1) " Vnﬁic =0

on y[I1N O for all i. And, by condition (i),

wsa B (Va%) (V) = 3

holds everywhere for all i and j. (Why? Contracting (i) with (V, gc) yields
= hob Vb X Z v, fc).

But the vectors 6%, 5%, 6% are linearly 1ndependent atevery point. So o Vb %=
8;j and, therefore, h(V, x X)(Vo k) = &PV, & = 8ij.)

Now we extend the tangent field 7* to a srnooth field #* on O by requir-
ing that t,n* =1 and n”Vnoic =0 hold everywhere for all i. (The fields
ta, (Va 316), (Va azc), (Va 93c) form a co-basis at every point, and so a vector field
is uniquely determined by its contractions with them.) \X/e claim that the

resultant field »* is rigid; i.e., £, h = 0. We have £y x=n an =0 for
all i. And £,(Va ) = Va(£Ly9) for all smooth scalar ﬁelds @. (This is easily
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checked using proposition 1.7.4.) So £,,(V, 9ic) = Vu(£y 9ic) = Oforalli. Hence,
by equation (4.5.2),

0= £,(r" (V4 %) (Vy ) = (Va %) (Vp %) £, b

for all i and j. But we also have £, t; = 1"V, t, +1,Van™ =0 and, there-
fore, t, £,h% = £,(t, h%’) = 0. Thus, contracting .£,,h*® with any of the basis

1 2 3
elements t,, (V4 X), (V4 %), (Va X) yields 0. So £,h% = 0, as claimed. O
Now we turn to the recovery theorem.

PROPOSITION 4.5.2. (Kiinzle-Ehlers Recovery Theorem) Let (M, t,, h*, V) be a
classical spacetime that satisfies

(4.5.3) Rpe =47 p iy,

(4.5.4) R*, 4 = R°%,

for some smooth scalar field p on M. Let n* be a smooth, future-directed, unit
timelike vector field on some open subset O of M that is rigid. (Existence of such
fields, at least locally, is guaranteed by the preceding proposition and proposition

4.1.5.) Let hyy be the projection field associated with n*, and let $* and wgy, be the
associated acceleration and rotation fields:

¢ =n"Vun®,

Wgh = hm[a hb]n Vin 77”-

f
Then there exists a unique derivative operator V on O such that all the following
hold on O.

f
(RR1) ¥ is compatible with t, and hP.
: L. Ly
(RR2) n® constant with respect to V (i.e., Vo n° = 0).

iy
(RR3) V is flat.
(RR4) For all timelike curves with four-velocity field £¢,

%-nvn%-azo — %.n én ga: _¢a_2wnu%.n.

(RRS5) ¢* and wyy, satisfy the “field equations”:
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f

(4.5.5) vl = o,
f

(4.5.6) Vao™ =0,

f f
(45.7) Vgt = " 7, 0,

f a ab

(4.5.8) Va@" = 4mp — wgp ™.

Note that, as promised, the Trautman Recovery Theorem emerges as a
corollary. If we add the supplemental condition (R*; = 0), then, by proposi-
tion 4.2.4 again, we can find timelike fields locally that are rigid and twist-free.
But if wy, = 0, it follows from equation (4.5.7) (and proposition 4.1.6) that ¢
must, at least locally, be of the form ¢* = V%@ for some smooth scalar field ¢.
And in this case (w,, = 0 and ¢* = V?¢), we fully recover the conclusions of
the Trautman Recovery Theorem.

The de-geometrization presented here is relativized to a rigid unit timelike
vector field n®. Given that field, there is a unique derivative operator satisfying
the listed conditions (relative to it). But it will be clear from the proof that,
in general, different choices for n* lead to different derivative operators—i.e.,
lead to different de-geometrizations. Indeed, one has, here, much the same
non-uniqueness that we encountered in the Trautman Recovery Theorem.

Proof. The argument here is similar in structure to the one we gave for the

Trautman Recovery Theorem, and many individual steps carry over intact or

with only minimal change. We just have to remember that whereas previously

we had the condition V*7? = 0 to work with, we now have only V(#x?) = 0.
Consider the fields

(4.5.9) Kab = Py Vain",

(4.5.10) Clhe = 2t kg)*

on O. It is easy to check that they satisfy the following conditions.

(4.5.11) 2i0" = Van® — V0",
(4.5.12) K =voigb = o,
(4.5.13) 216 = 0"V = ¢b,
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(4.5.14) 26" =2V — ta 9?,

(4.5.15) C%: =0.

We get the second from the fact that n® is rigid, and so Vet = vi¢pbl = 9.
The fourth follows from the second and third. (Note that contracting both
sides with either h*" or n® yields the same result.) The fifth follows from the
anti-symmetry of «p.

f
Next consider the derivative operator V = (V, C%,;) on O. We claim that it
satisfies all the listed conditions. (RR1) follows immediately from proposition
4.1.3. For (RR2), note that, by equations (4.5.13) and (4.5.14),

f
Va ﬂb =V, nb - Cban 77” =V, nb —(ta Knb +tn Kﬂb) 77”

1 1
=V’ — Etmb—(vanb—itmb) =0.

Thus, as required for (RR2), n* is constant with respect to the new derivative
f
operator V.

f
Now we turn to the Riemann curvature field associated with V. We have,
by equation (1.8.2),

f
4516)  R%cq = Ry + 2V Cqppp 4+ 2C"c Cp

= Rabcd +2 t[d Vc] I(ba +2 th[C I{d]u +2 ty, t[d Kc]n I{na.

!
It follows immediately that R*¢ = R#¢d But R%*¢ — (. (By proposition 4.1.5,
this is a consequence of the geometrized version of Poisson’s equation (4.5.3).)

So V is spatially flat. Now recall the second clause of proposition 4.2.4. We have
just verified that there is smooth unit timelike field n* on O that is constant

f f f
with respect to V. So (since V is spatially flat), the proposition tells us that Vv

must be flat outright; i.e., R*,,y = 0. So we have (RR3). And equation (4.5.16)
reduces to

(4.5.17) Ry = -2 tra Vel Kp® —2 Ve Kd]a — 2ty Kc]n kn?.

For (RR4), note first that for all timelike curves on O with four-velocity
field &4,
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f
Sn Vn Sa =§n(vn$a_canm$m) = gnvnéa_(tm/(na‘i‘tn/(ma)gmgn

= &E"VnE® — 21,°E".
But, by equations (4.5.14) and (4.1.42) and the fact that n% is rigid (6,* = 0),

(4.5.18) 26y = 2V n® — t, 0"

= Z(wna+tn¢a) - tn¢a = za)na+tn¢a'

f
S0 E"V,E% =0 iff £" V, £% = —¢% — 2w, . Thus we have (RR4).

Notice also that there can be at most one derivative operator V on O sat-
isfying condition (RR4), so we get our uniqueness claim. For suppose that

f f
V' = (v, C'%,) satisfies it as well. Then, for all timelike geodesics on O (with
respect to V) with four-velocity field £%, we have

nf a a agn nf/ a nf a ra m
E"Vp €t =—0¢"-2w,"E" =E"V & :%—(Vni: —C%mé )

So, C'%,,, §™&™ = 0 holds at every point. But every future-directed unit time-
like vector £# ata pointin Ois the tangent vector of some geodesic (with respect
to V) through the point, and the collection of future-directed unit timelike vec-
tors at a point spans the tangent space there. So it follows that C'%,,, = 0 at
every point in O.

Now, finally, we turn to (RR5). The four conditions we must verify all follow
from equation (4.5.17). Contracting a with d yields

(4.5.19) 47 ptyte = Ry =t Vaip® + 1, Var® +ty te ke
And raising ¢ yields
(4.5.20) R a=—t3Vr,* — 65,V uy® + 1V —ty tg ki,

Let us now contract (4.5.19) with n? h°". This, together with equation (4.5.12),
gives us 0 = Vg k™ = V, ™. Tt follows that

f
(4.5.21) Vo 0™ =V, 0% — 0" C?,, — 0™C?,, = 0.

(Here C%, = 0 by (4.5.15), and w*"C?,, = 0 because of the respective anti-
symmetry and symmetry of ©*" and C?,,,.) So we have the second in our list of
four (RR5) conditions. Next, let us contract equation (4.5.19) with n?n¢. Then,
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using equations (4.5.13), (4.5.14), and (4.5.18), we get

47 p = 21" Vo, +ka"kn® = 2 [Valiy® n°) — (Ya ")k + ko scn®
a b 1 b a n, a
= V9" —2(kq +Eta¢ b +Ka' Kn

= Vo ¢® — kol k% = V4 0% — 05”0
So, by equation (4.5.15) again,

f
(4.5.22) Va¢® = Vad® = Cn¢" = V9" = 47w p—wy, ™.

Thus we have the fourth condition in the (RRS5) list. That leaves the first and
the third.
Now, for the first time, we use the fact that V satisfies the first supplemen-

f
tal curvature condition (4.5.4). Since V satisfies it as well—as it clearly does
f
since R%,,y = 0—we know from proposition 4.3.5 that k,;, must be closed; i.e,

f f f

V [a kpep = 0. So, by equation (4.5.12), V agbel =7 laxcbel — 0, That is the first
condition in the list. Finally, contracting equation (4.5.20) with n”,% and using
equations (4.5.13), (4.5.12), and (4.5.18) yields

Rabcd nbnd ] nb Ve Kba + nd v, P

-2 (Vc(Kba nb) _ (VC nb)Kba) + nd \/ K — ke,

_ V¢ ¢a + nd v, Py +chKba — _V¢ ¢a + nd v, ™ +wcbwba.

So, since R%°; = R°;%, (and since o™ is anti-symmetric), V¢l —
n% V4 @™ = 0. But, as one can easily check (with a computation much like

S f
ones we have seen before), V* ¢° = V4¢¢ and n? V0% = 1%V, 0. This
gives us the third condition in the (RR5) list, and we are done. O

We have claimed that the difference between the two versions of
geometrized Newtonian gravitation theory collapses if one restricts attention
to classical spacetimes that are, in a certain weak sense, “asymptotically flat.”
(In that case, the second supplemental curvature condition, Rab = 0, follows
from the other assumptions.) Now we make the claim precise. Toward that
goal, we first prove a result of Ehlers’s [15].
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PROPOSITION 4.53. Let (M, t,, h®®, V) be a classical spacetime that is spatially
flat (R%“4 = 0). Then there is a smooth scalar field W on M such that

(4.5.23) R4 Rb,, =W tg te.
Moreover,
(4.5.24) R? ;=0 W =0.

Proof. Let p be any point in M; let »® be a smooth, future-directed, rigid, unit
timelike field defined on some open set containing p (existence is guaranteed,
once again, by proposition 4.5.1); and let w,, be the rotation field determined

by n*. Further, let «,;, and é be defined (relative to %) as in the preceding
proof. Then, by equations (4.5.17), (4.5.20), and (4.5.18),
RO R6e = (=2t Vey ip® — 21, Ve kg)® — 2ty tra ket en®)
(=t VEia? — taVE i + 1V ke — by 1o ki)
= (= ta Veip®)(— te VO ka?) = tgte (Ve 03%)(VC wa”).
So we need only take W = —(V; wap)(V® @) at p. Now, by equation (4.5.17)

again, we also have R* ; = —2 tia Ve Kb = —2 tra Vel . Hence (since con-
tracting R ; with either 7°n% or h h® yields 0),

(4.5.25) R ;=0 Vo =0.

So the assertion that remains for us to prove, namely equation (4.5.24), is

equivalent to
(4.5.26) Ve = 0 <= (Ve wap) (V™) = 0.

One direction is trivial, of course. And the other (right to left) follows just from
the fact that the indices in V¢w"* are spacelike (and the metric induced by h*?
on the space of spacelike vectors at any point is positive definite). For future
reference, we give the argument in detail. Let 6%, 5%, 6% be three linearly inde-
pendent, smooth spacelike fields on some open set containing p such that (i)
heb = 32 5% 6P and (i) V4 6 = 0. (Existence is guaranteed by our assump-
tion of spatial flatness. Recall the proof of proposition 4.5.1.) Let )1%, iu, iu be
, i o
three smooth fields such that 6 = h®X, (or, equivalently, 6%, = 8;j) for all
ijk
i and j. Now, for all i, j, and k, let & be the scalar field defined by

ijk P ki J
b= 66258 (Ve wap) = he ha Ay (V™).
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Then
3 ijk
Vcwab_ ZZ) kc Lalb’

ijk=1
and, hence,

3o , 3o
(45.27) (Veom) (Vo) = Y o (666" Vewy) = Y (o)

ijk=1 ijk=1

i
So, clearly, (V; @g)(VC @) can vanish only if w = 0 for all i,j,and k; i.e., only
if Vo =0. O

Now we can formulate our notion of asymptotic flatness. It is intended to
capture the intuitive claim that “R® ; goes to 0 at spatial infinity.” (We could
certainly impose a restriction on the limiting behavior of R%,.; but, in fact, it
suffices for our purposes to work with a weaker condition that is formulated in
terms of R ;.) With equivalence (4.5.24) in mind, we shall use the condition
W — 0 as a surrogate for the condition R* 4 — 0.

We first have to insure that there is an asymptotic regime in which space-
time curvature can go (or fail to go) to zero. We do so by restricting attention to
classical spacetimes that can be foliated by a family of spacelike hypersurfaces
that are simply connected and geodesically complete. Each of these hypersur-
faces (together with the metric induced on it by h??) is then, in effect, a copy
of ordinary three-dimensional Euclidean space. Given a classical spacetime
(M, t5, h®, V) satisfying this condition, we say officially that R* 4 goes to 0 at
spatial infinity if, for all spacelike geodesics y : R — M, W(y(s)) — Oass — oo.

Now we can formulate the collapse result (due to Kiinzle [35] and Ehlers
[15)).

PROPOSITION 4.5.4. Let (M, t;, h®, V) be a classical spacetime that is spatially
flat. Suppose the following conditions hold.

(1) For all p in M, there is a spacelike hypersurface containing p that is simply
connected and geodesically complete.
(2) R%_; goes to 0 at spatial infinity (in the sense discussed above).

Then R% 4 = 0 (everywhere).
Proof. Arguing as in the proof of proposition 4.5.1, but now using assumption

(1), we can show that there exist three smooth, linearly independent, globally
defined spacelike fields 6%,5%, 6% satisfying (i) h® = 6260 +5%460 46950
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and (ii) V* 5% = 0, and there exists a smooth globally defined future-directed,
unit timelike field £° that is rigid (V(® £2) = 0). Let wg;, be the rotation field

f
associated with the latter, and let V be its associated flat derivative operator (as
constructed in the proof of proposition 4.5.2). Finally, let the scalar component

ijk
fields @ be defined by

gk kcigi
W = 6°6°51 (Ve wgp)

as in the preceding proof. We are assuming that W = (V. w,) (V¢ @) goes to 0
as one approaches spatial infinity. But, by equation (4.5.27), (Ve wgp)(VE ™) =

ijk
sz,kzl(g))z. Hence, for all i,j, and k,
ijk
(@) & — 0at spatial infinity.

ijk
We claim now that the fields go are all harmonic; i.e.,

"
(b) V,V*w = 0.

ijk
(We could equally well take the claim to be V, V" b= 0, but it is more con-

venient to work with the flat derivative operator V.) Once we show this, we
will be done. Because it will then follow by the “minimum principle” that the
ijk ijk
fields @ all vanish. That, in turn, will imply that ¥ = Z? J<Y,C:1(lgz))2 =0 and,
hence, by equation (4.5.24), that R ; = 0.
As in the preceding proof, let }1%, }Z\u, )3% be three smooth fields such that

; i f
0% = h®),. Now V* and V* agree in their action on contravariant fields that
are spacelike in all indices. In particular, for all 1,

S i
Vesh = vash,

%aa)bc — vawbc‘

6. See, e.g., Flanders [20], p. 85. The principle asserts that a harmonic function defined on a
compact set in three-dimensional Euclidean space assumes its minimum value on its boundary. It
follows—consider a nested sequence of closed balls with radii going to infinity—that if a harmonic
function defined on all of three-dimensional Euclidean space goes to 0 asymptotically along any
(or even just one) geodesic, then it must be 0 everywhere.

ijk
We here apply the principle to the fields % or, rather, the restrictions of those fields to individual
spacelike hypersurfaces that are simply connected and geodesically complete. Note that condition
(b) can be construed as a constraint on the restricted fields. If D is the (three-dimensional) derivative

f
operator induced on a spaceike hypersurface by V—which is the same as the one induced by

ijk
V—then it follows from (b) that D, D" ®=0.
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Lo
(Here C%; has the form C%,; = 2t k). So C%_ = t.kb and, hence, Vé! =

vagh — Cb“maim = Vigh— th“b&m — V%P, The other case is handled sim-

) Luib S S O R P i
ilarly.) It follows that V%¢” = 0, and w = A;AaA, (V™) = 0°0%0°(V wyp).

Hence,

ffw ff

Vu V% = V, V" (69695 V. )
f
v

for all i,§, and k. So, to complete the proof, it suffices for us to show
fff )
(c) VaV'VEu® = 0.

f f
And this condition follows easily from the fact that V! = 0and ¥, o® = 0.
(Recall equations (4.5.5) and (4.5.6) in the formulation of proposition 4.5.2.)

Since V is flat, we can switch derivative operator position and, therefore,
Ll Ll LS ' Lo
Va V'V = VOV, V"0 = VOV, (— Vo™ — Vi™)

ol ! ol ]
= - V'V (V,0™) - VYV (V,0™M) = 0.

So we are done.
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Solutions to Problems

PROBLEM 1.1.1. Let (M,C) be an n-manifold, let (U, ¢) be an n-chartinC, let 0
be an open subset of [ U], and let O be its pre-image ! [6]. Show that (O, ¢|o)
is also an n-chart in C.

Let ¢’ be the restricted map ¢|o. (We write it this way just to simplify our
notation.) Clearly, ¢'[O] is open, since ¢'[O] = ¢[O] = O. And ¢’ is one-to-
one (since it is a restriction of ¢). So (O, ¢’) qualifies as an n-chart on M.
To show that it belongs to C, we must verify that it is compatible with every
n-chart in C.

Let (V, ) be one such. We may assume that UNV is non-empty, since
otherwise the charts are automatically compatible. Since ¢’ is a restriction of
¢, and O is a subset of U (and ¢ is one-to-one), we have

@'[ONV] = g[0N V] =¢[ON(UN V)] = ¢[0]Ne[UN V].

But ¢[O] is open (since it is equal to 6), and ¢[UN V] is open (since the
charts (U, ¢) and (V, y) are compatible). So ¢'[ON V] is open. Furthermore,
Y[ON V] is open since it is the pre-image of the open set ¢[ON V] under the
smooth (hence continuous) map

poy Liy[UNV] = p[UNV].

(That the map is smooth follows, again, by the compatibility of the charts
(U, ¢) and (V, ¥).) Finally, the maps

¢ oy liyloNV] = ¢[ONV],
Vo'l [ONV] = y[ONV]

are smooth since they are the restrictions to open sets, respectively, of the
smooth maps

309
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oy iy [UNV]— g[UNV],

Vogp l:iglUNV]— ¢[UNV].

PROBLEM 1.1.2. Let (M, C) be an n-manifold, let (U, ¢) be an n-chart in C, and
let O be an open set in M such that U N O # ¢. Show that (U N O, ¢|uno) is also
an n-chart in C.

We claim, first, that [U N O] is open. To see this, let ¢(p) be any point in
@[U N O]. Since Ois open, there exists an n-chart (V, ¢) inC wherep € V C O.
Since (V, ¥) and (U, ¢) are compatible, [ U N V] qualifies as an open subset of
@[ U N O] containing ¢(p). So ¢[ U N O] is open, as claimed. It now follows by
the result of problem 1.1.1 (taking O=¢[UN 0]) that the pair (UN O, ¢|uno)
is an n-chart in C.

PROBLEM 1.1.3. Let (M, C) be an n-manifold and let T be the set of open subsets of
M. (i) Show that T is a topology on M; i.e., it contains the empty set and the set
M, and is closed under finite intersections and arbitrary unions. (ii) Show that T
is the coarsest topology on M with respect to which ¢ : U — R" is continuous for
all n—charts (U, ¢) in C.

(i) The empty set qualifies, vacuously, as open, and M qualifies as open
since (M, C) satisfies condition (M2). So we need only show that 7 is closed
under finite intersections and arbitrary unions. For the first claim, it suffices
to show that if O; and O, are both open, then their intersection O; N O; is
as well. (The claim will then follow by induction.) So assume that O; and O,
are open, and let p be a point in O; N O,. (If the intersection is empty, it is
automatically open.) Since O, is open, there is an n-chart (U, ¢) in C such that
p € U C O,. Then, by the resultin problem 1.1.2, the pair (U N O1, ¢juno, ) is
an n-chart in C. Thus, given an arbitrary point p in O1 N Oy, there is an n-chart
in C (namely, (U N O1, ¢juno,)) whose domain contains p and is a subset of
01 N O;y. 1t follows that O; N O, is open, as claimed. Finally, let S be a set of
open sets, and let p be a point in its union US. (Again, if the union is empty,
it is automatically open.) Let O be a set in S such that p € O. Since O is open,
there is an n-chart (U, ¢) in C such that pe U € O C (U S). So, given our
arbitrary point in US, there is an n-chart in C (namely (U, ¢)) whose domain
contains p and is a subset of US. It follows that US is open.

(ii) First, we claim that given any n-chart (U, ¢) inC, ¢: U — R" is contin-
uous with respect to 7. Let (U, ¢) be one such. We need to show that, given
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any open subset O of ¢[ U], its pre-image ¢~ ![O] is open. But by the result in
problem 1.1.1, we know that there is an n-chart in C whose domain is ¢~ [O].
And the domain of an n-chartin C is certainly open. So our claim follows easily.
Next, assume that 77 is a topology on M with respect to which ¢ : U — R" is
continuous for all n-charts (U, ¢) in C. We show that 7 € 7’. Let O be a setin
T, and let p be a pointin O. (If O is empty, then it certainly belongs to 77 since
the latter is a topology on M.) Since O is open, there is an n-chart (U, ¢) in C
such thatp € U C O. By assumption, ¢ is continuous with respect to 7'. And
@[ U] is an open set in R" (by the definition of an n-chart). So its pre-image U
must belong to 7”. Thus given any point p in O, there is a 7’-open set (namely,
U) that contains p and is a subset of O. It follows that O itself is open with
respect to 7. Thus, as claimed, every set O that belongs to 7 belongs to 7~
as well.

PROBLEM 1.1.4. Let (M, C) be an n-manifold. Show that a map «: M — R is
smooth according to our first definition of “smoothness” (which applies only to real-
valued maps on manifolds) iff it is smooth according to our second definition (which
applies to maps between arbitrary manifolds).

« is smooth in the first sense iff for all n-charts (U, ¢) in C, the mapa o !
¢[U] — Ris smooth. It is smooth in the second sense iff for all smooth maps
B: R — R, the composed map Boa: M — R is smooth in the first sense (i.e.,
(Boa)ogpl: p[U] — R is smooth for all n-charts (U, ¢) in C). To see that the
second sense implies the first, we need only consider the special case where 8
is the identity map on R. For the converse, suppose that « is smooth in the first
sense, let B: R — R be any smooth map on R, and let (U, ¢) be any n-chart in
C.Then(Boa)ogp™': p[U] — Rissmoothsince (Boa)op™! = fo(xop™?);
i.e., it is composition of smooth maps e o™ ': [U] - Rand f: R — R.

In what follows, let (M,C) be an n-manifold, let p be a point in M, and let
C(p) be the set of charts in C whose domains contain p.

PROBLEM 1.2.1. Let & be a non-zero vector at p, and let (k', . .., k") be a non-zero
element of R". Show there exists an n-chart in C(p) with respect to which & has
components (k', ..., k".

Let (U1, ¢1) be an n-chart in C(p), and let (£1, .. .,&") be the components of

& with respect to (U, ¢1). These components cannot all be 0, since & is not the
zero vector. So there is an isomorphism L of (the vector space) R" onto itself
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that takes (€1,...,£") to (k', ..., k"). Let its associated matrix have elements

{a;}. Then, foralli=1,...,n, k' = Zag§j~
j=1

Now consider a new n-chart (Uy, ¢2) in C(p) where U = Uy and g, = Lo ¢1:
U, — R". (Thatitisan n-chart and does belong to C must be checked. But these
claims follow easily from the fact that L, now construed as a map from the
manifold R” to itself, is a diffeomorphism.) We claim that the components of
£ with respect to (Uy, @) are (k!,...,k"). To see this, we invoke proposition
1.2.5. As in the notes, for all i =1,...,n, let " : ¢1[U; N Uz] — R be the
coordinate map defined by x"* = x' 0 ¢ o <p1_1. Since ¢y = Lo @1, we have

n
x'opy = Zuif (0 1)
j=1
and, therefore,
n
X" =x" o o<p1_1 = Zuijxj.
j=1

It now follows by proposition 1.2.5 that the components of & with respect
to (Uz, @) are

0x
B

=2 ¢
j=1

/i n . .
~(p1(p) =Y _Eay =k,
j=1

for all i.

a a

PROBLEM 13.1. Let & be the vector field xlﬁ — xzﬁ on R?. Show that the
x X

maximal integral curve of & with initial value p = (p', p?) is the map y : R — R?

with y (s) = (p' €, p* e7%).

y has initial value (p', p?). It is an integral curve of the given vector field
since, for all s € R, and all f € S(y(s)), by the chain rule,

- d J
Yo(f) = $(foy)(s) = %(f(pl ¢ p? e )

5 a

- aTJcCl(J/(s)) (v'e)+ aTJ:z(J/(S)) (—p"e™)
P a

- % (v () ' (v () - r,{z(y(sn x*(y(s))

[l e

= |:x 8x1 X 3x2]y(s) (f)

Finally, it is maximal because its domain is R.
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PROBLEM 1.3.2. Let & be a smooth vector field on M, let p be a point in M, and
let so be any real number (not necessarily 0). Show that there is an integral curve
y: I — M of & with y(so) = p that is maximal in the sense that given any integral
curvey': I' > M of €, if y'(so) = p, then I' C Tand y'(s) = y(s) forall sin I'.

Given an interval .J, let us understand J + a to be the translation of .J by
the number a. Let 0 : J — M be the maximal integral curve of £ with initial
value p. (Existence is guaranteed by proposition 1.3.1.) Let I be the shifted
interval J+sp, and let y: I — M Dbe the curve defined by y(s) = o (s — 50).
Then y is an integral curve of & by the first clause of proposition 1.3.2, and
y(s0) = 0(0) = p. We claim that y satisfies the stated maximality condition.

To see this, suppose y': I' — M is an integral curve of &, and y’(so) = p.
Let J/ =I'—sp and let o’: J' — M be defined by o’'(s) = y’(s+ s0). Then o’
is an integral curve of & (by the first clause of proposition 1.3.2 again) with
initial value 0 (since 0/(0) = y’(s0) = p). So, by the maximality of o', J' € J and
o'(s) = o(s) forall sin J'. It follows immediately that I' = J' +s9 € J+so = I
and y'(s) = o'(s—so) = o(s—s0) = y(s) forall sin I'.

PROBLEM 1.3.3. (Integral curves that go nowhere) Let & be a smooth vector field
on M, andlet y: I — M be an integral curve of . Suppose that & vanishes (i.e.,
assigns the zero vector) at some point p € y[I]. Then the following both hold.

(1) y(s) =pforallsinI (ie., y is a constant curve).
(2) The reparametrized curve y' = y oa: I' — M is an integral curve of € for
all diffeomorphisms ar: I' — L.

(1) Suppose sp € I and y(so) = p. It follows from problem 1.3.2 that there is
aunique maximal integral curve of § whose value at 5o is p. The only possibility
is the constant curve y: R — M that assigns p to all s. (y is an integral curve
of & since, for all f € S(p), f o 7 is constant and, so,

- d
Mo () = 2 (F 7)) =0 = &y9(f)

for all s. It is maximal since its domain is R.) Hence, by maximality, y(s) =
p(s)=pforallsin I.

(2) Let a: I’ — I be a diffeomorphism and let y’ be the composed map
y'=yowa:I' > M. We know equation from equation (1.3.3) that y’ is an
integral curve of & iff

(5) = &(v(a(s)

da
§(r(e)
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for all sin I’. But y(x(s)) = p for all sin I’ (by the first part of the problem)
and, therefore, &(y(a(s))) = £(p) = 0 for all s in I. So the required equation
holds for all sin I'. (Both sides are 0.)

PROBLEM 1.3.4. (Integral curves cannot cross) Let y: I — M and y': I' > M
be integral curves of & that are maximal (in the sense of problem 1.3.2) and satisfy
¥ (s0) = ¥'(sp)- Then the two curves agree up to a parameter shift: y(s) = y'(s+
(s —s0)) forallsinI.

Let I” = I' — (s) — s0), and let " : I” — M be the curve defined by
Y"(s) = v'(s+ (s5 — 50))-

Itis an integral curve of £ by proposition 1.3.2, and y”(so) = ¥’(sp) = ¥ (s0)- So
by the maximality of ¥, I” C I and y”(s) = y(s) for all s in I”; ie., y(s) =
Y'(s+ (s — o)) for all s in I”. It remains to verify only that I” = I. Since
I” C 1, it follows that I C I+ (s; — o). If we rerun the argument with the
roles of I, y, and s interchanged with those of I, ¥/, and s, we arrive at the
symmetric conclusion that I € I' 4 (so — s;). Putting the two set inclusions
together, we arrive at I C I' + (so —s5) € I+ (s5 — o) + (So —sp) = I. So I =
I'+ (so — sp) = I, as claimed.

PROBLEM 1.3.5. Let & be a smooth vector field on M that is complete. Let p be a
point in M. Show that the restriction of € to the punctured set M — {p} is complete
(as a field on M — {p}) iff & vanishes at p.

Let &’ be the restriction of € to M — {p}. Suppose first that & vanishes at p.
Then, as we know from problem 1.3.3, every integral curve of & that passes
through p is necessarily a degenerate constant curve that sits at p. It follows,
we claim, that £’ is complete. For let g be any point in M distinct from p. Since
& is complete (as a field on M), there is an integral curve y : R — M of ¢ with
initial value q. The image of y is fully contained in M — {p} (since otherwise
y would be an integral curve of § passing through p that does not sit at p). So
y qualifies as an integral curve of £'. Since the domain of y is R (and since g
was chosen arbitrarily), we see that §" is complete, as claimed.

Conversely, suppose & does not vanish at p. Since & is complete (as a field
on M), there is an integral curve y : R — M of § with initial value p. y cannot
be a constant curve that sits at p. (Otherwise, we would have )7p = 0 and, hence,
&(p) =0.) Sotheset D = {s € R : y(s) # p}is non-empty. Itis a disjoint union
of open intervals. (If 0 is the only number s in R such that y(s) = p, then D
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will be the union of (— o0, 0) and (0, 00). Other possibilities arise because y
may pass through p more than once.) Let I’ be any one of these intervals,
let y’: I' = M De the restriction of y to I, and let q be any point in y'[I'].
Then y’ qualifies as a maximal integral curve of & in M — {p} that passes
through g. By shifting initial values, we can generate a maximal integral curve
y" of & in M — {p} that has initial value g. But the domain of " is not R (since
the pre-shifted domain I’ of ¥’ is not R). So we may conclude that &’ is not
complete.

PROBLEM 1.4.1. Show that lemma 1.4.1 can also be derived as a corollary to the
following fact about square matrices: if M is an (r x r) matrix (r > 1) and M? is
the zero matrix, then the trace of M is 0.

LA
Assume the left-side condition ) P . =0 holds, and let M be the r x r
) k=1
J

matrix with entries M;; = s o Then M? is the zero matrix since
r r k J J r k
2 i kb i kb
(M) = MMy = (@ V)@ ¥p) = (" V) D (@ Va) =0
k=1

k=1 k=1

r r k
So, by the stated fact, 0 = tr(M) = Y My, = 3. ¢* ¥,
k=1 k=1

PROBLEM 1.6.1. Show that for all smooth vector fields £* on M, £¢ 82 = 0.

For all smooth vector fields A% on M, we have
AL = £: (01T =L £:2% = £e0b— £ =0

(The first equality follows from the Leibniz rule, and the second from the fact
that 82 functions as an index substitution operator.) Since this holds for all
smooth fields A% (at all points in M), we may conclude that £¢ 52 = 0.

Here is a second argument. By the Leibniz rule, and the fact that 52
functions as an index substitution operator, we have

L8 = £ (8055 =80 L85 +65 L2 80 = Le 6+ £e L.

It follows immediately that £; 82 = 0.

PROBLEM 1.6.2. Let £% and n® be smooth vector fields on M, and let the latter be
non-vanishing. Show that if £¢(n°n®) = 0, then £¢ n* = 0.
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Assume that £¢(n*7”) = 0, and let p be any point in M. Since 7 is non-
vanishing, there exists a smooth field A, on M such that the scalar field %A,
is non-zero at p. At all points we have

0 = Aarp L (0°n") = akp(n®£5n° + 1" £& ") = 2000 n*Vhp £¢ 0".
Hence, A, £ n® = 0 at p. But we also have
0 =2y Le (n°n") = hp(n L& n” +n" L n%) = n*ApLe 0" + (1) Le n*
at all points. So (, n?)£e n* = 0 at p and, therefore, £ 7 = 0 at p. Since p

is an arbitrary point in M, we are done.

PROBLEM 1.6.3. Show that the set of smooth contravariant vector fields on M forms
a Lie algebra under the bracket operation; i.e., show that for all smooth vector fields
&n A onM,

[£,n = —[n,§] and [A (& n]+[n (L E1]+[& [n,A]] = 0.

The anti-symmetry of the bracket operation is immediate. We can establish
the second condition with a straightforward computation. Let&, n,  be smooth
contravariant vector fields on M, and let « be a smooth scalar field on M. Then

(% 1€, m](@) = & (&, nl(e)) — [6, 7] (A ()
= [AEM(@) — 2(mE@))] = [Em (@) —n(E (*(@)]-
Similarly,
[n, 1%, 81](@) = [n(1(5 (@) — nEX(@)] = [MEm(@) —&R(n(@))]
[&, (0, 21](@) = [EM(A (@) =& @)] = [0(-E (@) = 2((E@)] -

When we add the three lines, we get 0 on the right side because each term has
a mate with the opposite sign. Since this holds for all smooth scalar fields «
on M, we have our second claim.

PROBLEM 1.6.4. Show that for all smooth vector fields €%, n* on M, and all smooth
scalar fields o on M,

Lagyn® = a(fg n“) - (fn a)é“.

Given any smooth scalar field 8 on M, we have
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(L) ") (B) = (@ &)(n(B)) = 1 (( §)(B)
o (§(n( ) [ n(&(B) — n(@) 6 ()]
o [£(n(B)) = n(E ()] — n(e) £ (B)
=a(£en ) (£ ) £(B)
= [a (£en") = (£,0)£°](B)-
Since this is true for all smooth scalar fields 8, it follows that £y ¢ n® =
a(Le ) — (£ya)ée.

PROBLEM 1.6.5. One might be tempted to take a smooth tensor field to be “constant”

if its Lie derivatives with respect to all smooth vector fields are zero. But this idea
does not work. Any contravariant vector field that is constant in this sense would

have to vanish everywhere. Prove this.

Let n” be a smooth vector field on M. Assume that £¢ n* = 0 for all smooth
vector fields £* on M. Then, given any smooth scalar field « on M, it follows
from the preceding problem that

0= Logyn” =a(Len®) - (£a)6" = —(£ )&

Since this is true for all smooth vector fields £% on M, £, « = 0. Equivalently,
n(e) = 0. But this is true for all smooth scalar fields @ on M. So n* = 0.

PROBLEM 1.6.6. Show that for all smooth vector fields £%, n® on M, and all smooth
tensor fields o’ b on M,

(£e £y = £ Le)ag 30 = Ly 77,
where 0% is the field £gn®.

Consider first the case of a smooth scalar field « on M. The assertion
follows since

(£ £y — £y £e) (@) = EM(@) —n(E (@) = (L2 n)(@) = Lya.

Next consider the case of a smooth vector field «* on M. Given any smooth
scalar field 8 on M, we have

[(£5 £y — £ Le)o|(B) = (£5 £,0%)(B) — (£y £&®)(B)
= 1§, [n, «])(B) — [, [§, «]](B)
= —la, [, n]1(B)
= [[&, nl, @1(B) = (£o ®)(B).
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(Note that the third and fourth equalities follow from the assertions in problem
1.6.3.) Since this is true for all smooth scalar fields g, (£¢ £, — £, £¢) 2 =
£y a®. The other cases now follow in standard computational sequence. To
compute (£5 £, — £, £¢) @y, we consider an arbitrary smooth field A? and
make use of our previous derived expressions for (£5 £, — £, £¢) (ap A?) and
(£ £y — £y £6) )b, And so forth.

PROBLEM 1.7.1. Let V bea derivative operator on a manifold. Show that V,, 8t = 0.

We can use much the same argument here as used for problem 1.6.1.
By the Leibniz rule, and the fact that 8% functions as an index substitution
operator,

Vo8l =V, (8255 = 82 v, 85+ 855V, 80 =27, 5L
So V, 8L = 0.

PROBLEM 1.7.2. Let V and V' be derivative operators on a manifold, and let
Qg,..a, be a smooth n-form on it. Show that

V[lo Qgq...a,] = V/[b Agy...a,]-
There is a smooth, symmetric field C; on the manifold such that V' =
(v, CZC). For any smooth n-form ag, . 4, on M, we have
V/b Qgy...a, = Vy, Ug..a, T Qray..a, Cl:al + 4 Qgyan g 7 Cl’;un‘
So, anti-symmetrizing,
V/[la Ugy...a,] = V[b Uay...ay] T Xrlay...an Cl: a1 T+t Aay.an 7] CZ anl’

Since C?bc] =0, all terms involving C}_ in the sum on the right-hand side
are 0. (Notice, for example, that or[g,. 4, Clr:m] = Ur[ay..an C[’Mﬂ] =0) It
follows that

V[b Qgy..a,] = V/[b Qgy...a,]-

PROBLEM 1.7.3. Let V be the coordinate derivative operator canonically associated
with (U, ) on the n-manifold M. Let u* be the coordinate maps on U determined
by the chart. Further, let V' be another derivative operator on U. We know (from
proposition 1.7.3) that there is a smooth field C; on U such that V' = (V, C}).
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Show that if

-y Yy ¢ (5 )dbuj)(d ),

i=1 j=1 k=1

then a smooth vector field §* = Xn:é <88W>“ on U is constant with respect to V'
(i.e, VL EP = 0) iff '
Loy
ouw k=
foralliandj.
We have

VhE" = Vg —cgcsc

= ZZ ™ (aw>(dbul)

i=1 j=1
YYYY Cs( )(dbuf)( cuk)(%)
i=1 j=1 k=1 I=1 u

8 4
But (dcuk)(p> = 8. So, continuing,
u

Thus V}, §% = 0 iff every coefficient (in brackets) in the sum on the right side
is 0—i.e., iff

foralliandjin {1,...,n}.

PROBLEM 1.8.1. Let V and V' be derivative operators on a manifold with V', =
(Vin, ), and let their respective curvature fields be R} , and R} ,. Show that

ngai = Rch + ch Cg]b + ch[c Cg]n‘
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Given any smooth field «y,
Ve Vaay = Ve (Vgap+aq Cg)
= V. (Y o +aa Cfy) + (@ +a Cpy) Chy + (Vg p +ta C3) -
Expanding the first term, anti-symmetrizing on the indices ¢ and d, and using
the fact that Cf’c 4 = 0, we arrive at

1 /a 1 a a a
7 Rhed % = 5 Riyey @a + (Metial) Cap + e Me Cyy

+ (Maappl) Cf]b taq Ci[c Cipr

The second and fourth terms on the right-hand side differ only in their respec-
tive indices of contraction and the order in which the indices ¢ and d occur.
So their sum is 0. Hence,
1 /a 1 a a P a
3 R g = 3 RYya @ataaMc Cd]b + oy Cb[c Cd]p'

But this holds for all smooth fields «,. So our conclusion follows.

PROBLEM 1.8.2. Show that the exterior derivative operator d on any manifold
: 2_9-i —
satisfies d* = 0; i.e., dy(dm Uy b)) = 0 for all smooth p-forms Oy b,-

dn(dm b, b,) = Mn Mm @y b1 = Mn Yon @y b1 = Min Vin) @y b,

1
= i[ar[bz.“bp RZnnmJ +e +a[b14..bp,1|r\ Rzpnm]]

1
= 5[ rlby..by Ripy oy 07+ @by b, 11 bepnmu]-

Since R?bc g = 0, each of the terms in the final sum is 0. So we are done.

PROBLEM 1.8.3. Show that given any smooth field £%, and any derivative operator
V on a manifold, £¢ commutes with V (in its action on any tensor field) iff
Vi, §™ = Ry &

Let K/} = R &"—V,V} £€™. We claim that for all smooth fields ale_'::Zs',

a1...0r __ _01...0 m al...a m
("E%— Vn - Vn "gg)ablmb; - ambz,,r,bs nby +- +ab1...b3r_1 m Knbs

_ ,maz...ar Kal _ al...ar_lmKar
%py.by  Tnm
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Consider first the case of a scalar field «. By proposition 1.6.4 (and the fact
that W, Vo = 0),

(£eVh—VaLe)oa = "Vl Vo + (Vi) Vi§™) — Vi (§™" Vint)

=E"V Y + (M) (V™) — (V™) Vna ="V M = 0.

Similarly, in the case of a smooth vector field «%, we have
(£6 % — Vi £e)o"
= (" Vo + (U @) (Va ™) — (™) (Vi §)]
— Vo (E" Vot —a™V, £9
="V Vo + (V@) (Va ™) — (e @™) (Vi §9)]
—LE" W Ve + (ME") (M ®) — " Vi Vi 87 — (V™) (Vi €%)]
= 26N V@ + @V, V£
= —£"RS, 0f +aP G,V EY = —aP KL,

The other cases now follow with a standard march through the indices. To
compute (£¢V, — V, £¢)ayp, for example, we consider an arbitrary smooth
field A* and make use of our derived expressions for (£5 Vi, — Vi, £5) (ap A?)
and (£ V, — Vi ££) AP, And so forth.

Nowif K7 = 0, it follows immediately from our equation that £ commutes
with V in its action on any smooth tensor field. Conversely, if the commutation
condition holds, then ay, K:;) = 0 for all smooth fields ;. So Kr’fb =0.

PROBLEM 1.8.4. Show that given any smooth field €% on a manifold, the operators
£¢ and d, commute in their action on all smooth p-forms.

Given any smooth p-form ey, _j,, we have, by the preceding problem,
(Ledn—dnLe)ap, b, = LeMnap, b,) — Mn Lean, b,
= am[bz.“bp Ky};nbl] + T +a[b1<--bp71 [m| K;r;?p]

= G by..by Kinpy T+ by m K[ny:bp]]'
Each of the terms in the final sum is 0, since K[”:s] = 0. (This follows, since by

the symmetries of the Riemann tensor field,

2Kfly = 2Rl §" = VW §7) = RUL 6" — RI 6" + R £"

snr nrs

— RTE" LR EM LRI EM = 3R E"=0,)

[snr]

So (£§ dn — dn £$)ab1...bp =0.
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PROBLEM 1.9.1. Let V be a derivative operator on a manifold that is compatible
with the metric g,;,. Use the Bianchi identity to show that

1
Va(Rab_ EgabR) —=0.
By the Bianchi identity, and various symmetries of the Riemann tensor
field, we have
0 = VinRaped + ViRabme + Ve Rabdm = VinRabed — Vi Rbame — Ve Rabma-

If we raise indices a and b, and then perform (a, d) and (b, c¢) contraction, we
arrive at
0=V, R-—V R — %R,

Contracting with g"* (and changing indices of contraction) yields
0 = V,(g"™R) — 2V,R® = V,(g" R — 2R%).

So, V4(R* — 1 g*R) = 0.

PROBLEM 1.9.2. Let £§% be a smooth vector field on M. Show that

£ggab =0 < Legyp=0.

We know that £¢ 8% = 0 (Problem 1.6.1). Hence
0= L£68% = L6 (5" goc) = 8 L ghe + e L8
Assume that £¢ g, = 0. Then g, £ g% = 0 and, therefore,
0= g%gp Leg™ =8, Leg™ = Leg™.
This gives us the implication from left to right The converse is handled

similarly.

PROBLEM 1.9.3. Show that Killing fields on M with respect to g, are affine
collineations with respect to V.

Let £% be a Killing field. By proposition 1.9.8 (and various symmetries of
the Riemann curvature tensor),

VaVpém = — nabm &n = _Rnabm'i:n = _Rbmnasn = Rmbna§n~
SoVa ™ = R &". It now follows immediately from problem 1.8.3 that £ R |
is an affine collineation with respect to V. 0

“530-47773_Ch05_2P.tex” — 1/23/2012 — 17:18 — page 322



SOLUTIONS TO PROBLEMS [ 323

PROBLEM 1.9.4. Show that if§% is a Killing field on M with respect to g, then the
Lie derivative operator £¢ annihilates the fields Rypca, Rap, and R determined by

8ab-

Given any smooth vector field %, we have

L (RYygna) = L (2Me Vaymp) = 2Me Vay (£ mp) = Ry L Mo
(The second equality follows from the preceding problem. Since £ is a Killing
field, it is an affine collineation with respect to V; i.e., £z commutes with V)
But by the Leibniz rule, we also have
Le (Riyeana) = Ryg L a+na Le Ry
Comparing these two expressions, we see that 7, £¢ R, ; = 0. But this is true
for all smooth fields n,. So £¢ R, ; = 0. Hence, since £¢ 4", =0,
L Rap = Le (87 Rp,) = 8% £ Ry, = 0.
Since £% is a Killing field, £¢g™" = 0. (See problem 1.9.2.) So it follows that

£:R= L5 (g% Ryp) = g% £ Ry, = 0.

PROBLEM 1.9.5. Show that if €% and n® are Killing fields on M with respect to g,
and k is a real number, then (§% 4+ n?), (k&%), and the commutator [§, n]* = L n®
are all Killing fields with respect to g, as well.

A = (§% 4+ n®) is a Killing field since ViaAp) = Via&p) + Vianp) = 0.

Similarly, x* = (k&°) is a Killing field since Viz x3) = kVa&p) = 0.

Finally, 6% = £¢7n* is a Killing field since, by problem 1.6.6, £y g, =
£ Ly gap — £y L gap = 0.

PROBLEM 1.9.6. Let n* be a Killing field on M with respect to g,p,. (i) Let v be
a geodesic with tangent field £%. Show that the function E = £%n, is constant
on y. (i) Let T be a smooth tensor field that is symmetric and divergence-free
(i.e., Vu T® = 0), and let J* be the field T ny,. Show that V, J* = 0.

Let n%, y, €%, and E be as stated. Then we have
E"V,E = -‘E"Vn(fanu) =E"E"Nng +1aE" V€N

Since £§%is a Killing field, W, n, is anti-symmetric. So " £% V, ng = 0. And since
&% is the tangent field of a geodesic, §"V,£% = 0. So, §"V, E = 0. This gives
us (1). The computation for (2) is much the same:
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Vo J® = Na(T®mp) = T Namy + 1y Va T

The second term on the right side vanishes since V, T = 0. The first vanishes
since T is symmetric (and hence T* V), = T Vanp) = 0). So V; J*is 0.

PROBLEM 1.9.7. Show that if n* is a conformal Killing field on M, and M has
dimension n, then

1 [
Maney = = (V1) Gab-

Assume £,(Q2g,) = 0. Then, by proposition 1.7.4 (and the fact that
Vin 8ab = 0),

0= Q? £ﬂgab + Zab £r1 Q= @? [ﬂmvmgab + Vanp + Vo nal + ap £17 Q?
= Q% [Vanp + Y al + gap £y 2.
If we raise the index b and then contract, we obtain

0=2Q%*(Vun) +nt, Q2

1
Our two equations jointly yield Viznp) = - Bab (V7).

PROBLEM 1.10.1. Let S be a k-dimensional imbedded submanifold of the
n-dimensional manifold M, and let p be a point in S.

(1) Show that the space of co-vectors ng € (Mp)q normal to S has dimension
(n—k).

(2) Show that a vector £* € (Mp)* is tangent to S iff n, €% = 0 for all co-vectors
Na € (Mp), that are normal to S.

(1) The subspace of vectors in (My)* tangent to S has dimension k. Let
12 k

{£%,6%,...,&% beanysetof klinearly independent vectors from that subspace.

We can extend it to a basis for (M,)* by adding (n — k) more (appropriately

k+1 n 1 n . i
chosen) vectors &£¢,...,£% Now let {ag,...,a,} be the dual basis. So a4

J
&% = §;;. We claim that the subspace of co-vectors at p normal to S is spanned

k+1 n ) A 11 nn
by { @g,...,a,}. To see this, consider any co-vector oy = oz +---+ a g
. e i .
atp. Itisnormal to Siffa= oz §% = Oforalli = 1,..., k (because every vector
1 2 k
atptangentto Sisalinear combination of £4,£¢,...,£%). Thus « is normal iff
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itis in the linear span of {k&_ i ..., &,}. So the latter is a basis for the subspace
of co-vectors at p normal to S—and therefore that subspace has dimension
(n—k).

(2) The argument is much the same. We continue to work with the basis
and dual basis described in (1). Consider any vector £% ::El %}“ 4+ 4+ gg“ at
p. It is killed by every covariant vector at p normal to S iff it is killed by all

k ! i
the vectors 3?(11, e 3{1. And the latter condition holds iff & :oltaé‘,: % =0 for
alli=k+1,...,n. So &% is killed by every covariant vector at p normal to S

1 2 k
iff it is a linear combination of £4,£¢,...,&%—i.e., iff it is tangent to S.

PROBLEM 1.10.2. Let S be a k-dimensional imbedded submanifold of the n-
dimensional manifold M, and let g,;, be a metric on M. Show that S is a metric
submanifold (relative to gy, ) iff, for all p in S, the pull-back tensor (idy)* (g3 is non-
degenerate; i.e., there is no non-zerovector£% € (Sp)® such that ((idy)* (gan)) £% = 0.

Let p be any point in S. The pull-back tensor (idp)*(g) is degenerate there
iff there is a £% € (Sp)* such that, for all 7% € (Sp)?,  ((idp)*(gap)) Erqb =
2ab ((1dp)«(E%)) ((idp)« (1)) = 0. Since a vector in (M,)® is tangent to S pre-
cisely if it is of the form (idy).(n?) for some 71 € (S,), we see that (idp)* (gzp)
is degenerate at p iff there is a £% € (Sp)® such that g, ((idp)*(g b)) is normal
to S; i.e., there is a vector in (Mp)* tangent to S that is also normal to S.

PROBLEM 1.10.3. Prove the following generalization of clause (2) in proposition
1.10.3. For all M-tensor fields o % on S, the following conditions both hold.

(1) a % istangent to S in the index a < h“boz"'b'" =a " =k a b
=0.

(2) a % is normal to S in the index a < k“ba'"b"' =o't =
hab a-b=0

We work with a representative case. (The proof is exactly the same no
matter how many indices are involved.) Consider the M-field «*™" on S. Sup-
pose first that b9 o™ = g% Then ¢®™ is certainly tangent to S in a since
h“b is. Conversely, suppose «®™" is tangent to S in a. Then, we claim, h“b abmn
and «*™" have the same action on any co-vector 7, (at any point of S) that
is either tangent to, or normal to, S. In the first case, h“b abmn Ng = ¥ ng,
since h 1na = 1y, In the second case, h’ ab™ p =0 = «®" p,, because both

sides are tangent to S in a. This gives us the first equivalence in (1). The
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second is immediate since k% abmn = g% —h%) abmn = gomn _ he, ab™, The
equivalences in (2) are handled similarly.

PROBLEM 1.10.4. Prove that h™ k", k. Vi hyp = 0.

We have
WK™, kP N By = ™ K" [N (i K c) — Pn ViK1

But hyy K.=0= k", by (by the third clause of proposition 1.10.3). So both
terms on the right are 0.

PROBLEM 1.10.5. Derive the second Gauss-Codazzi equation:

1
W Wy W ¥ g = = W W, B Ky R

We have

(1) W™ b BE Ny by = 0.

(2) hma knb kpc Vin hnp =0.

(3) Tape = ™, B KF Ny by = B™ 0% (g5 — T%) Ny By = B B Ny B
(The firstis equation (1.10.3); the second was proved in the preceding problem;
and the third follows from the first.) Hence

" Wy B R N e = W B K N (B, 0, Yy hs) = A4+ B+ C,
where
A= hm[a hnb] hpc krd(vm hqn) hsp (Vq hr),
B = h", Wy WK yh (Vi B5y) (Y hsr),

C = W, Wy W KRS B, (Vi Yy hgr).

By (3) and lemma 1.10.6, h" b}, (Vim h%s) = 7

ab]q =0. So A = 0. Further-
more, since h”h Wil = hqb, we have, by (3),

[

B = k", b WK (Vi B) (N hsr) = By 7y B (Vi B, Ky (% )

= hq[b Tape’ Ky (Y hsr)-

Now 74 is tangent to S in the index a and normal to it in 5. So 7,.° =
h* k°, 7,.” and therefore, continuing the computation,

B=hl

[b a]cs krd (Vq hsr) = hq[b hb&] ksv krd (Vq hsr)”ucv =0. — 0
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(The final equality follows from (2).) Finally, since k", h%, = hf,

C= hm[a hqb] hpc krd hsp (Vin Vq hsr) = hma hqb hpc krd hsp (Mm Vg1 hsr)

1
=3 " b R K 1S, (hur R + hsu RYy).
Now k", hyy = 0 (by proposition 1.10.3) and hsp hs, = hpy. So, continuing,
m n 1,P 1r 1 m 1,9 1,P 1,r U
h [ahb]hckdvmnnpr =C = Eh a P We k' hpw R g

1
=3 W b RE K (gpu — kpu) R ring

1
=5 L hqb WY K"} Rprmg.
(The final equality follows from the fact that, once again, k¥, kyu = 0.) But

Rprmg = Ringpr- So we are done.

PROBLEM 1.11.1. One learns in the study of ordinary vector analysis that, for all
vectors €, 1, 0, A at a point, the following identities hold.

(1) (E xm)-(0x2)=(§-0)(n-4)—(§-2)(n-0).
(2) (6 x(nx0))+ (0 x (& xn))+(nx(0x§))=0.

Reformulate these assertions in our notation and prove them.

The two come out as follows.

(1) (€%°&,nc) (€amn®™A") = (E0p) (n°Ac) — (EPAp) (n°6c).
(2') €™ ey (€cnmn™0") + €Oy (€cmnE ™ ™) + €™ (€mnd™E™) = 0.

They follow easily from equation (1.11.6)—in the case wheren = 3andn™ = 0.

First, we have
(€™ &y nc) (€amn®™ 1) = (€™ €qmn) &y nc O™ A" = 2611, 5 £,m 6™ A"
=210 1 = (£°0,)(n°Ac) — (°4p) (1°0%).
And for the second, we have
€8y (€cmnn™0™) + € By (cmnt ™ ") + € np(ecmnd™E")
= (€“Pecn) &5 0™ 0" + (€ ecmn) Oy €™ 1" + (€“Pecmn) 1y O™ "
= 2315, 8" & nm 0" + 2815, 6%16, 5™ 0" 42815, 8 my 67 5"

=28,11°6" +26,81° 1" + 27,617 6"
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= 1(E6°)n" — (1) 0"+ [(Byn") €% — (Bp&") 1" + L(1p&") 0°
— (my6")5%]

=0.

PROBLEM 1.11.2. Do the same for the following assertion:

div(g x n) = n-curl(§) — & - curl(n).

We have
Va (6abc &pnc) = & etbe Vane +nc €be Vaép

=T ecab Vap — & ebac Vane.

PROBLEM 1.11.3. We have seen that every Killing field £ in n-dimensional
Euclidean space (n > 1) can be expressed uniquely in the form

&y = x" Fap +kyp,

where F,y, and ky, are constant, F,y, is anti-symmetric, and x® is the position field
relative to some point p. Consider the special case where n = 3. Let €, be a volume
element. Show that (in this special case) there is a unique constant field W* such
that Fy, = €45 W°.

Let W% = %e“chbC. Then

1 1
€abc W = €abc (Eécmnan) = E (Ecmnfcab) Fopn = 8[?’;8”]}9 Fyn = F[ab] = Fab-

(The final equality follows from the fact that Fy, is anti-symmetric.) W? is
constant, since
1
Vb wW? = i Vb (eamnan),

and both €*™" and F,, are constant. Finally, W* is the unique field satisfying
the given constraint, forif we also have Fyj, = €, W, then eabc(Wc — W =0,
and so

0 = eey, (WF— W) = 258" (W — W) =2(W"— W").

PROBLEM 2.1.1. Consider our characterization of timelike vectors in terms of null
vectors in the proof of proposition 2.1.1. Why does it fail if n = 2?

If n = 2, the stated condition holds for spacelike as well as timelike vectors.
Indeed, in that dimension, given any two non-zero null vectors a* and y*

“530-47773_ChO5_2P.tex” — 1/23/2012 — 17:18 — page 328



SOLUTIONS TO PROBLEMS [ 329

that are not proportional to one another, every spacelike (as well as every
timelike) vector n* can be expressed in the form n* = ka® + ly%, where k # 0
and I #£ 0. So, of course, if we take 8% to be the null vector Iy %, then we have
na — kaa _|_ ﬁa.

PROBLEM 2.1.2. (i) Show that it is possible to characterize timelike vectors in terms
of causal vectors. (ii) Show that it is possible to characterize timelike vectors in terms
of spacelike vectors.

The following equivalences hold for all n > 2.

A vector n® at p is timelike iff for all causal vectors «® at p, thereisan
€ > 0 such that, for all k, if |k| < €, then n* + ka® is causal.

A vector n% at p is timelike iff for all spacelike vectors a® at p, there is an
€ > 0 such that, for all k, if |k| < €, then n® 4 ka® is not spacelike.

PROBLEM 2.1.3. Does proposition 2.1.3 still hold if condition (1) is left intact but
(2) is replaced by

(27) oty g gbs =0 for all spacelike vectors €% at the point?
And what if it is replaced by

(27) a®-ry g g b = 0 for all null vectors €% at the point?

Condition (2" is certainly not sufficient. For example, if g, is a spacetime
metric and pis a point in the underlying manifold, then g, £*£? = 0 for all null
vectors £ at p, but g,;, # 0. On the other hand, condition (2) is sufficient, and
the proof is almost the same as for the original version of proposition 2.1.3.
Only one change is needed. Before we used the fact that if £¢ is a timelike
vector at some point, and 5* is an arbitrary vector there, then there is an
€ > 0 such that, for all x, if |x| < €, then (§% 4+ xn?) is timelike. Now we use
the corresponding assertion with both occurences of “timelike” changed to
“spacelike.”

PROBLEM 2.2.1. Let p be a point in M. Show that there is no two-dimensional
subspace of My, all of whose elements are causal (timelike or null).

Assume there are non-zero, linearly independent vectors o and 8% at p such
that, for all k and I, the vector (ka® + 1 %) is causal. We derive a contradiction.
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There are two cases to consider. Either (i) one of the two is timelike, or (ii)
both are null. Assume first that one of the two, say %, is timelike. If we set

_(emB™)

(nee™)

)

then a"(kay, +18,) = 0; ie., (ka® +18%) is orthogonal to the timelike vector
a®. Since (ka® +18%) is causal, it follows from the first clause of proposition
2.2.1 that (ka® +18%) = 0. This contradicts our assumption that «* and g%

are linearly independent. Assume next that «® and 8% are both null. Then, for
all kand I,

0<(ka"+1B"(kan+1ps) =2kl (" Bn),
since (ka® +1 %) is causal. But this can hold for all k and I only if («"8,) = 0.
Hence, by the second clause of proposition 2.2.1, «* and 8% must be propor-

tional to one another. Once again, this contradicts our assumption that they
are linearly independent.

PROBLEM 2.2.2. Let giy, be a second metric on M (not necessarily of Lorentz
signature). Show that the following conditions are equivalent.

(1) Forall pin M, gy, and gl;, agree on which vectors at p are orthogonal.
(2) giap is conformally equivalent to either g or —ggp.

The implication (2) = (1) is immediate. For the other direction, assume (1)
holds. It follows from (1) that g,; and g, agree as to which vectors are null—
i.e., orthogonal to themselves. So it will suffice to show that g7;;, has signature
(1,3) or (3, 1). For then we can invoke proposition 2.1.1 and conclude that g/,
is conformally equivalent to g, (in the first case) or to —gy;, (in the second
case).

1
Let p be any pointin M, and let &%, . . ., .%a be an orthonormal basis at p with
1 2
respect to g,;. Consider the vector (§% + £%). It is null with respect to gg;. So it

1 2
must be null with respect to g7;,. Furthermore, since §* and £* are orthogonal
with respect to g5, they must be orthogonal with respect to g/,;. So we have

0= gly (B%+ E9)(E" +8Y) = g, 8980 4 gl 80 80,

Similarly, we have
’ 1.1 3.3
0=gut" s +gus" s’

7 lalb r tath
O_gabg 25. +gubs &
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Now let X; = g, é“ éb, fori=1,...,4. The X; are non-zero since the vectors
é“ are non-null with respect to g,;. So there are only two possibilities. Either
X1 > 0and X, X3,Xs < 0,0r X1 < 0and Xy, X3, Xy > 0. In the first case, g,
has signature (1, 3); in the second, it has signature (3, 1). (In either case, we
need only normalize the vectors %“, . ;5“ to arrive at an orthonormal basis at
p of the appropriate type for g/,;.)

PROBLEM 2.2.3. Prove the second clause of proposition 2.2.3.

Let u* and v® be co-oriented, non-zero causal vectors at a point p. Then
either (u"vy) > 0, or both vectors are null and u* = k v* for some k > 0. In the
latter case, ||u® 4+ v*|| = ||u?|| = |[v*|| = 0, and the assertion follows trivially.
So we may assume (" vy,) > 0. Hence, by the first clause of proposition 2.2.3,
(W™ vn) = |®|l [lv*|l. Therefore,

2
(1 4+ 1) = 117+ 21 1+ 1P < (1" ) 2 (18" 0n) + (V")
= (W' V") G+ v) = I+

(For the final equality we need the fact u* and v* are co-oriented. Otherwise,
(1* +v%) need not be causal.) Equality holds here iff (u"v,) = [|u?| [[v*].
But by the first half of the proposition, again, this is the case iff u* and v*
are proportional.

PROBLEM 2.5.1. Give examples for each of the following possibilities.

(1) A smooth symmetric field Ty, that does not satisfy the WEC
(2) A smooth symmetric field Ty, that satisfies the WEC but not the DEC
(3) A smooth symmetric field Ty, that satisfies the DEC but not the SDEC

(1) Top = —8ap- (2) Typ = 04 0p, Where o is a smooth spacelike field. (3)
T, = Ag Ay, Where A% is a smooth, non-zero null field.

PROBLEM 2.5.2. Show that the DEC holds iff given any two co-oriented timelike
vectors £* and n® at a point, T,y E* n? > o0.

Suppose first that the DEC holds, and let £€% be a timelike vector at
some point. Then T, £*&% > 0 and T, &Y is a causal vector. We claim that
T, €% nP > 0 for all timelike »? at the point that are co-oriented with £%. We
may assume that T,;, &% # 0, since otherwise the claim is trivial. And in this
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case it follows that T,, £% £? > 0 (since otherwise T, £% is a non-zero causal
vector that is orthogonal to the timelike vector &”, and this is impossible by
proposition 2.2.1). So T%, &” is a non-zero causal vector that is co-oriented with
&% Now let n* be any timelike vector at the point that is co-oriented with &%.
It must be co-oriented with T%, £? as well (since co-orientation is an equiv-
alence relation). So T, &% n® > 0.

For the converse, suppose that given any two co-oriented timelike vectors
&% and n* at a point, T,; &% nP > 0. Let £% be a timelike vector at some point.
It follows immediately (taking n® = §%) that T, £ & b > 0. So what we have to
show is that T%; £ is a causal vector. Suppose to the contrary that it is spacelike.
Then we can find a timelike vector ;);“ at the point, co-oriented with &4, that is
orthogonal to T%, £, But since n® is timelike, (;%“ +k T%, £?) is also timelike
and co-oriented with £% for all sufficiently small k > 0. Hence, by our initial
assumption,

0 < T £%0° + kTP, 6") = k (T, €%) (TP, €7)

for all sufficiently small k > 0. But this is impossible since (T, £%)(T?, £") <0.
So, as claimed, T%, & is causal.

PROBLEM 2.5.3. Consider a perfect fluid with four-velocity n®, energy density p,
and pressure p. (i) Show that it satisfies the DEC iff |p| < p. (ii) Show that it
satisfies the SDEC iff it satisfies the DEC.

(i) Suppose T, = p 1a Ny — P (€ap — Na Np)- Then Ty, satisfies the DEC con-
dition at a point iff for all unit timelike vectors £* at that point, T, £*£? > 0
and T%; &Y is causal. Now for all such vectors,

T §*8" = (0 +P)(1"5) —p.
(T*h&")(Tac §°) = (0* — P))(n"5a) + .
So the DEC holds iff both right-side expressions are non-negative for all
choices of £%.
Assume first that |p| < p, and let £* be a unit timelike vector at the point

in question. Then, by the wrong-way Schwarz inequality (proposition 2.2.3),
(n6a)* = 11117 |1E%)* = 1. Hence,

(o +p)(na§a)2—P >(p+p)—p=p=>0,
(0® =P )1"6a)* +p* = (0 ') +p* = p* = 0.

So the DEC holds at the point. Conversely, suppose that T,, £%&? > 0 and
T, Eb is causal for all unit timelike vectors £ at the point. Then, in particular,
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Ty n*n? > 0 and, therefore, 0 < (0 +p)(1*na)> —p = (0 +p) —p = p there.
Next we use the fact that there is no upper bound to the value of (7%€,)? as &%
ranges over unit timelike vectors at the point. It cannot possibly be the case
that (0% — p?)(n°€4)*> + p* > 0 for all such vectors unless (p? —p?) > 0. So
we have p > 0 and (p? — p?) > 0. These two together are jointly equivalent to
Ip| < p, as required.

(ii) The SDEC implies the DEC (always, not just for perfect fluids). Suppose
that at some point T, = p 14 1y — P (gap — Na Np) satisfies the DEC but not the
SDEC. Then there is a timelike vector £% at the point such that T%, £ is null
even though T, # 0 there. We claim this is impossible. If T% &Y is null,
then, (p? — p?)(n°&.)> +p? = 0. But |p| < p, since we are assuming that the
DEC holds, and n%, # 0 (since no two timelike vectors are orthogonal). So
this equation can hold only if p = p = 0, and this contradicts our assumption
that T, # 0 at the point in question.

PROBLEM 2.6.1. Show that Maxwell’s equations in the source free case (J* = 0)
are conformally invariant.

Let g/, = Q% g, be a second metric on the underlying manifold M, whose
dimension n we leave open. Let its associated derivative operator be V'. It will
suffice for us to show that

1
v/ (g/am g/bn an) — 4 (VaFab) ( Q ) Fab Va
We know from proposition 1.9.5 that V/ = (V, C%,.), where

1
Ch=—7p [69 V. Q% +6% % Q% — gy g% W Q2]
We have

v/a (g/am g/bn an) — g/am g/bn v/a Fop = Q° 4gam gbn V,u Fon

4gam gbn [vu an + Cram Fm + Crun Fmr] .

Now

Qg g"" CTam Frn = — 96 g g (8" 4 Vi 248", Vo 27 —gam g7 Vi Q7] Fr
= —ﬁ [F"V,, @+ F'V, Q* — n F*v, Q%]
_ (nQ 2) pab g
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and (since F,j, is anti-symmetric and, therefore, g™ F,,,, = 0),

9—4 gam gbn Crrm Fmr — am gbn [5ra VVL QZ +8Tn Va QZ _gangrs VS QZ] FWW

1
T2a88

1
208 g™ ngbn Vo Q2+ FV, @ — F¥V, Q7

2 ab
=5 F Ve
So, as needed, we have

1 n—4
v, (g/am g/bn Fonn) = @ (VuFub) + (975) Fab V, Q.

PROBLEM 2.6.2. Prove equation (2.6.19).

We have
eabcd FopFeq = éade [2 Eq gb] + €abrs SYBS] [2 Ec gd] + €cdmn EmBn] .

When we expand the right side, we get four terms. Two of them vanish because

of the anti-symmetry of %%

€ Fiq &) Eio £q) = €™ E &, E &g = 0,
€ ¢ e £ B € EMB" = —48%, 8% E"B® € gyun €™ B"
= —4£°B% e g EMB" = 0.
One of the other terms yields
26 Fiy £y) €cmn E™B" = 2 € €4y Eo & £ B"
= —88%y 8" Ea) £™B" = 4 E“By,

since £* E;, = £€% B, = 0. The other yields 4 E® B, as well. (The computation is
almost exactly the same.) So we have

¢4 FF 4 =8E%B,.
PROBLEM 2.6.3. Prove equation (2.6.21).

By equation (2.6.17), we have

1
(Tub é’>:b)(TaC Sc) = [E(_EnEn - Ban) & — €ars ErBs]

1 _
[E(—E’"Em — B"B) &% — e Equi| : — (1)
1
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The two “cross-terms” on the right vanish because &,e%1 = £,¢%1" &, = 0. So
(Tap E0)(T* &) = i(E”En + B"By)? + €ars E"B° € E, B,
But
€ars E'B* €P1 E, By = €arsn £" €™ £,y E" B°E, By = —6 EP B1™ E,, B, £
= —[(E”Ey)(B"By) — (EBy)*].
So we may conclude, as required, that

(Tap€8)(T ) = L (E"E, — B"B)" + ("B,

PROBLEM 2.6.4. Prove the following equivalence.

Dy E =
VaF = Jb = 171 - ,
€ DyB, = &°V,E*4j%.
Clearly, (V, F*’ — J?) vanishes iffits projections tangent to, and orthogonal
to, Sb both vanish; i.e.,

& (Va F = J") 0
hey (Vo FP —Jb) = 0.

v, Fub — Jb — [
We shall work on the right-side equations separately. Since £ (and, therefore,
hgy) are constant, and since E“ is orthogonal to ¢,
& (Va F? = J*) = Vo () — (J'8) = VaE* — = Vo (Ky h"p E™) —
=h%ht, vV, E™ — = Dy E> — .

This gives us the first equivalence. The second is handled similarly using
equations (2.6.12) and (2.6.13). We have

Ry (Va F — ) = Vo (Fhey) — () = Va (FhSy) = f°
and
Vo (Fhe,) = V, [(2 El £ 4 eorsg, By hfb] — 9V, B+ e g, hE, v, B
— £V, E° 4 €V, By = —£9V, EC 4 (€7 Oy By) Vg By
— —£9V, E° + €™ D, B,,.

So
Ky (Vo F® — Jb) = 0 < ™ D,,, B, = £°V, E° +J°.
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PROBLEM 2.7.1. Show that in the general case (n > 3), inversion of equation
(2.7.3) leads to

1 2
Ry, =8 Ty,———T ——Agy.
ab T ( ab (n — 2) gab) (n — 2) Lab
Contraction of
1
Rgp — E Rgay — Agay =87 Ty

yields
1
R—ERn—An:SN T,

or, equivalently,

2_
C=" g8 Tin.

So, substitution for R in the first equation yields

1
Ryp =87 Tub+ERgab+Agub

=871 Ty + BT T+nA)guy+ Aga

(2—mn)

1 2
=8m <Tab T2 Tgab) (-2 A gab,

as required.

PROBLEM 2.7.2. Give examples of the following.

(1) A smooth symmetric field Ty, that satisfies the SDEC (and so also the WEC
and DEC) but not the SEC

(2) A smooth symmetric field Ty, that satisfies the SEC, but not the WEC (and
so not the DEC or SDEC, either)

For (1), take T, = g,p- It satisfies the SDEC. Butin this case, T, — %gabT =
—g,p, and so it does not satisfy the SEC.

For (2), take T, = —gu- It does not satisfy the WEC. But in this case,
Ty — %gabT = g,p, SO it does satisfy the SEC.

PROBLEM 2.7.3. Consider a perfect fluid with four-velocity n®, energy density p,
and pressure p. Show that it satisfies the strong energy condition iff (0 +p) > 0
and (p +3p) > 0.
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If
Tap = £ Na 1y =P (8ab — Na Mb),
then T = (p —3p), and
(p—r)
2
It follows that Ty, satisfies the SEC iff, given any unit timelike vector £% at

1
Tab_igabT: (0+D)namp+ Sab-

any point,
u > ().
7 =
Now (7,6%)% > 1 by the Schwarz inequality. Soif (o + p) > 0and (p + 3p) > 0,
then

(0 +p) (&%) +

(p+p)(naé“)z+w > (p+p)+ (P;P) _ (p4;3p) =0,

and the inequality is satisfied. Conversely, suppose it is satisfied for all unit

timelike vectors £ at some point. Then, in particular, it is satisfied for
£% = n%, which yields (o +3p) > 0. And since (7,&%)? can assume arbitrar-
ily large values as £% ranges over all unit timelike vectors at a point, it must be
the case that (o +p) > 0.

PROBLEM 2.8.1. Prove equation (2.8.8).

It follows from the definition (2.8.6) of the twist vector that

1
€abed gcwd = ) €abed scedmm Emwnr =3 5m[a 8"y 5rc] E° Ep pr

= 356‘5[uwbc] = Wgp-

For the final equality, we use the fact that £% is orthogonal to w,;, in both
indices (and wyy, is anti-symmetric).

PROBLEM 2.8.2. Show that, at any point, o* = 0 iff £,V &, = 0.

We know from equation (2.8.7) and the anti-symmetry of %% that
1 1
of = S Vogg = D ey Vet
So the “if” half of the equivalence follows immediately. For the other direction,
assume that o* = 0 holds at some point. Then at that point we have

1
0 = €amnr o = E €amnr Eude g[b Ve Z}_dj =-3 ab[m (Scn ‘Sdr] g[b Ve de

=-3 ‘i:[m Va gr]‘
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PROBLEM 2.8.3. Complete the calculation in equation (2.8.10).

We have to compute
wba nb wean’
P pon
We work separately with the numerator and denominator. It follows, first,
from equation (2.8.8) that

wbu nb wa ' = (Ebamn g™ wn) nb (€cars 3 CUS) n°
eabmn N Em ©n €acrs° &' &°

—68%1 8™, 8" 1 & on 1 €

—6 Nic & s UC Sr o
= — [en’) (wse®) — (05 °)].

(For the final equality, we use the fact that we are doing the computation at
the “initial point” where n® is orthogonal to £%.) And, since

we have

b c
1" wp n
p"pn = |n"— " | nn — : Wy
o™ oy " wy
(nc wC)Z (T}C CL)C)Z
" wy " wy

= (77” Nn) — 2

1
T (@ o) (1" 1) (@ @5) = (1 @c)?] .

So,
w, b c
p 1 @call r
— n, . Twoen
P~ Pn

as required.

PROBLEM 2.9.1. Let«® be a timelike Killing field that is locally hypersurface orthog-
onal (kigVy ke =0). Further, let « be the length of k. (So k? = k"«ky.) Show
that

K2V, K, = —K[a V] K2
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This follows with a simple direct computation:
0=3k"kaVyke = kakVyke+ (k° ke) Varky 4+ kpkVe kg

= kakVyke+ (K kc) Va iy — kp KV ke

_1 2., 2 _1 2 _ 2 2
—ZKaVbK +x° VK ZKhVaK =Kk Vakp+KaVpK”.

PROBLEM 29.2. Consider a non-trivial boost Killing field «, = 2x“E, &, on
Minkowksi spacetime (as determined relative to some point p and some constant
unit timelike field £%). “Non-trivial” here means that E* # 0. Let n® be a constant
feld on Minkowski spacetime. Show that £, n® = 0 iff n%is orthogonal to both to
&% and E°.
Since n? is constant,

Len® ="V n® ="V k® = ="V k® = —20"Vy (xm E" £%)

= —2E" &N "V o = ~2 E" £ 0" gum = (6™ 1) E — (E™ nm)§°.
Since &% and E* are linearly independent, we see that £, 7% = 0iff (6™ n,,) =

0= (E" nm).

PROBLEM 2.9.3. This time, consider a non-trivial rotational Killing field k;, =
X €apeq £ B* on Minkowski spacetime (with B* # 0). Again, let n® be a constant
field on Minkowski spacetime. Show that £, n* = 0iff n®is a linear combination
of €% and B®.

The argument is very much the same as with the preceding problem.
If n* is constant,
£en® = —0"Vuk® = =n"Vn (xm €™ §° B
=~ B0 Vi = — € €7 BT 0" gum = € g ™ £° B,
Thus £, n* = 0 iff n* has no component orthogonal to both £% and B“.
PROBLEM 2.9.4. Let k% be a Killing field; let y : I — M be a smooth, future-

directed, timelike curve, with unit tangent field £€%; and let J = (P%k,), where
P% = m&°. Finally, let o® = §"V,&% and o = (—a" an)%. Show that

|E"Vy J| < o/ J2 — m? (k™).
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We have seen that
E"V = mig E"V3 EY = muig o,

Now consider the projected spatial metric hy, = g, — £2&). It is negative
definite. So by the Schwarz inequality (as applied to —h,) and the fact that
§%, = 0,

1 1
6"V J| = [m kg a®| = |mhg o kP] < (= hap o a?)2 (= m? hgyk® &P)2

[N,

= a[J? —m? (k"ky)]2.

PROBLEM 2.11.1. Confirmthat the three stated solutions do, in fact, satisfy equation
(2.11.18).

We consider just the k = —1 case. The others are handled similarly. We
have to show that the solution (in parametric form),

a(x) = % (coshx —1)

t(x) = % (sinh x — x)

does, in fact, satisfy equation (2.11.18) for all x € (0, oo). Note that (dt/dx) is
strictly positive in this interval. So by the inverse function theorem, (dx/dt) is
everywhere well defined and equal to (dt/dx)~'. Thus, we have

. da_da (dt)l _ sinhx

“‘E‘% dx " coshx—1"

Therefore

d2—£—1= sinh x 2_ 2 1o
a coshx —1 (coshx —1)

PROBLEM 2.11.2. Consider a second equation of state, namely that in which
o = 3 p. Show that in this case there is a number C’ such that

8w
W a*+ka = ?pa4=C’.

If we multiply the right side of equation (2.11.16) by 3, and equate it with
the right side of equation (2.11.15), we arrive at
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or, equivalently,
da+a’+k=0.

It follows (by integration) that 42 a? + ka® = C’, for some number C’. It then
further follows from equation (2.11.15) that C’ = (8 7/3)pa*.
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